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Centro de Investigación en
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Abstract Many formulations of quadratic allocation problems, portfolio op-
timization problems, the maximum weight clique problem, among others, take
the form as the well-known standard quadratic optimization (StQO) problem,
which consists in minimizing a homogeneous quadratic function on the usual
simplex in the non negative orthant. We propose to analyze the same problem
when the simplex is substituted by a convex and compact base of any pointed,
closed, convex cone (so, the cone of positive semidefinite matrices or the cone
of copositive matrices are particular instances). Three main duals (for which
a semi-infinite formulation of the primal problem is required) are associated,
and we establish some characterizations of strong duality with respect to each
of the three duals in terms of copositivity of the Hessian of the quadratic ob-
jective function on suitable cones. Such a problem reveals a hidden convexity
and the validity of S-lemma. In case of bidimensional quadratic optimization
problems, copositivity of the Hessian of the objective function is characterized,
and the case when every local solution is global.
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Departamento de Ingenieŕıa Matemática, CI2MA, Universidad de Concepción, Casilla 160-
C, Concepción, Chile
E-mail: gacarcamo@ing-mat.udec.cl

S. Caro
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1 Introduction

Let A be any real symmetric matrix of order n, C ⊆ R
n be a pointed, closed,

convex cone having non-empty (topological) interior. In this paper we will deal
with the following optimization problem :

µq
.
= min

{1

2
x⊤Ax : e⊤x = 1, x ∈ C

}

, (1)

where e ∈ int C∗. Here, C∗ is the non-negative polar cone of C, defined
by C∗ .

= {y ∈ R
n : y⊤x ≥ 0, ∀x ∈ C}. The feasible set to (1), denoted by

K
.
= {x ∈ C : e⊤x = 1}, is a convex and compact base of C, i.e., C =

⋃

t≥0 tK.
Notice that, due to the structure of K, any quadratic objective function may
be reduced to an homogeneous one, since

1

2
x⊤Ax + a⊤x =

1

2
x⊤(A+ ea⊤ + ae⊤)x, ∀ a ∈ R

n.

The standard quadratic optimization (StQO) problem introduced in Bomze
[7] and further developed in [8–12] and references therein, corresponds to the
case C = R

n
+, e = 1l

.
= (1 . . . 1)⊤ ∈ int Rn:

min
x∈∆

1

2
x⊤Ax, (2)

with ∆ being the simplex {x ∈ R
n : 1l⊤x = 1, x ≥ 0}. Such a formulation has

been proved to be very important in applications since it models quadratic al-
location problems [30], portfolio optimization problems [34,35], the maximum
weight clique problem [37,27], among others. In addition, this problem retains,
as asserted in [12], most of the complexity of the general quadratic case having
a polyhedron as a feasible set.

We will show in Section 3 that, as occurs for the special problem (2) (see
[16]), problem (1) can be re-written as

µq = sup
λ∈R

{

− λ : A+ 2λee⊤ is copositive on C
}

, (3)

where we say that a symmetric matrix M is copositive on C, if x⊤Mx ≥ 0
for all x ∈ C. From (3), one obtains a linear programming representation of
(2) by using [26] (see [16]). The previous formulation (3) may be seen as the
(Lagrangian) dual problem when (1) is written equivalently as

µq = inf
{1

2
x⊤Ax : x⊤ee⊤x− 1 = 0, x ∈ C

}

.
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Its (Lagrangian) dual problem, following Section 3, is:

sup
λ∈R

inf
x∈C

{1

2
x⊤Ax+ λ(x⊤ee⊤x− 1)

}

,

from which, (3) is derived (see Section 3 for details).

Problem (3) belongs to a class of problems termed “copositive optimiza-
tion”. This approach arises for analyzing the optimization problem where the
objective function is quadratic but nonconvex, and the constraint set is a
polyhedron, see [14] for a nice introduction to this topic. Instead, we will be
interested in the qualitative study of the image space associated to the original
problem (1).

Non negativity of a quadratic function (and so copositivity of a symmetric
matrix) on a lower (upper) level set determined by a single quadratic function
have been investigated in [42]. This allowed the authors to establish, under
a Slater condition, S-lemma in both situations: as being either an inequality
constraint ([42, Corollary 5]); or equality ([42, Corollary 6]). Only recently,
without using any result on convexity of joint-range for a pair of quadratic
functions, necessary and sufficient conditions for the validity of S-lemma, in
the equality case, have been given in [43]; whereas the convexity of the same
joint-range was completely characterized in [25]. However, an S-lemma related
to problem (1) that reads as: (a) and (b) are equivalent, where

(a) x ∈ C, g(x)
.
= e⊤x− 1 = 0 =⇒ f(x)

.
=

1

2
x⊤Ax ≥ 0;

(b) there exists λ ∈ R such that f(x) + λg(x) ≥ 0 for all x ∈ C,

cannot be obtained from those results in [42] nor from [39,31].

Precisely, one of the goals of the present paper is to establish an S-lemma,
and contrary to the approach developed in [42], we will first state an equiva-
lence to the fulfillment to the strong duality for (1) (with respect to a suitable
dual problem) in terms of the convexity of (g, f)(C)+R+(0, 1), without passing
by a copositive representation scheme.

A second issue we will deal with is the study of the validity of strong
duality for the primal problem (1) with respect to each of its three possible
Lagrangian dual problems: we characterize that property via the copositivity
of A on suitable subsets of Rn. One of the dual will require the formulation of
(1) as a semi-infinite optimization problem, and will apply some of the main
results from [19]. Our approach is similar to that carried out in [8], where
various Lagrangians or semi-Lagrangians are considered. However, the main
results of the present paper cannot be obtained from those in [8].

We must point out that a class of pairs of linear primal/dual copositive
programs was analyzed, via semi-infinite optimization, in [1] with different
purposes.

It is worth-while mentioning that C in problem (1) may be equal (after
an isomorphism) either to the cone of (real) symmetric matrices of order n
that are positive semidefinite, or the cone of copositive matrices on R

n
+. In the
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first situation C = C∗ and int C∗ coincides with the set of symmetric positive
definite matrices; whereas, in the second case, one obtains

C∗ =
{

Q ∈ R
n×n : Q = Q⊤, Q =

k
∑

i=1

ziz
⊤
i , zi ∈ R

n
+, k ∈ N

}

= co{zz⊤ : z ∈ R
n
+},

which is the so called completely positive cone. The first equality is taken
from [1], whereas the second may be found in [11]. See also [10]. For some
characterizations of int C∗, we refer to [20,17]. Copositivity of quadratic forms
on general sets has been studied in [21] with different perspective than that in
[42] and here.

We analyze the cases µq = 0 and µq > 0. Obviously:

µq = 0 ⇐⇒ A is copositive but not strictly copositive on C;

µq > 0 ⇐⇒ A is strictly copositive on C.

This paper is organized as follows. Section 2 is devoted to state some ba-
sic definitions and preliminaries. In light of [24,23], the Lagrangian duality
scheme is revisited in Section 3for the general problem with one single equal-
ity constraint. Section 4 presents our main results related to problem (1). They
are concerned with some characterizations of strong duality with respect to
each of the three dual problems in terms of copositivity of A on R

n (positive
semidefiniteness), on e⊥, and on C, respectively. This will reveal the hidden
convexity, and the fulfillment of S-lemma; the case n = 2 is also analyzed in de-
tail. Some sufficient and/or necessary conditions for local or global optimality
for problem (1) are presented in Section 5.

2 Some basic definitions, notations and preliminaries

In what follows, given any nonempty set M in R
m, its closure, topological in-

terior, convex hull, closed convex hull, are denoted, respectively, by M , intM ,
co M , co M . In addition, by ri M and bd M we denote the relative interior
of M and the boundary of M , respectively. Moreover, cone M is the smallest
cone containing M , i. e., cone M =

⋃

t≥0 tM . The nonnegative polar cone of
M is defined by

M∗ .
= {z ∈ R

m : 〈z, y〉 ≥ 0 ∀ y ∈M}.

Here, 〈z, y〉 = z⊤y stands for the scalar product between two vectors z and
y in R

m, where z⊤ means the transpose of the vector z, which is considered
a column vector. More generally, if A is a real matrix in R

m×n, A⊤ is the
transpose of A belonging to R

n×m.
Let h : Rm → R ∪ {±∞}, h and co h stand for the greatest lower semi-

continuous function not larger than h and for the greatest convex and lower
semicontinuous function not larger than h, respectively. Just for convenience,
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we need the following definition of epigraph of a function: epi h
.
= {(y, t) ∈

R
m × R : h(y) ≤ t}. It is known that

epi h = epi h; co(epi h) = epi co h.

Moreover,

co h(y) > −∞ ∀ y ∈ R
m =⇒ co h(y) = h∗∗(y) ∀ y ∈ R

m, (4)

where h∗∗ = (h∗)∗ is the bipolar or biconjugate of h, that is, the conjugate (or
polar) of h∗ defined by

h∗(z)
.
= sup

y∈Rm

{〈z, y〉 − h(y)}.

In addition, δM stands for the indicator function of the set M , defined by 0
on M , and +∞ on the complementary of M .
There are examples showing the assumption co h(y) > −∞ for all y ∈ R

m is
necessary to get the equality h∗∗ = co h. In general we have h∗∗ ≤ co h ≤ h.
For details see [41].

In the subsequent sections, we set R+
.
= [0,+∞[; R++

.
= ]0,+∞[. Given

a vector a ∈ R
m \ {0}, R+a stands for the set {ta : t ≥ 0}, which is the ray

starting from the origin and direction a; and a⊥ is the orthogonal subspace to
a, which is a hyperplane.

3 The Lagrange duality theory revisited: the general case with one
single equality and geometric constraints

We now deal with the general minimization problem under one single equality
constraint and a geometric constraint. Its presentation follows the abstract
framework employed in [22]. Let f, g : X → R be any finite-valued functions,
with X to be a normed vector space, and C ⊆ X be any nonempty set. Let
us consider the problem

µ
.
= inf{f(x) : g(x) = 0, x ∈ C}, (5)

whose (Lagrangian) dual problem is defined by

ν
.
= sup

λ∈R

inf
x∈C

[f(x) + λg(x)]. (6)

We say that there is no duality gap, or the duality gap is zero, between (5) and
(6) if ν = µ. It is said that (5) has the strong duality property with respect
to (6), or simply that strong duality holds for (5) with respect to (6), if µ = ν
and problem (6) admits some solution.

One can infer that, if µ = −∞ then there is no duality gap since ν = −∞
as well, and we conclude that any element in R is a solution for the problem
(6), and so, we always have strong duality for (5) whenever µ = −∞.
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Set F (x)
.
= (g(x), f(x)). Notice that F = (f, g) was used in [23] instead.

Assuming that µ ∈ R, we obtain

(F (C) − µ(0, 1)) ∩ −({0} × R++) = ∅,
which amounts to writing

(F (C) + ({0} × R+)− µ(0, 1)) ∩ −({0} × R++) = ∅, (7)

or, equivalently,

cone(F (C) + R+(0, 1)− µ(0, 1)) ∩ −({0} × R++) = ∅. (8)

We will show, next, that the zero duality gap and strong duality can be
characterized by reinforcing (7) or (8).

The optimal value function ψ : R → R ∪ {±∞} to problem (5) is defined
by

ψ(a) =

{

inf{f(x) : x ∈ K(a)} if K(a) 6= ∅;
+∞ otherwise,

where
K(a)

.
= {x ∈ C : g(x) = a}. (9)

Notice that K = K(0), and K(a) 6= ∅ if and only if a ∈ g(C), that is,

dom ψ
.
= {a ∈ R : ψ(a) < +∞} = g(C).

The sets

F .
= F (C) + R+(0, 1), Eρ .

= F − ρ(0, 1) (ρ ∈ R). (10)

will play an important role in our analysis.
Some topological and geometrical properties of ψ are shown in the following

proposition, which is nothing else than Theorem 3.1 in [22], whose origin goes
back to [23], where such a result was obtained for a class of integral functionals.

Proposition 3.1 Let f, g, F be as above. The following assertions hold.

(a) (a, r) ∈ epi ψ ⇐⇒ (a, r +
1

k
) ∈ F (C) + R+(0, 1), ∀ k ∈ N.

As a consequence, if F (C) + R+(0, 1) is convex then ψ is convex.
(b) F (C) + R+(0, 1) ⊆ epi ψ ⊆ F (C) + R+(0, 1).

Consequently,

Eµ = epi ψ − µ(0, 1); co Eµ = co(epi ψ)− µ(0, 1) = epi(co ψ)− µ(0, 1).

Recall that (see for instance [24]) if µ = ψ(0) ∈ R then

ν = ψ∗∗(0) (11)

Proposition 3.1 leads to the following characterization of lower semiconti-
nuity of ψ at 0, which is a particular case of Theorem 3.1 in [36], under the
additional assumption of existence of solution for problem (5). Notice that
(12) reinforces (8). Part (b) may be also found in [36].
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Proposition 3.2 Assume that µ = ψ(0) is finite. Then,

(a) ψ(0) = ψ(0) if and only if

Eµ ∩ (−{0} × R++) = ∅. (12)

(b) ν = co ψ(0).

Proof It is Theorem 4.1 in [22]. ⊓⊔

Part (a) of the next theorem characterizes the zero duality gap for problem
(5). It reduces to the lower semicontinuity of ψ at 0 under convexity of Eµ,
or equivalently under convexity of F , as a consequence of the previous propo-
sition. A similar result was obtained in [32] for a semi-infinite optimization
problem. Part (b) was established in [24].

Theorem 3.1 ([22, Theorems 4.1 and 4.2]) Assume that µ = ψ(0) is finite.
Then,

(a) zero duality holds for (5), i.e., µ = ν if, and only if

co Eµ ∩ (−{0} × R++) = ∅; (13)

(b) strong duality holds for (5) if, and only if

cone(co Eµ) ∩ (−{0} × R++) = ∅; (14)

(c) strong duality holds for (5) if, and only if

cone(Eµ) ∩ (−{0} × R++) = ∅ and cone(Eµ) is convex . (15)

Convexity of cone(Eµ) or equivalently of cone((g, f)(C)−µ(0, 1)+R+(0, 1))
may be obtained in several important instances. For example, if C = R

n and
f, g are quadratic functions, such a convexity property is completely analyzed
in [25]; whereas the convexity of (g, f)(Rn), with f being duadratic and g
linear was discussed in [4], see also [33,43].

Remark 3.1 (The convex case) In case (g, f)(C) + R+(0, 1) is already convex
and closed (this will occur for our problem (1), as we will show in Subsection
4.3), (b) of the preceding theorem, along with (7), ensures that strong duality
holds for (5).

A (copositive) reformulation - dual representation of problem (1)

As we said in Section 1, problem (1) can be written, in a equivalent way,
as

µq = inf
{1

2
x⊤Ax : x⊤ee⊤x− 1 = 0, x ∈ C

}

. (16)

According to (6), its Lagrangian dual problem is

νq
.
= sup

λ∈R

inf
x∈C

{1

2
x⊤Ax + λ(x⊤ee⊤x− 1)

}

. (17)
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It is not difficult to show that

νq = sup
λ∈R

{

− λ+
1

2
inf
x∈C

x⊤(A+ 2λee⊤)x
}

.

Then,

θ0(λ)
.
= inf

x∈C
x⊤(A+ 2λee⊤)x ∈ {0,−∞}, ∀ λ ∈ R,

and

θ0(λ) = inf
a≥−1, y∈K

{

(1 + a)2y⊤Ay + 2(1 + a)2λ
}

= inf
a≥−1

{

inf
y∈K

(1 + a)2y⊤Ay + 2(1 + a)2λ
}

= inf
a≥−1

2[(1 + a)2µq + (1 + a)2λ] = inf
a≥−1

2(µq + λ)(1 + a)2.

Thus,

A+ 2λee⊤ is copositive on C ⇐⇒ θ0(λ) = 0 ⇐⇒ λ+ µq ≥ 0. (18)

Hence, the dual problem (17) reduces to

νq = sup
λ∈R

{

− λ : A+ 2λee⊤ is copositive on C
}

≤ µq.

On the other hand, by the definition of µq, we get

x⊤Ax − 2µq = x⊤(A− 2µqee
⊤)x ≥ 0, ∀ x ∈ K,

which implies

x⊤(A− 2µqee
⊤)x ≥ 0, ∀ x ∈ C,

that is, A − 2µqee
⊤ is copositive on C. It yields νq ≥ µq. Hence µq = νq,

ensuring zero duality gap, and so strong duality between problem (1) and its
dual (17) holds. Moreover, we also infer that the dual problem has −µq as the
unique solution.

Thus, we found a dual problem to (1) for which strong duality holds.
By (c) of Theorem 3.1,

cone((g, f)(C) + R+(0, 1)− µq(0, 1)) is convex,

where g(x) = x⊤ee⊤x − 1. Certainly, if C = R
n then (g, f)(Rn) is convex by

Dines theorem (see [18]).
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4 The generalized standard quadratic optimization problem: strong
duality, hidden convexity and S-lemma

Let us go back to our problem

µq
.
= min

{1

2
x⊤Ax : e⊤x = 1, x ∈ C

}

, (19)

where we recall that C ⊆ R
n is a pointed, closed, convex cone having non-

empty interior. Obviously the feasible set to (19) is K
.
= {x ∈ C : e⊤x = 1},

which becomes a convex and compact base of C provided e ∈ int C∗ (it is non
empty since C is pointed); A is a real symmetric matrix. We say that A is
copositive on a cone P if x⊤Ax ≥ 0 for all x ∈ P ; it is strictly copositive on
P if x⊤Ax > 0 for all x ∈ P , x 6= 0. We discuss the cases µq = 0 and µq > 0.

It is easy to check that:

• µq = 0 ⇐⇒ A is copositive but not strictly copositive on C;

• µq > 0 ⇐⇒ A is strictly copositive on C.

The specialization C = R
n
+; e = (1 1 . . . 1)⊤ ∈ R

n, discussed at the
introduction, is termed the standard quadratic optimization problem and was
studied in many papers as was mentioned in Section 1, and models quadratic
allocation problems, portfolio optimization problems, the maximum weight
clique problem, among others.

We will describe the three main dual problems associated to (19). To that
end, we formulate problem (19) as a semi-infinite optimization problem:

µq
.
= min{f(x) : x ∈ X, gj(x) ≤ 0, ∀ j ∈ J}, (20)

where X
.
= {x ∈ R

n : e⊤x = 1},

J
.
= −C∗, f(x)

.
=

1

2
x⊤Ax, gj(x)

.
= j⊤x, j ∈ J, (21)

and g0(x)
.
= e⊤x− 1. Thus, we consider the following three dual problems:

ν0
.
= sup

λ∈R

inf
x∈C

{

f(x) + λg0(x)
}

; (22)

ν1
.
= sup

λ∈R
(J)
+

inf
x∈X

{

f(x) +
∑

j∈J

λjgj(x)
}

; (23)

ν2
.
= sup

(λ0,λ)∈R×R
(J)
+

inf
x∈Rn

{

f(x) + λ0g0(x) +
∑

j∈J

λjgj(x)
}

. (24)

Here, R(J) is the topological dual of RJ (it stands for the set of real-valued
functions defined on J , endowed with the usual product topology), which is
the space of generalized sequences λ = (λj)j∈J such that λj ∈ R, for each



10 Fabián Flores-Bazán et al.

j ∈ J , and with only finitely many λj different from zero. The supporting set
of λ is supp λ

.
= {j ∈ J : λj 6= 0}. Thus

〈λ, z〉 = λ(z) =
∑

j∈J

λjzj
.
=

∑

j∈supp λ

λjzj, ∀ z ∈ R
J , ∀ λ ∈ R

(J).

If λ = 0 then supp λ = ∅, and so we put
∑

∅ = 0. In addition, R
(J)
+ denotes

the non-negative cone in R
(J).

Before establishing the validity of strong duality for (19) with respect to
(22), strong duality with respect to the duals (23) and (24) will be discussed
first. Actually, such a property will be equivalent to copositivity of A on suit-
able cones. In what follows, some preliminaries are stated.

Set

M
.
= cone co





⋃

j∈J

epi g∗j ∪ epi δ∗X



 .

Here, g∗j (resp. δ∗X), denotes the conjugate function of gj (resp. δX). For general
f , gj, X , the problem formulated as in (20) with optimal value denoted by µ
instead of µq, the following two constraint qualification conditions arise

M is closed; (25)

epi f∗ +M is closed. (26)

Notice that

M = cone co





⋃

j∈J

epi g∗j



+ epi δ∗X .

Next theorem is taken from [19]

Theorem 4.1 ( [19, Theorem 2]) Given any proper lsc and convex functions
f and gj (j ∈ J), X a non-empty convex closed set, under (25) and (26) and
assuming µ finite, one gets

∃ λ∗ ∈ R
(J)
+ : f(x) +

∑

j∈J

λ∗jgj(x) ≥ µ, ∀ x ∈ X, (27)

or, equivalently, there exists λ∗ ∈ R
(J)
+ such that

µ = sup
x∈X

{f(x) +
∑

j∈J

λ∗jgj(x)}. (28)

Remark 4.1 Theorem 1 in [19] asserts that if f is either linear or continuous at
some point of the feasible set of (20), K, then, the fulfillment of (25) implies
that (26) is also satisfied.
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4.1 Characterizing strong duality with respect to (24)

We are ready to apply Theorem 4.1 to our model (19). The following result
establishes that standard strong duality for problem (20) or equivalently, (19),
with respect to (24) holds if, and only if A is positive semidefinite, i.e., copos-
itivity on R

n. So, this dual is not suitable when considering, for instance, the
portfolio optimization problem since A is only copositive on a proper cone of
R

n.

Theorem 4.2 Let us consider problem (19) or equivalently (20) with C being
any pointed closed convex cone with nonempty interior, and e ∈ int C∗. The
following assertions are equivalent:

(a) A < 0;

(b) A < 0 and there exists λ∗ ∈ R
(I)
+ such that

f(x) +
∑

i∈I

λ∗jgj(x) ≥ µq, ∀ x ∈ X ; (29)

(c) there exists (λ∗0, λ
∗) ∈ R× R

(J)
+ such that

f(x) + λ∗0g0(x) +
∑

j∈J

λ∗jgj(x) ≥ µq, ∀ x ∈ R
n, (30)

or, equivalently,

µq = inf
x∈Rn

{

f(x) + λ∗0g0(x) +
∑

j∈J

λ∗jgj(x)
}

.

Proof (c) ⇒ (a): Assume to the contrary that there exists x̄ ∈ R
n such that

x̄⊤Ax̄ < 0. Then, by setting x = tx̄ with t going to +∞ in (30), it yields a
contradiction.
(a) ⇒ (b): In view of Theorem 4.1 and Remark 4.1, we need to check only that
condition (25) holds. Since

g∗j (u) = sup
x∈Rn

{u⊤x− j⊤x} = δ{j}(u),

one obtains epi g∗j = {j} × R+, and so

co





⋃

j∈J

epi g∗i



 = co[(−C∗)× R+] = (−C∗)× R+.

Hence

cone co

(

⋃

i∈J

epi g∗j

)

= (−C∗)× R+.

On the other hand, by writing X = e⊥ + x̄ with x̄ ∈ X , we get

δ∗X(u) = sup
x∈Rn

{u⊤x− δX(x)} = sup
x∈X

u⊤x = sup
v∈e⊥

u⊤v + u⊤x̄ = δRe(u) + u⊤x̄.
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Thus,
epi δ∗X = R(e, 1) + R+(0, 1).

Consequently,

M = cone co





⋃

j∈J

epi g∗i ∪ epi δ∗X



 = cone co





⋃

j∈J

epi g∗j



+ epi δ∗X

= (−C∗)× R+ + R(e, 1) + R+(0, 1) = (−C∗)× R+ + R(e, 1),

which is closed, i.e., (25) is satisfied. Here we use the result: given two closed
convex sets M and N , the set M − N is closed provided M∞ ∩ N∞ = {0},
see for instance [40]. Then, (27) holds, and so (28) holds as well, proving (b).

(b) ⇒ (c): By setting ϕ(x) = f(x) +
∑

j∈J

λ∗jgj(x), it is not difficult to check

that: (g0, ϕ)(R
n) +R+(0, 1) is convex (since ϕ is convex and g0 is affine), and

there exist x0, x1 ∈ R
n satisfying g0(x0) < 0 < g0(x1). Thus, strong duality

holds for problem (28) (a usual application of a convex separation theorem
yields the conclusion), that is, there exists λ∗0 ∈ R such that

ϕ(x) + λ∗0g0(x) ≥ µq, ∀ x ∈ R
n,

which is nothing else than (30). ⊓⊔

Remark 4.2 One can check easily that if (29) holds for some λ∗ ∈ R
(J)
+ , then

A is copositive on the hyperplane e⊥. Such a notion arises naturally in the
next subsection.

4.2 Characterizing strong duality with respect to (23)

In this subsection we deal with the second dual problem (23). To be more
precise, next thorem shows that standard strong duality for problem (20) or
equivalently, (19), with respect to (23) holds if, and only if A is copositive on
e⊥.

Theorem 4.3 Let us consider problem (19) with C being any pointed closed
convex cone with nonempty interior, and e ∈ int C∗. The following assertions
are equivalent:

(a) A is copositive on e⊥;

(b) there exists λ∗ ∈ R
(J)
+ such that

f(x) +
∑

j∈J

λ∗jgj(x) ≥ µq, ∀ x ∈ X, (31)

or, equivalently,

µq = inf
x∈X

{

f(x) +
∑

j∈J

λ∗jgj(x)
}

.
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(c) f is convex on X.
(d) f is convex on K.

Hence, under any of the conditions (a), (b), (c) or (d), every local solution to
problem (19) is global.

Proof (b) ⇒ (a): It is straightforward.
(a) ⇒ (b): Take any x̄ ∈ argmin

K

f . By writing X = x̄+ e⊥, one obtains for all

x ∈ X ,

x⊤Ax = (x − x̄)⊤A(x − x̄) + 2x̄⊤Ax− x̄⊤Ax̄ (32)

≥ 2x̄⊤Ax − x̄⊤Ax̄, (33)

where the inequality was obtained by copositivity of A on e⊥. Thus,

1

2
x⊤Ax ≥ x̄⊤Ax− 1

2
x̄⊤Ax̄, ∀ x ∈ X. (34)

Let us consider the convex problem:

µ′ .= min
{

x̄⊤Ax : x ∈ X, gj(x) ≤ 0, j ∈ J
}

. (35)

It is easy to check that µ′ = 2µq. Indeed, obviously µ
′ ≤ x̄⊤Ax̄ = 2µq. On the

other hand, by the first order optimality condition,

(Ax̄)⊤(x− x̄) ≥ 0, ∀ x ∈ K,

that is, µ′ ≥ 2µq, proving the claim.
We now check that strong duality holds for (35) with respect to the dual

sup
λ∈R

(J)
+

inf
x∈X

{

x̄⊤Ax+
∑

j∈J

λjgj(x)
}

.

It will be a consequence, as before, of Theorem 4.1 with objective function
given by x̄⊤Ax. In fact, such a theorem is applicable since the assumptions

are verified, see also Remark 4.1. Hence, there exists λ∗ = (λ∗j ) ∈ R
(J)
+ such

that

x̄⊤Ax+
∑

j∈J

λ∗jgj(x) ≥ 2µq, ∀ x ∈ X.

This along with inequality (34) yields that

f(x) +
∑

j∈J

λ∗jgj(x) ≥ (Ax̄)⊤x+
∑

j∈J

λ∗jgj(x)− µq ≥ 2µq − µq = µq, ∀ x ∈ X.

(a) ⇔ (c): First observe that A is copositive on e⊥ if, and only if

(x− y)⊤A(x− y) ≥ 0 ∀x, y ∈ X.
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In other words, A is copositive on e⊥ if, and only if A is copositive on X −X .
On the other hand, given t ∈ ]0, 1[, and x, y ∈ X , on combining the two
identities:

f(x) = f(y) +∇f(y)⊤(x− y) +
1

2
(x− y)⊤A(x− y);

f(y + t(x− y)) = f(y) + t∇f(y)⊤(x− y) +
t2

2
(x− y)⊤A(x − y),

one obtains

f(y + t(x− y)) = f(y) + t(f(x) − f(y))− t

2
(1− t)(x − y)⊤A(x− y),

from which the desired inequality follows.
(c) ⇔ (d): One implication is obvious since K ⊆ X , and the other is obtained
because of X is the affine hull of K (affK), which is the smallest affine set
containing K, and the fact that the convexity of f on K implies the convexity
of f on affK, see for instance [3, Exercise 3.20]. ⊓⊔

Remark 4.3 In case C = R
n
+ and e = 1l, (d) is equivalent to ([12, Lemma 6])

P⊤
x̄ APx̄ < 0 for any x̄ ∈ X, with Px̄

.
= I − x̄1l⊤, (36)

where I is the identity matrix of order n.

4.3 Characterizing strong duality with respect to (22)

We now analize the strong duality property in connection with (22), and it will
be suitable for the portfolio optimization problem, since copositivity of A on C

arises naturally in such a problem. Recall that f(x) =
1

2
x⊤Ax, g0(x) = e⊤x−1,

and F = (g0, f). By following Section 3, denote, given a ∈ R,

K(a)
.
= {x ∈ C : g0(x) = a}.

Clearly K(−1) = {0}. The following proposition, whose proof is straightfor-
ward, collects some basic facts on the optimal value function ψ : R → R∪{+∞}
defined by

ψ(a)
.
=

{

min{f(x) : x ∈ K(a)} ifK(a) 6= ∅
+∞ otherwise.

(37)

Proposition 4.1 Let A be a real symmetric matrix; C be a pointed closed
convex cone with nonempty interior, and e ∈ int C∗. The following assertions
hold.

(a) K(a) 6= ∅ if, and only if a ≥ −1.

(b) Let a > −1. Then, x ∈ K(a) if, and only if
1

1 + a
x ∈ K. Hence

min
x∈K(a)

f(x) = µq(1 + a)2, ∀ a ≥ −1.
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(c) Let µq > 0. Then, f(x) > µq for all x ∈ K(a) and all a > 0.

Now, denote the objective function of the dual problem (22) by

θ(λ)
.
= inf

x∈C
L(λ, x),

where L(λ, x)
.
= f(x) + λg0(x), and by SD the solution set of the dual prob-

lem (22). We now describe the main properties shared by this problem, which
appear here for the first time when C is non-polyhedral. In particular, They
reveal a hidden convexity of the general standard quadratic optimization prob-
lem.

Notice that for the StQO problem (2), (c) below was obtained in [12,
Theorem 4] by using the Frank-Wolfe theorem, which is not applicable here
(see also [7]).

Theorem 4.4 Let A, C and e be as in the preceding proposition. Then,

(a) the optimal value function ψ is given by

ψ(a) =

{

µq(1 + a)2 if a ≥ −1;

+∞ if a < −1.

Thus, ψ is convex if, and only if µq ≥ 0.
(b) F (C) and F (C) + R+(0, 1) are closed, so

{(a, r) ∈ R
2 : a ≥ −1, µq(1 + a)2 ≤ r} = epi ψ = F (C) + R+(0, 1).

(c) Let µq > 0. Then, the objective function θ is given by

θ(λ) =







− λ2

4µq

− λ if λ < 0;

− λ if λ ≥ 0.

Hence SD = {−2µq} and µq = ν0, i.e., strong duality holds with respect to
(22).

(d) Let µq = 0. Then, the objective function θ is given by

θ(λ) =

{

−∞ if λ < 0;

−λ if λ ≥ 0.

Hence SD = {0} and strong duality holds with respect to (22).

Proof (a) is a consequence of the previous proposition.
(b):By virtue of (b) of Proposition 3.1, we need only to check the closedness
of F (C) + R+(0, 1). The same argument also shows that F (C) is closed. Let
(a, r) ∈ F (C) + R+(0, 1). Then, there exist sequences xk ∈ C, qk ≥ 0 satisfying
f(xk) + qk → r and g0(xk) → a. From the second relation, we deduce that
‖xk‖ is bounded. Thus, up to a subsequence, xk → x̄ ∈ C, implying that
qk = f(xk) + qk − f(xk) → r − f(x̄). Setting q

.
= r − f(x̄), we get q ≥ 0, and
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so (a, r) = (g0(x̄), f(x̄) + q) ∈ F (C) + R+(0, 1).
(c): From the inequality (x⊤Ax+λe⊤x)2 ≥ 0 and taking into account that by
assumption x⊤Ax > 0 for all x ∈ C, x 6= 0, one obtains

L(λ, x) ≥ −λ
2(e⊤x)2

2x⊤Ax
− λ, ∀ x ∈ C, x 6= 0.

Since K is a base for C, we conclude

(e⊤x)2

2x⊤Ax
≤ 1

4µq

, ∀ x ∈ C, x 6= 0.

Hence

L(λ, x) ≥ − λ2

4µq

− λ, ∀ x ∈ C. (38)

In case λ ≥ 0, it is easy to see that

θ(λ) = min
x∈C

L(λ, x) = L(λ, 0) = −λ.

If λ < 0 and x̄ ∈ argminKf , then by taking x0 = − λ

2µq

x̄ ∈ C, we get

L(λ, x0) = − λ2

4µq

− λ.

Thus, from (38),

θ(λ) = − λ2

4µq

− λ.

(d): We consider only the case λ < 0 (if λ ≥ 0 is exactly as in (c)), and check
that

inf
{

L(λ, x) : x ∈ C, x⊤Ax = 0
}

= −∞.

Indeed, since there exists x0 ∈ C, x0 6= 0, such that x⊤0 Ax0 = 0 by assumption,
we obtain

inf
{

L(λ, x) : x ∈ C, x⊤Ax = 0
}

= inf
{

λ(e⊤x− 1) : x ∈ C, x⊤Ax = 0
}

≤ inf
t>0

λ(te⊤x0 − 1) = −∞.

Thus, θ(λ) = −∞ in case λ < 0. ⊓⊔

From the previous theorem, one characterizes the copositivity of A on C by
means of the convexity of F (C)+R+(0, 1). This result is new and corresponds
to the nice challenge of proving convexity of joint-range for a pair of quadratic
functions. When C = R

n a similar convexity result was analyzed in [43].

Theorem 4.5 Let us consider problem (19) with C being any pointed closed
convex cone with nonempty interior, and e ∈ int C∗. The following assertions
are equivalent:
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(a) A is copositive on C (or, equivalently µq ≥ 0);
(b) Strong duality holds for (19) with respect to (22), i.e., there exists λ∗0 ∈ R

such that
f(x) + λ∗0g0(x) ≥ µq, ∀ x ∈ C, (39)

or, equivalently,

µq = inf
x∈C

{

f(x) + λ∗0g0(x)
}

.

(c) F (C) + R+(0, 1) is convex.

Proof Since, A is copositive on C if and only if µq ≥ 0, the equivalence between
(a) and (c) is a consequence of (a) and (b) of Theorem 4.4. That (a) implies
(b) follows from (c) and (d) of the same Theorem 4.4. For the implication
(b) ⇒ (a), assume to the contrary that there exists x̄ ∈ C, x̄ 6= 0, such that
x̄⊤Ax̄ < 0. Then, by substituting x by tx̄ with t > 0 in (39), and letting
t→ +∞, one reachess a contradiction. This proves (a). ⊓⊔

In connection with the previous theorem some remarks are in order.

Remark 4.4 One can split Theorem 4.5 into two cases according to µq = 0 or
µq > 0. Clearly, if µq = 0, then (39) holds trivially by putting λ∗0 = 0. In case
µq > 0, by (c) of Theorem 4.4, (39) holds if, and only if λ∗0 = −2µq. Hence
one may write the equivalences:

– A is copositive but not strictly copositive on C ⇐⇒ F (C) + R+(0, 1) is
(convex) polyhedral (see (b) of Theorem 4.4);

– A is strictly copositive on C ⇐⇒ F (C) + R+(0, 1) is convex and non-
polyhedral (see (b) of Theorem 4.4)

⇐⇒ ∃ λ 6= 0 : f(x) + λg0(x) > 0, ∀ x ∈ C.

Remark 4.5 The fact that convexity must appear in a natural way under
strong duality was the object of many investigations by one of the authors.
For the general problem (5), it was proved in [15] under a Slater-type con-
dition, that the validity of strong duality is equivalent to the convexity of
cone(F (C) + R+(0, 1) − µ(0, 1)). When C = R

n and f, g are quadratic func-
tions, the authors in [25] established (under Slater condition): strong duality
holds if, and only if F (Rn) + R+(0, 1) is convex; such a convexity is also cha-
racterized in [25].

Remark 4.6 One could expect that under any of the conditions (a), (b) or (c)
of Theorem 4.5, local solutions are global. Unfortunately, this is not true. The
matrix A2 of Section 4.5 shows this fact when µq > 0.

4.4 The S-lemma

Let P ⊆ R be either {0} or R+, f, g : Rn → R be quadratic functions not
necessarily homogeneous, and C be any nonempty subset of Rn. The S-lemma
asks when (40) and (41) are equivalent:

x ∈ C, g(x) ∈ −P =⇒ f(x) ≥ 0; (40)
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∃ λ ∈ P ∗, f(x) + λg(x) ≥ 0 ∀ x ∈ C. (41)

This actually requires only the implication (40) =⇒ (41). Originally, the S-
lemma (with P = R+ and C = R

n) is due to Yakubovich [44,45], and the
equivalence holds under the Slater condition: there exists x0 ∈ R

n such that
g(x0) < 0. When P = {0} and C = R

n, a characterization of the validity of
the S-lemma is given in the recent paper [43]; although an earlier result may
be found in [42, Corollary 6] (see Corollary 5 in [42] in case P = R+). In the
same paper [43], Theorem 9, respectively Corollary 2, provides a necessary and
sufficient condition for the convexity of (g, f)(Rn), respectively (g, f)(Rn)+R

2
+,

when g is affine. In the case when both functions f and g are quadratic, the
convexity of (g, f)(Rn) or that of (g, f)(Rn) + R+d (0 6= d ∈ R

2) are fully
analyzed in [25]. The extension to C equals an affine space with P = R+, was
considered in [31]. A nice survey about S-lemma is presented in [39], and results
on joint-range convexity of a finite number of quadratic forms are presented
in [29].

Our (strict-version) S-lemma cannot be obtained from any result mentioned
above. Indeed, all forms of S-lemma appearing in [39,43,42] require either
C = R

n or C to be a linear subspace; and, on the other side, the proof of our
version does not follow any argument employeed elsewhere.

We will see that a non strict version of S-lemma (with P = {0}) for our
problem (19) always holds, and it is immediate. Thus, the strict case is the
interesting part.

Lemma 4.1 Let C ⊆ R
n be any pointed closed convex cone with nonempty

interior, e ∈ int C∗. Set P = {0}, g(x) = e⊤x − 1, f(x) =
1

2
x⊤Ax with

A = A⊤. Then,
(40) ⇐⇒ (41).

Proof It needs only to check (40) =⇒ (41). From (40) it follows that µq
.
=

min{f(x) : g(x) = 0, x ∈ C} ≥ 0. This means A is copositive on C. Thus,
(41) holds for λ = 0, and the proof is completed. ⊓⊔

However, a strict version of the S-lemma requires Theorem 4.5 or more
precisely Remark 4.4. Such a version is established in what follows, and it is
new.

Theorem 4.6 Let C ⊆ R
n be any pointed closed convex cone with nonempty

interior, e ∈ int C∗. Set P = {0}, g(x) = e⊤x − 1, f(x) =
1

2
x⊤Ax with

A = A⊤. Then, (42) ⇐⇒ (43), where

x ∈ C, g(x) = 0 =⇒ f(x) > 0; (42)

∃ λ 6= 0, f(x) + λg(x) > 0 ∀ x ∈ C. (43)

Proof As usual, we will only check (42) =⇒ (43). From (42) it follows that
µq

.
= min{f(x) : g(x) = 0, x ∈ C} > 0. This means A is strictly copositive on

C. By the last part of Remark 4.4, there exists λ 6= 0 such that f(x)+λg(x) > 0
for all x ∈ C, which is the desired result. ⊓⊔
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4.5 Example: the bidimensional case

Just for illustration, let us consider n = 2, 1l = (1, 1) and A = A⊤ ∈ R
2×2 with

A =

(

a b
b c

)

.

The following proposition is easily obtained, see also [28,38], and from it, one
infers that there is no relationship between copositivity on 1l⊥ and on R

2
+.

Proposition 4.2 Let A be as above. Then

(a) A is positive semidefinite if, and only if a ≥ 0, ac ≥ b2.
(b) A is copositive on 1l⊥ if, and only if a− 2b+ c ≥ 0.
(c) A is copositive on R

2
+ if, and only if a ≥ 0, c ≥ 0, b ≥ −√

ac.
(d) Every local solution to

min{f(x1, x2) .=
1

2
x⊤Ax : x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}, (44)

is global if, and only if any of the following assertions holds:
(d1) a+ c ≥ 2b;
(d2) a+ c < 2b, a ≥ b;
(d3) a+ c < 2b, b ≤ c;
(d4) a+ c < 2b, a = c.

Proof We have x⊤Ax = ax21 + 2bx1x2 + cx22.
(a): This is a consequence of the fact that A is positive semidefinite if, and
only if all the principal minors are nonnegative.
(b): Let x ∈ 1l⊥. Then, x⊤Ax = (a− 2b+ c)x21, and so the result follows.
(c): The condition x⊤Ax ≥ 0 for all x ∈ R

2
+, implies a ≥ 0 and c ≥ 0. Thus

x⊤Ax = (
√
ax1 −

√
cx2)

2 + 2(
√
ac+ b)x1x2, (45)

which is nonnegative if b ≥ 0. In case b < 0 and a > 0, c > 0, we require

b ≥ −√
ac, since otherwise, by choosing x1 =

√
c√
a
x2, x2 > 0, in (45), one gets

x⊤Ax < 0.
(d): It follows from the equivalent formulation to (44)

min
{

f(x1, 1− x1) =
1

2
x21(a− 2b+ c) + x1(b− c) +

c

2
: 0 ≤ x1 ≤ 1

}

, (46)

and by noticing that the function ϕ(x1)
.
= f(x1, 1− x1) satisfies

ϕ′(0) = b− c, ϕ′(1) = a− b, ϕ(0) =
c

2
, ϕ(1) =

a

2
.

⊓⊔
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Consider the matrices

A1 =

(

−1 1
1 1

)

;A2 =

(

1/4 1
1 1/2

)

.

One can check that A1 is non-copositive on R
2
+, and it is such that every

local solution (to the associated minimization problem) is global; whereas A2

is strictly copositive on R
2
+ for which there is a local solution without being

global.

5 Local optimality vs global

Very recently, second-order necessary and sufficient conditions for local (resp.
global) optimality for a quadratic optimization problem on a polyhedron were
established in Theorem 1.2 (resp. Theorem 2.3) of [9]; thus those results can-
not be applied to our model. In this section, due to the special structure of
the standard quadratic programming problem (19), we derive second-order
sufficient and/or necessary conditions for local or global optimality. We refer
to [5] for a method locating some particular local minima. Copositivity-based
escape procedures for the StQO problem on the simplex are analyzed in [6].

Set, as before, f(x)
.
=

1

2
x⊤Ax and g0(x)

.
= e⊤x− 1.

Due to the assumptions on C and C∗, we can write

C∗ \ {0} = co(extrd C∗),

where extrd C∗ stands for the extremal directions of C∗. Recall that d ∈
extrd C∗ if and only if d ∈ C∗\{0} and for all d1, d2 ∈ C∗ such that d = d1+d2,
we have d1, d2 ∈ R+d. Thus, for every λ ∈ C∗ \ {0}, one has, for some k ∈ N,

λ =

k
∑

i=1

λidi, λi > 0, di ∈ extrd C∗, i = 1, 2, . . . , k. (47)

In what follows, we need the notion of contingent cone. Given a setM ⊆ R
n

and x ∈ M , the contingent cone of M at x, denoted by T (M ;x), is the set
of vectors v ∈ R

n such that there exist tk > 0, xk ∈ M , xk → x, satisfying
tk(xk − x) → v. For a great account of its properties, we refer the book [2]. In
particular, we recall that when M is closed and convex, then

T (M ;x) =
⋃

t≥0

t(M − x), x ∈M. (48)

We now establish first and second-order necessary conditions for local opti-
mality to problem (19).

Theorem 5.1 Let A be any real symmetric matrix, and C, e be as before. Let
x̄ be any local solution to problem (19) with µ̄

.
= f(x̄). Set λ

.
= Ax̄− 2µ̄e. The

following hold.
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(a) λ⊤x̄ = 0 and λ ∈ bd C∗; if additionally x̄ is not a global solution, we have
Ax̄− 2µqe ∈ intC∗.

(b) If x̄ ∈ ri K, then λ = 0.
(c) If λ = 0, then A is copositive on T (K; x̄), and so x̄ is a global solution to

(19).

Proof (a): Let x̄ be a local solution to problem (19), i. e., x̄ ∈ argmin
K∩U0

f for

some open neighborhood, U0, of x̄. Clearly x̄ 6= 0 and µ̄ ≥ µq. By the first
order optimality condition, ∇f(x̄)⊤v ≥ 0 for all v ∈ T (K ∩ U0; x̄) = T (K; x̄).
In other words,

∇f(x̄) ∈ [T (X ∩ C; x̄)]∗ = [T (X ; x̄) ∩ T (C; x̄)]∗ = [T (X ; x̄)]∗ + [T (C; x̄)]∗

= [T (X ; x̄)]∗ + [T (C; x̄)]∗

= Re+ (C + Rx̄)∗ = Re+ (x̄⊥ ∩ C∗),

where the first equality follows from Table 4.3 in [2] (since 0 ∈ int(X − C))
and the second one is a consequence of Corollary 16.4.2 in [40] (since ri(e⊥)∩
ri(C + Rx̄) 6= ∅). Thus there exists t ∈ R satisfying Ax̄ − te ∈ x̄⊥ ∩ C∗. It
follows that t = 2µ̄ and so λ = Ax̄− 2µ̄e ∈ C∗, which gives Ax̄− 2µ̄e ∈ bd C∗.
This implies, in case x̄ is not a global solution (µ̄ > µq), that

Ax̄− 2µqe = Ax̄− 2µ̄e+ 2(µ̄− µq)e ∈ C∗ + intC∗ = intC∗.

(b): We already know that ∇f(x̄)⊤(x− x̄) ≥ 0 for all x ∈ K. If x̄ ∈ ri K, then
∇f(x̄) ∈ (aff K)∗ (the affine hull of K); and so Ax̄ = 2µ̄e, i.e., λ = 0.
(c): Let v ∈ T (K; x̄). Then, there exist tk > 0, xk ∈ K, xk → x̄ such that
tk(xk − x̄) → v. Thus for all k sufficiently large,

0 ≤ f(xk)− 2µ̄e⊤xk − f(x̄) + 2µ̄e⊤x̄

= (∇f(x̄)− 2µ̄e)⊤(xk − x̄) +
1

2
(xk − x̄)⊤A(xk − x̄) =

1

2
(xk − x̄)⊤A(xk − x̄).

Hence v⊤Av ≥ 0, proving the copositivity on T (K; x̄). Therefore, given any
x ∈ K, the equality

f(x)− f(x̄) = f(x)− 2µ̄g0(x)− f(x̄) + 2µ̄g0(x̄)

= (Ax̄ − 2µ̄e)⊤(x− x̄) +
1

2
(x− x̄)⊤A(x− x̄),

yields the desired result, since K − x̄ ⊆ T (K; x̄) by (48).

We now provide a characterization for a feasible point to be optimal under
copositivity of A. Recall that L(λ, x)

.
= f(x) + λg0(x).

Theorem 5.2 Let A be any real symmetric matrix, and C, e be as before. The
following assertions hold:
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(a) Assume that x̄ ∈ K. Then,

µq ≥ 0
x̄ ∈ argmin

K

f

}

⇐⇒
{

∃ λ0 ∈ R

x̄ ∈ argmin
C

L(λ0, ·).

We already now that λ0 = −2µq.
(b) Assume that µq > 0 (and so −2µq is a solution to the dual problem (22)).

Then,
x0 ∈ argmin

C

L(−2µq, ·) =⇒ x0 ∈ K.

Proof (a): We know that µq ≥ 0 is equivalent to the validity of strong duality
with respect to (22), which means

µq = L(λ0, x̄) = f(x̄) = inf
x∈C

L(λ0, ·) (49)

For the other implication, we have

µq ≤ f(x̄) = L(λ0, x̄) = inf
x∈C

L(λ0, x) ≤ inf
x∈K

L(λ0, x) = inf
x∈K

f(x) = µq,

and so strong duality holds, i.e., µq ≥ 0. This completes the proof of (a).
(b): Set x0 = ty0 for some 1 6= t > 0 and y0 ∈ K. By (49), we can write

µq = f(x0)− 2µq(e
⊤x0 − 1) = t2f(y0)− 2µq(t− 1)

≥ t2µq − 2µq(t− 1).

This implies 0 ≥ µq(t− 1)2, which is impossible if µq > 0.

Next, we derive a sufficient condition for global optimality. In the particular
case C = R

n
+, this condition is a consequence of Theorem 2.1 in [9]. For a

general convex cone C, the result is new.

Proposition 5.1 Let C be as above. If x̄ is feasible for (19), A is copositive
on K− x̄ or equivalently on T (K; x̄), and Ax̄− 2µ̄e ∈ C∗ holds with µ̄ = f(x̄),
then x̄ ∈ argmin

K

f .

Proof For all x ∈ K, one obtains

f(x)− f(x̄) = f(x)− 2µ̄g0(x)− f(x̄) + 2µ̄g0(x̄)

= (Ax̄ − 2µ̄e)⊤(x− x̄) +
1

2
(x− x̄)⊤A(x− x̄),

from which the result follows. ⊓⊔

We now deal with the standard quadratic optimization problem, that is,
when C = R

n
+ and e = 1l. Denote, given x̄ ∈ K,

I = I(x̄)
.
= {i : x̄i = 0}, I+ .

= {i ∈ I : λi > 0}.

Z(x̄)
.
=
{

v ∈ R
n : vi = 0, i ∈ I+; vi ≥ 0, i ∈ I \ I+;

∑

i∈I\I+

vi +
∑

i6∈I

vi = 0
}

.
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It is not difficult to check that

T (K; x̄) =
{

v ∈ R
n : vi ≥ 0, i ∈ I;

n
∑

i=1

vi = 0
}

.

Hence, if I+ = ∅, then Z(x̄) = T (K; x̄). The following result is a consequence
of Theorem 4.4.3 in [3] and the above remark.

Theorem 5.3 Let A, C, e be as just mentioned. Let x̄ be any local solution to
problem (2) with µ̄

.
= f(x̄). Then

(a) x̄ is a KKT point:

Ax̄ − 2µ̄1l− λ = 0, λ ≥ 0, λix̄i = 0, i = 1, . . . , n,

and A is copositive on Z(x̄).
(b) If additionally I+ = ∅, then x̄ is a global solution.

Example 5.1 Take the matrix

A =





1 1 0
1 0 1
0 1 0



 .

By computing, one obtains (x = (x1, x2, x3)),

x⊤Ax = x21+2x1x2+2x2x3, f(x1, x2, 1−x1−x2) =
1

2
x⊤Ax =

1

2
(x21−2x22+2x2).

Then: µq = 0, that is, A is copositive on R
3
+ but it is not strictly copositive on

R
3
+; A is not copositive on 1l⊥ since f(−1, 1, 0) = −1

2
. Moreover, the associated

StQO problem has two solutions, namely argminKf = {x̄1 .
= (0, 0, 1), x̄2

.
=

(0, 1, 0)}. One can also check that no local-nonglobal solution exists. Moreover,
λ̄1 = Ax̄1 = (0, 1, 0), λ̄2 = Ax̄2 = (1, 0, 1), so (b) of Theorem 5.3 is not satisfied
at x̄1 or x̄2. Notice that

Z(x̄1) = {t(1, 0,−1) : t ≥ 0}, T (K; x̄1) = {t(1, 0,−1)+s(0, 1,−1) : t ≥ 0, s ≥ 0},

and

Z(x̄2) = {(0, 0, 0)}, T (K; x̄2) = {t(1,−1, 0) + s(0,−1, 1) : t ≥ 0, s ≥ 0}.
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