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2 Departamento de Matemáticas, Facultad de Ciencias, Universidad de La Serena,
Av. Cisternas 1200, La Serena, Chile
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Abstract. An entropy conservative (EC) numerical flux for the multiclass Lighthill-
Whitham-Richards (MCLWR) kinematic traffic model based on the general frame-
work by Tadmor [E.TADMOR, The numerical viscosity of entropy stable schemes for sys-
tems of conservation laws, I, Math. Comp., 49 (1987), pp. 91–103] is proposed. The
approach exploits the existence of an entropy pair for a particular form of this
model. The construction of EC fluxes is of interest since in combination with nu-
merical diffusion terms they allow one to design entropy stable schemes for the
MCLWR model. In order to obtain a higher-order accurate scheme and control
oscillations near discontinuities, a third-order WENO reconstruction recently pro-
posed by Ray [D. RAY, Third-order entropy stable scheme for the compressible Euler
equations, in C. Klingenberg and M. Westdickenberg (eds.), Springer Proc. in Math.
and Stat. 237, pp. 503–515] is used. Numerical experiments for different classes
of drivers are presented to test the performance of the entropy stable scheme con-
structed with the entropy conservative flux proposed.
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1 Introduction

The aim of this paper is to introduce an entropy conservative flux for the multiclass
Lighthill-Whitham-Richards kinematic traffic model (MCLWR). This model is a gen-
eralization of the well-known Lighthill-Whitham-Richards model [18, 20] to multiple
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classes of drivers and were independently formulated by Wong and Wong [28] and
Benzoni-Gavage and Colombo [1]. The model is described by the nonlinear and spa-
tially one-dimensional systems of conservation laws

∂tr + ∂x f (r) = 0, (x, t) 2 R ⇥ (0, •), (1.1)

where r = r(x, t) = (r1, . . . , rN)T is the vector of densities, that is, for each i =
1, . . . , N, ri is the density of vehicles belonging to the class or species i, and f (r) =
( f1(r), . . . , fN(r))T is the flux vector. Under the assumptions that drivers of each class
adjust their velocity to the total traffic density r = r1 + · · ·+ rN , and all drivers adjust
their velocity in the same way, the MCLWR model is defined by the relationship

fi(r) = vmax
i rif(r), i = 1, . . . , N, (1.2)

where vmax
i is the maximum velocity attained by cars in class i (free flowing speed)

and f(r) is a function describing the behavior of drivers. Some standard expressions
for f include the Greenshields model [14]

f(r) = 1 � r/rmax, (1.3)

where rmax is a maximum traffic density corresponding to the “bumper-to-bumper”
situation, or the Drake model [7]

f(r) = exp
�
�(r/r0)

2/2
�

. (1.4)

It is further assumed that 0 < vmax
1 < · · · < vmax

N . Broad introductions to mathematical
models for vehicular traffic, in particular on the choice of velocity functions within and
the extensions of the LWR model, are provided in [12, 26, 27].

It is well known that the system (1.1), (1.2) is strictly hyperbolic in the interior of
the phase space for (1.1),

D := {r = (r1, . . . , rN)
T 2 RN : r1 � 0, . . . , rN � 0, r = r1 + · · ·+ rN  rmax},

and admits a separable entropy function (see below for detailed explanations) for ar-
bitrary numbers N of driver classes, that is, of scalar equations in (1.1). The latter
property is exceptional for systems of conservation laws of practical interest but does
hold for the MCLWR models. On the other hand, it is a pre-requisite for the applicabil-
ity of entropy stable schemes for systems of conservation laws that were proposed in a
series of papers including [8–10, 23–25]. It is the purpose of this paper to demonstrate
that entropy stable schemes, based on the use of an entropy conservative numerical
flux, in combination with weighted essentially non-oscillatory (WENO) reconstruc-
tions indeed provide an accurate method for the numerical solution of the MCLWR
model.

The hyperbolicity of the system (1.1), (1.2) has been studied by many authors.
Benzoni-Gavage and Colombo [1] proved the hyperbolicity of the model by showing
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that the system is symmetrizable as long as ri > 0 for all i = 1, . . . , N. They con-
structed an explicit entropy pair (E, Q), that is, a convex function E which is termed
the entropy function along with an associated entropy flux Q such that

rrQ(r) =
�
∂

r1 Q(r), . . . , ∂

rN Q(r)
�
= wTJ f (r), (1.5)

where
w =

�
∂

r1 E(r), . . . , ∂

rN E(r)
�T (1.6)

is the vector of entropy variables. A system of conservation laws (1.1) endowed with
an entropy pair satisfies the additional conservation law

∂tE(r) + ∂xQ(r) = 0, (1.7)

for smooth solutions of (1.1). We recall that for a given system (1.1), (1.1), the identity
(1.5) represents N scalar equations for the two scalar functions E and Q, so for N � 3
the equality (1.5) is an overdetermined system of algebraic equations, and therefore
the existence of an entropy pair (E, Q) satisfying (1.5) is an exceptional property.

It is well known that solutions of (1.1) develop discontinuities, therefore the en-
tropy equation (1.7) transforms into the entropy inequality

∂tE(r) + ∂xQ(r)  0 (1.8)

in the sense of distributions. There is interest in the design of conservative numerical
schemes for (1.1), (1.2) that in semi-discrete (i.e., discrete in space but continuous in
time) form satisfy an analogue of (1.8). Such entropy conservative (EC) schemes were
introduced by Tadmor [22] and play an essential role in the construction of entropy
stable schemes, since they can be used as a comparison principle to investigate en-
tropy stability in the sense that a scheme that contains more numerical viscosity than
an entropy conservative scheme is entropy stable (see [22], Theorem 5.2). The general
framework introduced by Tadmor has been used in order to obtain entropy conser-
vative schemes for some nonlinear systems of conservation laws, namely, the shallow
water equations [10] and the Euler equations [15].

The remainder of this paper is organized as follows. In Section 2 we briefly re-
view theory about entropy conservative schemes developed by Tadmor [22, 23]. The
computation of entropy conservative flux for the MCLWR traffic model (Greenshields
form) is presented in Section 3. This section also contains a summary of the recon-
struction procedure to obtained high order diffusion operators, in particular the third-
order sign-preserving WENO method [11,19]. In Section 4 numerical experiments are
provided. Finally, some conclusions are drawn in Section 5.

2 Entropy conservative schemes: general framework

2.1 Preliminaries

Let us consider a general one-dimensional system of conservation laws (1.1) indepen-
dently of the context of the traffic model. Assume that there exists an entropy pair



4 Bürger, Torres and Vega

(E, Q) associated with (1.1), then multiplying (1.1) by the entropy variables wT :=
rrE(r) yields that smooth solutions r = r(x, t) satisfy (1.7). However, as is stated in
Section 1, this identity is not valid for non-smooth solutions, therefore (1.7) transforms
into the so-called entropy inequality (1.8) in the sense of distributions. A semi-discrete
conservative and consistent scheme for (1.1) on a uniform spatial mesh xj = jDx, j 2 Z

is given by
drj(t)

dt
= � 1

Dx
�

F j+1/2 � F j�1/2
�

, j 2 Z, (2.1)

where

rj(t) ⇡
1

Dx

Z

Ij

r(x, t)dt, Ij := [xj�1/2, xj+1/2), xj+1/2 := (j + 1/2)Dx, j 2 Z,

and F j+1/2 = F(rj�p+1, . . . , rj+p) is the numerical flux associated with xj+1/2. We as-
sume that F j+1/2 is a Lipschitz continuous function and consistent with the differential
flux in the standard sense, i.e. F(r, r, . . . , r) = f (r).

2.2 Entropy stable and entropy conservative numerical schemes

The scheme (2.1) is called entropy stable with respect to the entropy pair (E, Q) if it
satisfies a discrete entropy inequality

d
dt

E(rj(t)) +
1

Dx
�
Q̃j+1/2 � Q̃j�1/2

�
 0 (2.2)

for some numerical entropy flux Q̃j+1/2 consistent with the entropy flux Q. If equality
holds in (2.2), then the scheme (2.1) is called entropy conservative. Since inequality (2.2)
holds for entropy stable schemes, such a scheme will be stable in an appropriate Lp

space (see [8]).
Next we recall the basic result by Tadmor [22] related to the design of an entropy

preserving numerical flux. First we introduce the notation

[[a]]j+1/2 := aj+1 � aj, aj+1/2 :=
1
2
(aj+1 + aj).

Theorem 2.1 (Tadmor [22]). Assume that the one-dimensional system of conservation laws
(1.1) is endowed with an entropy pair (E, Q). Suppose that F̃ j+1/2 is a consistent numerical
flux that satisfies

[[w]]Tj+1/2F̃ j+1/2 = [[y]]j+1/2, j 2 Z, (2.3)

where wT = rrE(r) are the entropy variables and y is the so-called entropy potential
defined by

y(r) := wT f (r)� Q(r). (2.4)

Then the conservative scheme

drj(t)
dt

= � 1
Dx

�
F̃ j+1/2 � F̃ j�1/2

�
, j 2 Z, (2.5)
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is second-order accurate and entropy conservative, and satisfies the discrete entropy identity

d
dt

E(rj(t)) = � 1
Dx

�
Q̃j+1/2 � Q̃j�1/2

�
, j 2 Z, (2.6)

with the numerical entropy flux Q̃j+1/2 = w̄T
j+1/2F̃ j+1/2 � ȳj+1/2.

According to Theorem 2.1, the existence of an explicitly given entropy pair is an
important ingredient in designing entropy conservative schemes. For the scalar case
(N = 1), where any convex function can be used as an entropy function, the unique
solution of (2.3) is given by [8]

F̃j+1/2 =

8
<

:

yj+1 � yj

wj+1 � wj
if rj 6= rj+1,

f (rj) otherwise.
(2.7)

For a system of conservation laws (N > 1), Tadmor proposed the following general
solution of (2.3):

F̃ j+1/2 =
Z 1/2

�1/2
f
�
wj+1/2(x)

�
dx, (2.8)

where wj+1/2(x) denotes the straight line connecting vj and wj+1, i.e.,

wj+1/2(x) =
1
2
(wj + wj+1) + x(wj+1 � wj), x 2 [�1/2, 1/2].

In general it is difficult to express the path integral (2.8) in closed form. However, this
is feasible for MCLWR traffic flow models in the special case of f(r) given by (1.3).
In [23], Tadmor also constructed an explicit solution of (2.3) based on different paths
in the phase space of the entropy variables. The procedure described by Tadmor is
as follows: Let {ri}N

i=1 be an arbitrary set of N linearly independent vectors, and let
{li}N

i=1 be the corresponding orthogonal set. At an interface xj+1/2, we define the paths

w0 := wj, wi := wi�1 +
�
[[w]]Tj+1/2li

�
ri for i = 1, . . . , N � 1, wN := wj+1.

Then the entropy conservative flux is given by

F̃ j+1/2 =
N

Â
i=1

y(wi)� y(wi�1)

[[w]]Tj+1/2li
li. (2.9)

This algorithm has the disadvantage of increasing the computational cost due to the
intensive use of of characteristic information. Besides, the computation of the flux (2.9)
may be numerically unstable, as is pointed out in [10].



6 Bürger, Torres and Vega

3 Entropy conservative numerical fluxes for traffic models

We start with a couple of simple examples for the scalar case.

Example 1. For the Lighthill-Whitham-Richards (LWR) model along with the Greenshields
relationship (1.3), the traffic flow can be expressed as f (r) = vmax

r(1 � r/rmax). For the
quadratic entropy E(r) = r

2/2 and the corresponding entropy flux

Q(r) = vmax
✓

r

2

3
� 2r

3

3rmax

◆
,

we obtain the entropy conservative flux

F̃j+1/2 = vmax
✓

rj+1 + rj

2
�

r

2
j+1 + rj+1rj + r

2
j

3rmax

◆
. (3.1)

For the logarithmic entropy E(r) = � ln r together with the corresponding entropy flux

Q(r) = vmax
✓

2r

rmax
� ln r

◆
,

the entropy variable and the entropy potential are w = �1/r and

y(r) = vmax
✓

ln r � r

rmax
� 1

◆
,

respectively. The resulting entropy conservative flux is

F̃j+1/2 = vmax
rjrj+1

✓
1

r

ln
j+1/2

� 1
rmax

◆
. (3.2)

Here, aln is the logarithmic mean, defined as aln
j+1/2 := [[a]]j+1/2/[[ln(a)]]j+1/2.

Example 2. For the Drake form of the traffic stream model (1.4), the flux function takes
the form f (r) = vmax

r exp(�(r/r0)2/2). The entropy potential in this case is y(r) =
�vmax

r

2
0 exp(�(r/r0)2/2). From (2.7) we obtain that the quadratic entropy E(r) = r

2/2
and the corresponding entropy flux

Q(r) = vmax
⇣

r

2
0 exp

�
�(r/r0)

2/2
�
+ r

2 exp
�
�(r/r0)

2/2
�⌘

result in the entropy conservative flux

F̃j+1/2 =

8
><

>:
�vmax

r

2
0

exp
�
�(rj+1/r0)2/2

�
� exp

�
�(rj/r0)2/2

�

rj+1 � rj
if rj 6= rj+1,

vmax
rj exp

�
�(rj/r0)2/2

�
otherwise.

(3.3)
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3.1 Entropy conservative flux for a MCLWR traffic model

We now construct an entropy conservative flux for the MCLWR traffic model with the
Greenshields speed-density relationship (1.3) based on the recipe (2.8). We begin with
the entropy pair provided in [1], namely

E(r) =
N

Â
i=1

ri(ln ri � 1)
vmax

i
, Q(r) = f(r)

N

Â
i=1

ri ln ri � F(r),

where the function F is any primitive of f, i.e., F0(r) = V(r). According to (1.6), the
corresponding entropy variables are

w =

✓
ln r1

vmax
1

, . . . ,
ln rN

vmax
N

◆T
, (3.4)

and the entropy potential defined by (2.4) is

y(r) =

✓
ln r1

vmax
1

, . . . ,
ln rn

vmax
N

◆
V(r)

0

B@
r1vmax

1
...

rNvmax
N

1

CA� V(r)
N

Â
i=1

ri ln ri + F(r) = F(r).

From (3.4) we obtain r(w) = (exp(vmax
1 w1), . . . , exp(vmax

N wN))T. Then, for V(r) given
by (1.3), we get r(w) = exp(vmax

1 w1) + · · ·+ exp(vmax
N wN), and we have

g(w) := f
�
r(w)

�
=

 
1 � 1

rmax

N

Â
i=1

exp (vmax
i wi)

!0

B@
vmax

1 exp (vmax
1 w1)

...
vmax

N exp (vmax
N wN)

1

CA .

We denote by ri,j the density of class i on cell Ij, and fix the index j. Then the k-th
component gk(wj+1/2(x)) of the vector g(wj+1/2(x)) can be written as

gk(wj+1/2(x)) =

 
1 � 1

rmax

N

Â
i=1

exp(ai + xbi)

!
vmax

k exp(ak + xbk),

where ai = vmax
i w̄i,j+1/2 and bi = vmax

i [[wi]]j+1/2, or in terms of conserved variables,

ai = ln
p

ri,jri,j+1 and bi = ln(ri,j+1/ri,j).

Thus, if bk 6= 0, the numerical flux F̃ j+1/2 = (F̃1,j+1/2, . . . , F̃N,j+1/2)T is given by

F̃k,j+1/2 =
Z 1/2

�1/2
gk(wj+1/2(x))dx

=
vmax

k exp (ak)

bk

✓
exp

✓
bk
2

◆
� exp

✓
�bk

2

◆◆
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�
vmax

k
rmax

N

Â
i=1

exp (ai + ak)
bi + bk

✓
exp

✓
bi + bk

2

◆
� exp

✓
�bi + bk

2

◆◆
(3.5)

= vmax
k

 
rk,j+1 � rk,j

ln(rk,j+1)� ln(rk,j)
� 1

rmax

N

Â
i=1

ri,j+1rk,j+1 � ri,jrk,j

ln(ri,j+1rk,j+1)� ln(ri,jrk,j)

!

= vmax
k

 

(rk)
ln
j+1/2 �

vmax
k

rmax

N

Â
i=1

(rirk)
ln
j+1/2

!
.

To elucidate that (3.5) defines a consistent numerical flux, it is sufficient to recall the
well-known property

lim
(x,h)!(aj,aj+1)

x � h

ln x � ln h

=

8
><

>:

0, if aj = 0 or aj+1 = 0,
aj, if aj = aj+1,
aln

j+1/2, otherwise.

Thus, if we assume that rj+1/2 ! r 2 D for all j 2 Z, we get, as expected,

F̃k,j+1/2 ! vmax
k

 
rk �

1
rmax

N

Â
i=1

rirk

!
= vmax

k rkV(r).

3.2 Higher-order entropy conservative fluxes

The entropy conservative fluxes described above are only second-order accurate. How-
ever, LeFloch, Mercier and Rohde [17] proposed a procedure to construct higher-order
entropy conservative fluxes.The underlying idea is to consider linear combinations of
existing second-order accurate entropy conservative fluxes F̃.

Theorem 3.1 ( [17], Th. 4.4). For p 2 N, assume that g

p
1 , . . . , g

p
p solve the p linear equations

2
p

Â
r=1

rg

p
r = 1,

p

Â
r=1

r2s�1
g

p
r = 1 (s = 2, . . . , p),

and define

F̃2p
j+1/2 :=

p

Â
r=1

g

p
r

r�1

Â
s=0

F̃(rj�s, rj�s+r).

Then the finite difference scheme with flux F̃2p
j+1/2 is 2p-th order accurate for sufficiently

smooth solutions r and entropy conservative, namely it satisfies the discrete entropy identity

d
dt

E
�
rj(t)

�
+

1
Dx

�
Q̃2p

j+1/2 � Q̃2p
j�1/2

�
 0,

where the discrete entropy flux is given by

Q̃2p
j+1/2 =

p

Â
r=1

g

p
r

r�1

Â
s=0

Q̃(rj�s, rj�s+r). (3.6)
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For instance, the fourth-order entropy conservative flux corresponding to p = 2,
namely F̃4 and which will be used in numerical examples, is given by

F̃4
j+1/2 =

4
3

F̃(rj, rj+1)�
1
6
�

F̃(rj�1, rj+1) + F̃(rj, rj+2)
�
.

3.3 Additional numerical diffusion

Since the solutions of hyperbolic conservation laws develop discontinuities in finite
time, the entropy conservative schemes lead to high-frequency oscillations in the vicin-
ity of shocks (as was reported in [10, 24]). Therefore, it is necessary to add numerical
diffusion to guarantee that entropy is dissipated. To this end, we used the higher-
order numerical diffusion operator designed by Fjordholm et al [24]. In this reference,
the numerical flux is defined as

f j+1/2 = F̃ j+1/2 �
1
2

Dj+1/2hhwiij+1/2, (3.7)

where F̃ j+1/2 is a high-order entropy conservative flux, hhwiij+1/2 is the difference
in the reconstructed states, that is, hhwiij+1/2 := wj+1(xj+1/2)� wj(xj+1/2) for some
reconstructed function wj(x) which will be specified later, and Dj+1/2 is a diffusion
matrix of the form

Dj+1/2 = Rj+1/2Lj+1/2RT
j+1/2. (3.8)

Here, Rj+1/2 is the matrix of right eigenvectors of the flux Jacobian J f (rj+1/2) and
Lj+1/2 is a positive diagonal matrix that depends on the eigenvalues of the flux Jaco-
bian. In this work, we use the Rusanov-type diffusion term defined by

Lj+1/2 = max
�
|l1|, |l2|, . . . , |lN |

 
I,

where l1, . . . , lN are the eigenvalues of J f (rj+1/2) and I is the N ⇥ N identity ma-
trix. The eigenvalues and the normalized eigenvectors are computed numerically by
using the inexpensive framework based on the interlacing of known velocities with
unknown eigenvalues [6].

In order to ensure entropy stability of the scheme with numerical flux (3.7), it is
necessary to modify the reconstruction procedure and the following result will be ex-
tremely useful.

Lemma 3.1 (Fjordholm et al. [8]). For each j 2 Z, let Dj+1/2 given by (3.8). Let wj(x) be a
polynomial reconstruction of the entropy variable in the cell Ij such that for each j, there exists
a diagonal matrix Bj+1/2 � 0 such that

hhwiij+1/2 =
�

RT
j+1/2

��1Bj+1/2RT
j+1/2[[w]]j+1/2 (3.9)

Then the scheme with numerical flux (3.7) is entropy stable with the following numerical
entropy flux, where Q̃2p

j+1/2 is defined by (3.6):

Q̂j+1/2 = Q̃2p
j+1/2 �

1
2

w̄TDj+1/2hhwiij+1/2.
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As the authors of [8] pointed out, Lemma 3.1 provides sufficient conditions on
the reconstruction for the scheme to be entropy stable. The last-mentioned reference
also describes a reconstruction procedure that satisfies the crucial condition (3.9). This
procedure can be summarized as follows. Assume that wj, wj+1, w+

j and w�
j+1 are

given. We then define the scaled entropy variables

z±j := RT
j±1/2wj, z̃±j := RT

j±1/2w±
j (3.10)

Condition (3.9) can be expressed as

hhw̃iij+1/2 = Bj+1/2hhwiij+1/2. (3.11)

We denote the l-th component of zj and z̃j by zl
j and z̃l

j, respectively. Then (3.11) is
equivalent to the so-called sign property hhz̃l

jiij+1/2 = hhzl
jiij+1/2. The reconstruction

procedure of the scaled entropy variables that satisfy the sign property is carried out
as follows (see [8, Corollary 3.5]). Given the interface values of each component z = zl

of the scaled entropy variables z for a fix grid cell Ij, we define the point value µ

j
j := z�j ,

and inductively

µ

j
s+1 := µ

j
s + ds+1/2, s = j, j + 1, . . . ; µ

j
s�1 := µ

j
s � ds+1/2, s = j, j � 1, . . . ,

where ds+1/2 = hhziis+1/2. Similarly, we define n

j
j := z+j and

n

j
s+1 := n

j
s + ds+1/2, s = j, j + 1, . . . ; n

j
s�1 := n

j
s � ds+1/2, s = j, j � 1, . . . .

Let Uj
s(x) := Rs({µ

j
k}k2Z) and Yj

s(x) := Rs({n

j
k}k2Z) be the reconstructions of µ

j and n

j

in cell Is. Then the left and right reconstructed values are

z̃�j := Uj
j(xj�1/2) and z̃+j := Yj

j(xj+1/2)

Since (3.10) implies that w±
j := (RT

j±1/2)
�1z̃±j , the diffusion term Dj+1/2hhwiij+1/2 can

be expressed as

Dj+1/2hhwiij+1/2 = Rj+1/2Lj+1/2RT
j+1/2

�
RT

j+1/2
��1hhz̃iij+1/2

= Rj+1/2Lj+1/2hhz̃iij+1/2.

It remains to specify the explicit reconstruction to be used in numerical exper-
iments. It is well known that the ENO method satisfies the sign property [9] but
the standard WENO methods fail to satisfy this property. However, Fjordholm and
Ray [11] designed a third-order WENO reconstruction method (SP-WENO3 for short)
that satisfies the sign property. Furthermore, the SP-WENO3 method has the advan-
tage of leading to tighter stability bounds for higher-order accuracy compared to its
ENO counterpart [11].

For the convenience of the reader, we briefly describe the SP-WENO3 method
(see [11] for a complete description) for the scalar case (for one-dimensional systems,
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scaled entropy variables must be reconstructed as it is described above) by exhibiting
the jump in reconstructed states. We denote the reconstructed values at the cell inter-
faces by w+

j+1/2 = wj+1(xj+1/2) and w�
j+1/2 = wj(xj+1/2). We also define the jump ratio

at the interface xj+1/2 as

q

�
j :=

[[w]]j+1/2

[[w]]j�1/2
and q

+
j :=

1
q

�
j

=
[[w]]j�1/2

[[w]]j+1/2
,

and the functions

y

+
j+1/2 :=

1 � q

�
j+1

1 � q

+
j

, y

�
j+1/2 :=

1
y

+
j+1/2

.

Then
hhwiij+1/2 =

1
2
�
w̃0(1 � q

�
j+1) + w1(1 � q

+
j )
�
[[w]]j+1/2, (3.12)

with the weights given as w̃0 = 1/4 � 2C2 and w1 = 1/4 + 2C1. The functions C1 and
C2 are chosen as

C1(q
+
j , q

�
j+1) =

8
>>>><

>>>>:

f+/(8(( f+)2 + ( f�)2)) if q

+
j 6= 1, y

+ < 0, y

+ 6= �1,
0 if q

+
j 6= 1, y

+ = �1,
�3/8 if q

+
j = 1 or y

+ � 0, |q+j |  1,
1/8 if y

+ � 0, |q+j | > 1,

and C2(q
+
j , q

�
j+1) = C1(q

�
j+1, q

+
j ), where

f+(q+j , q

�
j+1) :=

(
1/(1 + y

+) if q

+
j 6= 1, y

+ 6= �1
1 otherwise,

f�(q�j , q

�
j+1) = f+(q�j+1, q

+
j ).

A modification of the SP-WENO reconstruction was recently proposed [19] in order
to avoid the lack of numerical dissipation in regions where the solution has a convex
or concave profile about the interface xj+1/2. Such perturbation of the reconstruc-
tion procedure (3.12) preserves the sign property of the original method and gives
better control of overshoots near discontinuities as it is reported in [19]. The modifica-
tion consists on introducing a perturbation of (3.12) in the so-called C-region (q+j < 1,
q

�
j+1 > 1 or q

+
j > 1, q

�
j+1 < 1), namely,

hhwiij+1/2 =
1
2
�
w̃0(1 � q

�
j+1) + w1(1 � q

+
j ) + G

�
[[w]]j+1/2,

where

G =

✓
min

⇢ |[[w]]j+1/2|
0.5(|wj|+ |wj+1|)

, |[[w]]j+1/2|
�◆3

.

Furthermore, it is necessary to modifify the WENO weights in C-region by taking

bC1 = min
⇢

max
⇢

C̄1,�3
8

�
,

1
8

�
, bC2 = min

⇢
max

⇢
C̄2,�3

8

�
,

1
8

�
,
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T = 0.01 h T = 0.02 h

EC-SP-WENO3 ENO3 EC-SP-WENO3 ENO3

M L1-err. rate L1-err. rate L1-err. rate L1-err. rate

Greenshields 100 1.133 — 0.980 — 0.888 — 0.707 —
model 200 0.604 0.907 0.515 0.927 0.440 1.012 0.351 1.009

400 0.242 1.315 0.185 1.474 0.212 1.051 0.172 1.029
800 0.113 1.104 0.087 1.079 0.108 0.972 0.092 0.891
1600 0.068 0.731 0.058 0.581 0.054 0.998 0.045 1.040

Drake 100 1.289 — 1.046 — 0.954 — 0.815 —
model 200 0.577 1.158 0.457 1.196 0.396 1.267 0.316 1.367

400 0.249 1.213 0.193 1.237 0.191 1.049 0.159 0.983
800 0.117 1.085 0.096 1.013 0.093 1.040 0.076 1.067
1600 0.054 1.120 0.044 1.116 0.051 0.850 0.036 1.062

Table 1: Example 1 (Greenshields and Drake models, N = 1): approximate L1-errors and convergence rates.

where
C̄1 = C1 �

1
4

G
(1 � q

+
j )

, C̄2 = C2 �
1
4

G
(1 � q

�
j+1)

.

3.4 Time discretization

To solve (2.1) maintaining high order in time and simplicity, the explicit three-stage
third-order strong stability preserving Runge-Kutta method SSPRK(3,3) will be used
[13]. This method is given by the steps

r(1) = rn + DtL
�
rn�,

r(2) =
3
4

rn +
1
4

r(1) +
1
4

DtL
�
r(1)�,

rn+1 =
1
3

rn +
2
3

r(2) +
2
3

DtL
�
r(2)�,

where

[L(F)]j := � 1
Dx

�
f j+1/2 � f j�1/2

�
.

To satisfy the CFL condition the value of Dt is computed adaptively for each step n.
More exactly, the solution rn+1 at tn+1 = tn + Dt is calculated from Fn by using the
time step Dt = CFLDx/a

n
max, where a

n
max is an estimate of the maximal characteristic

velocity for rn. We take a CFL number of 0.4 throughout.

4 Numerical experiments

Numerical examples are conducted to show the performance (errors and graphics) of
entropy stable fluxes developed along this work. Since exact solutions are not avail-
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Figure 1: Example 1 (Greenshields model, N = 1): approximate solutions at T = 0.01 h with M = 100 (top
left) computed by EC-SP-WENO3c and ENO3, (top right and bottom) enlarged views.

able for N � 2 or complicated to construct, the errors for these cases are measured by
using a reference solution. These approximate errors are computed as follows: let us
denote by f

N
i (·, t) the numerical solution for the i-th component at time t calculated for

the discretization M 2 {100, 200, 400, 800, 1600} and r

ref
i (·, t) the corresponding refer-

ence solution, which is in all cases calculated by the widely used WENO5 component-
wise method with M = Mref = 6400, and which is marked by “REF” in all plots. In all
examples, numerical solutions obtained with entropy conservative flux obtained here
along with the SP-WENO3c method (EC-SP-WENO3) are compared with the usual
third-order ENO method (ENO3). Assume that r

M
i (x, t) = r

M
j,i (t) = const. for x 2 Ij;

assume, moreover, that r

ref
i (·, t) is piecewise constant on the mesh with meshwidth

1/Mref. For a given time t and r := Mref/M 2 N we then calculate the approximate
L1 error in species i 2 {1, . . . , N} by

ei = ei(t) =
��

r

ref
i (·, t)� r

M
i (·, t)

��
1 =

1
Mref

Mref�1

Â
j=0

��
r

ref
j,i (t)� r

M
bj/rc,i(t)

��.

If we define r

M
j (t) := r

M
j,1(t) + · · ·+ r

M
j,N(t) (and analogously, r

ref
j (t)), then the total

approximate L1 error at that time is given by

etot = etot(t) =
1

Mref

Mref�1

Â
j=0

��
r

ref
j (t)� r

M
bj/rc(t)

��.
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Figure 2: Example 1 (Greenshields model, N = 1): approximate solutions at T = 0.02 h with M = 100 (top
left) computed by EC-SP-WENO3c and ENO3, (top right and bottom) enlarged views.

In order to verify that the method is indeed entropy stable by displaying the rela-
tive change in total entropy for t = tn = nDt

E(tn)� E(0)
E(0) , where E(tn) := Dx

M

Â
j=1

E
�
rj(tn)

�
. (4.1)

Example 1 (N = 1). First, we test the entropy conservative fluxes (3.1) and (3.3) for the
simple scalar case (N = 1) with data taken from [29]. Consider a highway of a length of 2 km
with an initial platoon

r(x, 0) = 40t(x), where t(x) =

8
>>>><

>>>>:

10x if 0 < x  0.1,
1 if 0.1 < x  0.9
�10(x � 1) if 0.9 < x  1,
0 otherwise.

(4.2)

The left boundary has no inflow (r = 0) for all time, and the right boundary is a free outflow.
The free-flowing speed is vmax = 80 km/h and the jam density is rmax = 200 veh/km.

For the Greenshields model, the numerical results at simulated final times T = 0.01 h and
T = 0.02 h are displayed in Figures 1 and 2. The corresponding results for the Drake model
are provided in Figures 3 and 4. Moreover, we display in Table 1 the approximate L1-errors
and convergence rates, and plot in Figure 5 the corresponding relative change in total entropy
(4.1). In case of the Greenshields model, the breaking point tc = rmax/800vmax is depicted.
This is the time at which the characteristics first intersect.
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Figure 3: Example 1 (Drake model, N = 1): approximate solutions at T = 0.01 h with M = 100 (top left)
computed by EC-SP-WENO3c and ENO3, (top right and bottom) enlarged views.

Example 2 (N = 2). In order to test the performance of the entropy stable scheme devel-
oped here for systems, we consider the example proposed in [29] for N = 2 classes with the
Greenshields model (1.3). Consider a highway of a length of 2 km with an initial platoon
r(x, 0) = 40t(x)(0.5, 0.5)T, where t(x) is again given (4.2). The left boundary has no in-
flow (ri = 0) for all time, and the right boundary is a free outflow. The free-flowing driver
speeds are vmax

1 = 60 km/h and vmax
2 = km/h, respectively. Equal distribution of drivers is

assumed and the jam density is rmax = 200 veh/km.
Numerical results at T = 0.01 h and T = 0.015 h are shown in Figures 6 and 7, re-

spectively. The corresponding approximate L1 errors are provided in Table 2, and the relative
change in total entropy is shown in Figure 8. It is observed that the entropy conservative
scheme proposed plus the dissipation term constructed from the SP-WENO approach control
the oscillations near the discontinuities and reproduce the correct profile in smooth regions.
Furthermore, the errors are comparable to those produced by the third-order ENO counterpart
but with the advantage that entropy stability is ensured.

Example 3 (N = 9). We now consider a scenario with N = 9 nine-class model proposed
in [29], where the initial density distribution represents a platoon in the non-congested regime
which is given by

r(x, 0) = 120t(x)(0.04, 0.08, 0.12, 0.16, 0.2, 0.16, 0.12, 0.08, 0.04)T. (4.3)

The free flowing speeds of drivers are taken as vmax
i = (52.5 + 7.5i) km/h, i = 1, . . . , 9.

Numerical results at T = 0.01 h and T = 0.015 h are shown in Figures 9 and 10, re-
spectively. The corresponding approximate L1 errors are provided in Table 3, and the relative
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Figure 4: Example 1 (Drake model, N = 1): approximate solutions at T = 0.02 h with M = 100 spatial
gridpoints (top left) computed by EC-SP-WENO3 and ENO3, (top right and bottom) enlarged views.

change in total entropy is shown in Figure 11.

Example 4 (N = 9). Finally, we consider a circular road of length L = 4 km with periodic
boundary conditions

r(0, t) = r(L, t), t > 0. (4.4)

The initial condition is the same as in Example 3, namely it is given by (4.3), where t(x) is as
in (4.2).

Numerical results at T = 0.1 h are shown in Figures 12, and the corresponding relative
change in total entropy is shown in Figure 13. This demanding example illustrates the good
behaviour of the entropy conservative flux proposed for approximating solutions that exhibit
numerous discontinuities.

5 Conclusions

The analysis and numerical examples in this contribution demonstrate that the partic-
ular structure of MCLWR models, in particular the existence of an entropy pair (E, Q),
can sucessfully be exploited to construct entropy stable numerical schemes for the
multiclass LWR traffic models given by (1.1), (1.2). In particular for some common
examples of the function f(r), namely those given by the Greenshields model (1.3), it
is possible to obtain the entropy conservative flux in the systems case in closed alge-
braic form. Moreover, one may exploit the property of interlacing of the (in general,
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Figure 5: Example 1 (Greenshields model (top) and Drake model (bottom), N = 1): (left) relative change
in total entropy of numerical solutions at two di↵erent mesh sizes, (right) enlarged view. For the Greenshield
model, discontinuities appear after the critical time t = tc which can be computed explicitly.

unknown) eigenvalues of the flux Jacobian with the (known) velocities to define a
Rusanov-type diffusion term that leads to an entropy stable scheme. In addition these
properties permit to implement a sign-preserving WENO reconstruction [11].

Several extensions of the present treatment are conceivable. First of all, a closed-
form representation of the entropy conservative flux similar to (3.5) can also be ob-
tained for more general expressions than (1.3), for instance for f(r) = (1 � r/rmax)N

with N 2 N. On the other hand, the system (1.1), (1.2) also describes phemomena
different from traffic flows, for instance the settling of droplets and particles [4]. In
the latter application (1.1) is posed on a finite vertical x-interval along with zero-flux
boundary conditions. The application to settling as well as the MCLWR model may
also be equipped with strongly degenerating diffusive corrections [5], so that the sys-
tem (1.1) is replaced by the system of governing equations

∂tr + ∂x f (r) = ∂x
�

B(r)∂xr
�
, (5.1)

where B(r) is an N ⇥ N positive semidefinite, possibly degenerating diffusion matrix,
posed along with initial conditions and possibly periodic or zero-flux boundary con-
ditions. It is possible to formulate entropy conservative methods also for convection-
diffusion systems of this type [16] provided that the first-order system (1.1) possesses
an entropy pair and moreover the flux Jacobian J f (r) and B(r) have the same eigen-
vectors. For practically all models of interest, the latter condition is only satisfied when
B(r) is a multiple of the N ⇥ N identity matrix [3].
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Figure 6: Example 2 (Greenshields model, N = 2): approximate solutions at T = 0.01 h with M = 100
spatial cells corresponding to (top left) class 1, (top right) class 2, (middle left) the total density, and
(middle right and bottom) enlarged views of the total density.
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Proceedings of the Third Abel symposium, Ålesund, Norway. Springer, 2008, pp. 67–94.



22 Bürger, Torres and Vega

0 0.5 1 1.5 2

0

20

40

60

80

100

120

ρ

Distance (km)

 

 

REF

EC−SP−WENO3

ENO3

0 0.5 1 1.5 2

0

1

2

3

4

5

ρ9

Distance (km)

 

 

REF

EC−SP−WENO3

ENO3

0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

ρ9

Distance (km)

 

 

REF

EC−SP−WENO3

ENO3

0.6 0.7 0.8 0.9 1 1.1

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

ρ9

Distance (km)

 

 

REF

EC−SP−WENO3

ENO3
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T = 0.01 h T = 0.015 h

EC-SP-WENO3 ENO3 EC-SP-WENO3 ENO3

M etot Rate etot Rate etot Rate etot Rate

100 3.021 — 2.709 — 2.841 — 2.572 —
200 1.353 1.158 1.199 1.176 1.299 1.128 1.146 1.166
400 0.694 0.963 0.601 0.994 0.665 0.967 0.591 0.955
800 0.343 1.015 0.327 0.879 0.334 0.993 0.322 0.874

1600 0.173 0.987 0.170 0.939 0.168 0.987 0.175 0.877

Table 3: Example 3 (Greenshields model, N = 9): approximate total L1-errors and convergence rates.
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Figure 11: Example 3 (Greenshields model, N = 9): (left) relative change in total entropy of numerical
solutions on two di↵erent mesh sizes, (right) enlarged view.



24 Bürger, Torres and Vega

0 1 2 3 4

0

5

10

15

ρ1

Distance (km)

 

 

REF
EC−SP−WENO3
ENO3

0 1 2 3 4
0

2

4

6

8

10

12

14

16

18

ρ3

Distance (km)

 

 

REF
EC−SP−WENO3
ENO3

0 1 2 3 4
0

2

4

6

8

10

ρ6

Distance (km)

 

 

REF

EC−SP−WENO3

ENO3

0 1 2 3 4

0

0.5

1

1.5

2

ρ9

Distance (km)

 

 

REF

EC−SP−WENO3

ENO3

Distance (km)
2 2.5 3 3.5

ρ
3

0

1

2

3

4

5

6

7
REF
EC-SP-WENO3

ENO3

Distance (km)
1 1.5 2 2.5 3 3.5

ρ
9

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

REF
EC-SP-WENO3

ENO3

Figure 12: Example 4 (Greenshields model, N = 9, periodic boundary conditions): approximate solutions
at T = 0.1 h with M = 100 spatial cells corresponding to (top left) class 1, (top right) class 3, (middle left)
class 6, (middle right) class 9, (bottom) enlarged views.
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Figure 13: Example 4 (Greenshields model, N = 9, periodic boundary conditions): relative change in total
entropy of numerical solutions on two di↵erent mesh sizes.
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