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This paper deals with the numerical analysis of a system of second-order in time partial differential equa-
tions modeling the vibrations of a coupled system that consists of an elastic solid in contact with an
inviscid compressible fluid. We analyze a weak formulation with the unknowns in both media being
the respective displacement fields. For its numerical approximation, we propose first a semi-discrete in
space discretization based on standard Lagrangian elements in the solid and Raviart-Thomas elements
in the fluid. We establish its wellposedness and derive error estimates in appropriate norms for the pro-
posed scheme. In particular, we obtain an L°°(L2) optimal rate of convergence under minimal regularity
assumptions of the solution, which are proved to hold for appropriate data of the problem. Then, we
consider a fully discrete approximation based on a family of implicit finite difference schemes in time,
from which we obtain optimal error estimates for sufficiently smooth solutions. Finally, we report some
numerical results, which allow us to assess the performance of the method. These results also show that
the numerical solution is not polluted by spurious modes as is the case with other alternative approaches.

Keywords: fluid-structure interaction; linear hyperbolic equations; non-conforming finite element dis-
cretization; error estimates.

1. Introduction

The aim of this paper is to analyze a numerical scheme to solve the elastoacoustic transient problem,
namely, the evolution in time of a coupled system that consists of an elastic structure in contact with an
acoustic fluid.

Different formulations have been tried to solve elastoacoustic problems, mainly in the frequency
domain. While displacements are typically used for the solid, different variables have been used for
the fluid: pressure (Zienkiewicz & Taylor (1991)), displacement potential (Morand & Ohayon (1979)),
displacements (Kiefling & Feng (1976)), velocity potential (Everstine (1981)) or combinations of some
of them (Morand & Ohayon (1995)). See also Garcia et al. (2017a,b) for formulations in which pressure-
stress variables are used instead of displacements for the solid.

We consider in this paper a pure displacements formulation, so that the same variable is used in
both media, what makes easy to handle different interface conditions (see, for instance, Bermidez &
Rodriguez (1999)). A drawback of this formulation is the fact that the fluid displacements do not lie in
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H! but in H(div). In spite of this, the first attempts to numerically solve the corresponding free-vibrations
eigenproblem were based on using H' finite elements. However, such a procedure was readily seen to
introduce spurious modes, which pollute the physical spectrum (Hamdi ez al. (1978)). An alternative
based on using H(div) elements in the fluid was proposed and analyzed in Bermidez & Rodriguez
(1994), Bermudez et al. (1995) and Rodriguez & Solomin (1996), where in particular it was shown that
the resulting method was free of spurious modes. In this paper, we consider a similar space discretization
for the time domain elastoacoustic problem.

We consider first a continuous-time discrete Galerkin method and study its convergence. As in
Bermidez et al. (1995), we use a non-conforming space approximation based on lowest-order La-
grangian and Raviart-Thomas elements in the solid and the fluid domains, respectively. We prove
optimal L*(L?) error estimate of order &(h"), where / is the mesh size and r € (0,1] depends on
the regularity of the solution. The result is achieved under minimal regularity assumptions, which are
proved to hold for appropriate data of the problem. The techniques used are based on classical results;
see Baker (1976) for the wave equation and the more recent paper Basson & van Rensburg (2013) for
an abstract setting. However, the results from the latter can not be directly applied to our setting due to
the non-conforming character of the approximation.

Next, we study a fully discrete approximation resulting from applying a second-order Newmark-
like scheme for the time discretization of the semidiscrete problem (see Bermudez et al. (2003), where
a similar approach was proved to be stable). Following the work of Karaa (2011) for the wave equation,
we prove that the error exhibits a combined space-time asymptotic behavior of order &' (1" 4 At?), where
At is the time step.

The outline of the paper is as follows. In Section 2, we introduce the model and some functional
spaces and obtain a well posed weak formulation. In Section 3, we introduce space discretizations
for the solid and fluid displacements based on standard lowest-order Lagrangian and Raviart-Thomas
elements, respectively. Then, we introduce a projector and use it to prove some properties that will
be used for the error analysis. Section 4 is devoted to obtain an error estimate of the semi-discrete in
space approximation under minimal regularity assumptions of the solution, which are proved to hold for
appropriate data of the problem. In Section 5, we combine it with a family of implicit finite difference
schemes in time and prove error estimates for the resulting full discretization. Finally, in Section 6,
we report numerical results obtained for a test example, which show the convergence of the proposed
numerical method. We also compare these results with those arising from an alternative H'-approach
usual in the engineering practice.

2. Problem statement

We consider a vessel completely filled with a fluid. Let Qr and Qg C R¢, d = 2,3, be the polyhedral
(polygonal for d = 2) domains occupied by the fluid and the solid, respectively, as shown in Fig. 1.
Although all the forthcoming analysis holds true for d =2 as well as d = 3, for the sake of definiteness
we will use three-dimensional (3D) terminology throughout the paper. We assume that Qf is simply
connected. Let I] denote the interface between the solid and the fluid and » its unit normal vector
pointing towards Qg. The exterior boundary of the solid is the union of I'p and Iy, the structure being
fixed along I'p. Finally, let v be the unit outward normal vector along Iy.
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FI1G. 1: Physical domain.

We consider the following notation for the physical quantities in the fluid:
o ulis the displacement vector,
e ¢ is the sound velocity,
e pr is the density
and in the solid:

o uS is the displacement vector,

ps is the density,

As and pg are the Lamé coefficients,

0ij =As (L0, &w) &;j +2us€j, i, j=1,....d.

1
€ (u5) is the strain tensor defined by &;; := 3 (8uis/8xj +8u§/8xi) . hj=1,....d,

30f28

o (us) is the stress tensor, which we assume related with the strains by Hooke’s law, namely,

When surface and volumetric loads g and f are applied on Iy and Qg, respectively, the equations

governing the motion of the coupled system are

psouu’ —dive (u) = f  in Qs,
prou’ —V (ppc*diva™) =0 in Qp,
w-n=u"-n on I,

c (us) -n=ppc’divutn  onlj,
o) v=g only,

=0 onlp,

which must be completed with initial conditions

u(0) = uj, ut(0) = ufb), ou’(0) = u} and dut (0) =utb.

.1)
2.2)
2.3)
2.4)
2.5)
(2.6)

2.7)
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Throughout this paper, we use standard notation for Sobolev spaces, norms and seminorms. More-

over, we introduce the spaces Hf. (Qs)¢ := {vS € H'(2s)?: v =0onIp}, which is a closed sub-

space of H! (Qs) , H(div, QF) := {v € Lz(QF)d divvF € L?*(Qp)}, endowed with the norm defined
F F F

by ||v HH div,Qp) =|v HL2 @t T [divy ||L2 op) and

H®! (div, Q) == {v € H(Qp)? : divyF eH‘(QF)} a>0,

with norm defined by Hv ||vFH12_Ia(QF> + HdivvF le‘II(-QF)' We define the product spaces

Fl12
HHO‘ 1(div,QF)
H:=17(Qs)" xL*(Qr)? and X :=Hp (Qs)¢ x H(div, QF)

endowed with the corresponding product norms || - ||z and || - [|x, respectively. We will use the notation

v:= (v3,vF) for functions in H. (-,-) for the classical inner product in H. We will also denote (-, ),

where S = Qg, QF, I} or Ij, the respective L2(S)¢ inner product and (-, ) p the weighted inner product

in H defined by
(u,v), ::/ psus-vs+/ prut V.
QS QF

Finally, we define the following spaces:

X% = H'*B(Qg)? x H*!(div,QF), «,B >0, Vi={veX: v’ n=v"-nonl},

G:= {(v, Vg): veL(Qs)?, g€ H' (QF)} and K := {0} x Ho(div’, Qr),
where Ho(div’, Qp) := {vF € H(div, Qp) : divyf =0in Qpand vF-n=0o0nI7}.
The following lemma gives a simple decomposition result of H and V which will be used below.
LEMMA 2.1 Let Gy := GNYV. Then,
(a) H =K & G is an orthogonal decomposition in H.

(b) V = K & Gy is an orthogonal decomposition in both, H and X inner products.

(c) There exists & > 1/2 and C > 0 such that, for all (¢%,@F) € Gy, there exists ¢ € H'*¥(Qp),
such that @F = Vg and

194l e <€ [V 0 200+ 195 11 gy

Proof. Notice that (a) follows immediately from the Helmholtz decomposition, whereas (b) follows
from (a) and the fact that K C V. Note also that orthogonality in X and H coincide for functions in K.
Finally, let (q)s, (pF) € Gy. To prove (c), notice that @ = V¢, where ¢ is a solution of the following
Neumann problem:

{div (V) :Sdiv o inQF, 28

Vg-n=¢>-n onlj.

The compatibility condition of this problem follows from the definition of the space V. Moreover, from
standard additional regularity results (Grisvard (2011); Dauge (1988)) we have that Vg € H“(.QF)d for
some a > 1/2. O



NUMERICAL ANALYSIS OF A TIME-DOMAIN ELASTOACOUSTIC PROBLEM 5 of 28

To obtain a variational formulation of (2.1)—(2.7), we test equations (2.1) and (2.2) with vS and vF
such that v = (v3,vF) € V, respectively, to write

/QSPs8nuS‘vS+/QSa(uS) :e(vs)Jr/FIG(uS)n-vs—/FNo(us)V~vs: st~vS

and
/ pp8,,uF-vF+/ ppczdiqudivvF—/ prctdivatvF .n = 0.
Qp Qp I

By taking into account the interface and boundary conditions (2.4)—(2.5) and the fact that, for v € V,

vF'-n =5 .non I, we arrive at the following problem.

Problem 2.1 Given (u,uf)) €V, (uf,u}) € H, f €L? (0,T;L(2s)?) and g € L* (0, T;L*(I})?), find
u € L%(0,7T;V) with du € L?(0,T;H) and d,,u € L?>(0,T;X") such that

/ Ps O -vs—i—/ pp8,,uF-vF+/ O‘(us) :s(vs) + [ prctdiva® divvF
Qg fo Qg O
:/ fvS+ [ gvs  Wwev (29
Qg IN
and
uS(0) = ul, ut(0) = uf), ouS(0) = u} and ut(0) = uf. (2.10)

Let us remark that the first two integrals in the equation above actually represent the duality pairing
(O u,pv)xryx, which is well defined. On the other hand, in view of (Dautray & Lions, 1992, Chapter
XVIIL, §1 Theorem 1), we known that u € C(0,T;H) and d,u € C(0,T;X’). Consequently the equalities
(2.10) above make sense.

Next, we define the bilinear symmetric form a : X x X — R by

a(v,w):= /Q prc? divvF divw® + A o(v’):e(w®), v=(0"), w=w"w)eX.
F S
It is clear that, for all ¥ > 0, there exists ¢ > 0 such that
awv)+y|vE=clvly  WeX. 2.11)
The existence and uniqueness of the solution # to Problem 2.1 is a consequence of the following
result (see, (Bermudez et al., 2003, Theorem 1) and Santamarina (2002)).
THEOREM 2.2 (Existence) If f € L? (0,7;L?(Qs)?) and g € H' (0,T;L*(IX)?), then there exists a

unique solution to Problem 2.1, which satisfies

ucl”(0,T;V) and JucL”(0,T;H).

3. Finite element space discretization

In this section, we introduce finite element spaces to approximate V in Problem 2.1. We notice that
the equations for solid and fluid displacements involve different differential operators and functional
spaces. Then, it makes sense to use different type of finite elements for each of them to discretize the
variational problem. In fact, when those spaces are not chosen properly, non-physical oscillations may
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appear as will be shown in Section 6. In Bermudez et al. (1995), a discretization avoiding spurious
modes and leading to optimal order computation of eigenvalues and eigenfunctions was introduced
and analyzed for the corresponding free-vibrations spectral problem. In this section we will use the
same space discretization for the time-domain problem. Let us remark that a similar approach was
proposed in Bermudez et al. (2003), which was proved to be stable, although no convergence analysis
was performed.

We consider a regular family of triangulations th and ﬂhs of Qf and Qg, respectively, such that I'p
and Iy are union of faces of tetrahedra in ﬂhs. We also assume that the meshes are compatible on I in
the sense that all faces of tetrahedra in %ls lying on I are faces of tetrahedra in .Z;F, too.

For space discretization we use standard continuous piecewise linear elements for the solid displace-
ment:

L= {vg eH'(Qs): vi|r e P((T)? VT € yhs}7

whereas for the fluid displacement we use lowest-order Raviart-Thomas elements:
Ry :={v, € H(div;QF) : |7 €RTo(T) VT € F},

where
RT((T) := {v}j ceP(T): vi(x)=a+bx,acR) beR, xc T}.

Since imposing the kinematic constrain (2.4) in the discrete space would be too stringent, following
Bermiudez et al. (1995) we do it in the following weak sense:

/ui-n:/ up-n  forall faces E C Ij. (3.1)
E E

Thus, the discrete analogue of V is
V.= {(uz,ug) € L, x Ry, satisfying (3.1) and u® =0on FD} .

From the definition of the continuous space V and its discrete counterpart V, it can be seen that we
are dealing with a non-conforming approximation of Problem 2.1. Indeed, in general uz ‘n# u,f -non
It and, then, V,, ¢ V.

To deal with this non-conforming approximation, the following estimate will be used in the sequel.
The same result can be found in Bermidez et al. (1995) in a two-dimensional (2D) setting. For the sake
of completeness, we include an elementary proof. Here and thereafter, we will denote by C a generic
positive constant, not necessarily the same at each occurrence, but always independent of the mesh-size
h and, in the following sections, of the time-step At, too.

LEMMA 3.1 Letz, = (23,2}) € V, and w¥ € H"!(div, QF). Then,
: F/F S : F S
/Frdlvw (zh —2p) - < Chldivw' |y o |2 g0 -

Proof.  Let zj, € V), and wF € H(div,QF) be such that divw" € H'(Qg). For any face E C Ij, let
Tr € Zf and Ty € le be the tetrahedra such that 9T N dTr = E. Let Pg denote the L?(E)-projection
of H'/2(E) onto the constants. Since z} -n = Pg (2} -n), we have that

/divwF (zl}f—zz)m:/ [divw" — P (divw")] [Pe (25 -n) — 2} -n]
E E

< ||divw® — Pg (divw") HL2(E) [Pz (2 -n) — z; '"||L2(E)'
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If Pr, denotes the L?(Tr)-projection of H'(7r) onto the constants, from a local trace theorem and
standard error estimates we have
|divw" — Pg (divw")

) < ||divw’ — Pr (divw")

HLZ(E HLZ(E)

<C [h*‘/z divwF — Py, (divw") + 12 |divw® — Py, (divw) ‘HI(TF)}

HLZ(TF)
<CRVZ [divw |y -

Similarly,

Pr (zg ~n) - zg ~n||L2<E) < Ch'/2 |z,§ |H1 (To)d" Thus, the result follows from the two previous
estimates. O

For the numerical analysis that will be performed in the following sections, we will use the elliptic
projector P, : V. — V,, defined for any v € V by

Pvev,: a(Pyv—v,wy)+ (Ppv— v,wh)p =0 Yw, € V. (3.2)

From (2.11), it is clear that P, : V — V, is a well posed continuous operator. In 2D, the following error
estimate follows from (Bermudez et al., 1995, Theorem 5.2):

[v—Puv]x <C_ inf [v—whlly <CH™™M%PY |ly]|ap  WweX*PNV (3.3)
wREV),

with & € ( %, 1] and B € (0,1]. Its extension to 3D is straightforward.

We will also need an approximation result for the projector Pj, in the H-norm for functions v not
necessarily in X @B With this end, we will use the following lemma, which can be proved by proceeding
as in (Bermudez et al., 1995, Lemma 5.5).

LEMMA 3.2 Let v, = (v§,v}) € V), be such that
(vh7¢h)p:0 V(PhEKﬂVh

Then, there exist vk € K and vg € G such that v, = vy +vg and
o F S
Ivilln < n® [[laiv vz o + [Vl g -

where o := min{, 1}, with & as in Lemma 2.1(c).
We will also use the V, interpolant defined in (Bermiidez et al., 1995, Section 5): IZ XPny -
Vy, with o € (%, 1} and B € (0,1]. It is proved in Theorem 5.2 from this reference that, in 2D,

[v =1 v||y < ChR™ %P [[y|| 0. (3.4)

Once again, its extension to 3D is straightforward.
Now, we are in a position to prove an estimate for the projector P, in the H-norm by means of a
duality argument.

LEMMA 3.3 There exist constants C > 0, o € (1,1] and B € (0, 1] such that, for all v € Gy,

v —Pyvllg < CHMMEPH vl
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Proof. Letv € Gy. We consider the following auxiliary problem: Find @ = ((ps, (DF) € V such that

aw,@):=a(w,@)+(w,0),=wPwv—v), Ywev. (3.5)
From (2.11), it follows that there exists a unique ¢ € V solution of the above problem and that it satisfies
lllx <ClPwv—vlg- (3.6)

Moreover, it is easy to check that @ = ((ps, (pF) is the solution to the following problem:

divo (93) +ps@’ = ps (Pyv)° —psvS i Q, (3.7

6 (9°) -n=ppc*dive'n onlj, (3.8)

6(9°)-v=0 only, 3.9)

©5=0 onlp, (3.10)

V (prc? div (@F)) + pr @™ = pr (Pyv)" —ppv"  in QF, (3.11)
oS- n=0¢"-n onl. (3.12)

We readily see from (3.11) that div @F € H! (QF) and

|V (div @) |2 00 < € {H (Pyy)F —vF

F
SRS T e
Thus, from (3.6) we obtain

[div @[ y1 ) S CIPWwY—vig-

On the other hand, (3.7)—(3.10) is a standard problem of linear elasticity. Hence, by using classical
additional regul~arity results for this problem (see Grisvard (2011); Dauge (1988)) it turns out that ¢3

belongs to H'*A (Qg)? for some 8 > 0. Moreover, the following estimate holds true:

||‘PSHH1+E(QS> <C U)(th)s —v° e ||diV‘PFHH1(QF) <CIPw—vlly.

L2(Q

Next, by using Lemma 2.1(b) we decompose @ = @x + @5 with @ € K and @5 € Gy. From
Lemma 2.1(c) it follows that @ = (@°,Vg) with Vg € H*(Qg)? and @ > 1/2. Moreover, since
div (Vg) = div @F, from the above equations we obtain that

06 e HP ()« HO (div. Q) and gl ap <[P —vg. (B3

Now, from Lemma 2.1(a) we write P,y =N + x with 7 € G and ¥ € K. By taking w € K in (3.5),
it follows that @ = x; in fact,

(w,(pK)p:(w,(p)p:(W,th—v)p:(w,x)p Ywe K.
Moreover, from (3.2) it follows that

(th,wh)p =0 Yw, € KNV,
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and, thus, from Lemma 3.2 we arrive at

el < [Jas ]l

HI(QS>d:| (3.14)

with @ := min{a, 1}. To obtain the estimate of P,v — v in the H-norm, we take w = P,v — v in (3.5)
and, then, from (3.2) we write

(P —v,Ppv—v), =a(@,Pv—v)=a a(Qg —1 g, Pyv— V) + (@, Pyv— V),
For the first term on the right-hand side above we use the following estimate (cf. (3.4) and (3.13)):

06—, @ally < CH"™“P) || Qg yap < CH™™MOPH Py vy,

where 8 := min{ E ,1}. For the second one we use Cauchy-Schwarz inequality and estimate (3.14).
Thus, we obtain _
1Py — vl < RSP ([ Py — vy + [Pyvlly)-

Therefore, the result follows from the previous inequality by estimating the right-hand side by using
that [Py —v|[x + [[Pyv[lx < Cllv[x- U

REMARK 3.1 The numerical methods that will be introduced below will be proved to converge with
order & (h™™®*P}) where o := min{@, 1} and B := = min{f3, 1} with & and B being the Sobolev expo-
nents of the Neumann problem (2.8) and the linear elasticity problem (3.7)—(3.10), respectively.

4. The semidiscrete in space Galerkin approximation

The aim of this section is to introduce a semidiscrete in space Galerkin approximation of Problem 2.1
and to obtain error estimates under regularity assumptions of the solution that will be shown to hold for
appropriate data of the problem. For the forthcoming analysis we will only need to assume that

dueclL(0,T;V) and duu €L*(0,T:H), 4.1

in order to prove an L2-like error estimate for this semidiscrete approximation. Although this assump-
tion could seem restrictive, in the following lemma we will show that it holds true under appropriate
assumptions that include the following compatibility condition on ug := (u, uf)):

div (o (u)) € L*(2s)", V (divug) € L*(Qp)?,

S

25 F S 4.2)
o (uy) -n=ppc”divugn on I and o (uy)-v=g only.

LEMMA 4.1 (Regularity) Let u be the solution to Problem 2.1. If f € H' (0,7;L%(2s)?), g =0,
(u(s),ug) satisfies (4.2) and (u?,ulf) €V, then

uecC(0,T;V)NC*(0,T:H) 4.3)
and, consequently, (4.1) holds true. Moreover, the following estimate holds:

([ Orital| = 0.7:11) + 1| O]l =0, 7x)

c [”ul ly + [|div o (u5) li2(0g T IV (divag) L2y T ||fHH'(O7T;L2(QS)d)} R
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Proof. Since C' (0,T;L*(Qg)?) is dense in H' (0,7;L?(£25)), it is enough to prove the lemma for f
in the former. Let u be the unique solution to Problem 2.1. We will derive (4.3) as a consequence of
Theorem 2.1 from Basson & van Rensburg (2013) (see also (Showalter, 1994, Chapter IV)). With this
aim we consider the following auxiliary problem: find ¢ € C(0,7;V) such that d;¢ is continuous at 0
and for eacht € [0,T], ¢(t) €V, d,¢(t) €V, 9 (¢r) € H and

(att¢7v)p+2(al¢7v)p+a(¢vv)+(¢av)p :(.?7‘))5 VVGV (45)
with f := ¢/ f € C' (0,T;L2(£2s)) and initial conditions
¢(0)=uy and J,¢(0)=u;+up. (4.6)

In order to apply (Basson & van Rensburg, 2013, Theorem 2.1), we notice that assumptions (E.1)—(E.4)
from this reference can be easily checked. Moreover, it is also necessary to check that there exits u, € H
such that

(u2,v), = a(ug,v) Ywev, 4.7)

which according to (4.2) follows in our case for u, := (divo (u3),V (divuf)). Thus we are in a
position to apply (Basson & van Rensburg, 2013, Theorem 2.1) and conclude that problem (4.5)—(4.6)
has a unique solution ¢ that belongs to C'(0,T;V)NC?(0,T;H). Moreover, it is straightforward to
check that e @ is the solution to Problem 2.1, which allows us to conclude the first part of the lemma.

Estimate (4.4) follows from classical arguments which include the Faedo-Galerkin method (see, for
instance, (Lions & Magenes, 1972, Chapter 5)). For the sake of completeness we include the main
arguments. We (formally) differentiate (2.9) with respect to time and take v = d,;u(t) as a test function.
Then, by integration by parts it follows that

% (Buu(r), duu()), + %a (Ohu(t), dpu(e))

1 1 !
=5 (9u(0),9,u(0)), + 5a(8,u(0),8tu(0)) +/0 (0 f(s),du(s))g ds.
To estimate the first term on the right-hand side we notice that (d,u(0),v), = (f(0),v) —a(uo,v) for
all v € V. Then, from (4.7) it follows that

19 1a(t) Iy +a (Sru(e), du(r))
t t
< C {0 B g+ -+ oy + 1956 o] + [ 10wy s

Finally, (4.4) follows from this, Gronwall’s inequality (see, Evans (2010)) and (2.11). O
From the regularity of u we can also obtain the following property of the solution.

LEMMA 4.2 Let u be the solution to Problem 2.1. If ug, u; € Gy, then u(z) and J;u(z) belong to Gy a.e.
t€(0,7).

Proof. We integrate equation (2.9) with respect to time once and twice, respectively, to obtain

(Qu(t),v), = (ul,v)p+/0' {a(u,v)Jr/QSﬁver/FNgvS] Wwev
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and

(u(t),v)p:(uo,v)p—i-t(uhv)p—k/ot/()s [—a(u7v)+/gsf~vs+/FNg-vs} YveV.

Hence, the result follows from Lemma 2.1(b). [l
Next, we consider the discrete space V, defined in Section 3 and introduce the following semidis-
crete Galerkin approximation of Problem 2.1.

Problem 4.1 Given ug;, and u,;, approximations in V, of ug and u, respectively, g € H' (0, T;L? (FN)‘I)
and f € H! (0,T;L%(Qs)9), find (u,uf) € C2(0,T;V}) such that

/ psanuz-v,§+/ pp8llu5-vl;+/ o (u;):€(v}) +/ prc® divul divvh
Qg QF Qs Qp

= g(t)~v,§+/ f@)-vi  Y(v,v) €V
Iy Qg

By choosing a basis of V,, the above problem can be written as a linear system of ordinary differ-
ential equations. Hence, it is well known that there exists a unique solution u, to Problem 4.1 (see, for
instance, Coddington (1961)).

To study the convergence of the semidiscrete scheme, we consider the projector P, : V — V, defined
in (3.2), for which we have the following property that follows by a density argument from (Basson &
van Rensburg, 2013, Lemma 3.1) (see also Baker (1976)).

LEMMA 4.3 If v € H'(0,T;V), then P,y € H'(0,T;V) and 9, (P,v) (t) = P, (d,v) (t) ae. t € (0,T).

From the definition of the continuous space V' and its discrete approximation V, it can be seen that
we are dealing with a non-conforming approximation of Problem 2.1. Moreover, the Galerkin orthog-
onality of the error does not hold. In fact, under the regularity assumption (4.1), by taking appropriate
test functions in (2.9), it follows that the solution u to Problem 2.1 satisfies (2.1)~(2.6) a.e t € (0,T).
In particular, from (2.2) we have that V (divuF) € L? (0,7;L?(2g)?). Therefore, by testing (2.1)~(2.6)
with v, € V;, we obtain

(Oueta,vi), +a(u,vy) = / v+ / g v +/ prc? divu® (VE —vz) n YW, €V, (4.8)
Qg JIN Ii
for all ¢+ € (0,T). Therefore, equation (2.9) holds for test functions in V but not in V. Moreover,
subtracting the above equation from that of Problem 4.1, we arrive at

(Jyu— 8,,uh,vh)p +a(u—uy,v,) = /Fppc2 divu® (v}j - vﬁ) ‘n Yy, € V. 4.9)
I

Thus, from this (among others reasons mentioned in the sequel) we cannot apply known results for the
semidiscrete approximation as those from Baker (1976) or from Basson & van Rensburg (2013) in a
more abstract framework.

As usual, in order to estimate the error between the continuous and the semidiscrete in space solu-
tions, we decompose

u—u,=N+49, where n:=u—Pyu and ¢ =Pu—u,,. (4.10)

The term 1) will be bounded by using (3.3) and Lemma 3.3, whereas for ¢ we have the following lemma.
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LEMMA 4.4 Let u and u, be the solutions to Problems 2.1 and 4.1, respectively. Let 1 and ¢ be as in
(4.10). Then,

t
-
JOlL=(0,T:X)
<C [HPh“O —uon| g + l|lur —uinllg + 9|l o.1:H) T n ||L2(0,T;H) +h Hgftul:|‘L2(0)T;L2(QF)61):| .
Proof. We proceed as in (Basson & van Rensburg, 2013, Section 4) and follow the approach from Baker

(1976). With this end, we define vy () := ff ¢ €V}, which implies that v;,(§) =0 and d,v, = —¢. We
consider the following equality, which is easy to check:

d |1 1
a {2 (¢, ¢)p - Ea(Vth) + (du— atulﬁvh)p:l
= (09, ¢)p +a(@,vy)+ (dyu — Oyuy, Vh)p — (Ciu— Jyuy, ¢)p .
Moreover, using (4.9), it is also easy to check that

(attu - aftuluvh)p +a(¢avh) = /;_pFCzdiVMF (VE - V;) ‘n+ (navh)p Vv, €V
I

Hence, by noticing that d;u — dyuy, = d;n + J; ¢, we arrive at the following equality:

d |1 1 .
E 2(¢7¢)p_za(vhavh)+(&Tu_atuh7vh)p:| :Achzdlqu (V}:l_vg).n+(navh)p_(&tn7¢)p'
1

Now, we integrate the previous equation from 0 to &:

($(2).8(6)), — 5 (9(0), 8(0)), + 3 (¥ (0), v(0)) — (2(0) — Qs 0),v4(0)),

S ¢ ¢
—— [T om),+ [yt [ [ pecaivat (o5 -v3) .

Then, by integrating by parts in time, we can rewrite the last two terms on the right-hand side above as

follows:
/oé (1.v), _/f (a’/ot"’vh> _/0’5 (/Otn’q))”'

p

Similarly,
¢ 2 F (F S d L B (,F S
/ (prc”divu ,(vh—vh)-n)FIZ/ (/ prc’divu’, (9" — ¢ )n)
0 0 0 I

([ocans [ @-9a) [ (peons [6-0)

1 1
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Thus, from the last three equations we arrive at

9060, +a( [0 [0)

+2 (/j PFCZdiVuF,'/: (¢F—¢S) .n)r _2'/0'5 <chzdiqu’/0t (¢F_¢S) .n)r. @1

I

Next, we estimate the terms on the right-hand side above. From Cauchy-Schwarz and Young’s
inequalities, it follows that for all ¥ > 0

(30~ o). [ «z»)p—/o5 oo+ [ (/O’n,qb)p

C 2
< P [T||9z“(0) — SOl + 9o,y +T HnHLz(O,T;H)} +V||¢||iw(o,T;H)~

To estimate the last two terms of (4.11), we recall that div uF e1? (0, T:H! (.QF)). Thus, these terms
can be bounded by using Lemma 3.1 with z, = [ ¢, (2.2) and the fact that HVSHIZ-II(QS)" < Ca(v,v)
vy = (v5,vF) € X as follows:

([fmane. [[0-010) [ (ot [ 0-0))

I I

<cln [Flavat s n [ ||diva® 3
< /0 |divu |H1(QF> /o [ Hl(QS)d+ /o |divu |H1(_QF) /0¢ 4 (g0

1 °t °t 2 = 2
<Z Sup a(/() ¢)/0 ¢)+Ch Hatl‘u HLZ(O,T;LZ(QF)‘I). (412)

1€(0,7]

Finally the result follows from (4.11)—(4.12) by straightforward computations, which include taking the
supremum over 0 < & < T, choosing ¥ = %min{pp,ps} and using the fact that a(-,-) + (-, -),, is a norm
equivalent to the X-norm.

From Lemmas 3.3, 4.2 and 4.4, we obtain the following convergence result for the semidiscrete
scheme.

THEOREM 4.2 For ug,u; € Gy, let u and u;, be the solutions to Problems 2.1 and 4.1, respectively. If
ucL>(0,7;V), ducL'(0,T;V) and d,u € L>(0,T;H), then
(| — uh||L°°(o,T;H) < cpminteFl HatuHLl(O,T;X) + Hu”L"“(O,T;X) + HaﬂuFHLZ(O’T;LZ(QF)d) + HuOHX}
+C (|[uo — uonl g + w1 —winll ), (4.13)
with @ € (1/2,1] and 8 € (0,1] as in Remark 3.1.

REMARK 4.1 According to Lemma 4.1 and the previous theorem, if g =0, f € HI(O,T;Lz(QS)d),
ug,u; € Gy and (4.7) is satisfied, then u satisfies the regularity assumed in this theorem, so that, in such
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a case, (4.13) holds true without any further assumption. Moreover, if the discrete initial conditions are
taken as ugy, := IZuo and uyy, ;= I}ful, then, from (4.13) and Lemma 3.3, it follows that

Hu_“hHL""(O,T;H)
< Chmin{a’ﬁ} [HdiVO' (ug) ||L2(Qs)d + ||V (divug) HL2(QF)d + ”fHHI (()J;LZ(QS)d) + ”uOHX + ”ul HX} .

Finally, if some further regularity of the solution is assumed, then we obtain the following X-like
error estimate for the semidiscrete approximation from Lemmas 3.3, 4.2 and 4.4 and estimate (3.3).

THEOREM 4.3 Under the assumptions of Theorem 4.2, if moreover u € L™ (O, T:X a.p ) , then

< C([[mo — uon|gr + llur — winl[gr)
L=(0,T:X)

r
o+ | [0

+ Y Gl ey e + 10|20 2 g + N0l |

where a € (1/2,1] and B € (0,1] are as in Remark 3.1.

5. Fully discrete Galerkin approximation

In this section, we introduce a fully discrete Galerkin approximation of Problem 2.1 based on finite
elements and a Newmark’s method for the space and time discretization, respectively. For the former
we consider the finite element spaces introduced in Section 3. For the latter we introduce a partition
of the time interval [0, 7] with step size At = T /N, N € N, and define #, := nAt,n=0,...,N. If v is
regular enough with respect to #, we denote v := v(z,), n=0,...,N.

For the numerical scheme, we consider that f and g are continuous in time and that we dispose of an
approximation ug, € V, of the initial data uy. We propose the following Newmark scheme (Newmark
(1959)) with the initial step as in Karaa (2011) and a given value of the parameter 6 € [0, 1]:

Problem 5.1 Letug, € Vj,, u' € H, f € C(0,T;€ L*(Qs)?) and g € C (0,T;L?(I)“) be given data.
e Letul) := ug.
o Let “}11 € V, be the solution to

(uy, — ug,vh)p +At*0a (uj, — uf), vy)

2

At
:At(ul,vh)p+7 [(fo,v;?)s+(g0,v}sl)m—a(uo;,,vh)] Y, eV, (.1

e Forn=1,....N—1,let uZH € V, be the solution to
(5,,u’,§,vh) +a (u’;,"e,vh) = (f"ve,v}s,)s + (g”?e,v,§>1_ Vv, € V. 5.2)
p N

In the previous problem we have used the notation

n+1 n n—1
w," —2uy+uy,
At?

and ul® = 0ut 1+ (1-20)u) + 6.

at,uz =
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We recall that we are dealing with a non-conforming approximation of Problem 2.1. Notice that this
fact does not allow us to apply classical results for the fully discrete approximation like those in Baker
(1976), or more recent results like those in Karaa (2011).

In what follows, we will obtain error estimates for the fully discrete approximation proposed above.
From now on we assume that 6 > 1/4, so that the scheme is unconditionally stable (see, for instance,
Raviart & Thomas (1983)). For the forthcoming analysis we will assume that the solution u to Prob-
lem 2.1 satisfies

anu S C(O, T,X), a[[[u S C(O, T,H) and al[[[u S Ll (0, T,H) (53)

We notice that under the above regularity assumption, by taking appropriate test functions in (2.9), it
follows that u satisfies (2.1)—(2.6) for all 7 € (0,T). In particular, from (2.2), we have that V (div uF) €
C(0,T;L?(2r)?). Moreover, as was shown in the previous section, the solution u to Problem 2.1 satis-

fies (4.8).
To study the convergence of the fully discrete scheme at time #,,, n = 1,...,N, the error is decom-
posed as usual:
w'—uy=n"+¢", where n" :=u"—Pu" and " :=Pu" —uj. (5.4)
The term 1" will be bounded by using Lemma 3.3. Therefore, to bound the error, we only need to

estimate @". This is the aim of the forthcoming analysis. With this end, let us define the following
functions of the space variable:

_ m m
r" = 8”Phu'”—(8t,u)m’9, R":= AtZr", P" ::AZZ I-PHu™®, m=1,... N—1.
n=1

n=1

Moreover, let £, #" and ©™ in V,,m=1,...,N—1, berespectively defined for all v;, € V, as follows:
L (vi) = A2 (¢~ "), +6a (' —¢°.w),
I (vy) = (ch2 div (uF)m’e (Vy—v}) -n)r ,
I

@ (vy) := At f ().
n=1

Finally, we define

1 1 m—1
= ——¢° and "= —— ¢+ Z¢"+1/2, m=1,...,N,
2 2 =
where
n+1 n
¢"H1/2 = 4’7“”’ n=0,....N—1.
2
To prove an estimate for ¢", n = 1,...,N, we follow several steps. First, we show the following

estimate of @" in terms of the above defined quantities.
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LEMMA 5.1 Foralln=1,...,N, it follows that

(8,97, + A7 ( ) (8".6") + Aa (", ")

n—1
— (¢O’¢O)p +At29(1 (¢0’¢0) +Atm§,1 (Rm +Pm’¢m+l +¢m)p
n—1
+24t Y 0" (" — @™ 42422 (P" - B°) W, €V, (5.5)
m=1

Proof. From the first assumption in (5.3), div uFecC (O, T;H! (QF)). Then, since u satisfies (4.8), we
have

((8,tu)”’6 ’vh>p +a (u"*e,vh> = (f"’e,vfl)s—&- (g” o v;? . —&—/I;Ippczdiv (uF)”’e (Vi —v})-n, (5.6)
forallv,eV,andn=1,...,N— 1. By subtracting (5.2) and (5.6) we arrive at
((@Iu)"’e —5,,uz,vh>p ta (u"ﬂ - uZ’G,vh> = 7"(w)  YweVn =1, N—1.
Hence, using the definition of P}, (cf. (3.2)), we have that, forn=1,... ,N—1,
(5,,¢”,vh>p +a (¢”~9,vh) = ("), + 7" (va) + ( u™® fPhu”'e,vh>p Y, eV, (5.7

On the other hand, we notice that

n+1/2 n—1/2
(9_)3[ ¢n <¢+ ;’¢ > :¢n,9.

Then, we can rewrite (5.7) as follows:

= 1 = 1
(an¢n’vh)p + A2 (9 _ 4) a (a”¢n’vh) + Ea <¢n+l/2_’_¢n71/2,vh)
= (r”7vh)p + /” (V )+ ((I Ph) Vh)p Vv, € V.
Summing over n the above equation from n = 1 to n = m and multiplying by At, we arrive at
1 m+1 m 1 1 0 1 m+1 m
E(¢ 7¢ avh)piAit(¢ 7¢ ,Vh)p+At 972 a(¢ 7¢ ,Vh)
m
— At <9 o > (¢ ¢O vh Z (¢n+l/2+¢n71/27vh)

(r Vi) +AZZ/ v +At2( ”"97vh)p Vv, eV,  (5.8)

A
2

At

M=

On the other hand, from the definition of @™,

Tor e ol e L0 0 = o en o
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ia<¢n+l/2+¢n—l/2’vh>

n=1

_ (¢1 7¢0,vh)p—At <9i)a(¢1 —¢O,Vh)+%

A
(' - ¢0,vh)p —At0a (9" —¢°,vy) + Tta (@™ + D™ vy) Vv, € V.

1
At p

From the above equality and the definitions of R™, P™ @™ and .Z, equation (5.8) can be rewritten as

i

1 A
= (9" — 9™ v), + At (e - 4) a(¢m = 9" )+ Sa (o 4 "),

2
:(Rm+Pm,vh)p+@’"(vh)+.$(vh)At Yy, € Vy, m=0,...,N—1.

We choose v, = ¢! +¢™ =2 (&"*+! — &™) in the above equality and multiply by At to write
1
(071.871), (97,07 (0 1) [a(67*1.0"1) ~a(9". ")

+At2 [a (¢m+1’¢m+1) 7a<¢m’(pm)]
= At (R"+P", 9" +9") 420" (@ — ") £ 242.L (@ — D) W V)

Summing over m fromm =0ton—1, for 1 <n <N, yields

(¢n7¢n)p - (¢07¢0)p +At2 <6 - i) [a (¢n7¢n) —a (¢03 ¢0)] +Al2 [a((pnv (pn) —a ((pov (I)O)]

n—1 n—1
1 1 2 0
= At Zl (R™+P", 9" +¢™)  +241 Zl O" (" —d") 42417 L (" — DY) Vv, €V,
m= m=
The result follows from the above equation and the fact that that 0 = —%(I)O. ([

Next, we need to deal with the terms on the right-hand side of the above lemma. Notice that P can
be easily estimated by using Lemma 3.3:

N-1 '
ALY P < CH™MBY flufl o oy - (5.9)
m=0

For R™ we have the following estimate, where, once more, o and 3 are as in Remark 3.1:

LEMMA 5.2 There holds

N-1 _
At Z IRz <C [hmm{a’ﬁ} ”attu”C(O.,T;X) +Ar? ”glttquLl(O,T;H)} :

m=1

Proof. By triangle inequality we have

95 (P, —TD)u"

§nphun - (a”u)nﬁ HH < ‘

a
H

17"l = | " — @0
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Hence, by proceeding as in the proof of (Karaa, 2011, Lemma 2) and using Lemma 3.3 to estimate
(P, —1I), we arrive at

i< | At mintesy [ das+ar "9 d
17|y < t t | dheu(s)|lx ds+ At (| Drereta(s)|| g ds| -
n—1

-1

Then, the result follows from the previous inequality and the definition of R™. d
The last two terms on the right-hand side of (5.5) can be bounded by using the following results:

LEMMA 5.3 Letw" = (Wi,w}h) € Vj,n=1,...,N. For 1 <n <N, it follows that

n—1
m(ymtl o my - n |:
Atn§1® (w w )\C[AtlfgnnagN|Ws|H'(Qs)d} h|Oullcor:m) | -
Proof. First notice that
n—1 | 2nfl
At Z e (Wer —Wm) = At Z (Am, b1 _bm)FI )
m=1 m=1

where

m
A, = Zal, a; == prc? div (uF)I’e and by = (Wg —wg')-n.
=1

By summation by parts we arrive at

n—1 n
Aty @" (@™ — ™) = AP (A, by); — ALY, (am, D)
m=1

m=1

m=1 m=1 i

n n
= Ar? (ppc2 Y div (uF)m’6 , (W —wl) ~n> —A Y (ch2 div (uF)m’6 , (Wi —wi) ~n)
i
We apply Lemma 3.1 to both terms on the right-hand side of the previous equation and (2.2) to write
n

n
s (,, 5 aiv ()" ) ) < CHAR Wil e 3
el I m=1

. m,0
div (uF) 'Hl )

2
< cnar  max W8l ) 190l

div (uF)m’e‘

! . m,0 -
A2Y (chzdlv (W)™ (Wi —w) .n)FI < ChAlzmz_,l WS (g)¢ H ()

n 2
< ChAt <1I<nnagN|WS|H'(QS)d) ([ 9heuelleo,7:m) -

The result follows from the last three equations. g



NUMERICAL ANALYSIS OF A TIME-DOMAIN ELASTOACOUSTIC PROBLEM 19 of 28

LEMMA 5.4 For all v, € V, it follows that
AL () <C {hmin{a'ﬁ} [0l co,.7:x) +ar? 19l cio,7:1) +Ar? Hatch(o,T;LZmS)d)} At||va|g

+CAP [||atg||C(O’T;L2(FN>,,) +h ||amu||c(0,T;H>] [[Vallx
with ¢ and 8 as in Remark 3.1.

Proof. We recall that
L (vy) =Ar7> (9 *¢0,Vh)p+9a(¢1 —¢%v)  Yw eV,
For the first term on the right-hand side, we have that
1 0 _ 1 1 0.0
(p'—¢ 7Vh)p = (Pyu —uhd’h)p — (Pu —uh,Vh)p

= (Pyu' —ul,vh)p + (u! —u},,vh)p — (P —uo,vh)p - (u0 —ug,vh)p
=(Py—1) (u' —u°) 7v;,)P + (u! —u07vh)P — (u —u%v;z)P7
whereas, for the second one, by using the definition of P}, (cf. (3.2)) we have
a(¢'— 9% vy) =a (P’ —up,vy) —a (P’ —uf),v;)

=a(Pyu' —u',vy) +a(u' —up,vy) —a(Puu’ —u’

0

avh) —a (u 7“27"]1)

= (Py—1) (u' —u°) ,vh)p +a(u' —u’vy) —a(u,—uj,vy).
On the other hand, from Taylor’s theorem we obtain
' —u® = At (o) + a,,u - / )2 Oeu(s) ds,
whereas evaluating (4.8) at t = fo and t = ¢, we obtain
alut =) = (' = £8) g+ 6"~ 8" ), — (' — @ut )
+ (prciv ()" = (a")"), (6 —v5) .n)ﬁ .
Thus, from the previous two equations we arrive at

(u' — uo,vh)p +0At%a (u' - uo,w,)

A2 o L 23 d
p+7( 1t U »Vh)p‘i‘i/o (Ar—s)"( tttu(s)vvh)p s

— 04 ((8,,14)1 - (8,,u)0,vh> +0A° (f' = f,v}) g+ 04 (8' — &% v))
P
. 1 0
+ 042 (prediv ((uF)' = (u")"), (vf - v§) -n)FI .

On the other hand, we recall that u}l is the solution to (5.1), namely, Vv, € V,

= At (uy,vy)

Ar?
(uj, — uh,vh) +0At%a (uj, — u)),v;) = At (1, v4), + 5 ((f0>v2)s + (8O,VI§)FN —a (uo,vh)) .
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Thus, from the previous two equations and (3.2) we arrive at

AL (vy) = (P —T) (u —uo) vh) +0A1* (P, —1) (u' —u) ,vh)p
2/ (At —5)? (Ouru(s $), Vi), ds + oA (f! - f07v2)S +041* (g —go,vﬁ)FN

— AP ((8nu (@)’ ) +6 2<ch2diV((uF)l_(up)o)’(vf—vi).n)ﬁ

= (1+047) (P, —1) (u' —u") ,s),, +%/ll (At =) (uu(s),vn), ds
+0A1% (fl—f07v§)s+9At (8" —g° vh) — 0A7? ((8,,u)l—(8,,u)0,vh)p
+ 04 (pecdiv ()" — (")), (o —v}) m)

The next step is to estimate each term on the right-hand side above. For the former we use Lemma 3.3
and Taylor’s formula to obtain

((Py—1) (u' —u’) ’vh)p < ChmMePlAr 9l cio.rx) 1Vallg -
For the latter, we resort to Lemma 3.1 and differentiate in time (2.2). Thus, we have
. 1 0 .
(le ((uF) _ (uF) ) , (vz—vﬁ) .n)r < ChAt |8, (d1qu) ‘C(O.T;Hl(QF)) HVZHHI(.QS)‘]
1
< ChAt || Oyl oo 1y 11V lx -

For the rest of the terms we have the following bounds which are easy to check:

[ @t 57 Quasts) ), ds < CAP 0ty 9l
(f' =1 )s < CAt”&ff”C(OTLZ Q)4 H hHL2 (Qs)?
(8~ 88 5, < CA 198l (oo, )nvhnx,
(Ou" — Jyud® ,Vh) < CAt ||l o rmy IVall g -

The lemma follows from the above equations. U
Putting together the above lemmas we obtain the following result.

LEMMA 5.5 There exist C > 0, independent of /& and At, such that

0r<r19JL<><N|\ "Ny < {HPhuO—uOhHX—&-hmi“{a’B} ||“||c(o,T;X)+||at“||c(o,r;x)+Hatt“||c(o,T;x)”

+CArP [Ham““corli Gl 7.m) +||atf||c(0TL2(Qs )+||alg||C(OTL2(FN) )}
with o and 8 as in Remark 3.1.

Proof. We begin with equation (5.5) and use the previous lemmas to bound each term on its right-hand
side. With this end, first notice that, from the definition of ", n=1,...,N, we have

2
At @y <C max [|9"];  and AP [@"E <C [( max ||¢mH) +APa(9", ")
o<m<n 0<m<n
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Then, from (5.9), Lemmas 5.2, 5.3 and 5.4 and Young’s inequality, it follows that for all ¥y > 0

n—1
At Z (Rm+Pm’¢m+] +¢m)

m=1

p
C ; 2
< Y max H‘P"H%{‘F ¥ {hmm{a’ﬁ} {Hattu”C(O,T;X) + H“Hc(o,r;x) +Ar HattttuHL'(O,T;H)} )

1<n<N

n—1
1
m m+1 _ fm < - 2 n n 5 )
2Atm;® (@ ") < GAP max a(@",®")+Ch |9uulz o 1m
and

2 n 0 m)|2 1 2 no gn 0 hmin{a,ﬁ}
2027 (@" — %) <y max [|¢ I+ garta (@, ") +C At||® Hx+#ua,u||c<om)

0<m<N

2
1 Ar?
+At2 <’}/ +h> ||amuHC(O,T;H) + 7 ||8lf||C((),T;L2(QS)"') +At2 atg||C(0,T;L2(FN)d)] .
Adding all these inequalities we arrive at
n—1 n—1
Aty (R"+P",¢" ' +¢") +241 ), O" (" — ") 124127 ("~ B)
m=1 m=1

1 ) .
2 2 7 4 0 2 a, 2
<2y max (19”5 + 7 A" max a(@", &) +C; [At |0l + ™ P 0,7,
2 2 2 2
+AL |Gy (0.T:H) +Art 9wl co,7:0) +Art Hatch(o,T;LZ(gs)d) +Art ||at8||c(07T;Lz(1—N)d)} )

where Cy > 0 depends on 7. Using that ¢° = P;,u’ — ugy and recalling that ®° = —1¢% and 6 > 1/4,
straightforward computations allow us to conclude the proof. ]

We are now in a position to write the main result of this section, which establishes error estimate for
the fully-discrete scheme in the L2-norm.

THEOREM 5.2 Let u and {uZ}iv: I be the solutions to Problems 2.1 and 5.1, respectively. Then,
n__ .n 0 min{o,f}
max " — | <C{|[Pu’ —uanly +h ullc20.7:x)

+At2 |:||a[tttuHLl(0’T;H) + Hamu||C(07T;H) + ||afg||C(O,T;L2(FN)d) + HatfHC(O,T;LZ(QS)d)} } )

where « € (31, 1] and B € (0,1] are as in Remark 3.1.

Proof. The result is a consequence of the decomposition (5.4) and Lemmas 3.3 and 5.5. ]

6. Numerical examples

In this section we will report a couple of numerical tests performed with the method analyzed in this
paper. First, we will check that the resulting numerical solution converges as the discretization param-
eters i and At go to zero. Secondly, we will compare our results with those arising from an alternative
approach usual in the engineering practice.
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We have considered a 2D geometry as shown in Fig. 2 (left). We have taken unit physical parameters,
namely, pr = ps = As = s = ¢ = 1. We have solved the problem in the time interval [0, 7] with 7 := 3{
and an initial condition (0, ), where uo(x) := (max{0.125 — || x — xo]|,0})* with xo as shown in Fig. 2.
This initial condition is shown in Fig. 3 where it can be seen that is localized in the surroundings of the
point xyp. We have also taken f := g := 0 and Iy := dQ. For the Newmark scheme we have chosen the
parameter 6 := % > le’ in order to improve stability.

x rN
L]
Qg -
I
Qp
I'n A L | I'n
0.25
Iy

FIG. 2: Physical domain (left) and initial mesh (right).
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0.011
—0.01
— 0.009

0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.0e+00

To observe the convergence of the proposed method, we have solved the problem with different
time-steps and mesh-sizes. We have taken as initial mesh that shown in Fig. 2 (right) (whose mesh-
size we denote by /) and an initial partition of the time interval with time-step Afy := T'/100. We have
computed the numerical solution on the meshes and partitions of the time interval obtained by uniformly
subdividing the initial ones, so that the mesh-size and the time steps are ho/M and Azy/M, respectively,
for several values of M € N.

FIG. 3: Initial condition ug.
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Figure 4 shows the second component of the displacement at the point x; (which is shown in Fig. 2).
Notice that, because of the symmetry of the problem and of the used meshes, the first component of the
displacement vanishes identically.

x107°

1 1

1 1 1 Il 1 1
1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18

F1G. 4: Second component of the displacement at the point x; versus time for different levels of refine-

A
ment of the initial mesh. Here At := 2h = 37
M 800M

mesh shown in Fig. 2.

It can be seen from Fig. 4 that the computed solutions converge as the refinement parameter M goes
to infinity (and, hence, the discretization parameters 7 and Af go to zero).

A common procedure in fluid-solid computations is to consider the fluid as a solid without resistance
to shear strain; namely, with Lamé coefficient ug := 0, the other Lamé coefficient being taken as Ag :=
prc? (see Kiefling & Feng (1976), for instance). This leads to search a displacement field u : [0, 7] —
H'!(Q)? (with Q := QU Qs) by means of a standard code for linear elasticity based on using standard
Lagrangian elements in the whole domain £2. However, when this approach is used for the free-vibration
problem, it is well known that it leads to spurious modes (Hamdi et al. (1978); Bermidez & Rodriguez
(1994)). To the best of the authors knowledge, the behavior of this approach applied to the time domain
problem has not been reported. The aim of the second test is to compare the results obtained with this
common engineering practice (that we will call H') and with the method analyzed in this paper (that we
will call H(div)). Figures 5 and 6 show the Euclidean norm of the displacement field at several times
computed with both approaches.

and h := ho/M, where hy is the mesh-size of the
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H(div) approach at r = 1, for n = 200. H! approach at r = t,, for n = 200.
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H(div) approach at 1 = 1, for n = 480. H! approach at ¢ = t,,, for n = 480.
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H(div) approach at r = 1, for n = 640. H! approach at ¢ = t,,, for n = 640.

FIG. 5: Comparison between our method and the H!-approach for different times 7, := nAt with At :=
Aty 3n

16 12800
magnitude of the displacement field.

and h := hy/16, where hy is the mesh-size of the mesh shown in Fig. 2. Here we plot the
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H(div) approach at = 1, for n = 1000. H! approach at 7 = t,, for n = 1000.
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H(div) approach at = t,,, for n = 1500. H! approach at ¢ = t,,, for n = 1500.

FIG. 6: Comparison between our method and the H!-approach for different times ¢, := nAt with Az :=
Aty 3n

16 12800 ©
magnitude of the displacement field.

and h := hg /16, where hy is the mesh-size of the mesh shown in Fig. 2. Here we plot the
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It can be seen that the wave propagation is much more noisy for the H!-approach than for the method
analyzed in this paper. Moreover, the wave arrives at the point x; earlier with the H'-approach. This
can also be seen in Fig. 7, which shows the vertical displacement computed with both methods on the
finest mesh (M = 32) on a longer time interval [0, 7.

1 -3
15X10 . . . . : .

0.5F

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

F1G. 7: Second component of the displacement at the point x; computed with our scheme (solid blue)

and the H! -approach (dashed red) in a refined mesh (M = 32) versus time.
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