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Well-posedness, exponential decay estimate and numerical
results for the high order nonlinear Schrödinger equation with

localized dissipation

Marcelo Cavalcanti, Wellington Correa,
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ABSTRACT. In this work, we study the existence at the L2 – level as well as the stability for
the high order nonlinear Schrödinger equation in a bounded interval with a localized damping
term. To prove the existence, we employ the method devised by Bisognin et al., [8]. To prove
the exponential stabilization, with these approximations, we use multipliers techniques found
in Bisognin et al., [8] and Linares and Pazoto, [23]. In addition, we implement a precise and
efficient code to study the energy decay of the high order nonlinear Schrödinger equation.

1. INTRODUCTION

1.1. Description of the Problem. In this work we will study the Non-Linear Schrödinger
(HNLS) equation with extra high-order terms:
(1.1)
i ut + a1 uxx + a2 |u|2 u+ i

[
a3 uxxx + a4

(
|u|2 u

)
x

+ a5 u
(
|u|2
)
x

+ a(x)u
]

= 0 in (0, L) × (0,∞)

u(0, t) = u(L, t) = 0 for all t > 0

ux(L, t) = 0 for all t > 0

u(x, 0) = u0 in (0, L)

so that the real constants a1, a3 > 0 and ai 6= 0, i = 2, 4, 5. Let’s assume that a(x) is a
non-negative real valued function belonging to L∞(0, L) and moreover we will assume that

(1.2) a(x) > a0 > 0 a.e. in an open, non-empty subset ω of (0, L),

where the damping is acting effectively.

1.2. Main Goal, Methodology and Previous Results. The main objective of the present man-
uscript is to prove the existence and uniqueness for mild solutions to problem (1.1) and, in addi-
tion, that those solutions decay exponentially and uniformly to zero in L2− norm, that is, there
exist positive constants C, γ, such that

E(T ) ≤ Ce−γ tE(0), ∀ t ≥ T0,(1.3)

where E(t) is given in (2.1) for all mild (L2-level) solutions to problem (1.1) provided that the
initial data u0 are taken in bounded sets of L2(Ω).
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To this end, the following tools are considered:

• In order to prove the well-posedness for a mild solution to problem (1.1) we borrowed
ideas due to Bisognin et al., [8] using a contraction mapping argument.
• To prove the exponential stabilization, with these approximations, we use multipliers

techniques found in Bisognin et al., [8] and Linares and Pazoto, [23]. Under these
circumstances, the condition (1.2) imposed on a(x) is crucial to handle the energy in
L2−level. Indeed, when a(x) ≥ a0 > 0 almost everywhere in R+, it is very simple
to prove that the energy E(t) decays exponentially as t tends to infinity. The problem
of stabilization when the damping is effective only on a subset of R+ is harder. In
this work, we treat with this situation. More precisely, our purpose is to prove the
exponential decay given in (1.3). This can be stated in the following equivalent form:
Find T > 0 and C > 0 such that

(1.4) E(0) ≤ C

{
a3

2

∫ T

0

|ux(0, t)|2 dt+ 2

∫ T

0

∫ L

0

a(x)|u(x, t)|2 dx dt
}

holds for every finite energy solution of (1.1). In fact, taking into account (1.4) and
(3.30), we shall show that E(T ) ≤ γ E(0), which combined with the semigroup prop-
erty allow us to derive the exponential decay for E(t).

However, the desired estimate (1.4) will not hold directly since lower order addi-
tional terms will appear. So, to absorb them we shall use the so-called compactness-
uniqueness argument that reduces the question to a unique continuation problem that
will be solved by applying the result due to Carvajal and Panthee, [17]. The authors
proved the following unique continuation result (Theorem 1.1, page 189): We consider
the following problem:

(1.5) ut + i α uxx + i γ |u|2 u+ β uxxx + δ |u|2 ux + ε u2 ūx = 0, x, t ∈ R,

where α, β ∈ R, β 6= 0, γ, δ, ε ∈ C and u = u(x, t) is a complex valued function.
We have the following unique continuation result:

Theorem 1.1. Let u ∈ C([t1, t2]; Hs) ∩ C1([t1, t2]; H1), s ≥ 4, be a solution of the
equation (1.5) with α, β, γ, δ, ε ∈ R and β 6= 0. If there exists t1 < t2 such that

supp u(·, tj) ⊂ (−∞, a), j = 1, 2(1.6)
or supp u(·, tj) ⊂ (b,∞), j = 1, 2 .(1.7)

Then u(t) = 0 for all t ∈ [t1, t2] .

Remark 1.2. The problem (1.1) can be rewritten as the following problem

(1.8)


i ut + a1 uxx + f(u) + i

[
a3 uxxx + a(x)u

]
= 0 in (0, L) × (0,∞)

u(0, t) = u(L, t) = 0 for all t > 0

ux(L, t) = 0 for all t > 0

u(x, 0) = u0 in (0, L)
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where

f(u) = a2 |u|2 u+ i
[
a4

(
|u|2 u

)
x

+ a5 u
(
|u|2
)
x

]
(1.9)

= a2 |u|2 u+ i
[

(2 a4 + a5) |u|2 ux + (a4 + a5) u2 ūx

]
.

Then, in the proof of the exponential decay, we can use Theorem 1.1 working with the
problem (1.8) instead (1.1).

But due to the lack of regularity of the solutions we are dealing with, i.e., finite energy
solutions, the unique continuation result presented in Theorem (1.1) may not directly be
applied. To overcome this problem, we proceed as in Bisognin et al., [8] and Linares
and Pazoto, [23] and we first guarantee that solutions are smooth enough.

In what follows we would like to mention some important papers in connection with the
subject of the present article. Initially, let us consider the following initial boundary value
problem of the higher - order nonlinear Schrödinger equation with localized damping:

(1.10)


i ut + a1 uxx + |u|2 u+ i a3 uxxx + i a(x)u = 0 in (0, L) × (0,∞)

u(0, t) = u(L, t) = 0 for all t > 0

ux(L, t) = 0 for all t > 0

u(x, 0) = u0 in (0, L),

where a1, a3 ∈ R, a3 6= 0 and the damping a ∈ C∞(0, L) satisfies (1.2). We observe that the
problem (1.10) is a particular case of the problem (1.1) considering a2 = 1 and a4 = a5 = 0.
Bisognin et al., [8] proved the exponential decay in L2– level. Using compactness arguments,
the smoothing effect of the KdV equation on the line and the unique continuation results, the
authors deduced the exponential decay in time of the solutions of the linear equation and a
local uniform stabilization result of the solutions of the nonlinear equation when the localized
damping is active simultaneously only in a neighborhood of both extremes x = 0, x = L. In
order to prove the result, the authors used multipliers together with compactness arguments
and smoothing properties proved by Sepúlveda and Vera, [42] and the Unique Continuation
Principle valid for this problem given in Bisognin and Vera, [9].

Later, Alves, Sepúlveda and Vera, [1] studied local and global existence and smoothing prop-
erties of the problem (1.10) with a ≡ 0. In this situation, the authors verified gain in regularity
for this equation. Specifically, they were proved conditions on this problem for which initial
data u0 possessing sufficient decay at infinity and minimal amount of regularity will lead to a
unique solution u(t) ∈ C∞(R) for 0 < t < T , where T is the existence time of the solution.

Ceballos et al.,[16], analyzed directly the exact boundary controllability problem for the
higher order Schrödinger equation with a ≡ 0 by adapting a method which combines the
Hilbert Uniqueness Method (HUM) and multiplier techniques.

The equation (1.1) plays an important rule in soliton theory. It has applications in the propaga-
tion of femtosecond optical pulses in a monomode optical fiber, accounting for additional effects
such as third order dispersion, self-steeping of the pulse, and self-frequency shift (see [20]). But
we can also consider it as a generalization of the classical NLS equation using a3 = a4 = a5 = 0
which can describe the electric field envelope of a laser beam in a medium with Kerr nonlinear-
ity as described by Kodama, [25]. If we also take a1 = a2 = 0, a3 = a4 = −a5 = 6, we can
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obtain the modified Korteweg-de Vries (KdV) equation:

ut + uxxx + 6u2 ux = 0

which studies, for example, surface waves on conducting nonviscous incompressible liquid un-
der the presence of a transverse electric field as introduced by Perel’man et al, [39]. The KdV
equation has also great importance in the study of surface water waves (see Kortweg and De
Vries [26]).

A damping of the type a(x)u was introduced in Menzala et al., [31] to stabilize the KdV
system inspired in the work of Rosier, [41]. More precisely, considering the damping localized
at a subset ω ⊂ (0, L) containing nonempty neighborhoods of the end-points of an interval,
it was shown that solutions of both linear and nonlinear problems for the KdV equation decay,
independently on L > 0. In Pazoto, [37] it was proved that the same holds without cumbersome
restrictions on ω ⊂ (0, L). Linares and Pazoto, [23] proved the exponential stabilization of
the Korteweg–de Vries equation in the right half-line under the effect of the same localized
damping term a(x)u. Araruna et al., [2] proved the exponential decay in L2 - level for the
modified Kawahara equation posed in a bounded bounded interval under the presence of a
localized damping term a(x)u satisfying where the function a(·) satisfies (1.2) . Cavalcanti et
al., [13] studied the well-posedness and the asymptotic behavior of solutions of a KdV- Burgers
equation subject to a localized dissipation mechanism with indefinite sign:

ut − uxx + uxxx + uux + λ(x)u = 0x ∈ R, t > 0, λ ∈ L∞(R)

such that a sufficient condition criteria for the exponential decay has been established.

The study of decay rate estimates for weakly full damped semilinear focusing and defocusing
Schrödinger equations (a4 = a5 = 0)

iyt + ∆y ± |y|2y + iay = 0 in Ω× (0,∞), a > 0,(1.11)

where Ω is a bounded domain of Rn, with zero Dirichlet boundary condition, has been consid-
ered by Tsutsumi [44] where exponential stabilization of Hk-solutions (k = 1, 2) is established.
For this purpose, smallness on the initial data is assumed. Later on, Özsarı, Kalantarov and
Lasiecka [34] generalized the previous result mentioned above (at least for the defocusing case)
by considering inhomogeneous Dirichlet boundary conditions. Smallness on the initial data is
also assumed for proving decay rates estimates in H2−norm. In H1−norm, no smallness is
required. Indeed, the result for H1−solutions obtained in [34] is strong in the sense that it is
independent of the dimension of the domain and the smallness of the initial data.

On the other hand, regarding the exponential stability for the semilinear defocusing Schrödinger
equation, subject to a linear damping locally distributed and posed in unbounded domains,
namely,

iyt + ∆y − |y|2y + ia(x)y = 0 in Rn × (0,∞), n = 1, 2,(1.12)

(here a(x) ≥ a0 > 0 for ||x|| > R > 0), we would like to mention the works of the authors Cav-
alcanti et. al. [14], [15]. In order to achieve the desired goal, the authors make use of two main
ingredients in the proof: (i) To establish an unique continuation property associated with regular
and mild solutions of the non-damped problem iyt + ∆y−|y|2y = 0 restricted to a fixed ball of
radius r > R; (ii) To employ a smoothing effect as established, for instance, in Constantin and
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Saut [18]. In the same spirit of Cavalcanti et al., [14] we can also mention the following works
by Natali, [32] regarding the one-dimensional case and Natali, [33] in the two-dimensional case.

Cavalcanti et al., [10] proved the existence inH1−norm as well as the stability for the damped
defocusing Schrödinger equation using the following model:

(1.13)

{
i ∂t y + ∆ y − |y|p y + i λ(x, t) y = 0 in Rn × (0,∞)

y(0) = y0 in Rn,

where n ≥ 1, p > 0. The damping coefficient λ(x, t) may vanish at infinity and satisfies the
following conditions:

λ ∈ Cb([0,∞); W 1,∞(Rn)), λ(x, t) > 0, ∀x ∈ Rn, ∀t ≥ 0.(1.14)

To prove the existence, the authors employed the method devised by Özsarı et al. [34]. In
particular, when n = 1 or n = 2, the uniqueness is obtained. Decay estimates for the L2−norm
and (H1 ∩ Lp+2)−norm are established with the help of direct multipliers method, coupled
with refined energy estimates and a lower semi-continuity argument.
Finally, we would like to mention some relevant works about Schrödinger equation in connec-
tion with the subject of the present paper, namely, [3], [4], [5], [11], [13], [15], [22],[28], [32],
[33], [35], [44].

Concerning the numerical results, and regarding the finite difference method, we’d like to
mention one of the first proposals from Delfour et al [19] to solve the problem (1.11) for a(x) ≡
0. Their main contribution was the way the term |u|2u was discretized in order to preserve the
numerical charge. To this end, the way they’ve proceeded was as follows for tn := ∆tn, n ∈ N:

|u(tn)|2u(tn) ≈ |u
n+1|2 + |un|2

2
un+ 1

2 , un+ 1
2 :=

un+1 + un

2

It is worh noting that this ways of discretize the nonlinear term doesn’t affect the energy preser-
vation. Meanwhile, Pazoto et al. [38] proposed a finite differences scheme to solve the follow-
ing KdV problem for u = u(x, t):

ut + uxxx + u4ux + ux + a(x)u = 0, (x, t) ∈ (0, L)× (0,+∞)(1.15)

u(0, t) = u(L, t) = 0, t ∈ (0,+∞)(1.16)

ux(L, t) = 0, t ∈ (0,+∞)(1.17)

u(x, 0) = u0(x), x ∈ (0, L)(1.18)

for a ∈ L∞(0, L) : a(x) ≥ a0 > 0, a. e. in Ω, and Ω a nonempty open subset of (0, L). The
power nonlinearity u4ux =: F (u) was rewritten using algebraic identities widely used in finite
differences analysis, and aiming to achieve two conservation properties:

(u, F (u)) = 0

(u, F (u))x = −1

6
|u|66

This was done in order to obtain H1
0 -estimates for the numerical solution of the problem. Fi-

nally, following the spirit of both works, Cavalcanti et al. [12] proposed a new Finite Dif-
ference Scheme which solves problem (1.1) for a(x) ≡ 0. The nonlinear terms multiplied
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by a4 and a5 were rewritten as a convex combination in order to achieve complete conserva-
tion of energy. The scheme also achieves an almost-conservation of the numerical charge when
3a2a3 = a1(3a4+a5); this is, the numerical charge has an order of conservation ofO(∆t+∆x2).

This paper uses that numerical scheme, while adding the damping term a(x) to our calcula-
tions, in order to prove and achieve exponential decay for the numerical energy.

Our paper is organized as follows: Section 2 is devoted to notations and statement of main
results. In section 3 we present the proofs of the well-posedness to problem (1.1) and in section
4, we present the proofs of the exponential stability. Finally, the section 5 is devoted to the study
of the numerical results of the problem (1.1).

2. NOTATIONS AND STATEMENT OF THE MAIN RESULTS

We consider the space L2(0, L) of complex valued functions on Rd endowed with the inner
product

(y, z)L2(0,L) = Re

∫ L

0

y(x)z(x) dx

with the corresponding norm
||y||2L2(0,L) = (y, y)L2(0,L).

We also consider the Sobolev space H1(0, L) endowed with scalar product

(y, z)H1(0,L) = (yx, zx)L2(0,L).

The energy is defined by:

(2.1) E(t) :=
1

2
‖u(x, t)‖2

L2(0,L) .

Employing the boundary conditions given in (1.1), we infer that

(2.2)
d

dt
E(t) = −a3

2
|ux(0, t)|2 −

∫ L

0

a(x)|u(x, t)|2 dx, ∀ t > 0.

Since a3 > 0 and by assumption on damping a, we observe that according to the above energy
dissipation law, the energy E(t) is a nonincreasing function of the time.

Now, we can state our main results:

Theorem 2.1 (Existence). Assume that u0 ∈ L2(0, L) and the function a(x) satisfies (1.2).
Then, the problem (1.1) possesses a unique mild solution

(2.3) u ∈ C([0,∞);L2(0, L)) ∩ L2(0,∞;H1
0 (0, L)) .

Regarding to the exponential decay, we have the following result:

Theorem 2.2 (Exponential Decay). Let y be a mild solution to problem (1.1) given by Theorem
2.1. Assume that a ∈ L∞(0, L) such that a(x) ≥ a0 > 0 a.e. in ω. Then, for any L′ > 0, there
are C = C(L′) > 0 and γ = γ(L′) such that the following exponential decay holds

E0(t) ≤ Ce−γtE0(0)

where E0(t) := 1
2
||y(t)||2L2(0,L), provided that ||y0||L2(0,L) ≤ L′.
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3. EXISTENCE OF SOLUTIONS

As stated in the introduction, we used the ideas found in the works of Bisognin et al., [8].

3.1. Linear System: First of all, we consider the linear system, that is, assuming that a2 =
a4 = a5 = 0:

(3.1)


i ut + a1 uxx + i

[
a3 uxxx + a(x)u

]
= 0 in (0, L) × (0,∞)

u(0, t) = u(L, t) = 0 for all t > 0

ux(L, t) = 0 for all t > 0

u(x, 0) = u0 in (0, L)

Let assume that a ≡ 0 . We consider the following operator:

A : D(A)→ L2(0, L)(3.2)

u 7→ A(u) := −a3 uxxx + i a1 uxx

with the domain:

D(A) =
{
v ∈ H3(0, L); v(0) = v(L) = 0, vx(L) = 0

}
.

We have the following result:

Theorem 3.1. Let a ≡ 0 . Then, the operator A given in (3.2) generates a semigroup contrac-
tion

{
etA
}t=∞
t=0

in L2(0, L).

Proof. It is easy to prove that the operator A is closed. We claim that A is dissipative.

Indeed, performing integration by parts give us

(Av, v)L2(0,L) =

∫ L

0

(−a3 vxxx + i a11 vxx) v̄ dx

= −a3

2
|vx(0, t)|2 − i a11

∫ L

0

|vx|2 dx .

Hence,
Re (Av, v)L2(0,L) = −a3

2
|ux(0, t)|2 ≤ 0,

which proves that A is dissipative.

On the other hand, the adjoint of the operator A is given by

A∗ : D(H∗)→ L2(0, L)

u 7→ A(u) := −a3 uxxx − i a11 uxx

with its domain

D(A∗) =
{
v ∈ H3(0, L); v(0) = v(L) = 0, vx(0) = 0

}
⊆ L2(0, L) .

A similar calculation shows that

Re (A∗ v, v)L2(0,L) = −a3

2
|vx(0, t)|2 ≤ 0,
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Because A∗ is dissipative, then we have that A is maximal. Then, because A is maximal, and A
and its adjoint are dissipative, we conclude the desired from the Lumer-Phillips theorem. �

The well-posedness of the linear system (3.1) can be handled in a similar way by considering
the term i a(x)u as a linear perturbation with the case a ≡ 0. Summary, we have:

Theorem 3.2. Let u0 ∈ L2(0, L). Then, the problem (3.1) possesses a unique solution in the
class

(3.3) u ∈ C([0,∞);H3(0, L)) ∩ C1([0,∞);L2(0, L)) .

In the sequel, regarding the linear problem (3.1), we have the following results:

Lemma 3.3. The map

u0 ∈ L2(0, L) 7→ et A u0 ∈ XT ≡ C([0, T ]; L2(0, L)) ∩ L2(0, T ; H1
0 (0, L))

is continuous.

Proof. In fact, for u0 ∈ L2(0, L), let u = et A u0 be a solution of the problem (3.1) (with a ≡ 0).
By Theorem (3.2), we have that u ∈ C([0, T ]; L2(0, L)) and since the Schrödinger semigroup{

et A
}t=∞
t=−∞ is a contraction semigroup, we have the isometry:

(3.4) ‖u(t)‖L2(0,L) =
∥∥et A u0

∥∥
L2(0,L)

≤ ‖u0‖L2(0,L) .

To show that u ∈ L2(0, T ; H1
0 (0, L)), we consider u0 ∈ D(A). By density of D(A) in

L2(0, L), the result will be extended to an arbitrary initial data u0 ∈ L2(0, L) .

Multiplying the first equation of the problem (3.1) by x ū, we have

(3.5) i x ū ut + a1 x ū uxx + i
[
a3 x ū uxxx + a(x) |u|2

]
= 0 .

Applying the conjugate in (3.5), we have:

(3.6) − i x u ūt + a1 xu ūxx + i
[
a3 xu ūxxx + a(x) |u|2

]
= 0 .

Subtracting (3.5) and (3.6) and integrating over x ∈ [0, L], we obtain
(3.7)

d

dt

∫ L

0

x |u|2 dx+ 3 a3

∫ L

0

|ux|2 dx− 2 a1 Im

∫ L

0

ux ū dx+ 2

∫ L

0

x a(x) |u|2 dx = 0 .

Integrating (3.7) over t ∈ [0, T ], we arrive

(3.8)

∫ L

0

x |u(x, T )|2 dx︸ ︷︷ ︸
≥ 0

+3 a3

∫ T

0

∫ L

0

|ux(x, t)|2 dx dt+

∫ T

0

∫ L

0

x a(x) |u(x, t)|2 dx dt︸ ︷︷ ︸
≥ 0

= 2 a1 Im

∫ T

0

∫ L

0

ux ū dx dt .
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On the other hand, making use of Young’s inequality, having in mind (3.4), we get

(3.9)
2 a1 Im

∫ T

0

∫ L

0

ux ū dx dt ≤
a2

1

2 a3

∫ T

0

∫ L

0

|u|2 dx dt+ 2 a3

∫ T

0

∫ L

0

|ux|2 dx dt

≤ a2
1 T

2 a3

‖u0‖2
L2(0,T ) + 2 a3

∫ T

0

∫ L

0

|ux|2 dx dt .

Combining (3.8) and (3.9), we obtain∫ T

0

∫ L

0

|ux(x, t)|2 dx dt ≤
a2

1 T

2 a2
3

‖u0‖2
L2(0,T ),

that is,

(3.10) ‖u‖L2(0,T ;H1
0 (0,L)) ≤

a1 T
1/2

21/2 a3

‖u0‖L2(0,L) .

Finally, combining (3.4) and (3.10), we concluded that

(3.11) ‖u‖XT
≤
(

1 +
a1 T

1/2

21/2 a3

)
‖u0‖L2(0,L),

which proves the desired.
�

Remark 3.4. We observe that if u0 ∈ L2(0, L), then ux(0, ·) makes sense. Indeed, as in the
previous Lemma, we also assume that u0 ∈ D(A) and the result follows by density. Multiplying
the first equation of (3.1) by ū, integrating in x ∈ (0, L), one gets

(3.12)
1

2

d

dt
‖u(t)‖2

L2(0,L) = −a3

2
|ux(0, t)|2 −

∫ L

0

a(x)|u(x, t)|2 dx .

Integrating over t ∈ [0, T ], we have

(3.13)
1

2
‖u(t)‖2

L2(0,L) =
1

2
‖u0‖2

L2(0,L) −
a3

2

∫ t

0

|ux(0, t)|2 dt−
∫ t

0

∫ L

0

a(x)|u(x, t)|2 dx dt .

Hence,

a3

2

∫ T

0

|ux(0, t)|2 dt = −1

2
‖u(t)‖2

L2(0,L) +
1

2
‖u0‖2

L2(0,L) −
∫ t

0

∫ L

0

a(x)|u(x, t)|2 dx dt

≤ 1

2
‖u0‖2

L2(0,L),

which proves the desired.

3.2. Nonlinear System. In this subsection, let’s prove Theorem 3.2. As stated in the introduc-
tion, we used the ideas found in the works of Bisognin et al., [8]. Initially, let’s analyze the local
solutions of the problem (1.1).
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3.2.1. Local Solutions. Let T > 0 and consider the following functional:

Ψ : XT → XT(3.14)

u 7→ Ψ(u)(t) := et A u0 −
∫ t

0

ei (t−τ) ∆ f(u)(τ) dτ

where et A is the Schrödinger group given above and f(u) is given in (1.9). Here, the space XT

is endowed with the norm

‖u‖XT
:= sup

t∈ [0,T ]

‖u(t)‖L2(0,L) +

[∫ T

0

‖u(s)‖2
H1

0 (0,L) ds

]1/2

.

According to the isometry given in (3.4) and (3.10), it follows that the Schrödinger semigroup{
et A
}t=∞
t=−∞ corresponding to the linear system (3.1) satisfies

‖et A u0‖C([0,T ],L2(0,L)) = sup
t∈ [0,T ]

‖et A u0‖L2(0,L)) = sup
t∈ [0,T ]

‖u0‖L2(0,L)) = ‖u0‖L2(0,L) ,(3.15)

‖et A u0‖L2(0,T,H1
0 (0,L)) 6

a1 T
1/2

21/2 a3

‖u0‖L2(0,L) .(3.16)

Moreover, we also have the called conservation of the Schrödinger flow:

(3.17) ‖et A u0‖H1
0 (0,L) = ‖u0‖H1

0 (0,L) .

We shall prove that the contraction mapping principle can be applied to Ψ : BR → BR where

BR = {v ∈ XT ; ‖v‖XT
≤ R}

provided thatR is suitably large and T is suitably small, so that Ψ possesses a fixed point inBR.

In order to achieve this, we will need of the Lemmas 3.5 and 3.6 below:

Lemma 3.5. Let u ∈ XT and f(u) given in (1.9). Then∫ T

0

‖f(u)‖L2(0,L) dt ≤ C̃ ‖u‖2
XT

.

Lemma 3.6. Let u, v ∈ XT . Then,∫ T

0

‖f(u)− f(v)‖L2(0,L) dt ≤ C
(
‖u‖2

XT
+ ‖v‖2

XT

)
‖u− v‖XT

.

These Lemmas are technical issues and they will proved in the Section 4.

In the sequel, we will show that Ψ maps BR into itself for R sufficiently large and T small
enough, or in other words, we shall prove that for R large enough and T sufficiently small, we
have

‖Ψ(u)‖XT
≤ R,(3.18)

provided that ‖u‖XT
≤ R.
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In fact, let u ∈ BR. By Lemma (3.5), we have that f(u) ∈ L1(0, T ; L2(0, L)). From this,
having in mind (3.14), (3.16) and the Hölder’s inequality, we have

(3.19)

‖Ψ(u)‖H1
0 (0,L) ≤ ‖et A u0‖H1

0 (0,L) +

∥∥∥∥∥
∫ t

0
ei (t−τ) ∆ f(u)(τ) dτ

∥∥∥∥∥
H1

0 (0,L)

≤ ‖et A u0‖H1
0 (0,L) +

∫ t

0

∥∥∥ei (t−τ) ∆ f(u)(τ)
∥∥∥
H1

0 (0,L)
dτ

≤ ‖et A u0‖H1
0 (0,L) +

(∫ T

0
dτ

)1/2 (∫ T

0

∥∥∥ei (t−τ) ∆ f(u)(τ)
∥∥∥2

H1
0 (0,L)

dτ

)1/2

≤ ‖et A u0‖H1
0 (0,L) + T 1/2

∫ T

0
‖ei (t−τ) ∆ f(u)‖L2(0,T ;H1

0 (0,L)) ds

≤ ‖et A u0‖H1
0 (0,L) +

a1 T

21/2 a3

∫ T

0
‖f(u)‖L2(0,L) dt

≤ ‖et A u0‖H1
0 (0,L) +

a1 C̃ T

21/2 a3
‖u‖2XT

,

where in the last inequality, we used again the Lemma 3.5.

Hence, employing the smoothing effect given in (3.16), we have

‖Ψ(u)‖L2(0,T ;H1
0 (0,L)) ≤ ‖et A u0‖L2(0,T ;H1

0 (0,L)) +
a1 C̃ T

21/2 a3

‖u‖2
XT

(3.20)

≤ ‖u0‖L2(0,L) +
a1 C̃ T

21/2 a3

‖u‖2
XT

On the other hand, from (3.4), the Poincaré’s inequality and the conservation of the Schrödinger
flow given in (3.17), we get

(3.21)

‖Ψ(u)‖L2(0,L) ≤ ‖et A u0‖L2(0,L) +

∥∥∥∥∥
∫ t

0
ei (t−τ) ∆ f(u)(τ) dτ

∥∥∥∥∥
L2(0,L)

≤ ‖u0‖L2(0,L) + C

∫ t

0

∥∥∥f(u)
∥∥∥
H1

0 (0,L)
dτ

= ‖u0‖L2(0,L) + C

∫ t

0

∥∥∥ei (t−τ) ∆ f(u)
∥∥∥
H1

0 (0,L)
dτ .

Employing the Hölder’s inequality and (3.16), from (3.21), we have

(3.22)

‖Ψ(u)‖L2(0,L) ≤ ‖u0‖L2(0,L) + C

(∫ T

0
dτ

)1/2 (∫ T

0

∥∥∥ei (t−τ) ∆ f(u)(τ)
∥∥∥2

H1
0 (0,L)

dτ

)1/2

≤ ‖u0‖L2(0,L) +

∫ T 1/2

0
‖ei (t−τ) ∆ f(u)‖L2(0,T ;H1

0 (0,L)) ds

≤ ‖u0‖L2(0,L) +
a1 T

1/2

21/2 a3

∫ T

0
‖f(u)‖L2(0,L) dt

≤ ‖u0‖L2(0,L) +
a1 T

1/2

21/2 a3
C̃‖u‖2XT

.
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Thus,

(3.23) ‖Ψ(u)‖C([0,T ];L2(0,L)) ≤
a1 T

1/2

21/2 a3

C̃‖u‖2
XT

.

From (3.19) and (3.23), we infer

‖ψ(u)‖XT
≤ ‖u0‖L2(0,L) +

2 C̃ a1 T
1/2

21/2 a3

‖u‖2
XT

(3.24)

≤ ‖u0‖L2(0,L) +
2 C̃ a1 T

1/2R2

21/2 a3

.

Our intention is to choose T small enough so that ‖u0‖L2(0,L) + 2 C̃ a1 T 1/2 R2

21/2 a3
< R. For example,

choose R = 2 ‖u0‖L2(0,L) and T small enough. Choosing T even smaller, that is,

2 C̃ a1 T
1/2 ‖u0‖L2(0,L)

21/2 a3

< 1

so that we concluded that Ψ maps XT into XT .

Now, we shall prove that Ψ is a contraction in BR, that is, there exists α ∈ (0, 1) such that

‖Ψ(u)−Ψ(v)‖XT
≤ α ‖u− v‖XT

; ∀u, v ∈ BR.(3.25)

Indeed, let u, v ∈ BR. From (3.14), (3.16), we have

(3.26)

‖Ψ(u)−Ψ(v)‖H1
0 (0,L) ≤

∥∥∥∥∥
∫ t

0

ei (t−τ) ∆ [f(u)− f(v)](τ) dτ

∥∥∥∥∥
H1

0 (0,L)

≤
∫ t

0

∥∥∥ei (t−τ) ∆ [f(u)− f(v)](τ)
∥∥∥
H1

0 (0,L)
dτ

=

∫ T

0

‖ei (t−τ) ∆ [f(u)− f(v)]‖L2(0,T ;H1
0 (0,L)) ds

≤ a1 T
1/2

21/2 a3

∫ T

0

‖f(u)− f(v)‖L2(0,L) dτ

≤ T 1/2C
(
‖u‖2

XT
+ ‖v‖2

XT

)
‖u− v‖XT

.

Hence,

‖Ψ(u)−Ψ(v)‖L2(0,T ;H1
0 (0,L)) ≤ C T

(
‖u‖2

XT
+ ‖v‖2

XT

)
‖u− v‖XT

(3.27)

≤ 2R2C T ‖u− v‖XT
.

Now, having in mind the same computations used in obtaining (3.22), we infer

(3.28) ‖Ψ(u)−Ψ(v)‖L2(0,L) ≤
a1C T

1/2

21/2 a3

(
‖u‖2

XT
+ ‖v‖2

XT

)
‖u− v‖XT

.

Therefore,

‖Ψ(u)−Ψ(v)‖C([0,T ];L2(0,L)) ≤
a1C T

1/2

21/2 a3

(
‖u‖2

XT
+ ‖v‖2

XT

)
‖u− v‖XT

(3.29)

≤ 2R2C T 1/2 ‖u− v‖XT
.
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Combining (3.27) and (3.29), we have

‖Ψ(u)−Ψ(v)‖XT
≤ 2R2C T 1/2 ‖u− v‖XT

The above estimate implies that if 2R2C T 1/2 < 1, we obtain the desired as stated in (3.25).
Therefore, we proved the local existence of mild solutions in XT to (1.1). The uniqueness can
be shown in the standard way using using Gronwall’s inequality.

Remark 3.7. Since u ∈ XT , from (3.5), we have that f(u) ∈ L1(0, T ; L2(0, L)). Then, due to
Pazy [[36], Theorem 1.7, page 108], for every T ′ > T, the mild solution u is the uniform limit of
regular solutions of (1.1) on [0, T ′]. From this result, the identity of energy (2.1) is guaranteed
for mild solution u ∈ XT on [0, T ′] and we can repeat the procedure used in Lemma 3.3 by
density arguments.

Due to Remark 3.7, multiplying the first equation of (1.1) by ū, integrating in x ∈ (0, L),
taking into account the boundary conditions and looking the real parts, we infer

(3.30)
1

2

d

dt
E(t) = −a3

2
|ux(0, t)|2 −

∫ L

0

a(x)|u(x, t)|2 dx

and, therefore, the energy E(t) is non increasing function of the time variable t.

Integrating over t ∈ [0, T ], it follows that

(3.31) ‖u‖C([0,T ];L2(0,L)) ≤ ‖u0‖L2(0,L) .

3.2.2. Global Solutions. Before to prove the existence of the global solutions of the problem
(1.1), let’s prove a useful estimate:

Lemma 3.8 (Smoothing effect). Let u ∈ XT a mild solution to the problem (1.1). Then,

(3.32) ‖u‖L2(0,T ;H1
0 (Ω)) ≤

21/2 T 1/2 a1

a3

‖u0‖2
L2(0,L) +

(3 |a4|+ 2 |a5|)2

4
‖u0‖6

L2(0,L) .

Proof. First of all, having in mind Remark 1.2, let’s work with the equivalent problem (1.5).
So, combining the techniques used in (3.5) – (3.10), we get

(3.33) ‖u‖L2(0,T ;H1
0 (0,L)) ≤

a1 T
1/2

21/2 a3

‖u0‖L2(0,L) + |W |,

where

W := (2 a4 + a5) Re

∫ T

0

∫ L

0

x |u|2 ux ū dx dt+ (a4 + a5) Re

∫ T

0

∫ L

0

xu2 ūx ū dx dt

:= W1 +W2 .
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Integrating by parts, taking into account that Re(a b̄) = Re(ā b), for all a, b ∈ C, the identity
1

4

(
|u|4
)
x

= |u|2 Re(u ūx) and the boundary conditions, we have

(3.34)

W1 = (2 a4 + a5) Re

∫ T

0

∫ L

0

x |u|2 u ūx dx dt

= (2 a4 + a5)

∫ T

0

∫ L

0

x
1

4

(
|u|4
)
x
dx dt

=
1

4
(2 a4 + a5)

x
�

�
���

0

|u|4
∣∣∣L
0
−
∫ T

0

∫ L

0

|u|4 dx dt


= −1

4
(2 a4 + a5)

∫ T

0

‖u(t)‖4
L4(0,L) dt .

Analogous computations give us

W2 ≤ (|a4|+ |a5|) Re

∫ T

0

∫ L

0

x |u|2 u ūx dx dt(3.35)

= −1

4
(|a4|+ |a5|)

∫ T

0

‖u(t)‖4
L4(0,L) dt .

From (3.33) – (3.35), it results that

(3.36) ‖u‖L2(0,T ;H1
0 (0,L)) ≤

a1 T
1/2

21/2 a3

‖u0‖L2(0,L) +
1

2
(3 |a4|+ 2 |a5|)

∫ T

0

‖u(t)‖4
L4(0,L) dt .

In this moment, we appeal to the Gagliardo - Nirenberg inequality in one dimensional do-
mains:

Lemma 3.9 (Gagliardo - Nirenberg inequality). Let q, r be any real numbers satisfying 1 6
q 6 p 6∞ and let j and m non-negative integers such that j 6 m. Then,

‖∂j u‖Lp(0,L) 6 C ‖∂m u‖aLr(0,L) ‖u‖1−a
Lq(0,L)

where 1
p

= j + a
(

1
r
−m

)
+ 1−a

q
for all a in the interval j

m
6 a 6 1 and M is a positive

constant depending only on m, j, q, r and a.

Employing the Lemma 3.9 with p = 4, j = 0,m = 1 and r = q = 2, jointly with (3.31), we
obtain

‖u‖L4(0,L) ≤ C ‖u‖1/4

H1
0 (0,L)

‖u‖3/4

L2(0,L) .(3.37)
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Hence, from (3.36) and (3.37) the inequality ab ≤ 1
4ε
a2 + ε b2, for all ε > 0, it follows that

(3.38)

‖u‖L2(0,T ;H1
0 (0,L)) ≤

a1 T
1/2

21/2 a3
‖u0‖L2(0,L) +

1

2
(3 |a4|+ 2 |a5|)

∫ T

0
‖u(t)‖H1

0 (0,L) ‖u(t)‖3L2(0,L) dt

≤ a1 T
1/2

21/2 a3
‖u0‖L2(0,L) +

(3 |a4|+ 2 a5|) ε
2

∫ T

0
‖u(t)‖2H1

0 (0,L) dt

+
3 |a4|+ 2 |a5|

8 ε

∫ T

0
‖u(t)‖6L2(0,L) dt .

Taking ε = (3 a4 + 2 a5)−1 , from (3.31) and (3.38), one gets

‖u‖L2(0,T ;H1
0 (0,L)) ≤

21/2 T 1/2 a1

a3

‖u0‖L2(0,L) +
(3 |a4|+ 2 |a5|)2

4

∫ T

0

‖u(t)‖6
L2(0,L) dt

≤ 21/2 T 1/2 a1

a3

‖u0‖2
L2(0,L) +

(3 |a4|+ 2 |a5|)2

4
‖u0‖6

L2(0,L) ,

which proves the desired. �

Now, let’s prove the existence of global solutions. From previous subsection, we can extend
the solution u to the maximal interval of existence 0 < t < Tmax. Suppose that Tmax < ∞.
Then, Combining (3.32) and (3.31), we obtain

(3.39) ‖u‖XT
≤ ‖u0‖L2(0,L) +

a1 T
1/2

21/2 a3

‖u0‖2
L2(0,L) +

(3 a4 + 2 a5)2 T

8
‖u0‖6

L2(0,L),

and we concluded that Tmax =∞. Therefore, Theorem 2.1 is proved.

4. STABILIZATION

In the present section, we shall obtain the exponential decay in L2- level of the problem (1.1).
Our intention is to obtain an estimate of the energy in terms of the damping term plus a LOT
(where LOT means a lower order term). From now on, we shall work with regular solutions.
From density arguments the exponential stability remains true for mild solutions by density ar-
guments (see Remark 3.7).

In the sequel, we proceed as the proof of Lemma 3.8. From (3.30), we have

(4.1) ‖u(t)‖2
L2(0,L) = ‖u0‖2

L2(0,L) −
a3

2

∫ t

0

|ux(0, t)|2 dt− 2

∫ t

0

∫ L

0

a(x)|u(x, t)|2 dx dt .

In the sequel, we proceed as the proof of Lemma 3.8. Multiplying the equation (1.1) by (t−T ) ū,
integrating over x ∈ (0, L) and repeating the same procedure used in (3.5) – (3.10), we infer

(4.2)
d

dt

∫ L

0
(T − t)|u|2 dx+

∫ L

0
|u|2 dx+ a3 (T − t) |ux(0, t)|2 + 2

∫ L

0
(T − t) a(x) |u|2 dx = 0 .

Integrating over t ∈ [0, T ], we have
(4.3)∫ L

0
|u0|2 dx =

1

T

∫ T

0

∫ L

0
|u|2 dx dt+

a3

T

∫ T

0
(T − t) |ux(0, t)|2 dt+

2

T

∫ T

0

∫ L

0
(T − t) a(x) |u|2 dx dt.
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Consequently,

(4.4)
∫ L

0
|u0|2 dx ≤

1

T

∫ T

0

∫ L

0
|u|2 dx dt+ a3

∫ T

0
|ux(0, t)|2 dt+ 2

∫ T

0

∫ L

0
a(x) |u|2 dx dt .

The next task is to absorb the LOT :=
∫ T

0

∫ L
0
|u|2 dx dt. To this end, we have the following

result:

Lemma 4.1. Given T > 0 there exists C = C(T ) > 0 such that every regular solution to
problem (1.1) satisfies the inequality∫ T

0

∫ L

0

|u|2 dx dt ≤ C

{
a3

∫ T

0

|ux(0, t)|2 dt+ 2

∫ T

0

∫ L

0

a(x) |u|2 dx dt
}
,(4.5)

provided the initial data are taken in bounded sets of L2(0, L).

Proof. We argue by contradiction. Assume that (4.5) does not hold. Then, there exists a se-
quence of initial data {u0,µ}µ∈N ∈ L2(0, L), assumed to be taken in bounded sets of L2(0, L)
and a sequence of regular solutions {uµ}µ∈N to problem (1.1), for all µ ∈ IN , verifying

(4.6) lim
µ→∞

∫ T
0
‖uµ(t)‖2

L2(0,L) dt

a3

∫ T
0
|ux,µ(0, t)|2 dt+ 2

∫ T
0

∫ L
0
a(x) |uµ|2 dx dt

= +∞,

that is,

lim
µ→∞

a3

∫ T
0
|ux,µ(0, t)|2 dt+ 2

∫ T
0

∫ L
0
a(x) |uµ|2 dx dt∫ T

0
‖uµ(t)‖2

L2(0,L) dt
= 0 .(4.7)

From (3.30), we know that the energy is a non increasing function on the parameter t, thus,

(4.8)
1

2
‖uµ(t)‖2

L2(0,L) = Eµ(t) ≤ Eµ(0) =
1

2
‖u0,µ‖2

L2(0,L) ≤M, ∀t ≥ 0 .

Then, from (4.7) and taking into account (4.8), we infer

(4.9) a3

∫ T

0

|ux,µ(0, t)|2 dt+ 2

∫ T

0

∫ L

0

a(x) |uµ|2 dx dt −→ 0 in L2(0, T ;L2(0, L)),

consequently, from the assumption on a(x), namely, a(x) ≥ a0 a.e. in ω , we arrive

uµ → 0 strongly in L2(0, T ;L2(ω)) .(4.10)

On the other hand, from (4.8), we infer,

uµ → u weakly in L2(0, T ;L2(0, L)) .(4.11)

Hence, from (4.10) and (4.11) and the uniqueness of weak limit in L2(0, T ;L2(0, L)), we
conclude

u = 0 in ω × (0, T ).(4.12)

Now, combining (3.32) and (4.8) , there exists a subsequence of {uµ}µ∈N, still denoted by the
same form and u ∈ L∞(0, T ;H1

0 (0, L)) such that

{uµ} is bounded in L2(0, T ;H1
0 (0, L))(4.13)

and

uµ
?
⇀ u weak star in L2(0, T ;H1

0 (0, L)) .(4.14)
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On the other hand, again employing Lemma (3.9) for p = 6, j = 0,m = 1, r = q = 2, we have

‖u‖L6(0,L) ≤ C ‖u‖1/3

H1
0 (0,L)

‖u‖2/3

L2(0,L) .(4.15)

Hence, employing Hölder inequality, (3.32) and (4.8), we have

(4.16)

‖ |uµ|2 uµ ‖L1(0,T ;L2(0,L)) =

∫ T

0

‖uµ‖3
L6(0,L) dt

≤ C

∫ T

0

‖uµ‖H1
0 (0,L) ‖uµ‖2

L2(0,L) dt

≤ C T 1/2 ‖uµ,0‖2
L2(0,L)

∫ T

0

‖uµ‖2
H1

0 (0,L) dt

≤ C T 1/2M ‖uµ‖L2(0,T ;H1
0 (0,L))

≤ C T 1/2M2,

that is,

{|uµ|2 uµ} is bounded in L1(0, T ;L2(0, L)).(4.17)

Consequently, there exists χ ∈ L1(0, T ;L2(Ω)) such that

|uµ|2 uµ ⇀ χ weakly in L1(0, T ;L2(0, L)).(4.18)

Employing Lemma (3.9) for p =∞, j = 0,m = 1, r = q = 2, we have

‖u‖L∞(0,L) ≤ C ‖u‖1/2

H1
0 (0,L)

‖u‖1/2

L2(0,L) .(4.19)

So, combining (4.19), (4.8) and (4.13), we have

(4.20)

‖ |uµ|2 ux,µ‖L1(0,T ;L2(0,L)) ≤
∫ T

0

‖uµ‖2
L∞(0,L) ‖uµ‖H1

0 (0,L) dt

≤ C

∫ T

0

‖uµ‖2
H1

0 (0,L) ‖uµ‖L2(0,L) dt

≤ 2
√
M C ‖uµ‖2

L2(0,T ;H1
0 (0,L))

≤M1,

hence,

{|uµ|2 ux,µ} is bounded in L1(0, T ;L2(0, L)).(4.21)

Similar calculations give us

{u2
µ ūx,µ} is bounded in L1(0, T ;L2(0, L)).(4.22)

On the other hand,

(4.23)

|〈uµ,t, ϕ〉| ≤ a1‖uµ,xx‖H−1(0,L) ‖ϕ‖H1
0 (0,L) + a2‖ |uµ|2 uµ ‖L2(0,L) ‖ϕ‖L2(0,L)

+ a3 ‖uµ‖H1
0 (0,L) ‖ϕxx‖L2(0,L) + a4‖ |uµ|2 uµ,x ‖L2(0,L) ‖ϕ‖L2(0,L)

+ a5‖u2
µ ūµ,x ‖L2(0,L) ‖ϕ‖L2(0,L), ∀ϕ ∈ H2

0 (0, L) .

From (4.13), (4.17), (4.21), (4.22) and (4.23), we infer

{ut,µ} is bounded in L2(0, T ;H−2(0, L)).(4.24)
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Now, making use of the embedded chain

(4.25) H1
0 (0, L)

c
↪→ L2(0, L) ↪→ H−2(0, L),

it follows from the boundness (4.13) and (4.24) and employing Aubin-Lions Theorem (see [29],
lemma 5.2 on page 57), that there exists a subsequence of {uµ}, still denote by the same form
such that,

uµ → u strongly in L2(0, T ;L2(0, L)) .(4.26)

From (4.26), we have

|uµ|2 uµ → |u|2 u a. e. in (0, L) × (0, T ) .(4.27)

So, combining (4.17) and (4.27), recalling Lions’ lemma (see [29] lemma 1.3 on page 12), we
have

|uµ|2 uµ ⇀ |u|2 u in L1(0, T ;L2(0, L)) .(4.28)

As a consequence χ = |u|2u a.e. in (0, L). Moreover, combining (4.14) and (4.26), we
obtain

|uµ|2 ux,µ ⇀ |u|2 ux weakly in L2(0, T ;L2(0, L)),(4.29)
u2
µ ūx,µ ⇀ u2 ūx weakly in L2(0, T ;L2(0, L)) .(4.30)

At this point we shall divide our proof into two cases: u 6= 0 and u = 0.

Case 1: u 6= 0
Initially, let us consider the sequence of problems:

(4.31)


i uµ,t + a1 uµ,xx + i

[
a3 uµ,xxx + a(x)uµ

]
+ f(uµ) = 0 in (0, L) × (0,∞)

uµ(0, t) = uµ(L, t) = 0 for all t > 0

ux,µ(L, t) = 0 for all t > 0

uµ(x, 0) = u0,µ in (0, L),

where f(uµ) is given in (1.9) .

From (4.14), (4.24), (4.28), (4.29) and (4.30), passing to the limit in (4.31), one gets

(4.32)
i ut + a1 uxx + a2 |u|2 u+ i

[
a3 uxxx + a4

(
|u|2 u

)
x

+ a5 u
(
|u|2
)
x

]
= 0 in D′((0, L) × (0, T ))

u(0, t) = u(L, t) = 0 for all t > 0

ux(L, t) = 0 for all t > 0

u(x, t) = 0 in ω × (0, L)

Due to Remark 1.2, the problem above can be rewritten as

(4.33)


i ut + a1 uxx + f(u) + i a3 uxxx = 0 in D′((0, L) × (0, T ))

u(0, t) = u(L, t) = 0 for all t > 0

ux(L, t) = 0 for all t > 0

u(x, t) = 0 in ω × (0, L)
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where f(u) is given in (1.9).

As indicated in the introduction, the main difficulty to check the unique continuation prop-
erty is the weak regularity of the solution under consideration, since to our best knowledge (see
Carvajal, stated in the introduction), the existing results on unique continuation require that
u ∈ C([0, T ]; Hs(0, L)) ∩ C1([0, T ]; H1(0, L)) for s ≥ 4. Therefore, the main task when
checking unique continuation property is to show that the mild solution under consideration
has, in fact, this property.

For the reader’s convenience, we shall repeat (verbatim) the same arguments introduced by
Bisognin et al., [8] and Linares and Pozoto, [23]. According to the structure of ω, we have that
u ≡ 0 in {(0, δ) ∪ (L− δ, L)} × (0, T ). Now, let us introduce the extended function

(4.34) v(x, t) =

{
u(x, t), if (x, t) ∈ (δ, L− δ) × (0, T )

0, if (x, t) ∈ {R − (δ, L− δ)} × (0, T ) .

Hence, v = v(x, t) satisfies
(4.35){
i vt + a1 vxx + a2 |v|2 v + i

[
a3 vxxx + (2 a4 + a5) |v|2 vx + (a4 + a5) v2 v̄x

]
= 0 in R × (0, T ))

v(x, t) = v0(x) in R,

where,

(4.36) v0(x) =

{
u0(x), if x ∈ (δ, L− δ)

0, if x ∈ {R − (δ, L− δ)} .

If we consider w(x, t) = v(x+ t, t), then, w solves:
(4.37){
i wt + a1wxx + a2 |w|2w + i

[
a3wxxx + (2 a4 + a5) |w|2wx + (a4 + a5) w2 w̄x

]
= 0 in R × (0, T ))

w(x, t) = v0(x) in R,

Since v0 has compact support and belongs to L2(R), we infer∫
R
v2

0(x) e2λx dx <∞, ∀λ > 0.

Thus, by regularizing properties proved by Kato [[24], Theorem 2.1], w ∈ C∞((0, L) ×
(0, T )) and, therefore, v is smooth as well. So, v possesses the required regularity to apply the
unique continuation property given in Theorem 1.1. Moreover, the assumption (1.6) is verified
observing

supp v(·, t) ⊂ (−∞, L− δ), t = 0, T.

Therefore, employing Theorem 1.1, we have that v ≡ 0, consequently, u ≡ 0, x ∈ (0, L), t ∈
(0, T ), which is a contradiction.

Case 2: u = 0
Now, we denote:

(4.38) cµ = ‖uµ‖L2(0,T ;L2(0,L)), ũµ =
uµ
cµ
,
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Dividing (4.31) by cµ we obtain

(4.39)


i ũµ,t + a1 ũµ,xx + g(ũµ) + i

[
a3 ũµ,xxx + a(x) ũµ

]
= 0 in (0, L) × (0,∞)

ũµ(0, t) = ũµ(L, t) = 0 for all t > 0

ũx,µ(L, t) = 0 for all t > 0

ũµ(x, 0) = ũ0,µ in (0, L)

where g(ũµ) = a2|uµ|2 ũµ + i a4 |uµ|2 ũµ,x + i a5 u
2
µ
˜̄uµ,x.

Thus, taking (4.6) into account, we have

(4.40) lim
µ→∞

∫ T
0
‖ũµ(t)‖2

L2(0,L) dt

a3

∫ T
0
|ũx,µ(0, t)|2 dt+ 2

∫ T
0

∫ L
0
a(x) |ũµ|2 dx dt

= +∞

and from (4.38), we know that

‖ũµ‖2
L2(0,T ;L2(0,L)) = 1 .(4.41)

Now, recalling (4.4), we observe

(4.42)
∫ L

0
|ũ0|2 dx ≤

1

T

∫ T

0

∫ L

0
|ũ|2 dx dt+ a3

∫ T

0
|ũx,µ(0, t)|2 dt+ 2

∫ T

0

∫ L

0
a(x) |ũµ|2 dx dt .

Hence, from (4.40), (4.41) jointly with (4.42), we guarantee the existence of a constantM3 >
0 such that

(4.43) ‖ũ0,µ‖2L2(0,L) ≤
1

T
+M2 := M3 .

From (4.8) and (4.43), it results that

(4.44) ‖ũµ(t)‖L2(0,L) ≤ ‖ũ0,µ‖L2(0,L) ≤
√
M3.

Moreover, combining (3.32) and (4.43), we obtain

{ũµ} is bounded in L2(0, T ;H1
0 (0, L)) .(4.45)

Repeating the same arguments used in done in (4.8) – (4.23), we infer

ũ = 0 a.e. in ω × (0, T )(4.46)
{ũt,µ} is bounded in L2(0, T ;H−2(0, L)).(4.47)

So, from (4.25), (4.45) and (4.47), employing Aubin – Lions theorem, there exists a subse-
quence of {ũµ}, still from now on will be denoted by the same notation, such that,

ũµ −→ ũ strongly in L2(0, T, L2(0, L)) .(4.48)

Now, recalling the fact that u = 0, from convergence given in (4.26), we obtain

uµ → 0 strongly in L2(0, T ;L2(0, L)) and cµ → 0 when µ→ +∞.(4.49)
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So, from (4.38), (4.44), (4.45), (4.49) and (4.15), we get

(4.50)

‖ |uµ|2 ũµ ‖L1(0,T ;L2(0,L)) = c2
µ ‖ |ũµ|2 ũµ ‖L1(0,T ;L2(0,L))

= c2
µ

∫ T

0

‖ũµ‖3
L6(0,L) dt

≤ C c2
µ

∫ T

0

‖ũµ‖H1
0 (0,L) ‖ũµ‖2

L2(0,L) dt

≤ C T 1/2 c2
µ ‖ũµ,0‖2

L2(0,L)

∫ T

0

‖ũµ‖2
H1

0 (0,L) dt

≤ C T 1/2 c2
µM3 ‖ũ‖L2(0,T ;H1

0 (0,L))

≤ C T 1/2C(M3) c2
µ −→ 0, when µ→ +∞.

Performing similar computations done in (4.50), now, having in mind (4.19), we get

‖ |uµ|2 ũx,µ ‖L1(0,T ;L2(0,L)) −→ 0 in L1(0, T ; L2(0, L)),(4.51)

‖u2
µ
˜̄ux,µ ‖L1(0,T ;L2(0,L)) −→ 0 in L1(0, T ; L2(0, L)) .(4.52)

Passing to the limit in (4.39) when µ→ +∞, taking (4.45), (4.46), (4.50), (4.51) and (4.52)
into account, we arrive at

(4.53)

{
i ũt + a1 ũxx + i a3 ũxxx = 0 in (0, L) × (0,∞)

ũ = 0 a. e. in ω × (0, T ) .

Applying the Holmgrem’s uniqueness theorem we conclude that

ũ = 0 a. e. in (0, L) × (0, T )(4.54)

and this contradicts (4.41) and (4.48). �

We observe that taking (4.4), the fact that the energy E(t) is non increasing function of
the time variable t into account and considering Lemma 4.1, we obtain the desired inequality,
namely,

E(T ) ≤ E(0) ≤ C

{
a3

2

∫ T

0

|ux(0, t)|2 dt+ 2

∫ T

0

∫ L

0

a(x)|u(x, t)|2 dx dt
}
,(4.55)

where C is a positive constant. We observe that taking (4.1) into account, we have

(4.56) E(T ) = E(0)− a3

2

∫ T

0

|ux(0, t)|2 dt− 2

∫ T

0

∫ L

0

a(x)|u(x, t)|2 dx dt

Now, combining (4.55) and (4.56), we obtain,

(4.57)
E(T ) ≤ C

{
a3

2

∫ T

0

|ux(0, t)|2 dt+ 2

∫ T

0

∫ L

0

a(x)|u(x, t)|2 dx dt
}

= C {E(0)− E(T )} .
Therefore,

E(T ) ≤
(

C

1 + C

)
E(0).(4.58)
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Repeating the procedure for nT , n ∈ IN , we deduce

E(nT ) ≤ 1

(1 + Ĉ)n
E(0),

for all T ≥ T0.
Let us consider, now, t ≥ T0, then t = nT0 + r, 0 ≤ r < T0. Thus,

E(t) ≤ E(t− r) = E(nT0) ≤ 1

(1 + Ĉ)n
E(0) =

1

(1 + Ĉ)
t−r
T0

E(0).

Setting C0 = e
r
T0

ln(1+Ĉ) and λ0 = ln(1+Ĉ)
T0

> 0, we obtain

(4.59) E(t) ≤ C0 e−λ0tE(0); ∀t ≥ T0,

which proves the exponential decay for regular solutions to problem (1.1). Therefore, the expo-
nential decay (4.59) remains true for mild solutions by density arguments and Theorem 2.2 is
proved.

5. FINITE DIFFERENCE METHOD APPROXIMATION AND MAIN RESULT

5.1. Description of the Numerical Scheme. For the sake of the following analysis, and for a
given M ∈ N, we will introduce the vector space

XM :=
{
u = [u0 u1 . . . uM ]T ∈ CM+1 : u0 = uM−1 = uM = 0

}
Let us introduce the classical finite differences operators for complex-valued arrays:[

D+u
]
j

:=
uj+1 − uj

∆x[
D−u

]
j

:=
uj − uj−1

∆x

Du :=
1

2

(
D+u+ D−u

)
D2u := D+D−u

D3u := D+D+D−u

For u, v ∈ XM , and ∆x < 1, let us consider the discrete space L2(0, L)∆ of complex-valued
vectors endowed with the inner product

(5.60) (u, v)2 :=
M−1∑
j=1

ujvj∆x

this induces a discrete version of the L2 norm:

||u||22 := (u, u)2.

For p ∈ [1,∞), we can define the Lp(0, L)∆ spaces in a similar fashion: we say that u ∈ Xm

is also in Lp(0, L)∆ if

||u||p :=

(
M−1∑
j=1

|uj|p∆x

) 1
p

<∞.



HIGH ORDER NONLINEAR SCHRÖDINGER EQUATION 23

We also say that u ∈ L∞(0, L)∆ if

||u||∞ := max
j∈[0,M−1]

|uj| <∞.

For u, v ∈ XM , we will introduce the following inner product and their respective norm:

(5.61) (u, v)x :=
M−1∑
j=1

j∆x2ujvj, ||u||2x := (u, u)x

Finally, let us recall problem (1.1), and re-write the equation to solve as

(5.62) i ut + a1 uxx + a2 |u|2 u+ i
[
a3 uxxx + a4 |u|2 ux + (a4 + a5)u

(
|u|2
)
x

+ a(x)u
]

= 0

The following numerical scheme is a slight modification of the one proposed in [12]: for
a given u0 ∈ XM ∩ L2

∆x(0, L), and for un+ 1
2 := 1

2
(un+1 + un), then un+1 ∈ XM , n ∈ N,

approximated solution of (1.1) at the time tn+1 = (n + 1)∆t, ∆t < 1, can be calculated using
the following scheme:

iDtu
n + a1D

2un+ 1
2 + a2|un+ 1

2 |2un+ 1
2 + ia3D

3un+ 1
2 + ia4Fa4(un+1)

+i(a4 + a5)Fa4+a5(un+1) + iaun+ 1
2 = 0(5.63)

u0 ∈ XM ∩ L2
∆x(0, L) given.

where

Fa4(up) :=
1

2

∣∣∣up + un

2

∣∣∣2D(up + un

2

)
+

1

4
D

(∣∣∣up + un

2

∣∣∣2up + un

2

)
(5.64)

− 1

4

(up + un

2

)2

D
(up + un

2

)
Fa4+a5(up) :=

up + un

2
D

(∣∣∣up + un

2

∣∣∣2)(5.65)

a ∈ RM+1 : aj = a(xj), xj = x0 + j∆x, j = 0, 1, . . . ,M.

The reason behind the definitions (5.64) and (5.65) lies in the scheme proposed in [12], which
aimed to the preservation of the L2(0, L)∆ norm when a(x) = 0,∀x ∈ [0, L] and a centered
finite difference approximation is considered for the third derivative. In the present scheme
(5.63), however, a decentered approximation is used in order to obtain an L2 estimate for D2u.
This fact will help us to describe the decay of the numerical energy, defined as

(5.66) En :=
1

2
||un||22.

To this end, we will need some lemmas.
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Lemma 5.1. For a, b ∈ C, for u, v ∈ XM , and for j ∈ [0,M ] ⊂ N we have

Re
(
b(b− a)

)
=

1

2

(
|b|2 − |a|2

)
+

1

2
|b− a|2(5.67)

Re
(
a(b− a)

)
=

1

2

(
|b|2 − |a|2

)
− 1

2
|b− a|2(5.68)

D(ujvj) = uj+1
D+vj

2
+ uj−1

D−vj
2

+ vjDuj(5.69)

D−(ujvj) = ujD
−vj + vj−1D

−uj(5.70)

Proof. We will prove (5.67), (5.69) and (5.70). For (5.67), we have

b
(
b− a

)
= |b|2 − ab

= |b|2 − a
(
b− a+ a

)
= |b|2 − a(b− a)− |a|2

= |b|2 − |a|2 + (b− a− b)(b− a)

= |b|2 − |a|2 − b(b− a) + |b− a|2

This, then, let us conclude (5.67). (5.68) can be proved using similar arguments. For (5.69),
we have

D(ujvj) =
uj+1vj+1 − uj−1vj−1

2∆x

=
1

2∆x

(
uj+1 + uj+1vj − uj+1vj + uj−1vj − uj−1vj − uj−1vj−1

)
=

1

2∆x

(
uj+1(vj+1 − vj) + uj−1(vj − vj−1) + vj(uj+1 − uj−1)

)
= uj+1

D+vj
2

+ uj−1
D−vj

2
+ vjDuj

hence, (5.69) is proved. For (5.70),

D+(ujvj) =
ujvj − uj−1vj−1

∆x

=
1

∆x

(
ujvj + ujvj−1 − ujvj−1 − uj−1vj−1

)
=

1

∆x

(
uj(vj − vj−1) + vj−1(uj − uj−1)

)
= ujD

−vj + vj−1D
−uj.

Thus, (5.70) is proved, as well as the present lemma. �

A final lemma needs to be presented:
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Lemma 5.2. For z, w ∈ XM , we have

(
D+z, w

)
x

= −
(
z,D−w

)
x

+ ∆x
(
z,D−w

)
2
−
(
z, w

)
2

(5.71) (
D−z, w

)
x

= −
(
z,D+w

)
x
−∆x

(
z,D+w

)
2
−
(
z, w

)
2

(5.72) (
Dz, w

)
x

= −
(
z,Dw)x +

∆x

2

(
z,D−w

)
2
− ∆x

2

(
z,D+w

)
−
(
z, w

)
2

(5.73)

Re
(
D+z, z

)
x

= −1

2
||z||22 −

∆x

2
||D+z||2x(5.74)

Re

(
D+D+D−z, z

)
x
= −∆x

2
|D−z1|2 +

3

2
||D+z||22 +

∆x

2
||D+D−z||2x −

∆x2

2
||D+D−z||22(5.75)

Proof. Starting with (5.71), and using the definition (5.61), we have

(
D+z, w

)
x

=
M−1∑
j=1

j∆x2D+zjwj

=
M−1∑
j=1

1

∆x
∆x2(jzj+1wj − jzjwj)

=
M∑
j=2

1

∆x
∆x2(j − 1)zjwj−1 −

M−1∑
j=1

1

∆x
∆x2jzjwj

=
1

∆x
∆x2(M − 1)zMwM−1 +

M−1∑
j=1

1

∆x
∆x2(j − 1)zjwj−1

− 1

∆x
∆x2(0)z1w0 −

M−1∑
j=1

1

∆x
∆x2jzjwj

=
M−1∑
j=1

j∆x2zj
wj−1 − wj

∆x
−

M−1∑
j=1

1

∆x
∆x2zjwj−1

= −
M−1∑
j=1

j∆x2zjD
−wj −

M−1∑
j=1

∆x2zj
wj−1 − wj

∆x
−

M−1∑
j=1

zjwj∆x

= −
(
z,D−w

)
x

+ ∆x
(
z,D−w

)
2
−
(
z, w

)
2
.

Thus, (5.71) is proved. (5.72) and (5.73) can both be demonstrated using similar arguments.
For (5.74), and using (5.68), we have
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Re
(
D+z, z

)
x

= Re

(
M−1∑
j=1

j∆x2 zj+1 − zj
∆x

zj

)

=
M−1∑
j=1

1

2∆x
j∆x2

(
|zj+1|2 − |zj|2 − |zj+1 − zj|2

)

=
M−1∑
j=1

1

2∆x
j∆x2|zj+1|2 −

M−1∑
j=1

1

2∆x
j∆x2|zj|2 −

M−1∑
j=1

1

2∆x
j∆x2|zj+1 − zj|2

=
M∑
j=2

1

2∆x
(j − 1)∆x2|zj|2 −

M−1∑
j=1

1

2∆x
j∆x2|zj|2 −

M−1∑
j=1

1

2∆x
j∆x2|∆xD+zj|2

= −1

2

M∑
j=2

|zj|2∆x− ∆x

2
|z1|2 −

∆x

2

M−1∑
j=1

j∆x2|D+zj|2

= −1

2
||z||22 −

∆x

2
||D+z||2x.

Hence, (5.74) is proved. Finally, in order to obtain (5.75), using the same reasoning as in the
proof of (5.71) using a = D+D−z, and recalling that z ∈ XM , we can write

(
D+D+D−z, z

)
x

=
(
D+a, z

)
x

= −
(
a,D−z

)
x

+ ∆x
(
a,D−z

)
2
−
(
a, z
)

2

= −
(
D+D−z,D−z

)
x

+ ∆x
(
D+D−z,D−z

)
2
−
(
D+D−z, z

)
2

= −
(
D+D−z,D−z

)
x

+ ∆x
(
D+D−z,D−z

)
2

+ ||D+z||22(5.76)

Now we will extract the real part. Denoting b := D−z, and using (5.74), we can re-write the
first term in the right hand side of (5.76) as

Re
(
D+D−z,D−z

)
x

= Re
(
D+b, b

)
x

= −1

2
||b||22 −

∆x

2
||D+b||2x

= −1

2
||D−z||22 −

∆x

2
||D+D−z||2x

Hence,

Re
(
D+D+D−z, z

)
x

=
1

2
||D−z||22 +

∆x

2
||D+D−z||2x + ∆xRe

(
D+D−z,D−z

)
2

+ ||D+z||22.

and because ||D+z||22 = ||D−z||22, we have
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Re
(
D+D+D−z, z

)
x

=
3

2
||D+z||22 +

∆x

2
||D+D−z||2x + ∆xRe

(
D+D−z,D−z

)
2

(5.77)

Using again b = D−z, we can work the third term on the right hand side of (5.77):

Re
(
D+D−z,D−z

)
2

= Re
(
D+b, b

)
2

= Re

(
M−1∑
j=1

bj+1 − bj
∆x

bj∆x

)

=
M−1∑
j=1

1

2∆x

(
|bj+1|2 − |bj|2 − |bj+1 − bj|2

)
∆x

=
1

2

(
|bM+1|2 − |b1|2

)
−

M−1∑
j=1

1

2∆x
|∆xD+bj|2∆x

= −|b1|2

2
− ∆x

2
||D+b||22

= −|D
−z1|2

2
− ∆x

2
||D+D−z||22.

(5.75) can be then obtained combining this last result with (5.77).
�

Before presenting the next results, we will introduce some extension operators, presented
already in [43], [38]; and originally, [29]. For v ∈ XM with v = (vj)

M
j=0, for the space variable

we define:

p∆v∆(x) =

{
the continuous function, linear in each interval [j∆x, (j + 1)∆x]

such that p∆v∆(j∆x) = vj, j = 0, . . . ,M

q∆v∆(x) =

{
the step function, defined in each interval

((
j − 1

2

)
∆x,

(
j + 1

2

)
∆x
)
∩ (0, L)

such that q∆v∆(j∆x) = vj, j = 0, . . . ,M
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and for the time variable, we have

P∆v∆(x, t) =

{
the continuous function, linear in each interval [n∆t, (n+ 1)∆t]

such that P∆v∆(x, tn) = p∆v
n
∆(x), n ∈ N, x ∈ (0, L)

P
1
2

∆v∆(x, t) =

{
the continuous function, linear in each interval [n∆t, (n+ 1)∆t]

such that P
1
2

∆v∆(x, tn) = 1
2

(
p∆v

n
∆(x) + p∆v

n+1
∆ (x)

)
, n ∈ N, x ∈ (0, L)

Q∆u∆(x, t) =

{
the step function, linear in each interval [n∆t, (n+ 1)∆t]

such that Q∆v∆(x, tn) = q∆v
n
∆(x), tn ≤ t ≤ tn+1, n ∈ N, x ∈ (0, L)

Q
1
2
∆u∆(x, t) =


the step function, linear in each interval [n∆t, (n+ 1)∆t]

such that Q
1
2
∆v∆(x, tn) = 1

2

(
q∆v

n
∆(x) + q∆v

n+1
∆ (x)

)
,

tn ≤ t ≤ tn+1, n ∈ N, x ∈ (0, L)

With this, it is easy to see that

||Q∆u∆||2L2(0,T ;L2(0,L)) =

∫ T

0

∫ L

0

|Q∆u∆(x, t)|2dxdt =
N∑
n=0

M−1∑
j=0

|unj |2∆x∆t =
N∑
n=0

||un||22∆t

||p∆u∆||2H1
0 (0,L) =

∫ L

0

|(p∆u∆)x|2dx =
M−1∑
j=0

∣∣∣uj+1 − uj
∆x

∣∣∣2∆x

In order to prove the main results of this section, we will present and prove two lemmas:

Lemma 5.3. For u ∈ XM ∩ L∞(0, L)∆, we have

||q∆u∆||2L∞(0,L) ≤ 2||q∆u∆||L2(0,L)||p∆u∆||H1
0 (0,L)(5.78)

||q∆u∆||4L4(0,L) ≤ 2||q∆u∆||3L2(0,T )||p∆u∆||H1
0 (0,L)(5.79)

||q∆u∆||L6(0,L)) ≤ 2
1
3 ||q∆u∆||

2
3

L2(0,L)||p∆u∆||
1
3

L2(0,L)(5.80)

Proof. To prove (5.78), we will need the algebraic identity (a2− b2) + (a− b)2 = 2a(a− b) for
any constants a, b ∈ C. For ui ∈ u = [u0 u1 . . . uM−1 uM ]T ∈ CM+1, we have:

u2
i =

1

2

[
i∑

j=1

(u2
j − u2

j−1) +
i−1∑
j=0

(u2
j+1 − u2

j)

]

=
1

2

[
i∑

j=1

2uj(uj − uj−1)− (uj − uj−1)2

]
− 1

2

[
i−1∑
j=0

2uj(uj − uj+1)− (uj+1 − uj)2

]

=
i∑

j=1

[
∆x ujD

−uj −
∆x2

2
(D−uj)

2

]
+

i−1∑
j=0

[
∆x ujD

+uj +
∆x2

2
(D+uj)

2

]

=
i∑

j=1

∆x ujD
−uj +

i−1∑
j=0

∆x ujD
+uj +

i−1∑
j=0

∆x2

2
(D+uj)

2 −
i−1∑
j=0

∆x2

2
(D+uj)

2.
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Taking the modulus at both sides, using Hölder Inequality, and recalling that u0 = 0,

|ui|2 ≤
i∑

j=1

∆x |ujD+uj|+
i−1∑
j=1

∆x |ujD+uj|

≤

√√√√ i∑
j=1

∆x|uj|2

√√√√ i∑
j=1

∆x|D−uj|2 +

√√√√ i−1∑
j=1

∆x |uj|2

√√√√ i−1∑
j=1

∆x |D+uj|2

≤ 2

√√√√ i∑
j=1

|uj|2∆x

√√√√ i∑
j=1

|D+uj|2∆x

≤ 2||u||2||D+u||2.

Inequality (5.78) is then proved since this is valid to any i = 0, 1, . . . , M . To get (5.79), and
combining Hölder Inequality with (5.78),

||q∆u∆||4L4(0,L) =
M−1∑
j=1

|uj|4∆x

≤ ||u||2∞
M−1∑
j=1

|uj|2∆x

≤ 2||u||22||D+u||2||u||22
= 2||q∆u∆||3L2(0,T )||p∆u∆||H1

0 (0,L).

In order to conclude (5.80), we will again use Hölder inequality with (5.78) and (5.79):

||q∆u∆||L6(0,L)) =
M−1∑
j=1

|uj|6∆x

≤ ||u||2∞
M−1∑
j=1

|uj|4∆x

≤ 2||u||2||D+u||2 2||u||32||D+u||2
= 4||u||42||D+u||22

which can then lead us to conclude (5.80), and hence, the lemma is proved. �

Lemma 5.4. Let {un}n∈N be a sequence in XM induced by the numerical scheme (5.63), and
let u0 ∈ XM ∩ L2

∆x(0, L) such that ||u0||22 ≤ 2a3

|a4+a5| . Then, there exist some constant K =

K(T, L) > 0 such that
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||Q∆u∆||2L∞(0,T ;L2(0,L)) ≤ ||u0||22, ∀n ∈ N(5.81)

a3||Q
1
2
∆D

2u∆||2L2(0,T ;L2(0,L)) ≤
1

2∆x
||u0||22(5.82)

||P
1
2

∆u∆||2L2((0,T );H1
0 (0,L)) ≤ K||u0||22(5.83)

||Q
1
2
∆(|u|2ux)∆||2L2(0,T ;L2(0,L)) ≤ K||q∆u

0
∆||6L2(0,L)(5.84)

||q∆(|u|2x)∆||2L2(0,L) ≤ 32(1 + ∆x2)||q∆u∆||2L∞(0,L)||p∆u∆||2H1
0 (0,L)(5.85)

Proof. We start by multiplying (5.63) component-wise by ∆xu
n+ 1

2
j , sum over j and extract the

imaginary part. This will lead us to

(5.86)
1

2∆t

(
||un+1||22 − ||un||22

)
− a3Re

(
D+D−u+ 1

2 ,D−un+ 1
2

)
2

+
(
aun+ 1

2 , un+ 1
2

)
2

= 0

Using (5.68), and using z := D−un+ 1
2 , we can re-write the second term in (5.86) as

Re
(
D+D−un+ 1

2 ,D−un+ 1
2

)
2

= Re
(
D+z, z

)
2

= Re

(
M−1∑
j=1

(zj+1 − zj)zj
∆x

∆x

)

=
M−1∑
j=1

1

2∆x

(
|zj+1|2 − |zj|2 − |zj+1 − zj|2

)
∆x

=
1

2∆x

(
|zM |2 − |z1|2

)
∆x−

M−1∑
j=1

1

2∆x
|zj+1 − zj|2∆x

= −1

2
|z1|2 −

∆x

2

M−1∑
j=1

|D+zj|2∆x

= −1

2
|D−un+ 1

2
1 |2 − ∆x

2

M−1∑
j=1

|D+D−u
n+ 1

2
j |2∆x

Therefore,

Re
(
D+D−un+ 1

2 ,D−un+ 1
2

)
2

= −1

2
|D−un+ 1

2
1 |2 − ∆x

2
||D+D−un+ 1

2 ||22

and thus, (5.86) can be written as

(5.87)
||un+1||22 − ||un||22

2∆t
+a3

(1

2
|D−un+ 1

2
1 |2+

∆x

2
||D+D−un+ 1

2 ||22
)

+
M−1∑
j=1

aj|u
n+ 1

2
j |2∆x = 0.
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Because aj > 0,∀j = 0, 1, . . . ,M , we can conclude (5.81) with ease from (5.87). Now,
multiplying (5.87) by 2∆t, dropping some terms, and summing for n = 0, 1, . . . , N , we get

(5.88) a3∆x
N∑
n=0

||D+D−un+ 1
2 ||22∆t ≤

N∑
n=0

||un||22 − ||un+1||22 = ||u0||22 − ||uN+1||22

and thus, (5.82) can be concluded. In order to prove (5.83), we need to multiply (5.63)
component-wise by j∆xu

n+ 1
2

j , sum over j = 0, 1, . . . ,M − 1, and extract the imaginary part.
We have

(5.89)

i
(
Dtu

n+ 1
2 , un+ 1

2

)
x

+ a1

(
D+Dun+ 1

2 , un+ 1
2

)
x

+ ia2

(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
x

+ia3

(
D+D+Dun+ 1

2 , un+ 1
2

)
x

+ ia4

(
Fa4(un+1), un+ 1

2

)
x

+i(a4 + a5)
(
Fa4+a5(un+1), un+ 1

2

)
x

+ i
(
aun+ 1

2 , un+ 1
2

)
x

= 0

We will study each term in (5.89). First, and using the definition (5.61), it is easy to see that

Im

(
i
(
Dtu

n, un+ 1
2

)
x

)
=

1

2∆t
(||un+1||2x − ||un||2x)(5.90)

Using (5.71), we can write

(
D+D−un+ 1

2 , un+ 1
2

)
x

= −||D−un+ 1
2 ||2x + ∆x||D−un+ 1

2 ||22 −∆x
(
D−un+ 1

2 , un+ 1
2

)
2
.

Hence,

(5.91) Im
(
D+D−un+ 1

2 , un+ 1
2

)
x

= −∆xIm
(
D−un+ 1

2 , un+ 1
2

)
2
.

We can also write

(5.92) Im
(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
x

= 0.

Using now the identity (5.75) for z = un+ 1
2 , we have

(5.93)
Im

(
i
(
D+D+D−un+ 1

2 , un+ 1
2

)
x

)
= −∆x

2
|D−un+ 1

2
1 |2 + 3

2
||D+un+ 1

2 ||22

+∆x
2
||D+D−un+ 1

2 ||2x − ∆x2

2
||D+D−un+ 1

2 ||22

Now we have to study the nonlinear terms defined in (5.64) and (5.65); this is, we have to
work with
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(
Fa4(un+1), un+ 1

2

)
x

:=

(
1

2
|un+ 1

2 |2D
(
un+ 1

2

)
, un+ 1

2

)
x

(5.94)

+

(
1

4
D
(
|un+ 1

2 |2un+ 1
2

)
, un+ 1

2

)
x

(5.95)

−

(
1

4

(
un+ 1

2

)2

D
(
un+ 1

2

)
, un+ 1

2

)
x(

Fa4+a5(un+1), un+ 1
2

)
x

:=

(
un+ 1

2D
(
|un+ 1

2 |2
)
, un+ 1

2

)
x

(5.96)

Using (5.73), we have

(
D(|un+ 1

2 |2un+ 1
2 ), un+ 1

2

)
x

= −
(
|un+ 1

2 |2un+ 1
2 ,Dun+ 1

2

)
x

+
∆x

2

(
|un+ 1

2 |2un+ 1
2 ,D−un+ 1

2

)
2

− ∆x

2

(
|un+ 1

2 |2un+ 1
2 ,D+un+ 1

2

)
2
−
(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
2

(5.97)

and, at the same time,

(5.98)
(
un+ 1

2
2Dun+ 1

2 , un+ 1
2

)
x

=
(
|un+ 1

2 |2un+ 1
2 ,Dun+ 1

2

)
x

Combining (5.97) and (5.98) in (5.95), we get

(
Fa4(un+1), un+ 1

2

)
x

=
1

2

(
|un+ 1

2 |2D
(
un+ 1

2

)
, un+ 1

2

)
x
− 1

2

(
|un+ 1

2 |2un+ 1
2 ,Dun+ 1

2

)
x

+
∆x

8

(
|un+ 1

2 |2un+ 1
2 ,D−un+ 1

2

)
2

− ∆x

8

(
|un+ 1

2 |2un+ 1
2 ,D+un+ 1

2

)
2
− 1

4

(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
2

and extracting the real part, we get

Re
(
Fa4(un+1), un+ 1

2

)
x

=
∆x

8
Re
(
|un+ 1

2 |2un+ 1
2 ,D−un+ 1

2

)
2

− ∆x

8
Re
(
|un+ 1

2 |2un+ 1
2 ,D+un+ 1

2

)
2
− 1

4
||un+ 1

2 ||44(5.99)

and recalling that D2u = D+u−D−u
∆x

Re
(
Fa4(un+1), un+ 1

2

)
x

= −∆x2

8
Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2

)
x
− 1

4
||un+ 1

2 ||44(5.100)

Finally, for the last nonlinear term, we get
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(
Fa4+a5(un+1), un+ 1

2

)
x

=
(
un+ 1

2D(|un+ 1
2 |2), un+ 1

2

)
x

=
(
D|un+ 1

2 |2, |un+ 1
2 |2
)
x

= −
(
|un+ 1

2 |2,D|un+ 1
2 |2
)
x

+
∆x

2

(
|un+ 1

2 |2,D−|un+ 1
2 |2
)

2

− ∆x

2

(
|un+ 1

2 |2,D+|un+ 1
2 |2
)

2
− ||un+ 1

2 ||44

and thus,

Re
(
Fa4+a5(un+1), un+ 1

2

)
x

=
∆x

4

(
|un+ 1

2 |2,D−|un+ 1
2 |2
)

2
−∆x

4

(
|un+ 1

2 |2,D+|un+ 1
2 |2
)

2
−1

2
||un+ 1

2 ||44

which, in turn, can be rewritten as

(5.101) Re
(
Fa4+a5(un+1), un+ 1

2

)
x

= −∆x2

8

(
|un+ 1

2 |2,D2|un+ 1
2 |2
)

2
− 1

2
||un+ 1

2 ||44.

Combining together (5.90), (5.91), (5.92), (5.93), (5.100) and (5.101); multiplying by ∆t,
and summing from n = 0 to n = N , we obtain

0 =
1

2
(||uN+1||2x − ||u0|2x)− a1∆x

N∑
n=0

Im
(
D−un+ 1

2 , un+ 1
2

)
2
∆t

+ a3

(
∆x

2

N∑
n=0

|D−u1|2∆t+
3

2

N∑
n=0

||D+un+ 1
2 ||22∆t

+
∆x

2

N∑
n=0

||D+D−un+ 1
2 ||2x∆t−

∆x2

2

N∑
n=0

||D+D−un+ 1
2 ||22∆t

)

− a4

(
∆x2

8

N∑
n=0

Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2

)
2
∆t

− (a4 + a5)

(
∆x2

8

N∑
n=0

(
|un+ 1

2 |2,D2|un+ 1
2 |2
)

2
∆t

)
−
(3

2
a4 + a5

)(1

2

N∑
n=0

||un+ 1
2 ||44∆t

)

+
N∑
n=0

(
aun+ 1

2 , un+ 1
2

)
x
∆t

Let us recall the fact that a1, a3 > 0. This can let us drop some terms in the above equality to
get
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1

2
||u0||2x ≥ −a1∆x

N∑
n=0

Im
(
D−un+ 1

2 , un+ 1
2

)
2
∆t

+
3

2

N∑
n=0

||D+un+ 1
2 ||22∆t− a3

∆x2

2

N∑
n=0

||D+D−un+ 1
2 ||22∆t

− a4

(
∆x2

8

N∑
n=0

Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2

)
2
∆t

− (a4 + a5)

(
∆x2

8

N∑
n=0

(
|un+ 1

2 |2,D2|un+ 1
2 |2
)

2
∆t

)
−
(3

2
a4 + a5

)(1

2

N∑
n=0

||un+ 1
2 ||44∆t

)

+
N∑
n=0

(
aun+ 1

2 , un+ 1
2

)
x
∆t

Meanwhile, let us recall equality (5.87). Multiplying it by ∆t, and summing from n = 0 to
N , we get

−a3
∆x

2

N∑
n=0

||D+D−un+ 1
2 ||22∆t =

||uN+1||22 − ||u0||22
2

+
a3

2∆x

N∑
n=0

|D−un+ 1
2

1 |2∆t +

N∑
n=0

(
aun+ 1

2 , un+ 1
2

)
2
∆t

≥ −1

2
||u0||22

thus, and after re-ordening terms,

1

2
||u0||2x +

∆x

4
||u0||22 + a1∆x

N∑
n=0

Im
(
D−un+ 1

2 , un+ 1
2

)
2
∆t

+ |a4|

(
∆x2

8

N∑
n=0

Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2
)

2
∆t

)

+ |a4 + a5|

(
∆x2

8

N∑
n=0

(
|un+ 1

2 |2,D2|un+ 1
2 |2
)

2
∆t

)

+
∣∣∣3
2
a4 + a5

∣∣∣(1

2

N∑
n=0

||un+ 1
2 ||44∆t

)

≥ 3

2
a3

N∑
n=0

||D+un+ 1
2 ||22∆t(5.102)

Using Young and Hölder inequalities, and for T = N∆t, we can demonstrate with ease the
following inequalities:
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N∑
n=0

Im
(
D−un+ 1

2 , un+ 1
2

)
2
∆t ≤ 1

2

N∑
n=0

||D+un+ 1
2 ||22∆t+

T

2
||u0||22(5.103)

∆x2

N∑
n=0

Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2

)
2
∆t ≤ ||u

0||22
2

(
∆x

4a3

N∑
n=0

||un+ 1
2 ||44∆t+ T

)
(5.104)

(a4 + a5)
N∑
n=0

(|un+ 1
2 |2,D2|un+ 1

2 |2)∆t ≤ |a4 + a5|||u0||22
N∑
n=0

||D+un+ 1
2 ||22∆t(5.105)

Combining those in (5.102),

1

2
||u0||2x +

∆x

4
||u0||22 + a1∆x

(
1

2

N∑
n=0

||D+un+ 1
2 ||22∆t+

T

2
||u0||22

)

+
|a4|
8

||u0||22
2

(
∆x

4a3

N∑
n=0

||un+ 1
2 ||44∆t+ T

)

+
∆x2

8
|a4 + a5|||u0||22

N∑
n=0

||D+un+ 1
2 ||22∆t

+
1

2

∣∣∣3
4
a4 + a5

∣∣∣ N∑
n=0

||un+ 1
2 ||44∆t

≥ 3

2
a3

N∑
n=0

||D+un+ 1
2 ||22∆t(5.106)

and using the fact that

N∑
n=0

||un+ 1
2 ||44∆t ≤ T ||u0||4 + ||u0||2

N∑
n=0

||D+un+ 1
2 ||22∆t

we can write

1

2
||u0||2x +

∆x

4
||u0||22 + a1∆x

(
1

2

N∑
n=0

||D+un+ 1
2 ||22∆t+

T

2
||u0||22

)

+

(∣∣∣a4

a3

∣∣∣∆x||u0||22
64

+
1

2

∣∣∣3
2
a4 + a5

∣∣∣)(T ||u0||42 + ||u0||22
N∑
n=0

||D+un+ 1
2 ||22∆t

)
+a4T

||u0||22
16

+
∆x2

8
|a4 + a5|||u0||22

N∑
n=0

||D+un+ 1
2 ||22∆t ≥ 3

2
a3

N∑
n=0

||D+un+ 1
2 ||22∆t(5.107)
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and reordening

(
3

2
a3 −

∆x

2
a1 −

(∣∣∣a4

a3

∣∣∣∆x

64
||u0||22 +

1

2

∣∣∣3
2
a4 + a5

∣∣∣+
∆x2

8
|a4 + a5|

)
||u0||22

)
N∑

n=0

||D+un+ 1
2 ||22∆t(5.108)

≤

(
L

2
+

∆x

4
+ a1∆x

T

2
+ T

(∣∣∣a4

a3

∣∣∣∆x||u0||22
64

+
1

2

∣∣∣3
2
a4 + a5

∣∣∣)||u0||22

)
||u0||22

because ||u0||22 <
2a3

|a4 + a5|
, and considering ∆x << 1 we can infere the existance of the

needed constant K = K(T, L). Hence, (5.83) is proved. To prove (5.84), let us first note that:

∣∣∣∣∣∣|un+ 1
2 |2Dun+ 1

2

∣∣∣∣∣∣2
2

=
M−1∑
j=0

|un+ 1
2

j |4|Dun+ 1
2

j |2∆x

≤ ||un+ 1
2 ||4∞

M−1∑
j=0

|Dun+ 1
2

j |2∆x.

Hence, using (5.81) and (5.83),

N∑
n=0

∣∣∣∣∣∣|un+ 1
2 |2Dun+ 1

2

∣∣∣∣∣∣2
2
∆t ≤

N∑
n=0

||un+ 1
2 ||4∞||Dun+ 1

2 ||22∆t

≤ max
n∈[0,N ]

||un+ 1
2 ||4∞

N∑
n=0

||Dun+ 1
2 ||22∆t

≤ ||u0||42
N∑
n=0

||Dun+ 1
2 ||22∆t

≤ K||u0||62

proving then (5.84). To prove (5.85), we will again the identity (a2−b2)+(a−b)2 = 2a(a−b).
For a uj ∈ u, i = 0, 1, . . . , M , we have:

D|uj|2 =
|uj+1|2 − |uj−1|2

2∆x

=
1

2∆x

(
|uj+1|2 − |uj|2 + |uj|2 − |uj−1|2

)
=

1

2∆x

[
2|uj|(|uj| − |uj−1|)− (|uj| − |uj−1|)2

+ 2|uj|(|uj+1| − |uj|) + (|uj+1| − |uj|)2
]

= |uj|D−|uj| −
∆x2

2
(D−|uj|)2 + |uj|D+|uj|+

∆x2

2
(D+|uj|)2.
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Taking the square at both sides, using inverse triangle inequality, and D2|uj| ≤ 4 ||u||∞
∆x2 ,

(D|uj|2)2 =

(
|uj|D−|uj| −

∆x2

2
(D−|uj|)2 + |uj|D+|uj|+

∆x2

2
(D+|uj|)2

)2

=

(
2|uj|D|uj|+

∆x2

2

[
(D+|uj|)2 − (D−|uj|)2

])2

=

(
2|uj|D|uj|+

∆x2

2

[
(D+|uj|+D−|uj|)(D+|uj| −D−|uj|)

])2

=

(
2|uj|D|uj|+ ∆x3D|uj|D2|uj|

)2

≤ 4

(
4|uj|2|Duj|2 + ∆x6|Duj|2(D2|uj|)2

)
≤ 16||u||2∞|Duj|2 + 16∆x2||u||2∞|Duj|2.

Summing over j will lead us to
M−1∑
j=0

(D|uj|2)2∆x ≤ 32||u||2∞||D+u||22(1 + ∆x2)

and hence, (5.85) is proved, and thus concluding the demonstration of the Lemma.
�

Now we are in conditions to state and prove the followig theorem:

Theorem 5.5. Let u∆ = {unm}m∈N a sequence in XM of solutions induced by the numerical
scheme (5.63), at a time tn = n∆t, computed from a sequence of initial conditions {u0

m}m∈N ⊂
XM using a timestep ∆t and a spacestep ∆x. If u0 ∈ L2(0, L)∆ : ||u0||22 ≤ 2a3

|a4+a5| , then there
is a subsequence, still denoted by {unm}m∈N, such that

(5.109) Q∆u∆ → u strongly in L2(0, T ;L2(0, L))

when ∆t,∆x→ 0, and for u the weak solution of (1.1)

Proof. We will proceed as in the proof of Lemma 4.1. From (5.81), we infer the existance of a
u such that

(5.110) Q∆u∆ → u weakly in L2(0, T ;L2(0, L))

From (5.81) and (5.83), we can also say that there exists a u ∈ L2(0, T ;H1
0 (0, L)) such that

(5.111) {Q∆u∆} is bounded in L2(0, T ;H1
0 (0, L))

and thus

(5.112) Q∆u∆
?
⇀ u weak star in L2(0, T ;H1

0 (0, L))

From (5.80) and (5.83), we have

(5.113) {Q
1
2
∆(|u|2u)∆} is bounded in L2(0, T ;L2(0, L))
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And from (5.84) and (5.85),

{Q∆Fa4(u)∆} is bounded in L2(0, T ;L2(0, L))(5.114)

{Q∆Fa4+a5(u)∆} is bounded in L2(0, T ;L2(0, L))(5.115)

Let us now consider a ϕ ∈ H2
0 (0, L), with ϕnj = ϕ(xj, tn), 0 ≤ n ≤ N, 0 ≤ j ≤ M , .

Multiplying (5.63) by ∆t∆xϕj , sum over j and then sum over n. We then get

N∑
n=0

(
Dtu

n
m, ϕ

)
2
∆t = ia1

N∑
n=0

(
D+D−u

n+ 1
2

m , ϕ
)

2
∆t− a3

N∑
n=0

(
D+D+D−u

n+ 1
2

m , ϕ
)

2
∆t

+ a2

N∑
n=0

(
|un+ 1

2
m |2un+ 1

2 , ϕ
)

2
∆t− a4

N∑
n=0

(
Fa4(un+1

m ), ϕ
)

2
∆t(5.116)

− (a4 + a5)

N∑
n=0

(
Fa4+a5(un+1

m ), ϕ
)

2
∆t−

N∑
n=0

(
au

n+ 1
2

m , ϕ
)

2
∆t

Our aim is to prove that the left hand side of (5.116) is bounded. From (5.81) and (5.83), and
summing by parts, we get

N∑
n=0

(
D+D−u

n+ 1
2

m , ϕ
)

2
∆t+

N∑
n=0

(
D+D+D−u

n+ 1
2

m , ϕ
)

2
∆t

=

N∑
n=0

−
(
D+u

n+ 1
2

m ,D+ϕ
)

2
∆t+

N∑
n=0

(
D+u

n+ 1
2

m ,D+D−ϕ
)

2
∆t

≤
N∑
n=0

||D+u
n+ 1

2
m ||2||D+ϕ||2∆t+

N∑
n=0

||D+u
n+ 1

2
m ||2||D+D−ϕ||2∆t

≤ Cϕ
( N∑
n=0

||D+u
n+ 1

2
m ||2∆t+

N∑
n=0

||D+u
n+ 1

2
m ||2∆t

)
≤ 2CϕK||u0

m||2
<∞

since we are considering any ϕ ∈ H2
0 (0, L), and combining (5.111), (5.113), (5.114) and (5.115) after

using Cauchy-Schwarz Inequality in (5.116) , we get

(5.117)
{ ∂
∂t
P∆u∆

}
is bounded in L2(0, T ;H−2(0, L))

and as in the continuous case, because

H1
0 (0, L)

c
↪→ L2(0, L) ↪→ H−2(0, L),

and employing Aubin-Lions Theorem, there exists a subsequence of {unm}m∈N, still denoted by the
same form, such that,

Q∆u∆ −→ u strongly in L2(0, T ;L2(0, L)) .(5.118)

Now we will prove that u is the weak solution of (1.1). Thanks to (5.118), we have

(5.119) |un+ 1
2

m |un+ 1
2

m −→ |u|2u, a.e. in (0, L)× (0, T )
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using (5.119), and recalling again Lion’s lemma [29], we will get

(5.120) Q
1
2
∆(|u|2u)∆ ⇀ |u|2u weakly in L2(0, T ;L2(0, L)).

furthermore, combining (5.118) and (5.112),

Q∆(Fa4(u))∆ ⇀
1

2
|u|2ux +

1

4
(|u|2u)x −

1

4
u2ux weakly in L2(0, T ;L2(0, L))(5.121)

Q∆(Fa4+a5(u))∆ ⇀ u|u|2x weakly in L2(0, T ;L2(0, L))(5.122)

Multiplying componentwise the numerical scheme (5.63) by ∆x∆tφnk , sum by parts, and passing to
the limit, is easy to see that u = u(tn) is, indeed, the weak solution of problem (1.1), and hence the
Theorem is proved.

�

We will now proceed with the discret analog of the main result.

Theorem 5.6. Consider a sequence {un}n∈N ⊂ XM induced by the numerical scheme (5.63),
and consider the function a(x) and the set ω as defined in (1.2). If ||u0||22 ≤ 2a3

|a4+a5| , and for
T0 = n∆t > 0, there exist a positive constant C = C(T0) and µ = µ(T0), both independent of
∆x and ∆t, such that the inequality

En ≤ C||u0||22e−µn∆t

holds for all n > 0.

As in Section 4, before proving the theorem we will state and prove a last lemma.

Lemma 5.7. For T0 = n∆t, with n ∈ N, and for a sequence {un}n∈N induced by the numerical
scheme (5.63) such that ||u0||22 ≤ 2a3

|a4+a5| , there exist a constant C = C(T0), independent of ∆t

and ∆x, such that
(5.123)

||u0||22 ≤ C

(
a3

N∑
n=0

(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t+
N∑
n=0

M−1∑
j=1

aj|u
n+ 1

2
j |2∆x∆t

)

Proof. Let N ∈ N, and consider the numerical scheme (5.63). Multiplying it by (N + 1 −
n)un+ 1

2 ∆t componentwise, extracting the imaginary part, summing over n = 0, 1, . . . , N , and
recalling the computations made in order to get (5.87), we will have

0 =
1

2

(( N∑
n=0

||un+1||22
)
− (N + 1)||u0||22

)
+ a3

N∑
n=0

(N + 1− n)
(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t(5.124)

+
N∑
n=0

M−1∑
j=1

(N + 1− n)aj|u
n+ 1

2
j |2∆x∆t
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rearranging terms and bounding,

||u0||22 ≤
1

2T0

N∑
n=0

||un+1||22∆t+ a3

N∑
n=0

(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t

+
N∑
n=0

M−1∑
j=1

aj|u
n+ 1

2
j |2∆x∆t.(5.125)

In order to prove (5.123) then, we must demonstrate the existance of a constant C1 = C1(T0)
such that

N∑
n=0

||un+1||22∆t ≤ C1

(
a3

N∑
n=0

(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t(5.126)

+
N∑
n=0

M−1∑
j=1

aj|u
n+ 1

2
j |2∆x∆t

)
.

We will proceed by contradiction. Hence, we must assume as true the opposite of (5.126);
this is,

N∑
n=0

||un+1||22∆t > C1

(
a3

N∑
n=0

(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t(5.127)

+
N∑
n=0

M−1∑
j=1

aj|u
n+ 1

2
j |2∆x∆t

)
.

Since ||Q∆u∆||L∞(0,T ;L2(0,L)) < ∞, we can extract a subsequence {unm}m∈R, still denoting
it by {un}n∈N, such that

(5.128) lim
∆x,∆t→0

∑N
n=0 ||un+1||22∆t

a3
∑N

n=0( 1
2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22)∆t+
∑N

n=0

∑M−1
j=1 aj |u

n+ 1
2

j |2∆x∆t

= +∞

Let λn ≥ 0,∀n ∈ N such that (λn)2 =
∑n+1

k=0 ||uk||22∆t, and let us define vn := un

λn
. This

induces the following sequence of numerical problems: find vn+1 ∈ XM such that

0 = iDtv
n + a1D

2vn+ 1
2 + a2(λn)2|vn+ 1

2 |2vn+ 1
2 + ia3D

3vn+ 1
2

+ (λn)2Fa4(vn+1) + (λn)2Fa4+a5(vn+1) + iavn+ 1
2(5.129)

v0 = u0, u0 ∈ XM ∩ L2
∆x(0, L)

where

(5.130)
N∑
n=0

||vn||22∆t = 1

On the other hand, and due to (5.128), when ∆x,∆t→ 0,

(5.131) a3

N∑
n=0

(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t+
N∑
n=0

M−1∑
j=1

aj|u
n+ 1

2
j |2∆x∆t→ 0
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and recalling (5.125), we conclude that v0 is bounded in L2(0, L)∆. And by Theorem 5.5, we
can extract a subsequence of {vn}n∈N, still denoted by the same way, that

vn −→ v(tn) strongly on L2(0, T0;L2(0, L))

and by (5.130),

(5.132) ||v(t)||L2(0,T0,L2(0,L)) = 1

When passing to the limit in (5.131), we have

0 = lim
∆x,∆t→0

a3

N∑
n=0

(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t+
N∑
n=0

M−1∑
j=1

aj|u
n+ 1

2
j |2∆x∆t

=

∫ T0

0

|v(0, t)|2dt+ 2

∫ T0

0

∫ L

0

a(x)|v|2dxdt

and thus, v(x, t) ≡ 0 for (x, t) ∈ (ω×(0, T0)). From here, we must distinguish two scenarios:

Case 1: Let us extract a subsequence from {λn}n∈N, denoted by the same way, such that λn → 0
when n→∞. This induces the following linear problem:

ivt + a1vxx + ia3vxxx + iav = 0, (x, t) ∈ (0, L)× (0, T0)

v(0, t) = v(L, t) = 0, t ∈ [0, T0]

vt(L, t) = 0, t ∈ [0, T0]

v(t = 0) = u0, u0 ∈ L2(0, L)

And again, by Holgrem’s Theorem, we conclude that vn ≡ 0, for (x, t) ∈ (0, L) × (0, T ),
which contradicts (5.132).

Case 2: There is a subsequence from {λn}n∈N, still denoted by λn; and there is a λ > 0 such
that λn → λ. This converges to the IVP (1.1), and using Theorem 1.1 and the same arguments
as in Section 4, we conclude that v ≡ 0 for (x, t) ∈ (0, L) × (0, T ), and this is again a contra-
diction to (5.132).

This allows to conclude that (5.127) is false, and hence, the lemma is proved. �

In order to conclude the proof of Theorem 5.6, we can just follow again the arguments em-
ployed to prove equation (4.59) in Section 4.

5.2. Numerical Results. We will finally present some computational results using the numer-
ical scheme proposed in this section.

5.2.1. First case. For a first numerical result, we will work with the following HNLS equation
for u = u(x, t), (x, t) ∈ (−60, 60)× (0, 3] :

iut + 0.001uxx + |u|2u+ i
(

0.01uxxx + 0.1|u|2ux + 0.05|u|2xu+ a(x)u
)

= 0

u(x, 0) = u0(x) = A eirx sech(x)(5.133)
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FIGURE 1. First case results. Left: time evolution of the absolute value of the solution.
Right: evolution of the energy.

this is; a1 = 0.001, a2 = 1, a3 = 0.01, a4 = 0.1, and a5 = 0.04. The initial condition is
given by the analytical solution of the IVP (5.133) when a(x) ≡ 0; this is,

u(x, t) = A exp(i(nt+ rx)) sech(x+ lt)

where,

A2 =
6a3

3a4 + 2a5
r =
−2a1(3a4 + 2a5) + 6a3

−12a3(a4 + a5)
l = −2a1r−a3(1−3r2), n = a1(1−r2)−a3r(3−r2).

This solution was proposed first by Potasek in [40].

On the other hand, a(x) = (1 +
√
|x|), x ∈ (−8,−3), and in our calculations, ∆t = 0.001

and ∆x = 120
213 ≈ 0.015. As shown in Figure 1 right, the energy decays at an exponential rate to

zero, which is what we expected. While Figure 1 left shows how the soliton is getting dissipated
after entering the damping zone, starting at x = −3.

5.2.2. Second case. A last case will be presented, regarding the following equation for u =
u(x, t), (x, t) ∈ (−60, 80)× (0, 500]

iut + 0.1uxx + 2|u|2u+ i
(

0.001uxxx + 0.01|u|2ux + 0.1|u|2xu+ a(x)u
)

= 0

u(x, 0) = u0(x) = A eix sech(−Bx)(5.134)

where we used an initial condition based on a solution propsed by Kumar et al. [27] when
a(x) ≡ 0:

u(x, t) = A ei(−kt+ωx) sech(B(t− x))

where v = 10, k = 0.001, and

B = ±

√
k − a1ω2 + a3ω3

3a3ω − a1
A = ±

√
2(k − a1ω2 + a3ω3)

a4ω − a2
ω =

a1v ±
√
a2

1v
2 + 3a2

3v
3B − 3a3v

3a3v

Meanwhile, for the damping function we’ve considered a(x) = 0.01, x > 10; while for our
computations we’ve used ∆t = 0.05, ∆x = 140

213 ≈ 0.017.
As seen in Figure 2 right, the energy also decays following an exponential trend, while as

seen in Figure 2 left, the soliton manages to enter the zone with the active damping, dissipating
in the process.
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FIGURE 2. Second case results. Left: time evolution of the absolute value of the solu-
tion. Right: evolution of the energy.

APPENDIX

In this appendix, we shall prove the Lemmas 3.5 and 3.6.

Proof of the Lemma 3.5: From (1.9), we have

(A.135)

∫ T

0

‖f(u)‖L2(0,T ) dt ≤ a2

∫ T

0

‖ |u|2 u ‖L2(0,T ) dt+ a4

∫ T

0

‖
(
|u|2 u

)
x
‖L2(0,T ) dt

+ a5

∫ T

0

‖u
(
|u|2
)
x
‖L2(0,T ) dt

= I1 + I2 + I3 .

Having in mind the embedding H1(0, L) ↪→ L∞(0, L), we obtain

(A.136)

I1 ≤ a2

∫ T

0

‖u‖2
L∞(0,L) ‖u‖L2(0,T ) dt

≤ ‖u‖C([0,T ];L2(0,L))

∫ T

0

‖u‖2
L∞(0,L) dt

≤ C ‖u‖XT

∫ T

0

‖u‖2
H1

0 (0,L) dt

= C ‖u‖XT
‖u‖L2(0,T ;H1

0 (0,L))

≤ C ‖u‖2
XT

.

On the other hand, since | (|u|2 u)x | ≤ 3 |u|2 |ux|, we have

(A.137)
I2 ≤ 3 a4

∫ T

0

[∫ L

0

|u|4 |ux|2 dx

]1/2

dt

≤ 3 a4

∫ T

0

‖u‖2
L∞(0,L) ‖u‖H1

0 (0,L) dt .
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From (4.19) and (A.137) , it follows that

(A.138)

I2 ≤ 3 a4

∫ T

0

‖u‖2
L∞(0,L) ‖u‖H1

0 (0,L) dt

≤ C

∫ T

0

‖u‖L2(0,L) ‖u‖2
H1

0 (0,L) dt

≤ ‖u‖C([0,T ];L2(0,L)) ‖u‖L2(0,T ;H1
0 (0,L))

≤ C ‖u‖2
XT

.

Again, from (4.19) and the fact that |u (|u|2)x | ≤ 2 |u|2 |ux|, we conclude

(A.139)

I3 ≤ 2 a5

∫ T

0

[∫ L

0

|u|4 |ux|2 dx

]1/2

dt

≤ 3 a4

∫ T

0

‖u‖2
L∞(0,L) ‖u‖H1

0 (0,L) dt

≤ C

∫ T

0

‖u‖L2(0,L) ‖u‖2
H1

0 (0,L) dt

≤ ‖u‖C([0,T ];L2(0,L)) ‖u‖L2(0,T ;H1
0 (0,L))

≤ C ‖u‖2
XT

.

Therefore, the lemma is proved combining the estimates (A.135) – (A.139). �

Proof of the Lemma 3.6: From (1.9), we have
(A.140)∫ T

0
‖f(u)− f(v)‖L2(0,L) dt ≤ a2

∫ T

0
‖ |u|2 u− |v|2 v ‖L2(0,L) dt+ a4

∫ T

0

∥∥∥ (|u|2 u− |v|2 v)x ∥∥∥L2(0,L)
dt

+ a5

∫ T

0

∥∥∥u (|u|2)x − v (|v|2)x ∥∥∥L2(0,L)
dt

:= J1 + J2 + J3 .

Using the fact that | |u| − |v| | ≤ |u − v|, the embedding H1
0 (0, L) ↪→ L∞(0, L) and adding

and subtracting terms suitably, it yields
(A.141)

J1 = a2

∫ T

0
‖ |u|2 (u− v)‖L2(0,L) + v (|u|2 − |v|2)‖L2(0,L) dt

= a2

∫ T

0
‖ |u|2 (u− v)‖L2(0,L) + ‖ |v| (|u| − |v|) · (|u|+ |v|) ‖L2(0,L) dt

≤ a2

∫ T

0
‖u‖2L∞(0,L) ‖u− v‖L2(0,L) dt+

∫ T

0
‖v‖L∞(0,L)

(
‖u‖L∞(0,L) + ‖v‖L∞(0,L)

)
‖u− v‖L2(0,L) dt

≤ a2 ‖u− v‖C([0,T ];L2(0,L))

{∫ T

0
‖u‖2L∞(0,L) dt+

∫ T

0
‖v‖2L∞(0,L) dt

}
≤ C

{∫ T

0
‖u‖2H1

0 (0,L) dt+

∫ T

0
‖v‖2H1

0 (0,L) dt

}
‖u− v‖XT

≤ C
(
‖u‖2XT

+ ‖v‖2XT

)
‖u− v‖XT

.
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and

(A.142)

J2 ≤ a4

∫ T

0

∥∥u (|u|2 − |v|2)
x

∥∥
L2(0,L)

dt+ a4

∫ T

0

∥∥(|v|2)
x

(u− v)
∥∥
L2(0,L)

dt

+ a4

∫ T

0

∥∥ |u|2 (u− v)x
∥∥
L2(0,L)

dt+ a4

∥∥vx (|u|2 − |v|2)∥∥L2(0,L)

=: J2,1 + J2,2 + J2,3 + J2,4 .

We observe that
(A.143)

J2,1 ≤ 2 a4

∫ T

0
‖u‖L∞(0,L) ‖(u− v)ux‖L2(0,L) dt+ 2 a4

∫ T

0
‖u‖L∞(0,L) ‖v (u− v)x‖L2(0,L) dt

≤ C ‖u− v‖C([0,T ];L2(0,L))

∫ T

0
‖u‖2H1

0 (0,L) dt+ 2 a4

∫ T

0
‖u‖L∞(0,L) ‖v‖L2(0,L) ‖u− v‖H1

0 (0,L) dt

≤ C ‖u− v‖C([0,T ];L2(0,L))

∫ T

0
‖u‖2H1

0 (0,L) dt+ 2 a4 ‖v‖C([0,T ];L2(0,L))

∫ T

0
‖u‖L∞(0,L)‖u− v‖H1

0 (0,L) dt

≤ C ‖u‖2XT
‖u− v‖XT

+ C ‖v‖XT

∫ T

0
‖u‖H1

0 (0,L)‖u− v‖H1
0 (0,L) dt

≤ C ‖u‖XT
‖u− v‖XT

+ C ‖v‖XT
‖u‖L2(0,T );H1

0 (0,L) ‖u− v‖L2(0,T ;H1
0 (0,L))

≤ C
(
‖u‖2XT

+ ‖v‖2XT

)
‖u− v‖XT

;

(A.144)

J2,2 ≤ 2 a4

∫ T

0

‖v‖L∞(0,L) ‖v‖H1
0 (0,L) ‖u− v‖L2(0,L) dt

≤ C ‖u− v‖C([0,T ];L2(0,L))

∫ T

0

‖u‖2
H1

0 (0,L) dt

≤ C ‖u‖2
XT
‖u− v‖XT

;

On the other hand, from (4.19) and Hölder’s inequality, we get

(A.145)

J2,3 ≤ 2 a4

∫ T

0

‖u‖2
L∞(0,L) ‖u− v‖H1

0 (0,L) dt

≤ C

∫ T

0

‖u‖H1
0 (0,L) ‖u‖L2(0,L) ‖u− v‖H1

0 (0,L) dt

≤ C ‖u‖XT
‖u‖L2(0,T ;H1

0 (0,L)) ‖u− v‖L2(0,T ;H1
0 (0,L))

≤ C ‖u‖2
XT
‖u− v‖XT

;

(A.146)

J2,4 ≤ 2 a4

∫ T

0

(
‖u‖L∞(0,L) + ‖v‖L∞(0,L)

)
‖v‖H1

0 (0,L) ‖u− v‖L2(0,L) dt

≤ C

[∫ T

0

‖u‖2
H1

0 (0,L) dt+

∫ T

0

‖v‖2
H1

0 (0,L) dt

]
‖u− v‖XT

≤ C
(
‖u‖2

XT
+ ‖v‖2

XT

)
‖u− v‖XT

.
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Finally, by (A.143) and (A.144), we have

(A.147)
J3 ≤ a5

∫ T

0

∥∥u (|u|2 − |v|2)
x

∥∥
L2(0,L)

dt+ a5

∫ T

0

∥∥(|v|2)
x

(u− v)
∥∥
L2(0,L)

dt

= J2,1 + J2,2

≤ C
(
‖u‖2

XT
+ ‖v‖2

XT

)
‖u− v‖XT

.

Collecting the estimates (A.140) – (A.147), we obtain the desired. �
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[35] T. Özsarı. Weakly-damped focusing nonlinear Schrödinger equations with Dirichlet control. J. Math. Anal.
Appl. 389 (2012), no. 1, 84-97.

[36] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Math-
ematical Sciences (New York: Springer-Verlag, 1983).

[37] A.F. Pazoto, Unique continuation and decay for the Korteweg–de Vries equations with localized damping,
ESAIM Control Optim. Calc. Var. 11 (2005) 473–486.
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Véjar: Well-posedness, exponential decay estimate and numerical results for the high
order nonlinear Schrödinger equation with localized dissipation

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de
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