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Abstract

This paper introduces and analyzes the combined use of the virtual element method (VEM) and
the boundary element method (BEM) to numerically solve linear transmission problems in 2D and
3D. As a model we consider an elliptic equation in divergence form holding in an annular domain
coupled with the Laplace equation in the corresponding unbounded exterior region, together with
transmission conditions on the interface and a suitable radiation condition at infinity. We employ
the usual primal formulation in the bounded region, and combine it, by means of the Costabel
& Han approach, with the boundary integral equation method in the exterior domain. As a
consequence, and besides the original unknown of the model, its normal derivative in 2D, and
both its normal derivative and its trace in the 3D case, are introduced as auxiliary non-virtual
unknowns. Moreover, for the latter case, a new and more suitable variational formulation for the
coupling is introduced. In turn, the main ingredients required by the discrete analyses include
the virtual element subspaces for the domain unknowns, explicit polynomial subspaces for the
boundary unknowns, and suitable projection and interpolation operators that allow to define the
corresponding discrete bilinear forms. In particular, two VEM/BEM schemes are proposed in the
three-dimensional case, one of them mimicking the non-symmetric interior penalty discontinuous
Galerkin method. Then, as for the continuous formulations, the classical Lax-Milgram lemma is
employed to derive the well-posedness of our coupled VEM-BEM scheme. Finally, a priori error
estimates in the energy and weaker norms, and corresponding rates of convergence for the solution
as well as for a fully computable projection of the virtual component of it, are provided.

Key words: virtual element method, boundary element method, coupling, transmission problem,
error estimates

Mathematics subject classifications (2000): 65N38, 65N99, 65N12, 65N15

1 Introduction

The numerical solution of diverse linear and nonlinear boundary value problems in continuum me-
chanics by means of the virtual element method (VEM) has become a very active and promising
research subject during the last few years. The VEM approach, which can be interpreted as an ex-
tension of the classical finite element technique to general polygonal and polyhedral meshes, as well
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‡Departamento de Matemáticas, Facultad de Ciencias, Universidad de Oviedo, Calvo Sotelo s/n, Oviedo, España,

e-mail: salim@uniovi.es

1



as a generalization of the mimetic finite difference method to arbitrary degrees of accuracy and con-
tinuity properties, was first introduced and analyzed in [4] for a primal formulation of the Poisson
problem. The idea underlying the VEM philosophy is twofold. On one hand, the discrete spaces are
defined on meshes made of polygonal or polyhedral elements, and the corresponding basis functions
are not known explicitly (which explains the concept virtual utilized), but only the degrees of freedom
defining them uniquely on each element are required to implement the method. These degrees of free-
dom normally have to do with polynomial moments within each element and with traces and normal
traces, both polynomial as well, on the boundaries of them. On the other hand, suitable projection
operators and stabilizing terms are employed to define approximated bilinear forms that mimic the
original ones and that provide still consistency and stability of the resulting discrete scheme. Among
the several advantages of VEM, and besides the simplicity of the respective coding and the quality of
the numerical results provided, we highlight the fact that the meshes are formed by nonoverlapping
convex or nonconvex elements that can be of very general shape.

For a sample of the diverse developments and applications of VEM so far, including linear elasticity
problems in 2D and 3D, the linear plate bending problem, the incorporation of further global regularity
into the discrete solution, practical aspects of the computational implementation, the two-dimensional
Steklov eigenvalue problem, and the acoustic vibration problem, we refer to [5], [6], [12], [13], [17],
[33], and [51]. Additionally, the virtual element methods have also been extensively utilized in fluid
mechanics. In particular, stream function-based, divergence free, and non-conforming virtual element
methods for the classical velocity-pressure formulation of the Stokes equations have been developed in
[2], [10], and [23], respectively, whereas a primal virtual element approach for the Darcy and Brinkman
models is proposed in [56]. In turn, regarding the Navier-Stokes equations, we first mention [11], where
a family of virtual element methods for the two-dimensional case is proposed, thus yielding the first
work applying VEM to solve that nonlinear model. Furthermore, other contributions involving the
application of VEM in fluid mechanics have mainly concentrated in the use of dual-mixed variational
formulations, particularly pseudostress-based ones, which all go back to the basic principles of the
mixed virtual element method established in [15]. In this regard, we refer to [20], [21], [22], [39] and
[40], where mixed virtual element schemes for the Stokes equation, the linear and nonlinear Brinkman
problems, the nonlinear Stokes equation arising from quasi-Newtonian Stokes flows, and the Navier-
Stokes equations, have been introduced and analyzed. In particular, we highlight that the main novelty
of [40] lies on the simultaneous use of virtual element subspaces for H1 and H(div) to approximate
the velocity and pseudostress unknowns, respectively. Also, we stress that most of the aforedescribed
works have made extensive use of the exact computations of the L2-projections onto suitable spaces
of polynomials, as explained in [1], [8] and [9].

On the other hand, boundary element method (BEM) is the name given to the Galerkin scheme of
the classical boundary integral equation method, which consists of using the associated fundamental
solutions to transform boundary value problems into equivalent equations holding only on the bound-
ary of the underlying domain (see, e.g. [44] and [52] for further details). These equations are usually
formed by boundary integral operators whose kernels depend on the aforementioned fundamental so-
lutions, and whose densities are given by the Cauchy data of the solution of the original boundary
value problem. Now, besides the use of BEM alone, we highlight that its combination with other pro-
cedures such as finite element method (FEM) or discontinuous Galerkin methods, which aims mainly
to solve transmission problems, has been frequently utilized for many years in diverse applications.
In particular, the most popular ways of coupling FEM and BEM are the Johnson & Nédélec and
Costabel & Han procedures (cf. [16], [29], [42], [45], and [57]), which use the Green representation of
the solution in the corresponding region. Initially, and during a couple of decades, the applicability of
the former, being based on a single boundary integral equation and the Fredholm theory (as suggested
by the compactness of a boundary integral operator involved), was restricted basically to transmission
problems involving the Laplace operator. For other elliptic equations, such as the Lamé system, the
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aforementioned compactness did not hold and hence the technique could not be employed.

The above difficulty motivated the approaches by Costabel and Han in [29] and [42], respectively,
which were both based on the addition of a boundary integral equation for the normal derivative
(or traction in the case of elasticity). As a consequence, the former yielded a symmetric and non-
positive definite scheme, whereas the latter, on the contrary, gave rise to a non-symmetric but elliptic
system. However, since the only difference between them is the sign of a common integral identity,
one simply refers to either one of them as the Costabel & Han method. In turn, the aforementioned
drawback of the Johnson & Nédélec coupling method, was surprinsingly solved in [53] (see also [55],
[38] and [54]), where it was established that actually all Galerkin schemes for this approach are stable,
thus expanding its use to other elliptic equations and to arbitrary polygonal/polyhedral regions. In
addition, the corresponding extension to the coupling of mixed-FEM and BEM on Lipschitz-continuous
domains was successfully developed later on in [48], and the particular application of the latter to the
three dimensional exterior Stokes problem was analyzed in [36] and [37]. Further contributions dealing
with the application of the Johnson & Nédélec and Costabel & Han coupling procedures to solve 2D
and 3D problems, including nonlinear models, fluid-solid interaction, eddy current problems, coupling
with mixed-FEM, non–conforming FEM, local discontinuous Galerkin, and hybridizable discontinuous
Galerkin methods, can be found in [3], [18], [19], [24], [25], [28], [30], [34], [35], [41], [43], [47], [49],
[50], and the references therein.

According to the above discussion, and in order to continue extending the applicability of VEM,
as well as to continue developing the ability of BEM to be coupled with other numerical procedures,
our purpose in this paper is to introduce and analyze, up to our knowledge for the first time, the
combined use of VEM and BEM for solving a model transmission problem in 2D and 3D. Another
reason that makes attractive the coupling of VEM and BEM lies on the fact, as commented in the
previous paragraphs, that the densities of the boundary integral operators involved in the formulation
of BEM coincide with some of the degrees of freedom employed by VEM, which certainly generates
a natural way of performing the coupling. Indeed, this coincidence will be particularly important in
our 2D case below, and on the other hand, it will suggest a suitable modification of our approach for
the 3D problem.

The rest of this work is organized as follows. In Section 2 we describe the model problem, and then
establish the main results concerning the continuous formulation to be employed in two dimensions.
Next, in Section 3 we introduce and analyze the coupling of VEM and BEM for this 2D case. This
section is splitted into preliminary results on VEM, the VEM/BEM scheme itself, solvability analysis
and error estimates in the energy norm, error estimates in the L2(Ω)-norm, and a fully computable
approximation of the virtual component of the solution, for which its corresponding rates of conver-
gence are also provided. Finally, in Section 4 we consider the 3D case, for whose analysis we adopt
basically the same structure of Section 3. However, and differently from the 2D case, we make use
of a new variational formulation specially introduced for this purpose, and propose and analyze two
associated VEM/BEM schemes, one of them being motivated by the non-symmetric interior penalty
discontinuous Galerkin method.

We end this section with some notations to be employed throughout the paper. Given a real number
r ≥ 0 and a polyhedron O ⊆ Rd, (d = 2, 3), we denote the norms and seminorms of the usual Sobolev
space Hr(O) by ‖ · ‖r,O and | · |r,O respectively (cf. [46]), and we use the convention L2(O) := H0(O).
Also, we recall that, for any t ∈ [−1, 1], the spaces Ht(∂O) have an intrinsic definition (by localiza-
tion) on the Lipschitz surface ∂O due to their invariance under Lipschitz coordinate transformations.
Moreover, for all t ∈ (0, 1], H−t(∂O) is the dual of Ht(∂O) with respect to the pivot space L2(∂O). In
addition, for nonnegative integers k, Pk is the space of polynomials of degree ≤ k with the convention
P−1 = {0}. Then, given a domain D ⊆ Rd, d ∈ {2, 3}, Pk(D) represents the restriction of Pk to D.
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2 The model problem

Let Ω0 and O be two simply connected and bounded polygonal/polyhedral domains with boundaries
Γ0 := ∂Ω0 and Γ := ∂O. We assume that Ω0 ⊆ O ⊆ Rd, with d = 2, 3, and introduce the annular
region Ω := O \Ω0 and the exterior domain Oe := Rd \O (see Figure 2.1 below). Then, we denote by
n the unit outward normal to Γ pointing towards Oe, and consider the transmission problem

−div(κ∇u) = f in Ω ,

u = 0 on Γ0 ,

u = ue on Γ ,

κ
∂u

∂n
=

∂ue
∂n

on Γ ,

−∆ue = 0 in Oe ,

ue(x) = O(
1

|x|) as |x| −→ ∞ ,

(2.1)

where f ∈ L2(Ω) and κ ∈ L∞(Ω) are given functions. Additionally, we assume that there exists a
constant κ > 0 such that

κ ≤ κ(x) ≤ κ := ‖κ‖L∞(Ω) ∀x ∈ Ω .

Ω0

Γ0

Γ = ∂O

Ω Oe

n

Figure 2.1: 2D geometry of the model problem.

In order to solve the transmission problem (2.1) by using only Ω as a computational domain, we
follow the Costabel & Han approach (see [29], [42], [52] and the references therein), and compute the
harmonic solution in the exterior domain Oe by means of the integral representation formula

ue(x) =

∫
Γ

∂E(|x− y|)
∂ny

γu(y) dsy −
∫

Γ
E(|x− y|)λ(y) dsy ∀x ∈ Oe , (2.2)

where

E(|x− y|) :=


1

4π

1

|x− y| if d = 3

− 1

2π
log |x− y| if d = 2

is the fundamental solution of the Laplace operator, γ is the usual trace operator on Γ (acting either

from Ω or Oe), and γu = γue and λ := κ∇u · n =
∂ue
∂n

are the Cauchy data on this interface. Then,
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employing the jump conditions on Γ of the two potentials in the right hand side of (2.2), we arrive at
(cf. [44], [52])

γue =
( id

2
+K

)
γu − V λ on Γ , (2.3)

and
∂ue
∂n

= −Wγu +
( id

2
−Kt

)
λ on Γ , (2.4)

where V , K, Kt are the boundary integral operators representing the single, double and adjoint of
the double layer, respectively, id is a generic identity operator, and W is the hypersingular operator.

Moreover, replacing γue and
∂ue
∂n

by γu and λ, respectively, (2.3) and (2.4) become

0 =
( id

2
−K

)
γu + V λ on Γ , (2.5)

and

λ = −Wγu +
( id

2
−Kt

)
λ on Γ . (2.6)

From now on,
〈
·, ·
〉

stands for the duality pairing between H−1/2(Γ) and H1/2(Γ) with respect to the
pivot space L2(Γ). Then, we introduce the subspaces

H
1/2
0 (Γ) := {ϕ ∈ H1/2(Γ) :

〈
1, ϕ

〉
= 0}

and
H
−1/2
0 (Γ) := {µ ∈ H−1/2(Γ) :

〈
µ, 1
〉

= 0} ,
and recall in the following lemma the main mapping properties of V , K, Kt, and W .

Lemma 2.1. The operators

V : H−1/2(Γ) −→ H1/2(Γ), K : H1/2(Γ) −→ H1/2(Γ) ,

Kt : H−1/2(Γ) −→ H−1/2(Γ), W : H1/2(Γ) −→ H−1/2(Γ) ,

are continuous. Furthermore, there exist positive constants αV , αW such that

〈
µ, V µ

〉
≥ αV ‖µ‖2−1/2,Γ

{
∀µ ∈ H

−1/2
0 (Γ), if d = 2 ,

∀µ ∈ H−1/2(Γ), if d = 3 ,
(2.7)

and 〈
Wϕ, ϕ

〉
≥ αW ‖ϕ‖21/2,Γ ∀ϕ ∈ H

1/2
0 (Γ). (2.8)

Proof. See [52].

Then, introducing the spaces

X :=
{
v ∈ H1(Ω) : v|Γ0 = 0

}
and X := X ×H

−1/2
0 (Γ) ,

the variational formulation for the first four rows of (2.1) completed with the boundary integral
equations (2.5) and (2.6), reads as follows: Find (u, λ) ∈ X such that∫

Ω
κ∇u · ∇v +

〈
Wγu, γv

〉
−
〈
λ, (

id

2
−K)γv)

〉
=

∫
Ω
fv ∀v ∈ X ,〈

µ, V λ
〉

+
〈
µ, (

id

2
−K)γu)

〉
= 0 ∀µ ∈ H

−1/2
0 (Γ) .

(2.9)
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Equivalently, (2.9) can be rewritten as: Find (u, λ) ∈ X such that

A
(
(u, λ), (v, µ)

)
= F(v, µ) :=

∫
Ω
fv ∀ (v, µ) ∈ X , (2.10)

where
A
(
(u, λ), (v, µ)

)
:= a(u, v) +

〈
Wγu, γv

〉
+
〈
µ, V λ

〉
+
〈
µ, (

id

2
−K)γu)

〉
−
〈
λ, (

id

2
−K)γv)

〉 (2.11)

and

a(u, v) :=

∫
Ω
κ∇u · ∇v .

We deduce from Lemma 2.1 that there exist constants M0 > 0 and α0 > 0 such that, for all
(u, λ), (v, µ) ∈ X, there holds

A
(
(u, λ), (v, µ)

)
≤M0 ‖(u, λ)‖ ‖(v, µ)‖

and
A
(
(v, µ), (v, µ)

)
≥ α0 ‖(v, µ)‖2 ,

where
‖(v, µ)‖2 := ‖v‖21,Ω + ‖µ‖2−1/2,Γ .

stands for the square of the norm in the product space X.

In this way, the well-posedness of problem (2.10) follows then directly from the foregoing estimates
and the Lax-Milgram lemma.

We end this section by remarking that the transmission conditions imposed for the derivation of
our continuous formulation are actually recovered from (2.10) and (2.2). In fact, we first notice that
the second equation of (2.9) together with (2.3) yields γu = γue on Γ. In turn, integrating by parts
backwardly the field term of the first equation in (2.9), we deduce that −div

(
k∇u

)
= f in Ω, and

then that κ∇u · n = −Wγu +
(

id
2 − Kt

)
λ, which, combined with (2.4), gives κ∇u · n =

∂ue
∂n

on

Γ. Then, knowing that ue can also be represented with
∂ue
∂n

instead of λ in (2.2), we deduce that

V λ = V
∂ue
∂n

, and hence the ellipticity of V (cf. (2.7)) yields λ =
∂ue
∂n

= κ∇u · n.

3 The VEM/BEM coupling in two dimensions

3.1 Preliminaries

From now on we assume that there exists a polygonal partition ∪Ii=1Ωi = Ω such that f |Ωi ∈ Hk(Ωi)
and κ|Ωi ∈Wk+1,∞(Ωi), for i = 1, . . . , I. Then we let {Fh}h be a family of partitions of Ω constituted
of connected polygons F ∈ Fh of diameter hF ≤ h, and assume that the meshes {Fh}h are aligned
with each Ωi, i = 1, . . . , I. For each F ∈ Fh the boundary ∂F is subdivided into straight segments e,
which are referred to in what follows as edges. In particular, we introduce the set

Eh :=
{

edges of Fh : e ⊆ Γ
}
.

In addition, we assume that the family
{
Fh
}
h

of meshes satisfy the following conditions: There exists
ρ ∈ (0, 1) such that
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(A1) each F of {Fh}h is star-shaped with respect to a disk DF of radius ρhF ,

(A2) for each F of {Fh}h and for all edges e ⊆ ∂F it holds |e| ≥ ρhF .

Then, for each F of {Fh}h , we introduce the projection operator Π∇,Fk : H1(F )→ Pk(F ) uniquely
characterized by (see [7])∫

F
∇(Π∇,Fk v) · ∇p+

(∫
∂F

Π∇,Fk v

)(∫
∂F
p

)
=

∫
F
∇v · ∇p+

(∫
∂F
v

)(∫
∂F
p

)
(3.1)

for all p ∈ Pk(F ). Moreover, we let ΠF
k be the L2(F )–orthogonal projection onto Pk(F ) with vectorial

counterpart ΠF
k : L2(F )2 → Pk(F )2, and following [1] we introduce, for k ≥ 1, the local virtual

element space

Xk
h(F ) :=

{
v ∈ H1(F ) : v|e ∈ Pk(e), ∀e ⊆ ∂F, ∆v ∈ Pk(F ), ΠF

k v −Π∇,Fk v ∈ Pk−2(F )
}
. (3.2)

It can be shown (cf. [1]) that the degrees of freedom of Xk
h(F ) consist of:

i) the values at the vertices of F ,

ii) the moments of order ≤ k − 2 on the edges of F , and

iii) the moments of order ≤ k − 2 on F .

We are then allowed to introduce the global virtual element space as

Xk
h :=

{
v ∈ X : v|F ∈ Xk

h(F ) ∀F ∈ Fh
}
.

On the other hand, for any integer k ≥ 0, we denote by Pk(Fh) the space of piecewise polynomials of
degree ≤ k with respect to Fh, and let ΠFk be the global L2(Ω)-orthogonal projection onto Pk(Fh),
which is assembled cellwise, i.e. (ΠFk v)|F := ΠF

k (v|F ) for all F ∈ Fh and for all v ∈ L2(Ω). Similarly,
for any q ∈ L2(Ω)2, ΠFk q is defined by (ΠFk q)|F = ΠF

k (q|F ) for all F ∈ Fh. It is important to notice

that Pk(F ) ⊆ Xk
h(F ) and that the projectors Π∇,Fk v and ΠF

k v are computable for all v ∈ Xk
h(F ).

Furthermore, it is also easy to check that ΠF
k−1∇v is explicitly known for all v ∈ Xk

h(F ) (cf. [7]).

Hereafter, given any positive functions Ah and Bh of the mesh parameter h, the notation Ah . Bh
means that Ah ≤ CBh with C > 0 independent of h, whereas Ah ' Bh means that Ah . Bh and
Bh . Ah. Then, under the conditions on Fh, the technique of averaged Taylor polynomials introduced
in [32] permits to prove the following error estimates,

‖v −ΠF
k v‖0,F + hF |v −ΠF

k v|1,F . h`+1
F |v|`+1,F ∀ ` ∈

{
0, 1, ..., k

}
, ∀ v ∈ H`+1(F ) , (3.3)

‖v −Π∇,Fk v‖0,F + hF ‖v −Π∇,Fk v‖1,F . h`+1
F |v|`+1,F ∀ ` ∈

{
1, 2, ..., k

}
, ∀ v ∈ H`+1(F ) . (3.4)

In turn, the local interpolation operator IFk : H2(F ) → Xk
h(F ) is defined by imposing that v − IFk v

has vanishing degrees of freedom, which satisfies (cf. [14, Lemma 2.23])

‖v − IFk v‖0,F + hF
∣∣v − IFk v∣∣1,F . h`+1

F |v|`+1,F ∀` ∈
{

1, 2, ..., k
}
, ∀ v ∈ H`+1(F ) . (3.5)

In addition, we denote by IFk the global virtual element interpolation operator, i.e., for each v ∈ C0(Ω),
we set locally (IFk v)|F = IFk (v|F ) for all F ∈ Fh.

On the other hand, we will seek an approximation for λ in the non-virtual (but explicit) subspace

Λk−1
h :=

{
µ ∈ L2(Γ) : µ|e ∈ Pk−1(e), ∀e ∈ Eh,

∫
Γ
µ = 0

}
,

7



and denote by ΠEk−1 the L2(Γ)-orthogonal projection onto Λk−1
h . We let

{
Γj , j ∈ {1, . . . , J}

}
be the set of segments constituting Γ, and for any t ≥ 0 we consider the broken Sobolev space
Ht
b(Γ) :=

∏J
j=1 Ht(Γj) endowed with the graph norm

‖ϕ‖2t,b,Γ :=

J∑
j=1

‖ϕ‖2t,Γj .

We recall the following classical approximation property.

Lemma 3.1. Assume that µ ∈ H−1/2(Γ) ∩Hr
b(Γ) for some r ≥ 0. Then,∥∥µ−ΠEk−1µ

∥∥
−t,Γ . hmin{r,k}+t ‖µ‖r,b,Γ ∀ t ∈ {0, 1/2}.

Proof. See [52, Theorem 4.3.20].

3.2 The VEM/BEM scheme

For all F ∈ Fh we let SFh be the symmetric bilinear form defined on H1(F )×H1(F ) by

SFh (v, w) := h−1
F

∑
e⊆∂F

∫
e
πekv π

e
kw ∀ v, w ∈ H1(F ) , (3.6)

where πek is the L2(e)-projection onto Pk(e). It is shown in [14, Lemma 3.2] that

SFh (v, v) ' aF (v, v) ∀ v ∈ Xk
h(F ) such that Π∇,Fk v = 0 , (3.7)

where aF is the local version of a, that is

aF (v, w) :=

∫
F
κ∇v · ∇w ∀ v, w ∈ H1(F ) . (3.8)

It is important to notice that SFh is computable on Xk
h(F ) × Xk

h(F ) since πekv = v ∈ Pk(e) for all
v ∈ Xk

h(F ), and that, by symmetry, there holds

SFh (v, w) ≤ SFh (v, v)1/2 SFh (w,w)1/2 . aF (v, v)1/2 aF (w,w)1/2

for all v, w ∈ Xk
h(F ) satisfying Π∇,Fk v = Π∇,Fk w = 0. Next, for each F ∈ Fh we introduce

aFh (v, w) :=

∫
F
κΠF

k−1∇v · ΠF
k−1∇w + SFh (v −Π∇,Fk v, w −Π∇,Fk w) , (3.9)

and let ah be the global extension of it, that is

ah(v, w) =
∑
F∈Fh

aFh (v, w) ∀ v, w ∈ Xk
h . (3.10)

We now stress, as shown in [7], that the first term defining aFh is also calculable on Xk
h(F ) ×Xk

h(F )
even if κ is not a polynomial function. Indeed, using the fact that ΠF

k−1 is self-adjoint and integrating
by parts, we find that there holds∫

F
κΠF

k−1∇v · ΠF
k−1∇w =

∫
F

ΠF
k−1

(
κΠF

k−1∇v
)
· ∇w

= −
∫
F

div
(
ΠF
k−1

(
κΠF

k−1∇v
))
w +

∫
∂F

ΠF
k−1

(
κΠF

k−1∇v
)
· n∂F w
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for all v, w ∈ Xk
h(F ). Then, we notice that the first term on the right hand side of the foregoing

identity is calculable thanks to the moments of w on F of order ≤ k − 2, whereas the second one is
calculable as well since each factor of it is a known polynomial.

We now let Xh := Xk
h×Λk−1

h and introduce the discrete version of problem (2.10): Find (uh, λh) ∈
Xh such that

Ah

(
(uh, λh), (vh, µh)

)
= Fh(vh, µh) :=

∫
Ω

(ΠFk−1f) vh ∀ (vh, µh) ∈ Xh , (3.11)

where
Ah

(
(uh, λh), (vh, µh)

)
:= ah(uh, vh) +

〈
Wγuh, γvh

〉
+
〈
µh, V λh

〉
+
〈
µh, (

id

2
−K)γuh)

〉
−
〈
λh, (

id

2
−K)γvh)

〉
.

(3.12)

3.3 Solvability and error estimates

We begin with the boundedness property of Ah.

Lemma 3.2. There hold

|aFh (z, v)| . ‖z‖1,F ‖v‖1,F ∀F ∈ Fh , ∀ z, v ∈ H1(F ) , (3.13)

and
|Ah

(
(z, η), (v, µ)

)
| . ‖(z, η)‖ ‖(v, µ)‖ ∀ (z, η), (v, µ) ∈ Xh . (3.14)

Proof. The local estimate (3.13) is basically consequence of the Cauchy-Schwarz inequality and the
fact that (see [7])

SFh (z −Π∇,Fk z, v −Π∇,Fk v) . |z −Π∇,Fk z|1,F |v −Π∇,Fk v|1,F . |z|1,F |v|1,F , (3.15)

whereas (3.14) follows from (3.13) and the mapping properties provided by Lemma 2.1.

Next, the following lemma recalls from [7] some useful estimates between aF and aFh , which involve
the local operators ΠF

k and IFk .

Lemma 3.3. For each F ∈ Fh there hold

|aF (ΠF
k z, vh)− aFh (ΠF

k z, vh)| . hkF ‖z‖k+1,F ‖vh‖1,F ∀ (z, vh) ∈ Hk+1(F )×Xk
h(F ) , (3.16)

|aF (vh, I
F
k z)− aFh (vh, I

F
k z)| . hF ‖vh‖1,F ‖z‖2,F ∀ (z, vh) ∈ H2(F )×Xk

h(F ) , (3.17)

and

|aF (ΠF
k z, I

F
k v)− aFh (ΠF

k z, I
F
k v)| . hk+1

F ‖z‖k+1,F ‖v‖2,F ∀ (z, v) ∈ Hk+1(F )×H2(F ) . (3.18)

Proof. For (3.16) we refer to [7, Lemma 5.5], whereas (3.17) can be proved as explained in [7, Remark
5.1]. In turn, (3.18) follows by combining the proofs of (3.16) and (3.17). We omit further details.

We now establish the Xh-ellipticity of the bilinear form Ah.

Lemma 3.4. There holds

Ah

(
(v, µ), (v, µ)

)
& ‖(v, µ)‖2 ∀ (v, µ) ∈ Xh . (3.19)
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Proof. We first observe, by using (2.7) and (2.8), that for all (v, µ) ∈ Xh we obtain

Ah

(
(v, µ), (v, µ)

)
= ah(v, v) +

〈
Wγv, γv

〉
+
〈
µ, V µ

〉
≥ ah(v, v) + αV ‖µ‖2−1/2,Γ . (3.20)

On the other hand, according to the definition of aFh (cf. (3.9)), noting that certainly there holds

Π∇,Fk

(
v −Π∇,Fk v

)
= 0, and then employing (3.7) and the fact that

|v −Π∇,Fk v|1,F = ‖∇v −∇Π∇,Fk v‖0,F ≥ ‖∇v −ΠF
k−1∇v‖0,F ,

we deduce that
aFh (v, v) &

∥∥ΠF
k−1∇v

∥∥2

0,F
+ aF (v −Π∇,Fk v, v −Π∇,Fk v)

&
{∥∥ΠF

k−1∇v
∥∥2

0,F
+ |v −Π∇,Fk v|21,F

}
&
{∥∥ΠF

k−1∇v
∥∥2

0,F
+
∥∥∇v −ΠF

k−1∇v
∥∥2

0,F

}
& |v|21,F .

(3.21)

In this way, the proof follows from the definition of ah (cf. (3.10)), (3.20), and (3.21).

As a consequence of Lemmas 3.2 and 3.4, a straightforward application again of the Lax-Milgram
lemma shows that (3.11) admits a unique solution (uh, λh) ∈ Xh. Moreover, we have the following a
priori error estimate.

Theorem 3.1. Under the assumption that u ∈ X ∩∏I
i=1 H2(Ωi), there holds

‖(u, λ)− (uh, λh)‖ .
∥∥(u, λ)− (IFk u,Π

E
k−1λ)

∥∥
+ sup

wh∈Xk
h

|a(u,wh)− ah(IFk u,wh)|
‖wh‖1,Ω

+
∥∥f −ΠFk−1f

∥∥
0,Ω

.
(3.22)

Proof. We first observe from the definitions of F and Fh (cf. (2.10) and (3.11)) that

sup
(vh,µh)∈Xh
(vh,µh)6=0

∣∣F(vh, µh)− Fh(vh, µh)
∣∣

‖(vh, µh)‖ ≤
∥∥f −ΠFk−1f

∥∥
0,Ω

.

In turn, according to the definitions of A and Ah (cf. (2.11) and (3.12)) it readily follows that

A((vh, µh), (wh, ξh))−Ah((vh, µh), (wh, ξh)) = a(vh, wh)− ah(vh, wh)

for all (vh, µh), (wh, ξh) ∈ Xh. In addition, adding and subtracting u to the first component of a,
and using the boundedness of this bilinear form, we obtain∣∣a(vh, wh)− ah(vh, wh)

∣∣ . {
‖u− vh‖ ‖wh‖1,Ω +

∣∣a(u,wh)− ah(vh, wh)
∣∣} ∀ vh, wh ∈ Xk

h .

Hence, bearing in mind the foregoing estimates, a straightforward application of the first Strang
Lemma (cf. [27, Theorem 4.1.1]) to the context given by (2.10) and (3.11) gives

‖(u, λ)− (uh, λh)‖ . inf
(vh,µh)∈Xh

{
‖(u, λ)− (vh, µh)‖

+ sup
wh∈X

k
h

wh 6=0

∣∣a(u,wh)− ah(vh, wh)
∣∣

‖wh‖1,Ω

}
+
∥∥f −ΠFk−1f

∥∥
0,Ω

.

(3.23)

Next, since X ∩∏I
i=1 H2(Ωi) ⊆ C0(Ω) and H

1/2
b (Γ) ⊆ L2(Γ), we deduce by hypotheses that u ∈ C0(Ω)

and λ = κ∇u · n ∈ L2(Γ), which implies that IFk u and ΠEk−1λ are meaningful. In this way, taking in

particular (vh, µh) = (IFk u,Π
E
k−1λ) ∈ Xh in (3.23) we arrive at (3.22) and conclude the proof.
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We now aim to bound the supremum in (3.22). To this end, we begin by noticing that for each
wh ∈ Xk

h we have

a(u,wh)− ah(IFk u,wh) =
∑
F∈Fh

{
aF (u,wh) − aFh (IFk u,wh)

}
, (3.24)

where each term of the sum in (3.24) can be decomposed as

aF (u,wh) − aFh (IFk u,wh) = aF (u−ΠF
k u,wh)

+ aF (ΠF
k u,wh)− aFh (ΠF

k u,wh) + aFh (ΠF
k u− IFk u,wh) .

(3.25)

Then, employing the boundedness of aF (cf. (3.8)) and aFh (cf. (3.13)), we obtain, respectively,

|aF (u−ΠF
k u,wh)| .

∥∥u−ΠF
k u
∥∥

1,F
‖wh‖1,F (3.26)

and
|aFh (ΠF

k u− IFk u,wh)| .
{∥∥u− IFk u∥∥1,F

+
∥∥u−ΠF

k u
∥∥

1,F

}
‖wh‖1,F , (3.27)

which, replaced back in (3.25) and then in (3.24), and after some algebraic manipulations, yields

sup
wh∈Xk

h

|a(u,wh)− ah(IFk u,wh)|
‖wh‖1,Ω

.
∥∥u− IFk u∥∥1,Ω

+

( ∑
F∈Fh

∥∥u−ΠF
k u
∥∥2

1,F

)1/2

+ sup
wh∈Xk

h

∑
F∈Fh

∣∣aF (ΠF
k u,wh)− aFh (ΠF

k u,wh)
∣∣

‖wh‖1,Ω
,

(3.28)

where we also used that
∥∥u− IFk u∥∥2

1,Ω
=

∑
F∈Fh

∥∥u− IFk u∥∥2

1,F
. In this way, using (3.28) in (3.22), we

find that

‖(u, λ)− (uh, λh)‖ .

{ ∥∥(u, λ)− (IFk u,Π
E
k−1λ)

∥∥ +

( ∑
F∈Fh

∥∥u−ΠF
k u
∥∥2

1,F

)1/2

+ sup
wh∈Xk

h

∑
F∈Fh

∣∣aF (ΠF
k u,wh)− aFh (ΠF

k u,wh)
∣∣

‖wh‖1,Ω
+
∥∥f −ΠFk−1f

∥∥
0,Ω

}
.

(3.29)

We are now ready to establish the rates of convergence of our VEM/BEM scheme.

Theorem 3.2. Under the assumptions that u ∈ X ∩∏I
i=1 Hk+1(Ωi) and f ∈∏I

i=1 Hk(Ωi), there holds

‖(u, λ)− (uh, λh)‖ := ‖u− uh‖1,Ω + ‖λ− λh‖−1/2,Γ . hk
I∑
i=1

{
‖u‖k+1,Ωi

+ ‖f‖k,Ωi
}
. (3.30)

Proof. It reduces to bound each one of the terms in (3.29) by using our regularity assumptions on
u and f , and the approximation properties of the projection and interpolation operators involved.
Indeed, from (3.16) (cf. Lemma 3.3) we have that∣∣aF (ΠF

k u,wh)− aFh (ΠF
k u,wh)

∣∣ . hkF ‖u‖k+1,F ‖wh‖1,F ∀F ∈ Fh , (3.31)
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which implies

sup
wh∈Xk

h

∑
F∈Fh

∣∣aF (ΠF
k u,wh)− aFh (ΠF

k u,wh)
∣∣

‖wh‖1,Ω
. hk

I∑
i=1

‖u‖k+1,Ωi . (3.32)

Next, by applying (3.3) and (3.5), we readily deduce that∥∥u− IFk u∥∥1,Ω
+

( ∑
F∈Fh

∥∥u−ΠF
k u
∥∥2

1,F

)1/2

+
∥∥f −ΠFk−1f

∥∥
0,Ω

. hk
I∑
i=1

{
‖u‖k+1,Ωi

+ ‖f‖k,Ωi
}
.

(3.33)

On the other hand, by hypothesis λ = κ∇u · n satisfies λ|Γj ∈ Hk−1/2(Γj) on each straight segment
Γj , j ∈ {1, ..., J}, constituting Γ. Hence, Lemma 3.1 and the trace theorem yield

∥∥λ−ΠEk−1λ
∥∥
−1/2,Γ

. hk
J∑
j=1

‖λ‖k−1/2,Γj
. hk

I∑
i=1

‖u‖k+1,Ωi
. (3.34)

Finally, replacing (3.32), (3.33), and (3.34) in (3.29) we obtain (3.30) and conclude the proof.

3.4 L2(Ω)-error estimate

Our goal here is to derive rates of convergence for ‖u−uh‖0,Ω. To this end, we now recall the symmetry
properties of the boundary integral operators V and W , which establish that (cf. [44], [52])

〈ξ, V µ〉 = 〈µ, V ξ〉 ∀ ξ, µ ∈ H−1/2(Γ) and 〈Wϕ,ψ〉 = 〈Wψ,ϕ〉 ∀ϕ, ψ ∈ H1/2(Γ) . (3.35)

Next, we let (z, η) ∈ X := X × H
−1/2
0 (Γ) be the unique solution of (2.10) with datum u− uh instead

of f , that is

A
(
(z, η), (v, µ)

)
=

∫
Ω

(u− uh) v ∀ (v, µ) ∈ X , (3.36)

which implies, taking in particular v ≡ 0, that

V η +
( id

2
−K

)
γz = 0 on Γ . (3.37)

Then, according to the definition of A (cf. (2.11)), and using the symmetry of a as well as those of V
and W (cf. (3.35)), we find that

A
(
(v, µ), (z,−η)

)
= a(v, z) + 〈Wγv, γz〉 − 〈η, V µ〉 − 〈η,

( id

2
−K

)
γv〉 − 〈µ,

( id

2
−K

)
γz〉

= a(z, v) + 〈Wγz, γv〉 − 〈µ, V η +
( id

2
−K

)
γz〉 − 〈η,

( id

2
−K

)
γv〉 ,

which, invoking (3.37) and using (3.36), yields

A
(
(v, µ), (z,−η)

)
= A

(
(z, η), (v, µ)

)
=

∫
Ω

(u− uh) v ∀ (v, µ) ∈ X . (3.38)

In what follows we assume that z ∈ X ∩ ∏I
i=1 H2(Ωi) and that there exists C > 0 such that

I∑
i=1

‖z‖2,Ωi ≤ C ‖u− uh‖0,Ω . (3.39)

Then, we have the following result.
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Theorem 3.3. In addition to the above hypothesis on z, assume that u ∈ X ∩∏I
i=1 Hk+1(Ωi) and

that f ∈∏I
i=1 Hk(Ωi). Then, there holds

‖u− uh‖0,Ω . hk+1
I∑
i=1

{
‖u‖k+1,Ωi

+ ‖f‖k,Ωi
}
. (3.40)

Proof. Choosing (v, µ) = (u − uh, λ − λh) in (3.38), adding and subtracting (IFk z,−ΠEk−1η) in the
second component of A, using (2.10), and then adding and subtracting the expressions

Ah

(
(uh, λh), (IFk z,−ΠEk−1η)

)
=

∫
Ω

(ΠFk−1f)IFk z and A
(
(uh, λh), (IFk z,−ΠEk−1η)

)
,

we obtain

‖u− uh‖20,Ω = A
(
(u− uh, λ− λh), (z,−η)

)
= A

(
(u, λ), (z − IFk z,ΠEk−1η − η)

)
+ A

(
(u, λ), (IFk z,−ΠEk−1η)

)
− A

(
(uh, λh), (z,−η)

)
= A

(
(u, λ), (z − IFk z,ΠEk−1η − η)

)
+

∫
Ω

(f −ΠFk−1f) IFk z + Ah

(
(uh, λh), (IFk z,−ΠEk−1η)

)
−A

(
(uh, λh), (IFk z,−ΠEk−1η)

)
+ A

(
(uh, λh), (IFk z,−ΠEk−1η)

)
− A

(
(uh, λh), (z,−η)

)
,

which, using also the orthogonality condition satisfied by ΠFk−1, can be reordered as

‖u− uh‖20,Ω = A
(
(u− uh, λ− λh), (z − IFk z,ΠEk−1η − η)

)
+

∫
Ω

(f −ΠFk−1f)
(
IFk z −ΠFk−1(IFk z)

)
+ Ah

(
(uh, λh), (IFk z,−ΠEk−1η)

)
−A

(
(uh, λh), (IFk z,−ΠEk−1η)

)
.

(3.41)

We now proceed to bound the terms on the right hand side of (3.41). In fact, employing the boun-
dedness of A, the approximation properties of IFk z (cf. (3.5)) and ΠEk−1 (cf. Lemma 3.1), the fact

that η =
∂z

∂n
, the trace theorem, and the regularity estimate (3.39), we get

|A
(
(u− uh, λ− λh), (z − IFk z,ΠEk−1η − η)

)
| . ‖(u− uh, λ− λh)‖

∥∥(z − IFk z, η −ΠEk−1η)
∥∥

. h ‖(u− uh, λ− λh)‖


I∑
i=1

‖z‖2,Ωi +

J∑
j=1

‖η‖1/2,Γj


. h ‖(u− uh, λ− λh)‖ ‖u− uh‖0,Ω .

(3.42)

In turn, utilizing now the approximation property of ΠFk−1 (cf. (3.3)), the fact that
∥∥IFk z∥∥1,Ω

.

|IFk z|1,Ω . |z|1,Ω, where the last inequality here follows from (3.5), and the a priori estimate for the
solution of (3.36), we find that

|
∫

Ω
(f −ΠFk−1f)

(
IFk z −ΠFk−1(IFk z)

)
| ≤

∥∥f −ΠFk−1f
∥∥

0,Ω

∥∥IFk z −ΠFk−1I
F
k z
∥∥

0,Ω

. h
∥∥f −ΠFk−1f

∥∥
0,Ω

∥∥IFk z∥∥1,Ω
. h

∥∥f −ΠFk−1f
∥∥

0,Ω
‖u− uh‖0,Ω

. hk+1 ‖u− uh‖0,Ω
I∑
i=1

‖f‖k,Ωi .

(3.43)
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Next, according to the definitions of A (cf. (2.11)) and Ah (cf. (3.12)), we realize that the remaining
expression in (3.41) becomes ah(uh, I

F
k z)−a(uh, I

F
k z), so that adding and subtracting ΠFk u in the first

component of each bilinear form, we obtain

|ah(uh, I
F
k z)− a(uh, I

F
k z)| ≤

∑
F∈Fh

|aFh (uh −ΠF
k u, I

F
k z)− aF (uh −ΠF

k u, I
F
k z)|

+
∑
F∈Fh

|aFh (ΠF
k u, I

F
k z)− aF (ΠF

k u, I
F
k z)| .

(3.44)

Then, by virtue of the estimates (3.18) and (3.39), we have∑
F∈Fh

|aFh (ΠF
k u, I

F
k z)− aF (ΠF

k u, I
F
k z)|

. hk+1
∑
F∈Fh

‖u‖k+1,F ‖z‖2,F . hk+1
I∑
i=1

‖u‖k+1,Ωi
‖u− uh‖0,Ω .

(3.45)

Similarly, employing now (3.17) and (3.39), we deduce that∑
F∈Fh

|aFh (uh −ΠF
k u, I

F
k z)− aF (uh −ΠF

k u, I
F
k z)| . h

∑
F∈Fh

∥∥uh −ΠF
k u
∥∥

1,F
‖z‖2,F

. h
∑
F∈Fh

{
‖u− uh‖1,F +

∥∥u−ΠF
k u
∥∥

1,F

}
‖z‖2,F . hk+1

I∑
i=1

‖u‖k+1,Ωi
‖u− uh‖0,Ω .

(3.46)

Finally, replacing (3.45) and (3.46) back in (3.44), and then placing the resulting estimate together
with (3.42) and (3.43) back in (3.41), we arrive at (3.40), thus concluding the proof.

3.5 Computable approximation of u

We now introduce the fully computable approximation of u given by û := ΠFk uh, and establish next
the rates of convergence for ‖u− û‖0,Ω and for the corresponding broken H1(Ω)-seminorm, that is

|u− û|1,b,Ω :=

∑
F∈Fh

|u− ûh|21,F


1/2

.

Theorem 3.4. Under the assumptions that u ∈ X ∩∏I
i=1 Hk+1(Ωi) and f ∈∏I

i=1 Hk(Ωi), there holds

‖u− ûh‖0,Ω + h |u− û|1,b,Ω . hk+1
I∑
i=1

{
‖u‖k+1,Ωi

+ ‖f‖k,Ωi
}
. (3.47)

Proof. Let us first recall that (ΠFk v)|F := ΠF
k (v|F ) and that certainly ‖ΠF

k (v|F )‖0,F ≤ ‖v|F ‖0,F for
all F ∈ Fh and for all v ∈ L2(Ω). Then, adding and subtracting ΠFk u, we readily obtain that

‖u− ûh‖0,Ω ≤ ‖u−ΠFk u‖0,Ω + ‖ΠFk (u− uh)‖0,Ω ≤ ‖u−ΠFk u‖0,Ω + ‖u− uh‖0,Ω . (3.48)

In turn, by choosing ` = 0 in (3.3), we easily deduce that |ΠF
k (v)|1,F . |v|1,F for all F ∈ Fh and for

all v ∈ H1(F ). Hence, proceeding similarly to (3.48), we find that for each F ∈ Fh there holds

|u− ûh|1,F ≤ |u−ΠF
k u|1,F + |ΠF

k (u− uh)|1,F . |u−ΠF
k u|1,F + |u− uh|1,F ,

which yields
|u− ûh|1,b,Ω . |u−ΠFk u|1,b,Ω + |u− uh|1,Ω . (3.49)

In this way, applying (3.3) and the rates of convergence provided by (3.30) and (3.40) to the corre-
sponding terms in (3.48) and (3.49), we arrive at (3.47) and finish the proof.
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4 The VEM/BEM coupling in three dimensions

4.1 Preliminaries

For the sake of simplicity, we assume in what follows that κ|Ωi is a constant for i = 1, . . . , I. Then, we
now let {Th}h be a family of decompositions of Ω into polyhedral elements E of diameter hE ≤ h, and
assume again that the meshes {Th}h are aligned with each Ωi, i = 1, . . . , I. In turn, the boundary ∂E
of each E ∈ Th is subdivided into planar faces denoted by F , and we let Fh be the set of faces of Th
that are contained in Γ. In addition, we assume that the family {Th}h of meshes satisfy the following
conditions: There exists ρ ∈ (0, 1) such that

(B1) each E of {Th}h is star-shaped with respect to a ball BE of radius ρhE ,

(B2) for each E of {Th}h, the diameters hF of all its faces F ⊆ ∂E satify hF ≥ ρhE ,

(B3) the faces of each E ∈ {Th}h, viewed as 2-dimensional elements, satisfy the properties (A1) and
(A2) (cf. Section 3.1) with the same ρ.

Next, given an integer k ≥ 1 and E ∈ Th, and bearing in mind the definition (3.2), we set

Xk
h(∂E) :=

{
v ∈ C0(∂E) : v|F ∈ Xk

h(F ) ∀F ⊆ ∂E
}
, (4.1)

and introduce the local virtual element space

W k
h (E) :=

{
v ∈ H1(E) : v|∂E ∈ Xk

h(∂E), ∆v ∈ Pk(E), ΠE
k v −Π∇,Ek v ∈ Pk−2(E)

}
, (4.2)

where, analogously to the 2D case (cf. Section 3.1), ΠE
k is now the L2(E)–orthogonal projection onto

Pk(E), and the projection operator Π∇,Ek : H1(E) → Pk(E) is defined as in (3.1) after replacing F
with E. In addition, the degrees of freedom of W k

h (E) consist of:

i) the values at the vertices of E,

ii) the moments of order ≤ k − 2 on the edges of E,

iii) the moments of order ≤ k − 2 on the faces of E, and

iv) the moments of order ≤ k − 2 on E.

We can then define the global virtual element space as

W k
h :=

{
v ∈ X : v|E ∈W k

h (E) ∀E ∈ Th
}
. (4.3)

Furthermore, and coherently with the notations of Section 3, given any integer k ≥ 0, we let ΠE
k

and ΠTk be the L2–orthogonal projections onto Pk(E) and Pk(Th), respectively, and denote by ΠE
k

and ΠTk their corresponding vectorial counterparts. Here again, we stress that Pk(E) ⊆ Xk
h(E) and

that the projectors Π∇,Ek v, ΠE
k v and ΠE

k−1∇v are all computable for each v ∈ Xk
h(E) (cf. [1]). In turn,

we let IEk : H2(E)→W k
h (E) be the local interpolation operator, which is uniquely determined by the

degrees of freedom of W k
h (E), and whose corresponding global operator is denoted ITk : H2(Ω)→W k

h .

The error estimates satisfied by the operators ΠE
k , Π∇,Ek and IEk are given by analogue versions of

(3.3), (3.4) and (3.5), respectively, in which F is replaced with E.
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On the other hand, we also introduce the simplicial submesh Fh of Γ obtained by subdividing each
face F ∈ Fh into the set of triangles that arise after joining each vertex of F with the midpoint of the
disc with respect to which F is star-shaped. Since we are assuming that the meshes satisfy conditions
(A1) and (A2) (cf. Section 3.1), the triangles T ∈ Fh have a shape ratio that is uniformly bounded
with respect to h. According to the above, and in order to approximate the non-virtual boundary
unknowns of our scheme (cf. Section 4.2 below), we now introduce the piecewise polynomial spaces

Λk−1
h :=

{
µh ∈ L2(Γ) : µh|T ∈ Pk−1(T ) ∀T ∈ Fh

}
(4.4)

and
Ψk
h :=

{
ϕh ∈ C0(Γ) : ϕh|T ∈ Pk(T ) ∀T ∈ Fh

}
∩ H

1/2
0 (Γ) . (4.5)

Moreover, we let ΠF
k−1 be the L2(Γ)-orthogonal projection onto Λk−1

h , and let LFk : C0(Γ)→ Ψk
h be the

corresponding global Lagrange interpolation operator of order k. Then, denoting by {Γ1, ...,ΓJ} the
open polygons, contained in different hyperplanes of R3, such that Γ = ∪Jj=1Γj , we now recall from

[52] the following approximation properties of ΠF
k−1 and LFk , which will be used later on.

Lemma 4.1. Assume that µ ∈ H−1/2
0 (Γ) ∩ Hr

b (Γ) for some r ≥ 0. Then∥∥∥µ−ΠF
k−1µ

∥∥∥
−t,Γ

. hmin{r,k}+t ‖µ‖r,b,Γ ∀ t ∈ {0, 1/2} .

Proof. See [52, Theorem 4.3.20].

Lemma 4.2. Assume that ϕ ∈ Hr+1/2
b (Γ) ∩ H1(Γ) for some r > 1/2. Then∥∥∥ϕ− LFkϕ∥∥∥

t,Γ
. hmin{r+1/2,k+1}−t ‖ϕ‖r+1/2,b,Γ ∀ t ∈ {0, 1/2, 1} .

Proof. See [52, Proposition 4.1.50].

4.2 A new variational formulation

We begin by stressing that the variational formulation (2.10) is not valid for a VEM/BEM coupling
in three dimensions because, as noticed from definitions (4.1) and (4.2), the restriction of a VEM
function to the boundary of a given element is not a polynomial function but a virtual function as

well. As a consequence, the term
〈
µh, (

id

2
− K)γvh)

〉
of (3.11) is not computable for vh ∈ W k

h and

µh ∈ Λk−1
h . Moreover, it can be easily shown that, replacing this term by

〈
µh, (

id

2
−K)ΠFk γvh)

〉
in the

formulation of the discrete problem, results in a dramatic loss of accuracy because, as Γ is a polyhedral
Lipschitz boundary, the integral operator K does not yield any further regularity.

Therefore, in order to devise a more suitable VEM/BEM coupling for the three dimensional version
of our model, we need to avoid the interaction of a VEM variable with a BEM variable through a
boundary integral operator. This can be achieved by introducing in what follows, not only the normal
derivative λ := κ∇u · n = ∂ue

∂n , but also the trace ψ := γu = γue, as boundary unknowns in the
formulation. As a consequence, and instead of (2.2), the harmonic solution in the exterior region Oe
is computed now as

ue(x) =

∫
Γ

∂E(|x− y|)
∂ny

ψ(y) dsy −
∫

Γ
E(|x− y|)λ(y) dsy ∀x ∈ Oe , (4.6)
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and hence, the corresponding identities (2.5) and (2.6) become

0 =
( id

2
−K

)
ψ + V λ on Γ , (4.7)

and

λ = −Wψ +
( id

2
−Kt

)
λ on Γ . (4.8)

Then, integrating by parts the first equation in (2.1), adding and subtracting the expression 〈λ, ϕ〉
with arbitrary ϕ ∈ H

1/2
0 (Γ), and imposing weakly the relation ψ = γu in H1/2(Γ), we are led at first

instance to seek (u, ψ, λ) ∈ X := X ×H
1/2
0 (Γ)×H−1/2(Γ) such that∫

Ω
κ∇u · ∇v −

〈
λ, γv − ϕ

〉
−
〈
λ, ϕ

〉
+
〈
µ, γu− ψ

〉
=

∫
Ω
fv (4.9)

for all (v, ϕ, µ) ∈ X. Moreover, incorporating (4.8) and (4.7), respectively, into the third and fourth
terms on the left hand side of (4.9), we arrive at our new variational formulation: Find (u, ψ, λ) ∈ X
such that

A
(
(u, ψ, λ), (v, ϕ, µ)

)
= F(v, ϕ, µ) :=

∫
Ω
fv ∀ (v, ϕ, µ) ∈ X , (4.10)

where
A
(
(u, ψ, λ), (v, ϕ, µ)

)
= A

(
(u, ψ, λ), (v, ϕ, µ)

)
+
〈
Wψ,ϕ

〉
+
〈
µ, V λ

〉
−
〈
λ,
( id

2
−K

)
ϕ
〉

+
〈
µ,
( id

2
−K

)
ψ
〉 (4.11)

and
A
(
(u, ψ, λ), (v, ϕ, µ)

)
= a(u, v) −

〈
λ, γv − ϕ

〉
+
〈
µ, γu− ψ

〉
, (4.12)

with a and its local version aE being defined as in the 2D case (cf. (3.8) with E instead of F ).
Analogously as observed in Section 2, it is easy to see here, thanks again to Lemma 2.1, that A is
bounded and elliptic in X with respect to the usual norm of this product space, and therefore the
well-posedness of (4.10) follows also from a straightforward application of the Lax-Milgram lemma.

Analogously to Section 2, we now stress that the transmission conditions employed in the derivation
of the present continuous formulation are recovered from (4.10) and (4.6). Indeed, taking separately
(v, ϕ) = (0, 0) and (v, µ) = (0, 0) in (4.10), we obtain γu = −V λ +

(
id
2 + K

)
ψ = γue on Γ,

and λ = −Wψ +
(

id
2 −Kt

)
λ = ∂ue

∂n on Γ, respectively. In addition, choosing (ϕ, µ) = (0, 0) in
(4.10), it follows that div

(
κ∇u) = −f in Ω and λ = κ∇u ·n on Γ, and hence λ = κ∇u ·n =

∂ue
∂n on Γ. Finally, knowing that ue can also be represented with γue instead of ψ in (4.6), we arrive
at Wψ = Wγue, and thus the ellipticity of W (cf. (2.8)) yields ψ = γue = γu.

4.3 A first VEM/BEM scheme

Having in mind the finite dimensional subspaces defined in (4.3), (4.4), and (4.5), here we propose the
following discrete formulation for (4.10): Find (uh, ψh, λh) ∈ Xh := W k

h ×Ψk
h × Λk−1

h such that

Ah
(
(uh, ψh, λh), (vh, ϕh, µh)

)
= Fh(vh, ϕh, µh) :=

∫
Ω

ΠTk−1fvh (4.13)

for all (vh, ϕh, µh) ∈ Xh, where

Ah
(
(uh, ψh, λh), (vh, ϕh, µh)

)
= Ah

(
(uh, ψh, λh), (vh, ϕh, µh)

)
+
〈
Wψh, ϕh

〉
+
〈
µh, V λh

〉
−
〈
λh,
( id

2
−K

)
ϕh
〉

+
〈
µh,
( id

2
−K

)
ψh
〉
,

(4.14)
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and

Ah

(
(uh, ψh, λh), (vh, ϕh, µh)

)
= ah(uh, vh) −

∑
F∈Fh

∫
F
λh ΠF

k−1(γvh − ϕh)

+
∑
F∈Fh

∫
F
µh ΠF

k−1(γuh − ψh) ,
(4.15)

with the bilinear form ah being constructed as in Section 3. Namely, denoting by E(E) and F(E) the
sets of edges and faces, respectively, of a given E ∈ Th, we introduce

SEh (v, z) :=
∑

e∈E(E)

∫
e

Πe
kvΠe

kz + h−1
E

∑
F∈F(E)

∫
F

ΠF
k−2vΠF

k−2z ∀ v, z ∈W k
h (E) , (4.16)

set

aEh (v, z) :=

∫
E
κΠE

k−1∇v ·ΠE
k−1∇z + SEh (v −Π∇,Ek v, z −Π∇,Ek z) ∀ v, z ∈ H1(E) , (4.17)

and define
ah(v, z) :=

∑
E∈Th

aEh (v, z) ∀ v, z ∈W k
h . (4.18)

The discrete problem (4.13) is meaningful since SEh (·, ·) is computable on W k
h (E)×W k

h (E). Moreover,

it can be shown that SEh (v, z) scales like aE(v, z) :=
∫
E κ∇v · ∇z on the kernel of Π∇,Ek in W k

h (E).
In other words, the three-dimensional counterpart of (3.7) holds true (cf. [14, Section 5.5]), which
implies, in particular, that we have the corresponding 3D versions of (3.15) and (3.21) as well.

4.4 Solvability and error estimates

We begin this section by introducing further notations to be employed later on. In fact, for any s ≥ 0
we define the broken Sobolev spaces

Hs(Th) :=
∏
E∈Th

Hs(K) , Hs(Fh) :=
∏
F∈Fh

Hs(F ) ,

which are endowed with the Hilbertian norms and corresponding seminorms, given respectively, by

‖v‖2s,Th :=
∑
E∈Th

‖v‖2s,E , ‖ϕ‖2s,Fh :=
∑
F∈Fh

‖ϕ‖2s,F .

and
|v|2s,Th :=

∑
E∈Th

|v|2s,E , |ϕ|2s,Fh :=
∑
F∈Fh

|ϕ|2s,F ,

for all v ∈ Hs(Th) and for all ϕ ∈ Hs(Fh). In addition, we set as usual H0(Th) = L2(Th) and
H0(Fh) = L2(Fh).

Now, concerning the solvability of (4.13), we first notice, in virtue of the comments at the end of
the previous section, that the boundedness of Ah follows exactly as proved for the 2D case (cf. Section
3.3). Then, we continue the analysis with the Xh-ellipticity of Ah with respect to the usual product
norm of X.

Lemma 4.3. There holds

Ah
((
vh, ϕh, µh

)
,
(
vh, ϕh, µh

))
& ‖(vh, ϕh, µh)‖2 (4.19)

for all
(
vh, ϕh, µh

)
∈ Xh.
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Proof. Given (vh, ϕh, µh) ∈ Xh, it follows from (4.14) and (4.15) that

Ah
((
vh, ϕh, µh

)
,
(
vh, ϕh, µh

))
= ah(vh, vh) +

〈
Wϕh, ϕh

〉
+
〈
µh, V µh

〉
,

and hence the 3D version of (3.21) and Lemma 2.1 finish the proof.

Consequently, applying once again the Lax-Milgram lemma, we deduce that (4.13) has a unique
solution (uh, ψh, λh) ∈ Xh. We now aim to establish the corresponding a priori error estimate. To
this end, and following the same notations from Section 3.1, for each planar face F ∈ Fh we let ΠF

k

be the L2(F )-orthogonal projection onto Pk(F ) with vectorial counterpart ΠF
k . In addition, ΠFk and

ΠFk stand for their global extensions to L2(Γ) and L2(Γ)2, respectively, which are assembled cellwise.
Moreover, the approximation properties of ΠF

k (and hence of ΠF
k , ΠFk and ΠFk ) are exactly those given

by (or derived from) (3.3).

The following result corresponds to the 3D analogue of Theorem 3.1.

Theorem 4.1. Under the assumption that u ∈ X ∩∏I
i=1 H2(Ωi), there holds

‖(u, ψ, λ)− (uh, ψh, λh)‖ .
∥∥f −ΠTk−1f

∥∥
0,Ω

+ ‖(u, ψ, λ)− (ITk u,LFkψ,ΠF
k−1λ)‖

+ sup
(wh,φh,ξh)∈Xh
(wh,φh,ξh)6=0

∣∣A((u, ψ, λ), (wh, φh, ξh)
)
−Ah

(
(ITk u,LFkψ,ΠF

k−1λ), (wh, φh, ξh)
)∣∣

‖(wh, φh, ξh)‖ .
(4.20)

Proof. We follow basically the same sequence of arguments provided in the proof of Theorem 3.1.
Indeed, according to the definitions of F (cf. (4.10)), Fh (cf. (4.13)), A (cf. (4.11) - (4.12)) and Ah
(cf. (4.14) - (4.15)), which yields, in particular(

A− Ah
)(

(vh, ϕh, µh), (wh, φh, ξh)
)

=
(
A−Ah

)(
(vh, ϕh, µh), (wh, φh, ξh)

)
for all (vh, ϕh, µh), (wh, φh, ξh) ∈ Xh, and using the boundedness of A, we find that a direct application
of the first Strang Lemma (cf. [27, Theorem 4.1.1]) to the context given now by (4.10) and (4.13),
gives

‖(u, ψ, λ)− (uh, ψh, λh)‖ .
∥∥f −ΠTk−1f

∥∥
0,Ω

+ inf
(vh,ϕh,µh)∈Xh

{
‖(u, ψ, λ)− (vh, ϕh, µh)‖

+ sup
(wh,φh,ξh)∈Xh
(wh,φh,ξh) 6=0

∣∣A((u, ψ, λ), (wh, φh, ξh)
)
−Ah

(
(vh, ϕh, µh), (wh, φh, ξh)

)∣∣
‖(wh, φh, ξh)‖

}
.

(4.21)

Next, the hypothesis guarantees that both u and ψ = γu are continuous, and hence ITk u and LFkψ are

meaningful. In addition, the fact that u ∈ ∏I
i=1 H2(Ωi) implies that λ = κ∇u · n ∈ H

1/2
b (Γ) ⊆

L2(Γ), and hence ΠF
k−1λ is meaningful as well. In this way, taking in particular (vh, ϕh, µh) =

(ITk u,LFkψ,ΠF
k−1λ) ∈ Xh in (4.21) we arrive at (4.20) and conclude the proof.

Similarly to our analysis for the 2D case, we now aim to estimate the supremum in (4.20). For this
purpose, we first observe from the definitions of A (cf. (4.12)) and Ah (cf. (4.15)), and using that
ψ = γu, that

A
(
(u, ψ, λ), (wh, φh, ξh)

)
−Ah

(
(ITk u,LFkψ,ΠF

k−1λ), (wh, φh, ξh)
)

= a(u,wh)− ah(ITk u,wh)

− 〈λ, γwh − φh〉 +

∫
Γ

ΠF
k−1λΠFk−1(γwh − φh) −

∫
Γ
ξh ΠFk−1(γITk u− LFkψ)

(4.22)
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for all (wh, φh, ξh) ∈ Xh. Then, recalling that κ has been assumed to be piecewise constant, and
noting that certainly ∇ΠE

k u ∈ Pk−1(E)3, we deduce, according to the definition of aEh (cf. (4.17)),
that

aEh (ΠE
k u,wh) = aE(ΠE

k u,wh) ∀E ∈ Th , ∀wh ∈W k
h (E) ,

and therefore, adding and subtracting ΠE
k u in the first components of aE and aEh , we readily find that

a(u,wh)− ah(ITk u,wh) =
∑
E∈Th

{
aE(u−ΠE

k u,wh) + aEh (ΠE
k u− IEk u,wh)

}
∀wh ∈W k

h .

In this way, thanks to the foregoing identity and the boundedness of aE and aEh , the latter being
proved similarly to the proof of Lemma 3.2, and then adding and subtracting u in the expression
resulting from bounding aEh , we arrive at∣∣a(u,wh)− ah(ITk u,wh)

∣∣ . {
|u− ITk u|1,Ω + |u−ΠTk u|1,Th

}
|wh|1,Ω . (4.23)

On the other hand, noting that ΠFk−1(γwh−φh) ∈ Λk−1
h (cf. (4.4)), and employing the orthogonality

condition satisfied by ΠF
k−1, as well as the symmetry of ΠFk−1, we obtain

−〈λ, γwh − φh〉 +

∫
Γ

ΠF
k−1λΠFk−1(γwh − φh) = −〈λ, γwh − φh〉 +

∫
Γ
λΠFk−1(γwh − φh)

= −〈λ, γwh − φh〉 +

∫
Γ

ΠFk−1λ (γwh − φh) = 〈ΠFk−1λ− λ, γwh − φh〉 ,

from which, according to the duality pairing between H−1/2(Γ) and H1/2(Γ), and using the trace
theorem, we obtain∣∣ ∫

Γ
ΠF
k−1λΠFk−1(γwh − φh) − 〈λ, γwh − φh〉

∣∣ . ‖λ−ΠFk−1λ‖−1/2,Γ

{
‖wh‖1,Ω + ‖φh‖1/2,Γ

}
. (4.24)

In turn, adding and subtracting γu = ψ, we readily get

−
∫

Γ
ξh ΠFk−1(γITk u− LFkψ) =

∫
Γ
ξh ΠFk−1

(
γ(u− ITk u)− (ψ − LFkψ)

)
,

from which, applying the Cauchy-Schwarz inequality in L2(Γ) and the inverse inequality satisfied by
Λk−1
h (cf. (4.4)), we find that

∣∣ ∫
Γ
ξh ΠFk−1(γITk u− LFkψ)

∣∣ . h−1/2
{
‖γ(u− ITk u)‖0,Γ + ‖ψ − LFkψ‖0,Γ

}
‖ξh‖−1/2,Γ . (4.25)

Consequently, using (4.23), (4.24), and (4.25) to bound (4.22), and then replacing the resulting esti-
mate into (4.20), we arrive at the following a priori error estimate

‖(u, ψ, λ)− (uh, ψh, λh)‖ .
∥∥f −ΠTk−1f

∥∥
0,Ω

+ |u− ITk u|1,Ω + ‖ψ − LFkψ‖1/2,Γ

+ ‖λ−ΠF
k−1λ‖−1/2,Γ + |u−ΠTk u|1,Th + ‖λ−ΠFk−1λ‖−1/2,Γ

+ h−1/2
{
‖γ(u− ITk u)‖0,Γ + ‖ψ − LFkψ‖0,Γ

}
.

(4.26)

Analogously to the 2D case, the foregoing equation constitutes the key estimate to derive the rates
of convergence of the present 3D VEM/BEM scheme. Additionally, and in order to bound one of the
terms involved, we also need the scaled trace inequality, which is stated as follows.
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Lemma 4.4. For each E ∈ Th there holds

‖v‖20,∂E .
{
h−1
E ‖v‖20,E + hE |v|21,E

}
∀ v ∈ H1(E) . (4.27)

Proof. See [31, Lemma 1.49].

Then, we have the following main result.

Theorem 4.2. Under the assumptions that u ∈ X ∩∏I
i=1 Hk+1(Ωi) and f ∈∏I

i=1 Hk(Ωi), there holds

‖(u, ψ, λ)− (uh, ψh, λh)‖ := ‖u− uh‖1,Ω + ‖ψ − ψh‖1/2,Γ + ‖λ− λh‖−1/2,Γ

. hk
I∑
i=1

{
‖u‖k+1,Ωi

+ ‖f‖k,Ωi
}
.

(4.28)

Proof. We begin by noticing, thanks to the regularity assumption on u, that ψ = γu ∈ H
k+1/2
b (Γ)

and λ = κ∇u · n ∈ H
k−1/2
b (Γ). In what follows we identify the terms on the right hand side of (4.26)

according to the order they have been written there, from left to right and from up to down. Then,
applying the 3D versions of (3.3) (to the first and fifth terms), (3.5) (to the second term), and Lemma
3.1 (to the sixth term), and using by the trace theorem that ‖λ‖k−1/2,b,Γ ≤ c

∑I
i=1 ‖u‖k+1,Ωi , we

obtain
‖f −ΠTk−1f‖0,Ω + |u− ITk u|1,Ω + |u−ΠTk u|1,Th + ‖λ−ΠFk−1λ‖−1/2,Γ

. hk
I∑
i=1

{
‖f‖k,Ωi + ‖u‖k+1,Ωi

}
.

(4.29)

In turn, invoking Lemmas 4.2 and 4.1 to bound the third and fourth terms, respectively, and employing
also by trace theorem that ‖ψ‖k+1/2,b,Γ ≤ c

∑I
i=1 ‖u‖k+1,Ωi , we find that

‖ψ − LFkψ‖1/2,Γ + ‖λ−ΠF
k−1λ‖−1/2,Γ

. hk
{
‖ψ‖k+1/2,b,Γ + ‖λ‖k−1/2,b,Γ

}
. hk

I∑
i=1

‖u‖k+1,Ωi .
(4.30)

On the other hand, another straightforward application of Lemma 4.2, but now to the eighth term,
gives

‖ψ − LFkψ‖0,Γ . hk+1/2 ‖ψ‖k+1/2,b,Γ ,

which yields

h−1/2 ‖ψ − LFkψ‖0,Γ . hk
I∑
i=1

‖u‖k+1,Ωi . (4.31)

Finally, taking advantage of the scaled trace inequality (4.27), and making use once again of the 3D
version of (3.5), we obtain that for each face F of an element E ∈ Th there holds

h−1
F

∥∥γ(u− IEk u)∥∥2

0,F
≤ h−1

F

∥∥γ(u− IEk u)∥∥2

0,∂E

. h−2
E

∥∥u− IEk u∥∥2

0,E
+
∣∣u− IEk u∣∣1,E . h2k

E ‖u‖2k+1,E ,

from which we deduce that

h−1/2
∥∥γ(u− ITk u)∥∥0,Γ

. hk
I∑
i=1

‖u‖k+1,Ωi
. (4.32)

In this way, utilizing (4.29), (4.30), (4.31), and (4.32) in (4.26), we arrive at (4.28), thus ending the
proof.
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4.5 A second VEM/BEM scheme

Having in mind again the subspaces defined in (4.3), (4.4), and (4.5), we now propose the following
alternative VEM/BEM scheme for (4.10): Find (uh, ψh, λh) ∈ Xh := W k

h ×Ψk
h × Λk−1

h such that

Bh
(
(uh, ψh, λh), (vh, ϕh, µh)

)
= Fh(vh, ϕh, µh) :=

∫
Ω

ΠTk−1fvh (4.33)

for all (vh, ϕh, µh) ∈ Xh, where

Bh
(
(uh, ψh, λh), (vh, ϕh, µh)

)
= Bh

(
(uh, ψh), (vh, ϕh)

)
+
〈
Wψh, ϕh

〉
+
〈
µh, V λh

〉
−
〈
λh,
( id

2
−K

)
ϕh
〉

+
〈
µh,
( id

2
−K

)
ψh
〉
,

(4.34)

and

Bh

(
(uh, ψh), (vh, ϕh)

)
= ah(uh, vh) −

∑
F∈Fh

∫
F
κΠF

k−1∇uh · nΠF
k−1(γvh − ϕh)

+
∑
F∈Fh

∫
F
κΠF

k−1∇vh · nΠF
k−1(γuh − ψh) +

∑
F∈Fh

∫
F
h−1
F ΠF

k−1(γuh − ψh) ΠF
k−1(γvh − ϕh),

(4.35)

with ah as defined in Section 4.3. Note that the last three expressions defining Bh resembles those
employed for the non-symmetric interior penalty discontinuous Galerkin method (cf. [31]).

Throughout this section we denote by hT ∈ P0(Th) the piecewise constant function defined by
hT |E := hE ∀E ∈ Th. Similarly, hF ∈ P0(Fh) is given by hF |F := hF ∀F ∈ Fh. Then, it readily
follows from (4.34), (4.35), the 3D version of (3.21), and Lemma 2.1, that Bh is Xh-elliptic with respect
to the norm ||| · |||, whose square is defined as

|||(vh, ϕh, µh)|||2 := |vh|21,Ω + ‖ϕh‖21/2,Γ + ‖µh‖2−1/2,Γ + ‖h−1/2
F ΠFk−1(γvh − ϕh)‖20,Fh (4.36)

for all (vh, ϕh, µh) ∈ Xh. As a consequence, the VEM/BEM scheme (4.33) admits a unique solution
(uh, ψh, λh) ∈ Xh. Furthermore, the bilinear form A (cf. (4.11)), being bounded with respect to the

usual product norm of X := X × H
1/2
0 (Γ) × H−1/2(Γ), is certainly bounded with respect to ||| · ||| as

well. In this way, assuming from now on that u ∈ X ∩∏I
i=1 H2(Ωi), and proceeding analogously to

the proof of Theorem 4.1, in particular applying the first Strang Lemma (cf. [27, Theorem 4.1.1]) to
the context given by (4.10) and (4.33), we deduce that

|||(u, ψ, λ)− (uh, ψh, λh)||| .
∥∥f −ΠTk−1f

∥∥
0,Ω

+ |||(u, ψ, λ)− (ITk u,LFkψ,ΠF
k−1λ)|||

+ sup
(wh,φh,ξh)∈Xh
(wh,φh,ξh)6=0

∣∣A((u, ψ, λ), (wh, φh, ξh)
)
−Bh

(
(ITk u,LFkψ), (wh, φh)

)∣∣
|||(wh, φh, ξh)||| .

(4.37)

Next, we observe from the definitions of A (cf. (4.12)) and Bh (cf. (4.35)), and using again that
ψ = γu, that

A
(
(u, ψ, λ), (wh, φh, ξh)

)
−Bh

(
(ITk u,LFkψ), (wh, φh)

)
= a(u,wh)− ah(ITk u,wh)

− 〈λ, γwh − φh〉 +

∫
Γ
κΠFk−1∇ITk u · nΠFk−1(γwh − φh)

−
∫

Γ
κΠFk−1∇wh · nΠFk−1(γITk u− LFkψ)

−
∫

Γ
h−1
F ΠFk−1(γITk u− LFkψ) ΠFk−1(γwh − φh)

(4.38)
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for all (wh, φh, ξh) ∈ Xh. Since the expression in the first row of (4.38) has already been estimated
by (4.23), we now proceed to derive suitable upper bounds for the remaining three rows. Indeed, we
begin by recalling that κ is piecewise constant and that λ = κ∇u · n. Hence, adding and subtracting
u to ITk u, and using that κΠFk−1∇u ·n ∈ Pk−1(Fh) and nΠFk−1(γwh−φh) ∈ Pk−1(Fh)3, and bearing

in mind the orthogonality conditions of ΠFk−1 and ΠFk−1, we can write

− 〈λ, γwh − φh〉 +

∫
Γ
κΠFk−1∇ITk u · nΠFk−1(γwh − φh)

=

∫
Γ
κΠFk−1∇

(
ITk u− u

)
· nΠFk−1(γwh − φh)

−
∫

Γ
κ(∇u−ΠFk−1∇u) · n(γwh − φh)

=

∫
Γ
h

1/2
F κΠFk−1∇

(
ITk u− u

)
· nh−1/2

F ΠFk−1(γwh − φh)

−
∫

Γ
κ(∇u−ΠFk−1∇u) · n

{
(γwh − φh)−ΠFk−1(γwh − φh)

}
,

from which applying Cauchy-Schwarz’s inequality, the approximation property (3.3), and the trace
theorem, we find that∣∣∣〈λ, γwh − φh〉 − ∫

Γ
κΠFk−1∇ITk u · nΠFk−1(γwh − φh)

∣∣∣
.
{
‖h1/2
F ∇(u− ITk u)‖0,Fh + ‖h1/2

F (∇u−ΠFk−1∇u)‖0,Fh
}
|||(wh, φh, ξh)||| .

(4.39)

For the third row of (4.38) we need the following inverse inequality for the VEM, which has been
proved in [26] and [56].

Lemma 4.5. For each F ∈ Fh there holds

|v|1,F . h−1
F ‖v‖0,F ∀ v ∈ Xk

h(F ) . (4.40)

Proof. See [26, Theorem 3.6] and [56, Lemma 7.1].

Then, employing Cauchy-Schwarz’s inequality, adding and subtracting ψ = γu, and applying (4.40)
at the last step, we obtain∫

Γ
κΠFk−1∇wh · nΠFk−1(γITk u− LFkψ) =

∫
Γ
κΠFk−1∇(wh −ΠT0 wh) · nΠFk−1(γITk u− LFkψ)

. ‖h−1/2
F

(
LFkψ − γITk u

)
‖0,Fh ‖h

1/2
F ΠFk−1∇(wh −ΠT0 wh)‖0,Fh

.
{
‖h−1/2
F

(
ψ − LFkψ)‖0,Fh + ‖h−1/2

F γ
(
u− ITk u

)
‖0,Fh

}
‖h1/2
F ΠFk−1∇(wh −ΠT0 wh)‖0,Fh

.
{
‖h−1/2
F

(
ψ − LFkψ)‖0,Fh + ‖h−1/2

F γ
(
u− ITk u

)
‖0,Fh

}
‖h−1/2
F (wh −ΠT0 wh)‖0,Fh ,

and hence, noting additionally by the scaled trace inequality (4.27) and the approximation property
(3.3) that

h−1
F ‖wh −ΠT0 wh‖20,F .

{
h−2
E ‖wh −ΠT0 wh‖20,E + |wh|21,E

}
. |wh|21,E ∀F ⊆ ∂E, ∀E ∈ Th ,

we conclude that∣∣∣ ∫
Γ
κΠFk−1∇wh · nΠFk−1(γITk u− LFkψ)

∣∣∣
.
{
‖h−1/2
F

(
ψ − LFkψ)‖0,Fh + ‖h−1/2

F γ
(
u− ITk u

)
‖0,Fh

}
|wh|1,Ω .

(4.41)
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In turn, concerning the last row of (4.38), we apply again Cauchy-Schwarz’s inequality and the fact
that ψ = γu, to readily get∣∣∣ ∫

Γ
h−1
F ΠFk−1(γITk u− LFkψ) ΠFk−1(γwh − φh)

∣∣∣
. ‖h−1/2

F ΠTk−1(LFkψ − γITk u)‖0,Fh ‖h
−1/2
F ΠFk−1(γwh − φh)‖0,Fh

.
{
‖h−1/2
F

(
ψ − LFkψ

)
‖0,Fh + ‖h−1/2

F γ
(
u− ITk u

)
‖0,Fh

}
|||(wh, φh, ξh)||| .

(4.42)

In this way, we are able to establish now the following main result of this section.

Theorem 4.3. Under the assumptions that u ∈ X ∩∏I
i=1 H2(Ωi), there holds

|||(u, ψ, λ)− (uh, ψh, λh)||| .
{
|u− ITk u|1,Ω + |u−ΠTk u|1,Th + ‖f −ΠTk−1f‖0,Ω

+ ‖ψ − LFkψ‖1/2,Γ + ‖λ−ΠF
k−1λ‖−1/2,Γ + ‖h−1/2

F
(
ψ − LFkψ

)
‖0,Fh

+ ‖h−1/2
F (u− ITk u)‖0,Fh + ‖h1/2

F ∇(u− ITk u)‖0,Fh + ‖h1/2
F (∇u−ΠFk−1∇u)‖0,Fh

}
.

(4.43)

Proof. It follows from the Strang estimate (4.37), the definition of the norm ||| · ||| (cf. (4.36)), and
the bound for the supremum in (4.37), which results after using (4.23), (4.39), (4.41), and (4.42) in
(4.38).

The rates of convergence for our second VEM/BEM scheme, which are the same as those provided
by Theorem 4.2 for the first approach, are proved next.

Theorem 4.4. Under the assumptions that u ∈ X ∩∏I
i=1 Hk+1(Ωi) and f ∈∏I

i=1 Hk(Ωi), there holds

|||(u, ψ, λ)− (uh, ψh, λh)||| . hk
I∑
i=1

{
‖u‖k+1,Ωi

+ ‖f‖k,Ωi
}
. (4.44)

Proof. The first seven terms on the right hand side of (4.43) were already bounded in the proof of
Theorem 4.2, and thus we only need to bound the last two. Then, given F ∈ Fh and E ∈ Th such
that F ⊆ ∂E, the trace inequality (4.27) and the approximation property (3.5) imply

hF ‖∇(u− IEk u)‖20,F . ‖∇(u− IEk u)‖20,E + h2
E |∇(u− IEk u)|21,E . h2k

E ‖u‖2k+1,E ,

from which we obtain that

‖h1/2
F ∇(u− ITk u)‖0,Fh . hk

I∑
i=1

‖u‖k+1,Ωi
. (4.45)

In turn, applying the approximation property (3.3) to ∇u ∈ ∏I
i=1 Hk−1/2(∂Ωi)

3, we deduce that for
each F ∈ Fh there holds

hF ‖∇u−ΠF
k−1∇u‖20,F . h2k

F ‖∇u‖2k−1/2,F ,

which, using the trace theorem in each subdomain Ωi containing faces of Fh on its boundary, yields

‖h1/2
F
(
∇u−ΠF

k−1∇u
)
‖0,Fh . hk

I∑
i=1

‖u‖k+1,Ωi
. (4.46)

In this way, (4.43) together with (4.45), (4.46), and the aforementioned estimates from Theorem 4.2,
lead to (4.44), which finishes the proof.
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We end the paper by remarking that the analysis developed in Sections 3.4 and 3.5 can be easily
extended to the VEM/BEM approaches from Sections 4.3 and the present one, thus providing rates

of convergence for ‖u− uh‖0,Ω and for
{
‖u− ûh‖0,Ω + h |u− û|1,b,Ω

}
in this 3D case as well.
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2018-31 Rodolfo Araya, Rodolfo Rodŕıguez, Pablo Venegas: Numerical analysis of
a time-domain elastoacoustic problem
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