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Abstract

We introduce a family of mixed methods and discontinuous Galerkin discretisations designed to
numerically solve the Oseen equations written in terms of velocity, vorticity, and Bernoulli pres-
sure. The unique solvability of the continuous problem is addressed by invoking a global inf-sup
property in an adequate abstract setting for non-symmetric systems. The proposed finite element
schemes, which produce exactly divergence-free discrete velocities, are shown to be well-defined
and optimal convergence rates are derived in suitable norms. In addition, we establish optimal
rates of convergence for a class of discontinuous Galerkin schemes, which employ stabilisation. A
set of numerical examples serves to illustrate salient features of these methods.
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1 Introduction

The Oseen equations stem from linearisation of the steady (or alternatively from the backward Euler
time-discretisation of the transient) Navier-Stokes equations. Of particular appeal to us is their formu-
lation in terms of fluid velocity, vorticity vector, and pressure. A diversity of discretisation methods is
available to solve incompressible flow problems using these three fields as principal unknowns. Some
recent examples include spectral elements [3, 8] as well as stabilised and least-squares schemes [2, 9]
for Navier-Stokes; also several mixed and augmented methods for Brinkman [4,5,7], and a number of
other discretisations specifically designed for Stokes flows [6, 22,23,25,30].

Both the implementation and the analysis of numerical schemes for Navier-Stokes are typically
based on the Oseen linearisation. A few related contributions (not only restricted to the velocity-
pressure formulation) include for instance [10], that presents a least-squares method for Navier-Stokes
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equations with vorticity-based first-order reformulation, and whose analysis exploits the elliptic the-
ory of Agmon-Douglas-Nirenberg. Conforming finite element methods exhibit optimal order of accu-
racy for diverse boundary conditions. We also mention the non-conforming exponentially accurate
least-squares spectral method for Oseen equations proposed in [27], where a suitable preconditioner
is also proposed. In [32] the authors introduce a velocity-vorticity-pressure least-squares finite ele-
ment method for Oseen and Navier-Stokes equations with velocity boundary conditions. They derive
error estimates and reported a degeneracy of the convergence for large Reynolds numbers. A div
least-squares minimisation problem based on the stress-velocity-pressure formulation was introduced
in [13]. The study shows that the corresponding homogeneous least-squares functional is elliptic
and continuous in suitable norms. Several first-order Oseen-type systems are analysed in [15], also
including vorticity and total pressure in the formulation.

Discontinuous Galerkin (DG) methods have also been used to solve the Oseen problem, as for
example, in [18, 19] for the case of Dirichlet boundary conditions. Compared with conforming finite
elements, discretisations based on DG methods have a number of attractive, and well-documented
features. These include high order accuracy, being amenable for hp-adaptivity, relatively simple
implementation on highly unstructured meshes, and superior robustness when handling rough coef-
ficients. We also mention the a priori error analysis of hybridisable DG schemes introduced in [16]
for the Oseen equations. The family of DG methods we propose here has resemblance with those
schemes, but exploits a three-field formulation described below.

This paper is concerned with mixed non-symmetric variational problems which will be analysed
using a global inf-sup argument. To do this, we conveniently restrict the set of equations to the
space of divergence-free velocities, and apply results from [24] in order to prove that the equivalent
resulting non-symmetric saddle-point problem is well-posed. For the numerical approximation, we
first consider Raviart-Thomas elements of order k ≥ 0 for the velocity field, Nédélec elements or
order k for the vorticity, and piecewise polynomials of degree k without continuity restrictions, for the
Bernoulli pressure. We prove unique solvability of the discrete problem by adapting the same tools
utilised in the analysis of the continuous problem. In addition, the proposed family of Galerkin finite
element methods turns out to be optimally convergent, under the common assumptions of enough
regularity of the exact solutions to the continuous problem. The method produces exactly divergence-
free approximations of the velocity by construction; thus preserving, at the discrete level, an essential
constraint of the governing equations. Next, inspired by the methods presented in [19,20], we present
another scheme involving the discontinuous Galerkin discretisation of the curl-curl and grad-div
operators. We prove the well-posedness of the DG scheme and derive error estimates under some
solution regularity assumptions.

We have structured the contents of the paper in the following manner. Notation-related prelimi-
naries are stated in the remainder of this Section. We then present the model problem as well as the
three-field weak formulation and its solvability analysis in Section 2. The finite element discretisation
is constructed in Section 3, where we also derive the stability and convergence bounds. In Section 4,
we present the mixed DG formulation for the model problem. The well-posedness of the method and
the error analysis are established in the same section. We close in Section 5 with a set of numerical
tests that illustrate the properties of the proposed numerical schemes in a variety of scenarios.

Let Ω be a bounded domain of R3 with Lipschitz boundary ∂Ω. Moreover, we assume that ∂Ω
admits a disjoint partition ∂Ω = Γ ∪ Σ. For any s ≥ 0, the symbol ‖·‖s,Ω denotes the norm of the

Hilbertian Sobolev spaces Hs(Ω) or Hs(Ω)3, with the usual convention H0(Ω) := L2(Ω). For s ≥ 0,
we recall the definition of the space

Hs(curl; Ω) :=
{
θ ∈ Hs(Ω)3 : curlθ ∈ Hs(Ω)3

}
,

endowed with the norm ‖θ‖2Hs(curl;Ω) = ‖θ‖2s,Ω+‖curlθ‖2s,Ω, and will denote H(curl; Ω) = H0(curl; Ω).
Finally, c and C, with subscripts, tildes, or hats, will represent a generic constant independent of the
mesh parameter h.
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2 Statement and solvability of the continuous problem

Oseen problem in terms of velocity-vorticity-pressure. A standard backward Euler time-
discretisation of the classical Navier-Stokes equations, or a linearisation of the steady version of the
problem combined with standard curl-div identities, leads to the following set of equations, known as
the Oseen equations (see [26,29]):

σu− ν∆u+ curlu× β +∇p = f in Ω,

divu = 0 in Ω,
(2.1)

where ν > 0 is the kinematic fluid viscosity, σ > 0 is inversely proportional to the time-step, β is
an adequate approximation of velocity to be made precise below, and the vector of external forces f
also absorbs the contributions related to previous time steps, or to fixed states in the linearisation
procedure of the steady Navier-Stokes equations. As usual in this context, in the momentum equation
we have conveniently introduced the Bernoulli (also known as dynamic) pressure p := P + 1

2 |u|
2,

where P is the actual fluid pressure.

The structure of (2.1) suggests to introduce the rescaled vorticity vector ω :=
√
ν curlu as a new

unknown. Furthermore, in this study we focus on the case of zero normal velocities and zero tangential
vorticity trace imposed on a part of the boundary Γ ⊂ ∂Ω, whereas a non-homogeneous tangential
velocity uΣ and a fixed Bernoulli pressure pΣ are set on the remainder of the boundary Σ = ∂Ω \ Γ.
Therefore, system (2.1) can be recast in the form

σu+
√
ν curlω + ν−1/2ω × β +∇p = f , ω −

√
ν curlu = 0, and divu = 0 in Ω,

u · n = 0 and ω × n = 0 on Γ, (2.2)

p = pΣ and u× n = uΣ on Σ,

where n stands for the outward unit normal on ∂Ω. Should the boundary Σ have zero measure, the
additional condition (p, 1)Ω,0 = 0 is required to enforce uniqueness of the Bernoulli pressure.

Defining a weak formulation. Let us introduce the following functional spaces

H := {v ∈ H(div; Ω) : v ·n = 0 on Γ}, Z := {θ ∈ H(curl; Ω) : γt(θ) = 0 on Γ}, and Q := L2(Ω),

where the operator γt is the tangential trace operator on Γ, defined by: γt(θ) = θ×n. Let us endow H
and Q with their natural norms. For the space Z however, we consider the following viscosity-weighted
norm:

‖θ‖Z :=
(
‖θ‖20,Ω + ν‖ curlθ‖20,Ω

)1/2
.

From now on, we will assume that the data are regular enough: β ∈ L∞(Ω)3 and f ∈ L2(Ω)3.
We proceed to test (2.2) against adequate functions and to impose the boundary conditions in such a
manner that we end up with the following formulation: Find (u,ω, p) ∈ H× Z×Q such that

a(u,v) + b1(v,ω)+b2(v, p) + c(ω,v) = F (v) ∀v ∈ H,

b1(u,θ)− d(ω,θ) = G(θ) ∀θ ∈ Z, (2.3)

b2(u, q) = 0 ∀q ∈ Q,

where the bilinear forms a : H×H→ R, b1 : H×Z→ R, d : Z×Z→ R, b2 : H×Q→ R, c : Z×H→ R,
and the linear functionals F : H→ R, and G : Z→ R are specified as follows

a(u,v) := σ

∫
Ω

u · v dx, b1(v,θ) :=
√
ν

∫
Ω

curlθ · v dx, b2(v, q) := −
∫

Ω

q div v dx,

d(ω,θ) :=

∫
Ω

ω · θ dx, c(θ,v) :=
1√
ν

∫
Ω

(θ × β) · v dx,
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F (v) :=

∫
Ω

f · v dx− 〈v · n, pΣ〉Σ, G(θ) := −
√
ν〈uΣ,θ〉Σ,

for all u,v ∈ H, ω,θ ∈ Z, and q ∈ Q.

Solvability analysis. In order to analyse the variational formulation (2.3), let us introduce the
Kernel of the bilinear form b2(·, ·) and its classical characterisation

X := {v ∈ H : b2(v, q) = 0, ∀ q ∈ Q} = {v ∈ H : div v = 0 in Ω},

and let us recall that b2 satisfies the inf-sup condition:

sup
v∈H
v 6=0

|b2(v, q)|
‖v‖H

≥ β2‖q‖0,Ω ∀q ∈ Q, (2.4)

with an inf-sup constant β2 > 0 only depending on Ω (see e.g. [24]).

We will now address the well-posedness of (2.3). To that end, it is enough to study its reduced
counterpart, defined on X× Z: Find (u,ω) ∈ X× Z such that

a(u,v) + b1(v,ω)+c(ω,v) = F (v) ∀v ∈ X,

b1(u,θ)− d(ω,θ) = G(θ) ∀θ ∈ Z. (2.5)

The equivalence between (2.3) and (2.5) is established in the following result, whose proof follows [26]
and it is basically a direct consequence of the inf-sup condition (2.4).

Lemma 2.1 If (u,ω, p) ∈ H × Z × Q is a solution of (2.3), then u ∈ X and (u,ω) ∈ X × Z also
solves (2.5). Conversely, if (u,ω) ∈ X × Z is a solution of (2.5), then there exists a unique p ∈ Q
such that (u,ω, p) ∈ H× Z×Q solves (2.3).

The abstract setting that will permit the analysis of (2.3) is stated in the following general result
[24, Theorem 1.2].

Theorem 2.1 Let A : X × X → R be a bounded bilinear form and G : X → R a bounded functional,
both defined on the Hilbert space (X , 〈·, ·〉X ). If there exists α > 0 such that

sup
y∈X\{0}

A(x, y)

‖y‖X
≥ α ‖x‖X ∀x ∈ X , (2.6)

and
sup
x∈X
y 6=0

A(x, y) > 0 ∀ y ∈ X , (2.7)

then there exists a unique solution x ∈ X to the problem

A(x, y) = G(y) ∀ y ∈ X .

Furthermore, there exists C > 0 (independent of x) such that

‖x‖X ≤
1

α
‖G‖X ′ .

Lemma 2.2 Let us assume that
2‖β‖2∞,Ω

νσ
< 1, (2.8)
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and let us define the bilinear form A(·, ·) specified as

A((u,ω), (v,θ)) := a(u,v) + b1(v,ω) + b1(u,θ)− d(ω,θ) + c(ω,v).

Then, there exist α1, α2 > 0 such that

|A((u,ω), (v,θ))| ≤ α1‖(u,ω)‖X ‖(v,θ)‖X , (2.9)

and

sup
(v,θ)∈X
(v,θ) 6=0

A((u,ω), (v,θ))

‖(v,θ)‖X
≥ α2 ‖(u,ω)‖X ∀ (u,ω) ∈ X , (2.10)

where X := X× Z, endowed with the corresponding product norm, is a Hilbert space.

Proof. As a consequence of the boundedness of a(·, ·) b1(·, ·), c(·, ·), and d(·, ·), the bilinear form A(·, ·)
is bounded and so condition (2.9) readily follows.

Concerning the satisfaction of the inf-sup condition (2.10), for a given (u,ω) ∈ X , we can define

θ̃ := −ω ∈ Z, and ṽ := (u+ ĉ
√
ν curlω) ∈ X,

where ĉ > 0 is a constant to be chosen later. We can then immediately assert that

A((u,ω), (ṽ, θ̃)) = σ

∫
Ω

u · ṽ dx+
√
ν

∫
Ω

curlω · ṽ dx+
√
ν

∫
Ω

curl θ̃ · u dx

−
∫

Ω

ω · θ̃ dx+
1√
ν

∫
Ω

(ω × β) · ṽ dx

≥ σ‖u‖20,Ω + ĉ
√
νσ

∫
Ω

u · curlω dx+
√
ν

∫
Ω

u · curlω dx+ ĉν‖ curlω‖20,Ω

−
√
ν

∫
Ω

u · curlω dx+ ‖ω‖20,Ω +
1√
ν

∫
Ω

(ω × β) · u dx+ ĉ

∫
Ω

(ω × β) · curlω dx

≥ σ‖u‖20,Ω −
σ

4
‖u‖20,Ω − ĉ2σν‖ curlω‖20,Ω + ĉν‖ curlω‖20,Ω + ‖ω‖20,Ω −

2σ

3
‖u‖20,Ω

−
3‖β‖2∞,Ω

2νσ
‖ω‖20,Ω −

‖β‖2∞,Ω
2νσ

‖ω‖20,Ω − 2ĉ2σν‖ curlω‖20,Ω

=
σ

12
‖u‖20,Ω + ĉ (1− 3ĉσ) ν‖ curlω‖20,Ω +

(
1−

2‖β‖2∞,Ω
νσ

)
‖ω‖20,Ω,

where we have used the bound ‖ω × β‖0,Ω ≤ 2‖β‖∞,Ω‖ω‖0,Ω. Choosing ĉ = 1/(4σ) and exploiting
(2.8), we arrive at

A((u,ω), (ṽ, θ̃)) ≥ C‖(u,ω)‖2X ,

with C independent of ν. On the other hand, by construction we realise that ‖θ̃‖Z = ‖ω‖Z and
‖ṽ‖0,Ω ≤ Cĉ(‖u‖0,Ω + ‖ω‖Z), and consequently

sup
(v,θ)∈X
(v,θ)6=0

A((u,ω), (v,θ))

‖(v,θ)‖X
≥ A((u,ω), (ṽ, θ̃))

‖(ṽ, θ̃)‖X
≥ α2‖(u,ω)‖X ∀(u,ω) ∈ X ,

which finishes the proof. �

Lemma 2.3 Suppose that the bound (2.8) is satisfied. Then, there exists C > 0 such that

sup
(u,ω)∈X

(u,ω)6=(0,0)

A((u,ω), (v,θ)) > 0 ∀ (v,θ) ∈ X .
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Proof. For all (v,θ) ∈ X , we have that:

A((v,−θ), (v,θ)) = σ‖v‖20,Ω + ‖θ‖20,Ω −
1√
ν

∫
Ω

(θ × β) · v dx

≥ σ‖v‖20,Ω + ‖θ‖20,Ω −
σ

2
‖v‖20,Ω −

2‖β‖2∞,Ω
νσ

‖θ‖20,Ω

≥ σ

2
‖v‖20,Ω +

(
1−

2‖β‖2∞,Ω
νσ

)
‖θ‖20,Ω.

�

As a consequence of the previous lemmas, we have the following result.

Theorem 2.2 Let us assume (2.8). Then, the variational problem (2.5) admits a unique solution
(u,ω) ∈ X× Z. Moreover, there exists C > 0 such that

‖u‖H + ‖ω‖Z ≤ C(‖f‖0,Ω + ‖pΣ‖1/2,Σ + ‖uΣ‖−1/2,Σ). (2.11)

Proof. It suffices to verify the hypotheses of Theorem 2.1. First, we define the linear functional

G(v,θ) := F (v) +G(θ),

which is bounded on X× Z. Thus, the proof follows from Lemmas 2.2 and 2.3. �

The following result establishes the corresponding stability estimate for the Bernoulli pressure.

Corollary 1 Let (u,ω) ∈ X× Z, be the unique solution of (2.5), with u and ω satisfying (2.11). In
addition, let p ∈ Q be the unique pressure provided by Lemma 2.1, so that (u,ω, p) ∈ H×Z×Q is the
unique solution of (2.3). Then, there exists C > 0 such that

‖p‖0,Ω ≤ C(‖f‖0,Ω + ‖pΣ‖1/2,Σ + ‖uΣ‖−1/2,Σ).

Proof. Combining the inf-sup condition (2.4) with the first equation in (2.3) gives the bound

‖p‖0,Ω ≤
1

β2
sup
v∈H
v 6=0

|b2(v, p)|
‖v‖H

=
1

β2
sup
v∈H
v 6=0

|F (v)− a(u,v)− b1(v,ω)− c(ω,v)|
‖v‖H

,

which together with (2.11), and the boundedness of F , a, b1 and c, complete the proof. �

Remark 2.1 An alternative analysis for the nonsymmetric variational problem (2.3) can be carried
out using a fixed-point argument that allows a symmetrisation of the mixed structure. The resulting
weak form could then be analysed using classical tools for saddle-point problems, for instance, following
the similar treatment in [14]. Establishing inf-sup conditions for the off-diagonal bilinear forms in the
original nonsymmetric formulation is, however, much more involved (see e.g. [28]).

Remark 2.2 Assumption (2.8) holds provided one chooses σ appropriately. As this parameter repre-
sents the inverse of the timestep, the aforementioned relation constitutes then a CFL-type condition.
We also note that this bound for β coincides with the hypotheses that yield solvability of least-squares
formulations for the Oseen problem analysed in [13, 15].

3 Finite element discretisation

In this section we introduce a Galerkin scheme for (2.3) and analyse its well-posedness by establishing
suitable assumptions on the finite element subspaces involved. Error estimates are also derived.
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Defining the discrete problem. Let {Th(Ω)}h>0 be a shape-regular family of partitions of the
polyhedral region Ω̄, by tetrahedrons T of diameter hT , with mesh size h := max{hT : T ∈ Th(Ω)}. In
what follows, given an integer k ≥ 0 and a subset S of R3, Pk(S) will denote the space of polynomial
functions defined locally in S and being of total degree ≤ k.

Moreover, for any T ∈ Th(Ω), we introduce the local Nédélec space

Nk(T ) := Pk(T )3 ⊕Rk+1(T ),

where Rk+1(T ) is a subspace of Pk+1(T )3 composed by homogeneous polynomials of degree k + 1,
and being orthogonal to x. With these tools, let us define the following finite element subspaces:

Zh := {θh ∈ Z : θh|T ∈ Nk(T ) ∀T ∈ Th(Ω)}, (3.1)

Qh := {qh ∈ Q : qh|T ∈ Pk(T ) ∀T ∈ Th(Ω)}, (3.2)

Hh := {vh ∈ H : vh|T ∈ RTk(T ) ∀T ∈ Th(Ω)}, (3.3)

where RTk(T ) = Pk(T )3 ⊕ Pk(T )x is the Raviart-Thomas space defined locally in T ∈ Th(Ω).

The proposed Galerkin scheme approximating (2.3) reads as follows: Find (uh,ωh, ph) ∈ Hh ×
Zh ×Qh such that

a(uh,vh) + b1(vh,ωh)+ b2(vh, ph) + c(ωh,vh) = F (vh) ∀vh ∈ Hh,

b1(uh,θh)− d(ωh,θh) = G(θh) ∀θh ∈ Zh, (3.4)

b2(uh, qh) = 0 ∀qh ∈ Qh.

Solvability and stability of the discrete problem. The analysis of the Galerkin formulation
will follow the same arguments exploited in the continuous setting. Let us then consider the discrete
kernel of b2:

Xh := {vh ∈ Hh : b2(vh, qh) = 0, ∀ q ∈ Qh} = {vh ∈ Hh : div vh ≡ 0 in Ω}, (3.5)

where the characterisation is indeed possible thanks to the inclusion div Hh ⊆ Qh. Moreover, it is
well-known that the following discrete inf-sup condition holds (see [24]):

sup
vh∈Hh
vh 6=0

b2(vh, qh)

‖vh‖H
≥ β̃2‖qh‖0,Ω ∀qh ∈ Qh. (3.6)

We again resort to a reduced version of the problem, now defined on the product space Xh × Zh.
Find (uh,ωh) ∈ Xh × Zh such that

a(uh,vh) + b1(vh,ωh) + c(ωh,vh) = F (vh) ∀vh ∈ Xh,

b1(uh,θh)− d(ωh,θh) = G(θh) ∀θh ∈ Zh, (3.7)

and its equivalence with (3.4) is once more a direct consequence of the inf-sup condition (3.6).

Lemma 3.1 If (uh,ωh, ph) ∈ Hh × Zh × Qh is a solution of (3.4), then uh ∈ Xh, and (uh,ωh) ∈
Xh × Zh is also a solution of (3.7). Conversely, if (uh,ωh) ∈ Xh × Zh is a solution of (3.7), then
there exists a unique ph ∈ Qh such that (uh,ωh, ph) ∈ Hh × Zh ×Qh is a solution of (3.4).

In order to establish the well-posedness of (3.7), we will employ the following discrete version of
Theorem 2.1.
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Theorem 3.1 Assume (2.8). Let k ≥ 0 be an integer and let Xh and Zh be given by (3.5) and (3.1),
respectively. Then, there exists a unique (uh,ωh) ∈ Xh × Zh solution of the discrete scheme (3.7).
Moreover, there exist positive constants Ĉ1, Ĉ2 > 0 independent of h such that

‖uh‖H + ‖ωh‖Z ≤ Ĉ1(‖f‖0,Ω + ‖pΣ‖1/2,Σ + ‖uΣ‖−1/2,Σ), (3.8)

and
‖u− uh‖H + ‖ω − ωh‖Z ≤ Ĉ2 inf

(vh,θh)∈Xh×Zh

(‖u− vh‖H + ‖ω − θh‖Z), (3.9)

where (u,ω) ∈ X× Z is the unique solution to (2.5).

Proof. Let us define Xh := Xh×Zh and reuse the forms A(·, ·) and G(·) as in the proof of Lemma 2.2.
The next step consists in proving that A(·, ·) satisfies the discrete version of the inf-sup conditions
(2.6)-(2.7), as in Lemmas 2.2 and 2.3. In order to assert (2.6), we consider (uh,ωh) ∈ Xh, and define

θ̃h := −ωh ∈ Zh, and ṽh := (uh +

√
ν

4σ
curlωh) ∈ Xh.

Then, repeating exactly the same steps used in the proof of Lemma 2.2 the discrete version of (2.6)
follows. Regarding the discrete version of (2.7), we once again repeat the same arguments given in
the proof of Lemma 2.3. Finally, the Céa estimate follows from classical arguments. �

We now state the stability and an adequate approximation property of the discrete pressure.

Corollary 2 Let (uh,ωh) ∈ Xh×Zh be the unique solution of (3.7), with uh and ωh satisfying (3.8).
In addition, let ph ∈ Qh be the unique discrete Bernoulli pressure provided by Lemma 3.1, so that
(uh,ωh, ph) ∈ Hh × Zh × Qh is the unique solution of (3.4). Then, there exist positive constants
C̄1, C̄2 > 0, independent of h and ν, such that

‖ph‖0,Ω ≤ C̄1(‖f‖0,Ω + ‖pΣ‖1/2,Σ + ‖uΣ‖−1/2,Σ),

and

‖p− ph‖0,Ω ≤ C̄2 inf
(vh,θh,qh)∈Hh×Zh×Qh

(‖u− vh‖H + ‖ω − θh‖Z + ‖p− qh‖0,Ω). (3.10)

Proof. The result follows using the same arguments considered in the proof of Corollary 1, but using
the discrete inf-sup condition (3.6). We omit further details. �

A priori error estimates. Let us introduce for a given s > 1/2, the Nédeléc global interpolation
operator Rh : Hs(curl; Ω) ∩ Z → Zh. From [1] we known that for all θ ∈ Hs(curl; Ω) with s > 1/2,
there exists C > 0 independent of h, such that

‖θ −Rhθ‖Z ≤ Chmin{s,k+1}‖θ‖Hs(curl;Ω). (3.11)

On the other hand, for the Raviart-Thomas interpolation Πh : Hs(Ω)3 ∩ H → Hh, with s > 0, we
recall (see e.g. [24]) that there exists C > 0, independent of h, such that for all s > 0:

‖v −Πhv‖H ≤ Chmin{s,k+1}‖v‖Hs(div;Ω) ∀v ∈ Hs(div; Ω) ∩H. (3.12)

Finally we recall that the orthogonal projection from L2(Ω) onto the finite element subspace Qh, here
denoted Ph, satisfies the following error estimate for all s > 0:

‖q − Phq‖0,Ω ≤ Chmin{s,k+1}‖q‖s,Ω ∀q ∈ Hs(Ω). (3.13)

These operators fulfil the following commuting diagram

divRhv = Ph(div v) ∀v ∈ Hs(Ω)3 ∩H(div; Ω).

The following result summarises the error analysis for our mixed finite element scheme (3.4).
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Theorem 3.2 Let k ≥ 0 be an integer and let Hh,Zh and Qh be given by (3.1), (3.2), and (3.3). Let
(u,ω, p) ∈ H × Z × Q and (uh,ωh, ph) ∈ Hh × Zh × Qh be the unique solutions to the continuous
and discrete problems (2.3) and (3.4), respectively. Assume that u ∈ Hs(Ω)3, divu ∈ Hs(Ω), ω ∈
H1+s(Ω)3 and p ∈ Hs(Ω), for some s > 1/2. Then, there exists Ĉ > 0 independent of h such that

‖u− uh‖H + ‖ω − ωh‖Z + ‖p− ph‖0,Ω ≤ Ĉhmin{s,k+1}(‖u‖Hs(div;Ω) + ‖ω‖Hs(curl;Ω) + ‖p‖s,Ω).

Proof. The proof follows from (3.9), (3.10), and standard interpolation estimates satisfied by the
operators Rh, Πh and Ph (see (3.11), (3.12) and (3.13), respectively). �

4 Discontinuous Galerkin method

In this section, we propose and analyse a DG method for (2.2). We provide solvability and stability of
the discrete scheme by introducing suitable numerical fluxes. A priori error estimates are also derived.

Preliminaries. Apart from the definitions laid out at the beginning of Section 3, let us denote by
Eh the set of internal faces, by FΣ

h the set of external faces on Σ and by FΓ
h the set of external faces

on Γ. We set Fh = Eh ∪ FΣ
h ∪ FΓ

h . We denote by he the diameter of each face e. Let T+ and T− be
two adjacent elements of Th and let n+ (respectively n−) be the outward unit normal vector on ∂T+

(respectively ∂T−). For a vector field u, we denote by u± the trace of u from the interior of T±. We
define jumps

[[v]]T := v+ × n+ + v− × n−, [[v]]N := v+ · n+ + v− · n−, [[q]] := q+n+ + q−n−,

and averages

{{v}} :=
1

2
(v+ + v−), {{q}} :=

1

2
(q+ + q−),

and adopt the convention that for boundary faces e ∈ FΣ
h ∪ FΓ

h , we set [[v]]T = v × n, [[v]]N = v · n,
[[q]] = qn, {{v}} = v and {{q}} = q.

Suitable finite dimensional spaces for vorticity and velocity that remove the restriction of continuity
are defined by:

Z̃h := {θh ∈ L2(Ω)3 : θh|T ∈ Pk(T )3 ∀T ∈ Th},
H̃h := {vh ∈ L2(Ω)3 : vh|T ∈ Pk+1(T )3 ∀T ∈ Th},

and we remark that the space for pressure approximation will coincide with the one used in Section 3,
that is Q̃h := Qh.

Discrete formulation and solvability analysis. Multiplying each equation in (2.2) by suitable
functions, the resulting DG scheme consists in finding (uh, ωh, ph) ∈ H̃h × Z̃h × Q̃h, such that for
any test functions (vh, θh, qh) ∈ H̃h × Z̃h × Q̃h and for all elements T in the partition Th

σ

∫
T

uh · vh dx+
√
ν

∫
T

ωh · curlvh dx+
√
ν

∫
∂T

ω̂h · (vh × n) ds+
1√
ν

∫
T

(ωh × β) · vh dx

−
∫
T

ph div vh dx+

∫
∂T

p̂hvh · n ds =

∫
T

f · vh dx, (4.1)∫
T

ωh · θh dx =
√
ν

∫
T

uh · curlθh dx+
√
ν

∫
∂T

ûωh · (θh × n) ds, (4.2)

−
∫
T

uh · ∇qhdx+

∫
∂T

ûph · n q ds = 0, (4.3)

9



A vorticity-velocity-pressure formulation for the Oseen equations Anaya et al.

where ûwh , û
p
h, ω̂h and p̂h are numerical fluxes, which approximate the traces of uh, ωh and ph on

the boundary. The fluxes ω̂h and ûwh are related to the curl-curl operator and are defined by

ω̂h :=


{{ωh}}+ C11[[u]]T , if e ∈ Eh,
ω+
h + C11(u+

h × n+ − uΣ), if e ∈ FΣ
h ,

ω̂h × n = 0, if e ∈ FΓ
h ,

ûwh :=


{{uh}}, if e ∈ Eh,
n× uΣ, if e ∈ FΣ

h ,

u+
h , if e ∈ FΓ

h ,

(4.4)

whereas the fluxes ûph and p̂h are associated with the grad-div operator and defined by

ûph :=


{{uh}}+D11 [[ph]], if e ∈ Eh,
u+
h +D11(p+

hn
+ + pΣn

−), if e ∈ FΣ
h ,

ûph · n = 0, if e ∈ FΓ
h ,

p̂h :=


{{ph}}+A11[[uh]]N , if e ∈ Eh,
pΣ, if e ∈ FΣ

h ,

p+ +A11u
+ · n+, if e ∈ FΓ

h .

(4.5)

The parameters C11, A11 and D11 are positive stabilisation parameters, and following [20] we choose

C11(x) :=

{
c11 max{h−1

T+ , h
−1
T−}, if x ∈ ∂T+ ∪ ∂T−,

c11h
−1
T , if x ∈ ∂T ∩ Σ,

(4.6)

A11(x) :=

{
a11 max{h−1

T+ , h
−1
T−}, if x ∈ ∂T+ ∪ ∂T−,

a11h
−1
T , if x ∈ ∂T ∩ Γ,

(4.7)

D11(x) :=

{
d11 max{hT+ , hT−}, if x ∈ ∂T+ ∪ ∂T−,
d11hT , if x ∈ ∂T ∩ Σ,

(4.8)

where c11, d11, a11 > 0. Moreover, we suppose that C11 (respectively D11 and A11) have a uniform
positive bound above and below denoted by C11 and C11 (respectively D11, D11 and A11, A11 ).

We then proceed to integrate by parts equations (4.1) and (4.3), and then summing up over all

T ∈ Th, we obtain the following DG scheme: Find (uh,ωh, ph) ∈ H̃h × Z̃h × Q̃h such that

a(uh,vh)+ b̃1(vh,ωh)+ b̃2(vh, ph) + c(ωh,vh) + j(uh,vh) = F̃ (vh), ∀vh ∈ H̃h,

d(ωh,θh)− b̃1(uh,θh) = G̃(θh) , ∀θh ∈ Z̃h, (4.9)

e(ph, qh) − b̃2(uh, qh) = L̃(qh), ∀qh ∈ Q̃h,

where the forms a, c and d are the same in (2.3), while b̃1, b̃2, j and e are defined, respectively, by:

b̃1(uh,θh) :=
√
ν
∑
T∈Th

∫
T

curlθh · uh dx+
√
ν

∑
e∈Eh∪FΓ

h

∫
e

{{uh}} · [[θh]]T ds,

b̃2(vh, ph) := −
∑
T∈Th

∫
T

ph div vh dx+
∑

e∈Eh∪FΓ
h

∫
e

{{ph}} · [[vh]]N ds,

j(uh,vh) :=
√
ν

∑
e∈Eh∪FΣ

h

∫
e

C11[[uh]]T · [[vh]]T ds+
∑

e∈Eh∪FΓ
h

∫
e

A11[[uh]]N [[vh]]N ds,

e(ph, qh) :=
∑

e∈Eh∪FΣ
h

∫
e

D11 [[ph]] · [[qh]] ds.

In addition, the linear functionals F̃ , G̃ and L̃ associated with the source terms are defined as:

F̃ (vh) :=

∫
Ω

f · vh −
∑
e∈FΣ

h

(∫
e

pΣ(v · n) ds−
√
ν

∫
e

C11uΣ · (vh × n) ds
)
,

10
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G̃(θh) := −
√
ν
∑
e∈FΣ

h

∫
e

uΣ · θh ds and L̃(qh) :=
∑
e∈FΣ

h

∫
e

D11 (pΣn) · qhn ds.

By integration by parts and as a consequence of the identity:∑
T∈Th

∫
∂T

u · (θ × n) ds = −
∑
e∈Eh

∫
e

[[u]]T · {{θ}} ds+
∑
e∈Fh

∫
e

{{u}} · [[θ]]T ds,

it follows that the form b̃1 can be written as:

b̃1(uh,θh) =
√
ν
∑
T∈Th

∫
T

curluh · θh dx+
√
ν

∑
e∈Eh∪FΣ

h

∫
e

[[uh]]T · {{θh}} ds. (4.10)

Similarly, using the following identity:∑
T∈Th

∫
∂T

p(v · n) ds =
∑
e∈Eh

∫
e

{{v}} · [[p]] ds+
∑
e∈Fh

∫
e

[[v]]N {{p}} ds,

the form b̃2 can be recast, after integration by parts, as follows

b̃2(vh, ph) =
∑
T∈Th

∫
T

vh · ∇ph dx−
∑

e∈Eh∪FΣ
h

∫
e

{{vh}} · [[ph]] ds. (4.11)

Note that, differently from the conforming method introduced in Section 3, the discrete velocity
generated by scheme (4.9) is not necessarily divergence-free.

To simplify the exposition of the analysis of the method, we will write the mixed scheme (4.9) in

the following equivalent form: Find (uh,ωh, ph) ∈ H̃h × Z̃h × Q̃h such that

A(uh,ωh, ph;vh,θh, qh) = F(vh,θh, qh), ∀(vh,θh, qh) ∈ H̃h × Z̃h × Q̃h, (4.12)

where

A(uh,ωh, ph;vh,θh, qh) := a(uh,vh) + b̃1(vh,ωh)− b̃1(uh,θh) + b̃2(vh, ph)− b̃2(uh, qh)

+ c(ωh,vh) + j(uh,vh) + d(ωh,θh) + e(ph, qh),

and
F(vh,θh, qh) := F̃ (vh) + G̃(θh) + L̃(qh).

Let us now show the existence and uniqueness of solution to formulation (4.9).

Proposition 1 The DG method (4.9) with the numerical fluxes given by (4.4)-(4.5) defines a unique

approximate solution (uh,ωh, ph) ∈ H̃h × Z̃h × Q̃h provided that

2‖β‖2∞
νσ

< 1. (4.13)

Proof. Since the problem is linear and finite dimensional, it suffices to show that if f = 0, pΣ = 0
and uΣ = 0, then (uh,ωh, ph) = (0,0, 0). To this end, take vh = uh, θh = ωh and qh = ph in (4.9),
summing up the three equations, we obtain:

a(uh,uh) + c(ωh,uh) + d(ωh,ωh) + j(uh,uh) + e(ph, ph) = 0.

It follows that

σ‖uh‖20,Ω + ‖ωh‖20,Ω + |u|2j + |p|2e = − 1√
ν

∫
Ω

(ωh × β) · uh dx,

11



A vorticity-velocity-pressure formulation for the Oseen equations Anaya et al.

where we define

|u|2j :=
√
ν

∑
e∈Eh∪FΣ

h

∫
e

C11[[u]]
2
T ds+

∑
e∈Eh∪FΓ

h

∫
e

A11[[u]]
2
N ds, |p|2e :=

∑
e∈Eh∪FΣ

h

∫
e

D11 [[p]]2 ds.

Using Young’s inequality, we can assert that

σ‖uh‖20,Ω + ‖ωh‖20,Ω + |u|2j + |p|2e ≤
2√
ν
‖β‖∞,Ω‖ωh‖0,Ω‖uh‖0,Ω

≤ 2

νσ
‖β‖2∞,Ω‖ωh‖20,Ω +

σ

2
‖uh‖20,Ω.

Therefore, in particular we have that:

σ

2
‖uh‖20,Ω + (1− 2‖β‖2∞

νσ
)‖ωh‖20,Ω + |p|2e ≤ 0,

which, owing to the assumption (4.13), implies that uh = 0, ωh = 0 and [[ph]] = 0 on Eh, ph = 0 on
FΣ
h . The first equation in (4.9) then becomes∑

T∈Th

∫
T

vh · ∇ph dx = 0, ∀vh ∈ H̃h,

and then ∇ph = 0. Employing this result, together with [[ph]] = 0 on Eh, ph = 0 on FΣ
h or the fact

that ph has zero mean value if Σ have zero measure, we conclude that ph = 0. �

A priori error bounds. Let us now present and discuss a priori error bounds for the proposed DG
method. The proof involves two steps. The first one consists in establishing an error estimate in the
natural semi-norm. In the second step, we prove the error estimate for the pressure in the L2-norm.
For this, we introduce the following semi-norm | · |A:

|(u,ω, p)|2A := σ‖u‖20,Ω + ‖ω‖20,Ω + |u|2j + |p|2e. (4.14)

We shall suppose that the exact solution (u, p) satisfies the following regularity

u ∈ H1+s(Ω)3, and p ∈ Hs(Ω), s ≥ 1. (4.15)

And we will also employ the following norm

‖(u, p)‖s :=
√
ν‖u‖s+1,Ω +

1√
ν
‖p‖s,Ω.

We define eu = u−uh, eω = ω−ωh and ep = p−ph. Let us denote by ΠH̃ (respectively ΠZ̃ and ΠQ̃)

the L2-projection onto H̃ (respectively Z̃ and Q̃), and let us split the errors in the following manner

eu = ξu + ηu, eω = ξω + ηω and ep = ξp + ηp,

where the numerical and approximation errors are defined by:

ξu = u−ΠH̃u, ξω = ω −ΠZ̃ ω, ξp = p−ΠQ̃p,

ηu = ΠH̃u− uh, ηω = ΠZ̃ω − ωh, ηp = ΠQ̃p− ph.

We recall the following standard approximation properties (see for instance [17]).
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Lemma 4.1 Let v ∈ H1+r(Ω), r ≥ 0. Let Π the projection operator such that Πv = v for all
v ∈ Pk(T ), k ≥ 0. Then we have

‖v −Πv‖0,T + hT |v −Πv|1,T ≤ Chmin{r,k}+1
T ‖v‖r+1,T , (4.16)

‖v −Πv‖0,∂T ≤ Chmin{r,k}+1/2
T ‖v‖r+1,T . (4.17)

And as a consequence, we have the following result.

Lemma 4.2 Suppose that the analytical solution (u, p) of (2.1) satisfies (4.15) and we set ω =√
ν curlu. Then, we have:

‖ξu‖0,Ω ≤ Cahmin{s, k+1}+1‖(u, 0)‖s,
‖ξω‖0,Ω ≤ Cdhmin{s, k}+1‖(u, 0)‖s,
|ξu|j ≤ Cjhmin{s, k+1}‖(u, 0)‖s,
|ξp|e ≤ Cehmin{s, k}+1‖(0, p)‖s,

where Ca, Cd, Cj and Ce are positive constants independent of the meshsize.

Proof. The two first estimates are a simple consequence of (4.16). Next we can state that

|ξu|j ≤ 2
(√
ν
∑
T∈Th

C11‖ξu‖20,∂T
)1/2

+ 2
( ∑
T∈Th

A11‖ξu‖20,∂T
)1/2

and
|ξp|e ≤ 2

( ∑
T∈Th

D11‖ξp‖20,∂T
)1/2

.

Recalling that C11, A11 and D11 are as in (4.6)-(4.8) and using (4.17), we end up with the bound

|ξu|j ≤ Cj
( ∑
T∈Th

h
2 min{s,k+1}
T ‖u‖2s+1,T

)1/2 ≤ Cjhmin{s,k+1}‖u‖s+1,Ω,

and similarly we obtain

|ξp|e ≤ Ce
( ∑
T∈Th

h
2 min{s,k}+2
T ‖p‖2s,T

)1/2 ≤ Cehmin{s,k}+1‖p‖s,Ω,

where Cj (respectively Ce) depends on c11, a11 and ν (respectively d11). �

We next concentrate on obtaining bounds for the forms b̃1, b̃2, c and j.

Lemma 4.3 Let us assume that the solution of (2.1) satisfies (4.15). Then one has

|b̃1(ξu,θh)| ≤ Cb1hmin{s,k+1}‖(u, 0)‖s‖θh‖0,Ω, ∀θh ∈ Z̃h,

|b̃1(vh, ξω)| ≤ Cb1hmin{s,k}+1‖(u, 0)‖s|vh|j , ∀vh ∈ H̃h,

|b̃2(vh, ξp)| ≤ Cb2hmin{s,k}+1‖(0, p)‖s|vh|j , ∀vh ∈ H̃h,

|b̃2(ξu, qh)| ≤ Cb2hmin{s,k+1}‖(u, 0)‖s|qh|e, ∀qh ∈ Q̃h,

|j(ξu,vh)| ≤ Cjhmin{s, k+1}‖(u, 0)‖s|vh|j , ∀vh ∈ H̃h,

|e(ξp, qh)| ≤ Cehmin{s, k}+1‖(0, p)‖s|qh|e, ∀qh ∈ Q̃h,

|c(ξω,vh)| ≤ Cωhmin{s, k}+1‖(u, 0)‖s‖vh‖0,Ω, ∀vh ∈ H̃h,

where Cb1 , Cb2 , Cj, Ce and Cω are positive constants independent of the meshsize.
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Proof. The bounds associated with the form b̃2 can be proved exactly with the same arguments
as [20, Section 3.3]. Let us now deal with the term b̃1. We observe that due to the properties of the
L2-projection, we can write ∫

T

ξu · curlθh dx = 0.

Using Cauchy-Schwarz’s inequality, we then readily obtain

|b̃1(ξu,θh)| ≤ C
( ∑
T∈Th

νh−1
T ‖ξu‖

2
0,∂T

)1/2( ∑
T∈Th

hT ‖θh‖20,∂T
)1/2

,

and the desired estimate follows from the inverse inequality and Lemma 4.2.

Similarly, using (4.10) and again the properties of the L2-projections we have∫
T

curlvh · ξω dx = 0,

thus

|b̃1(vh, ξω)| ≤ C
( ∑
T∈Th

ν

C11
‖ξω‖20,∂T

)1/2(√
ν
∑
e∈Eh

∫
e

C11[[vh]]
2
T ds+

√
ν
∑
e∈FΣ

h

∫
e

C11v
2
h ds

)1/2

≤
( ∑
T∈Th

ν

C11
‖ξω‖20,∂T

)1/2

|vh|j

and then, we simply have to use (4.6) and Lemma 4.1.

The estimates for the forms j and e are obtained in a similar way. Indeed, using once again
Cauchy-Schwarz’s inequality and Lemma 4.2, it follows that

|j(ξu,vh)| =
∣∣∣√ν ∑

e∈Eh∪FΣ
h

∫
e

C11[[ξu]]T · [[vh]]T ds+
∑

e∈Eh∪FΓ
h

∫
e

A11[[ξu]]N [[vh]]N ds
∣∣∣

≤ |vh|j |ξu|j ≤ Cjhmin{s, k+1}‖(u, 0)‖s|vh|j ,

and proceeding analogously as before, we get

|e(ξp, qh)| ≤ |ξp|e|qh|e ≤ Cehmin{s, k}+1‖(0, p)‖s|qh|e.

Finally, concerning the term c(ξω,vh) we can assert that

c(ξω,vh) ≤ 2√
ν
‖β‖∞‖ξω‖0,Ω‖vh‖0,Ω,

and exploiting the previous bounds, we obtain the corresponding estimate with Cω = 2Cd√
ν
‖β‖∞. �

Theorem 4.1 Let the exact solution (u, p) satisfy the regularity assumption in (4.15). Then, the
mixed DG approximation (uh,ωh, ph) defined by (4.9), satisfies the following a priori error bounds

|(eu, eω, ep)|A ≤ CAhmin{s, k+1}‖(u, p)‖s, (4.18)

‖ep‖0,Ω ≤ Chmin{s, k+1}‖(u, p)‖s, (4.19)

where CA and C are positive constants independent of the meshsize.

Proof. We begin with the estimate (4.18). A direct application of the definition of the A−seminorm
in combination with Lemma 4.2 gives

|(ξu, ξω, ξp)|A ≤ Chmin{s, k+1}‖(u, p)‖s. (4.20)
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Concentrating on the projection of the errors, we can exploit the Galerkin orthogonality to obtain

|(ηu,ηω, ηp)|2A = A(ηu,ηω, ηp;ηu,ηω, ηp)− c(ηω,ηu) (4.21)

= A(ηu,ηω, ηp; ξu, ξω, ξp)− c(ηω,ηu).

Due to the orthogonality of the L2-projections, we have that a(ξu,ηu) = 0 and d(ξω,ηω) = 0. Then,
from the the definition of the form A it follows that

A(ηu,ηω, ηp; ξu, ξω, ξp) = b̃1(ξu,ηω)−b̃1(ηu, ξω)+b̃2(ξu, ηp)−b̃2(ηu, ξp)+c(ξω,ηu)+j(ξu,ηu)+e(ξp, ηp).

Note that all these terms can be controlled using Lemma 4.3. Indeed we have

A(ηu,ηω, ηp; ξu, ξω, ξp) ≤
(
Cb1‖ηω‖0,Ω + (Cb1 + Cb2 + Cj)|ηu|j + (Cb2 + Ce)|ηp|e

+ Cω‖ηu‖0,Ω
)
hmin{s, k+1}‖(u, p)‖s,

≤ C1|(ηu,ηω, ηp)|A hmin{s, k+1}‖(u, p)‖s, (4.22)

where C1 = Cb1 + (Cb1 + Cb2 + Cj) + (Cb2 + Ce) + Cω

σ . Next we only need to estimate c(ηω,ηu) in
(4.21). To do so we use Young’s inequality

c(ηω,ηu) ≤ 2√
ν
‖β‖∞,Ω‖ηω‖0,Ω‖ηu‖0,Ω ≤

2

νσ
‖β‖2∞,Ω‖ηω‖20,Ω +

σ

2
‖ηu‖20,Ω. (4.23)

Substituting (4.22) and (4.23) back into (4.21), we obtain the bound

σ

2
‖ηu‖20,Ω + (1− 2‖β‖2∞

νσ
)‖ηω‖20,Ω + |ηu|2j + |ηp|2e ≤ C1|(ηu,ηω, ηp)|A hmin{s, k+1}‖(u, p)‖s,

and thanks to assumption (4.13), we can arrive at

|(ηu,ηω, ηp)|A ≤ C ′ hmin{s, k+1}‖(u, p)‖s, (4.24)

where C ′ = C1(min{ 1
2 , 1 −

2‖β‖2∞
νσ })−1. The error estimate in (4.18) is then obtained by combining

estimates (4.20), (4.24) and using triangle inequality.

We now turn to the estimate of the L2-norm of error in the pressure (4.19). Since ep ∈ L2
0(Ω), we

can find z ∈ H1
0(Ω)3 such that (see for instance [26, Chapter I, Corollary 2.4])

−
∫

Ω

ep divz dx ≥ κ‖ep‖20,Ω, ‖z‖1,Ω ≤ ‖ep‖0,Ω. (4.25)

Therefore, we infer from (4.12) that

κ‖ep‖20,Ω ≤ b̃2(z, ep)

=
(
b̃2(z, ep) + a(eu, z) + b̃1(z, eω) + c(eω, z)

)
− a(eu, z)− b̃1(z, eω)− c(eω, z)

= A(eu, eω, ep; z,0, 0)− a(eu, z)− b̃1(z, eω)− c(eω, z),

where we have used that j(eu, z) = 0 for z ∈ H1
0(Ω)3. Using the Galerkin orthogonality, we obtain

A(eu, eω, ep; z,0, 0) = A(eu, eω, ep; ξz,0, 0) = A(ξu, ξω, ξp; ξz,0, 0) +A(ηu,ηω, ηp; ξz,0, 0).

Therefore

κ‖ep‖20,Ω ≤ |A(ξu, ξω, ξp; ξz,0, 0)|+ |A(ηu,ηω, ηp; ξz,0, 0)|+ |a(eu, z)|+ |b̃1(z, eω)|+ |c(eω, z)|.
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Next, by the definition of the form A, we have the relation

|A(ηu,ηω, ηp; ξz,0, 0)| ≤ |b̃1(ξz,ηω)|+ |b̃2(ξz, ηp)|+ |c(ηω, ξz)|+ |j(ηu, ξz)| := T1 + T2 + T3 + T4,

and then we can write

κ‖ep‖20,Ω ≤ |A(ξu, ξω, ξp; ξz,0, 0)|+ T1 + T2 + T3 + T4 + T5 + T6 + T7. (4.26)

The first term in the right-hand side of the above inequality can be easily estimated by using
Lemma 4.3. Indeed, it follows by choosing vh = ξz that

|A(ξu, ξω, ξp; ξz,0, 0)| ≤ Chmin{s,k+1}‖(u, p)‖s.

Let us now estimate each of the terms Ti, i = 1, . . . , 7 in (4.26). Using the properties of the
L2−projection, Cauchy-Schwarz’s inequality and the inverse inequality, we obtain the bounds

T1 ≤ C
√
ν
( ∑
T∈Th

h−1
T ‖ξz‖

2
0,∂T

)1/2( ∑
T∈Th

hT ‖ηω‖20,∂T
)1/2

≤ C
√
ν‖z‖1,Ω‖ηω‖0,Ω.

≤ C
√
ν‖z‖1,Ω|(ηu,ηω, ηp)|A

Then, using (4.24) and (4.25), we can deduce that

T1 ≤ C
√
νhmin{s, k+1}‖(u, p)‖s‖ep‖0,Ω.

Furthermore, since
∫
T
ξz · ∇ηp dx = 0, we get from (4.11) the following estimates

T2 =
∣∣∣ ∑
e∈Eh

∫
e

{{ξz}} · [[ηp]] ds+
∑
e∈FΣ

h

∫
e

(ξz · n)ηp ds
∣∣∣

≤
( ∑
e∈Eh

∫
e

1

D11
{{ξz}}2 ds+

∑
e∈FΣ

h

∫
e

1

D11
(ξz · n)2 ds

)1/2

|ηp|e

≤ C
( ∑
T∈Th

1

D11
‖ξz‖20,∂T

)1/2

|ηp|e

≤ C‖z‖1,Ω|(ηu,ηω, ηp)|A.

Then, using (4.24) and (4.25), we can infer that

T2 ≤ Chmin{s, k+1}‖(u, p)‖s‖ep‖0,Ω.

Next, using Cauchy-Schwarz’s inequality together with Lemma 4.2 and (4.24), we get

T3 = |c(ηω, ξz)| ≤ 1√
ν
Ch‖β‖∞‖ηω‖0,Ω‖z‖1,Ω ≤ Cµhhmin{s,k+1}‖(u, p)‖s‖ep‖0,Ω,

where µh = h‖β‖∞√
ν

. Similarly, we have:

T4 = |j(ηu, ξz)| ≤ |ηu|j |ξz|j ≤ C|(ηu,ηω, ηp)|A‖z‖1,Ω ≤ Chmin{s, k+1}‖(u, 0)‖s‖ep‖0,Ω.

The terms T5, T6 and T7 can be readily estimated, much in the same way as before, using the
error bound in (4.18) and the fact that z ∈ H1

0(Ω)3.

Finally, the pressure estimate follows after putting all individual bounds back into (4.26). �
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Figure 1: Experimental convergence in 2D. Lowest-order mixed finite element approximation of ve-
locity magnitude (a), vorticity (b), and Bernoulli pressure (c) on the unit square.

5 Numerical tests

We present a set of examples to confirm numerically the convergence rates anticipated in Theorem 3.2
and Theorem 4.1 . We stress that whenever Γ = ∂Ω, the zero-mean condition enforcing the uniqueness
of the Bernoulli pressure is implemented using a real Lagrange multiplier (which amounts to add one
row and one column to the corresponding matrix system). Linear solves are performed with the direct
method SuperLU.

Test 1: Experimental convergence in 2D. For our first examples we produce the error history
associated with the proposed mixed finite element and mixed DG approximations. Let us consider the
following closed-form solutions to the Oseen equations defined on the unit square domain Ω = (0, 1)2:

u(x, y) =

(
sin(πx)2 sin(πy)2 cos(πy)
− 1

3 sin(2πx) sin(πy)3

)
, ω(x, y) =

√
ν curlu, p(x, y) = x4 − y4.

The exact velocity has zero normal component on the whole boundary, and the exact vorticity is
employed to impose a non-homogeneous vorticity trace. In this example we are assuming that Γ = ∂Ω,
and the exact Bernoulli pressure fulfils the null-average condition. We consider the model parameters
ν = 0.1 and σ = 10, and the convecting velocity β is taken as the exact velocity solution, which in
particular satisfies the bound (2.8). On a sequence of uniformly refined meshes we compute errors
between the exact and approximate solutions, measured in the norms involved in the convergence
analysis of Section 3. The obtained error history is reported in Table 1, where the rightmost column
displays the `∞−norm of the nodal values of the velocity divergence projected to the space Qh, all
approaching machine precision. The asymptotic O(hk+1) decay of the error observed for each field
variable confirms the overall optimal convergence predicted by Theorem 3.2. Sample approximate
solutions generated with the lowest order method on a coarse mesh are portrayed in Figure 1.

An analogous test is now carried out to confirm numerically the convergence rates of the DG
methods defined by (4.9). The same model parameters and closed-form solutions are used, and the
stabilisation constants in (4.6)-(4.8) take the values a11 = c11 = σ and d11 = ν. The results collected
in Table 2 indicate that the DG scheme converges optimally when we measure errors in the energy
A−seminorm (4.14) and in the L2−norm of the pressure. Here however, we do not expect divergence-
free approximate velocities.
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DoF ‖u− uh‖H rate ‖ω − ωh‖Z rate ‖p− ph‖0,Ω rate ‖ divuh‖`∞
k = 0

34 0.1357 – 1.2943 – 0.2002 – 1.0e-14
114 0.1129 0.2654 1.0072 0.3612 0.1219 0.7161 1.3e-14
418 0.0619 0.8655 0.5623 0.8405 0.0572 1.0910 1.3e-15
1602 0.0315 0.9763 0.2869 0.9707 0.0280 1.0311 1.2e-15
6274 0.0158 0.9952 0.1441 0.9937 0.0139 1.0072 1.0e-14
24834 0.0079 0.9989 0.0721 0.9985 0.0069 1.0022 1.3e-15
98818 0.0039 0.9997 0.0361 0.9996 0.0035 1.0000 1.7e-13

k = 1

98 0.0980 – 0.8753 – 0.0624 – 2.4e-15
354 0.0337 1.5384 0.3448 1.3441 0.0173 1.8502 4.3e-14
1346 0.0094 1.8472 0.0979 1.8173 0.0038 2.1804 3.8e-13
5250 0.0024 1.9514 0.0255 1.9403 8.3e-04 2.1952 8.0e-14
20738 6.4e-04 1.9873 0.0064 1.9835 1.9e-04 2.0791 1.2e-15
82434 2.2e-04 1.9973 0.0016 1.9960 4.8e-05 2.0233 6.2e-15
328706 3.8e-05 1.9992 4.1e-04 1.9992 1.2e-05 2.0064 1.4e-14

k = 2

194 0.0563 – 0.5138 – 0.0237 – 1.7e-13
722 0.0078 2.8844 0.0893 2.7524 0.0024 3.2137 5.8e-14
2786 0.0011 2.9302 0.0121 2.9886 1.8e-04 3.1729 4.6e-14
10946 1.3e-04 2.9872 0.0015 2.9873 1.4e-05 3.2661 4.3e-15
43394 1.6e-05 2.9992 1.9e-04 3.0002 1.4e-06 3.2349 2.7e-15
172802 2.1e-06 2.9981 2.3e-05 3.0014 1.6e-07 3.1252 4.9e-15
689666 5.3e-07 2.9840 8.2e-06 3.0070 3.7e-08 2.9206 5.0e-14

Table 1: Test 1A: Error history (errors on a sequence of successively refined grids, convergence rates,
and divergence norms) associated with the mixed finite element method (3.4) using different polyno-
mial degrees.

Test 2: Transient flow in an open cavity. In this example we illustrate a more complex problem
involving the non-stationary behaviour of the flow in an open 2D cavity. The main compartment of
the domain consists on a rectangle (0, 1.2)× (0, 1) whereas smaller rectangles (0.25, 0.45)× (−0.1, 0)
and (1.2, 1.3)× (0.7, 0.9) play the role of inlet and outlet channels. The domain is discretised into an
unstructured mesh of 35433 triangular elements. Normal velocities and a compatible trace vorticity
are imposed on the whole boundary Γ = ∂Ω according to

u · n =


−75(x− 0.25)(0.45− x) on y = −0.1,

75(y − 0.7)(0.9− y) on x = 1.3,

0 otherwise,

ω × n =


75
√
ν(0.7− 2x) on y = −0.1,

−75
√
ν(1.6− 2y) on x = 1.3,

0 otherwise,

that is, parabolic inlet and outlet profiles together with slip velocities elsewhere on ∂Ω. We set
a fluid viscosity of ν = 0.001 and use as initial velocity the solution adapted from the previous test
u0(x, y) = [sin(π/1.3x)2 sin(π/1.1(y+0.1))2 cos(π/1.1(y+0.1)),− 1

3 sin(2/1.3πx) sin(π/1.1(y+0.1))3]T .
The parameter σ = 10 indicates a timestep of ∆t = 0.1, and a backward Euler discretisation implies
that we take f = σû, where û denotes the velocity approximation at the previous iteration. The
convective velocity β = û therefore needs to be updated at each iteration. At least for the initial
solution we have that the convecting velocity satisfies the assumption (2.8). The simulation is run
until Tfinal = 4∆t and we present in Figure 2 two snapshots of the numerical solutions at t = ∆t
and t = Tfinal, computed with a second-order DG scheme, and using the stabilisation parameters
a11 = c11 = σ and d11 = ν. From the velocity plots (including a line integral convolution visualisation),
we can evidence the formation of a main vortex on the centre of the domain plus smaller recirculation
areas that emerge on the top left and bottom left corners, together with a preferential path joining
the inlet and outlet boundaries.
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DoF h |(u− uh,ω − ωh, p− ph)|A rate ‖p− ph‖0,Ω rate

k = 0

65 0.7071 0.8031 – 0.4623 –
257 0.3536 0.4321 0.8893 0.2298 0.8384
1025 0.1768 0.2343 0.8827 0.1276 0.8438
4097 0.0884 0.1217 0.9448 0.0652 0.9668
16385 0.0442 0.0616 0.9822 0.0326 1.0010
65537 0.0221 0.0302 1.0231 0.0163 1.0005

k = 1

145 0.7071 0.4787 – 0.1847 –
577 0.3536 0.1496 1.6760 0.0529 1.8033
2305 0.1768 0.0366 2.0297 0.0133 1.9914
9217 0.0884 0.0089 2.0413 0.0033 2.0220
36865 0.0442 0.0021 2.0320 0.0008 2.0361
134696 0.0221 0.0005 2.0034 0.0002 2.0049

k = 2

257 0.7071 0.1882 – 0.0534 –
1025 0.3536 0.0319 2.5864 0.0111 2.2722
4097 0.1768 0.0042 2.9180 0.0013 3.0093
16385 0.0884 0.0005 3.0362 0.0002 3.1105
65537 0.0442 6.16e-5 3.0640 1.81e-5 3.1510
268049 0.0221 1.03e-5 2.9973 2.78e-6 3.0076

Table 2: Test 1B: Error history associated to the DG method defined in (4.9) using increasing poly-
nomial degree.

Test 3: Lid driven cavity flow. For this classical benchmark problem we consider zero external
forces and concentrate on the case where flow recirculation occurs by Dirichlet conditions only. First
we consider the two-dimensional case, where on the top lid of the unit square (at y = 1) we set a
unidirectional velocity of unit magnitude, whereas no-slip conditions and zero tangential vorticity are
imposed on the remaining sides of the boundary. We set the parameters ν = 0.001, σ = 50 and employ
a structured mesh of 4096 elements. The initial velocity is computed from a Stokes solution (setting
both σ and β to zero). We compare the results obtained with our lowest-order FE scheme against the
benchmark data from [11] (produced with a spectral method applied to a vorticity-based formulation).
Figure 3(a) shows the generated velocity profile at t = 20, having all the flow features expected for
this regime. The solid lines in Figures 3(b)-3(e) portray cuts of the solution on the mid-lines of the
domain, whereas the circle markers indicate benchmark data. The approximate vorticity has been
rescaled with ν−1/2 to reflect the overall agreement with the results reported in [11].

We also test the 3D implementation and formulation by conducting the same benchmark on the
unit cube Ω = (0, 1)3. Again, boundary Σ is the top plate (defined by z = 1), where we set tangential
velocity of magnitude one, and on Γ = ∂Ω\Σ we consider no-slip velocity and zero tangential vorticity.
The fluid viscosity is now ν = 0.0025 and a structured mesh of 58752 tetrahedral elements is employed.
Once again we focus on a non-stationary regime with a backward Euler scheme, now using σ = 10, and
proceed to update the convective velocity and the right-hand side using the velocity approximation
at the previous time iteration. The velocity field for a converged solution after 200 time steps is
shown in Figure 3(f). We can observe the expected asymmetric vortex forming parallel to the xz
plane (also the generation of high pressure near the corners where the Dirichlet velocity datum has a
discontinuity). We have also compared our results with the benchmark values obtained in [21] (using
multiquadric differential quadratures) for a Reynolds number of 400: the solid lines in Figures 3(g)-
3(h) show velocity profiles captured on the plane y = 0.5, concentrating on the vertical and horizontal
centrelines, where we also include the data from [21] (in asterisks) showing a reasonable match (we
have rotated the data, as in their tests the unit velocity is imposed on the face y = 1).
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Figure 2: Second-order DG approximation of the transient flow patterns in an open cavity after one
timestep (a,b,c) and after four time steps (d,e,f), using ∆t = 0.1 and ν = 0.001.

Test 4: Kelvin-Helmholtz mixing layer. We close this section with a benchmark test related
to the well-known vortex formation mechanisms known as the Kelvin-Helmholtz instability problem.
The setup of the test follows the specifications in [31] (see also [12]), the transient Oseen equations
are solved on the unit square Ω = (0, 1)2 and the bottom and top walls constitute Γ, where we impose
a free-slip velocity condition and zero vorticity. The left and right walls are regarded as a periodic
boundary. The initial velocity is

u =

u∞ tanh((2y − 1)/δ0)− cnu∞[cos(wa∞x) + cos(wb∞x)] (2y−1)
δ2
0

exp(− (y−1/2)2

δ2
0

)

cnu∞ exp(− (y−1/2)2

δ2
0

)[wa∞ sin(wa∞x) + wb∞ sin(wb∞x)]

 ,

with perturbation scaling cn = 0.001, reference velocity u∞ = 1, wa∞ = 8π, wb∞ = 20π, δ0 = 1/28.
The characteristic time is t̄ = δ0/u∞, the Reynolds number is Re= 10000, and the kinematic viscosity
is ν = δ0u∞/Re. We use a structured mesh of 128 segments per side, representing 131072 triangular
elements, and we solve the problem using our first-order DG scheme, setting again the stabilisation
constants to a11 = c11 = σ = 1/∆t and d11 = ν, where the timestep is taken as ∆t = t̄/20. The
specification of this problem implies that the solutions will be quite sensitive to the initial perturbations
present in the velocity, which will amplify and consequently vortices will appear. We proceed to
compute numerical solutions until the dimensionless time t = 7, and present in Figure 4 sample
solutions at three different simulation times. For visualisation purposes we zoom into the region
0.25 ≤ y ≤ 0.75, where all flow patterns are concentrated. In addition, a qualitative comparison
against benchmark data from [31] is presented in terms of the temporal evolution of the enstrophy
E(t) (here we rescale ωh with

√
ν to match again the real vorticity). We also record the evolution of

the palinstrophy P (t), a quantity that encodes the dissipation process. These quantities are defined,
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Figure 3: Test 3. Line integral convolution visualisation of velocity for the 2D cavity flow benchmark
with ν = 0.001 (a), cuts of the vertical velocity and vorticity on the line y = 0.5 (b,c); and horizontal
velocity and vorticity on the line x = 0.5 (d,e). The circle markers indicate benchmark values from [11].
Lowest-order approximation of velocity (f) for the 3D case with ν = 0.0025, shown at t = 20; and
profile of the horizontal velocity on the line y = 0.5, z = 0.5 (g), and of the vertical velocity on
the line x = 0.5, y = 0.5 (h). The asterisks indicate benchmark values from [21] and all numerical
approximations for this test were obtained with the lowest-order mixed finite element method.

respectively, as

E(t) :=
1

2ν
‖ωh(t)‖20,Ω, P (t) :=

1

2ν
‖∇ωh(t)‖20,Ω,
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Figure 4: Test 4. Transients of the Kelvin-Helmholtz instability problem computed with the first-order
DG scheme (4.9). Velocity magnitude (a-c), scalar vorticity (d-f), and Bernoulli pressure (g-i).

and we remark that for the palinstrophy we use the discrete gradient associated with the DG discreti-
sation. We show these quantities in Figure 5, where also include results from [31] that correspond
to coarse and fine mesh solutions of the Navier-Stokes equations using a high order scheme based on
Brezzi-Douglas-Marini elements.
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veda: A virtual element method for a nonlocal FitzHugh-Nagumo model of cardiac
electrophysiology

2018-16 Tomás Barrios, Rommel Bustinza: An a priori error analysis for discontinuous
Lagrangian finite elements applied to nonconforming dual mixed formulations: Poisson
and Stokes problems

2018-17 Raimund Bürger, Gerardo Chowell, Elvis Gavilán, Pep Mulet, Luis M.
Villada: Numerical solution of a spatio-temporal predator-prey model with infected
prey

2018-18 Javier A. Almonacid, Gabriel N. Gatica, Ricardo Oyarzúa, Ricardo
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David Zoŕıo: Approximate implicit Taylor methods for ODEs

2018-20 Raimund Bürger, Daniel Inzunza, Pep Mulet, Luis M. Villada: Implicit-
explicit schemes for nonlinear nonlocal equations with a gradient flow structure in one
space dimension
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