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Abstract

In this paper, we propose a new mixed-primal finite element method for heat-driven flows with
temperature-dependent viscosity modeled by the stationary Boussinesq equations. The motivation
for this work is to overcome a drawback found by the authors in a recent work where, in order to
derive the mixed formulation for the momentum equation, the reciprocal of the viscosity appears
multiplied to a tensor product of velocities, making the analysis more restrictive, as it is necessary
to use a continuous injection that is guaranteed only in 2D. Therefore, we show in this work
that by adding the strain rate tensor as a new unknown in the problem, we get more flexibility
in our reasoning and are able to consider the n-dimensional case, as the viscosity now appears
multiplied by this new term only. The rest of the analysis is again based on the introduction of the
pseudostress and vorticity tensors, the elimination of the pressure (which can be recovered later on
via postprocessing), the incorporation of augmented Galerkin-type terms in the mixed formulation
for the momentum equations, and the definition of the normal heat flux as a suitable Lagrange
multiplier in the primal formulation employed for the energy equation. The resulting problem
is analysed by means of the Banach and Brouwer fixed-point theorems, and several numerical
examples illustrating the performance of the new scheme and confirming the theoretical rates of
convergence are presented.
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1 Introduction

The description of a variety of natural phenomena and engineering problems deal with incompressible
quasi-Newtonian flows with viscous heating and buoyancy terms (natural convection of fluids). Mantle
convection with very large viscosities, waves and currents near shorelines, heat transfer in nanoparticle
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fluids, creeping thermal plumes, stratified oceanic flows, chemical reactors, and many other examples
can be invoked. Here we advocate the study of mixed finite element schemes to approximate the
solution of the Boussinesq equations with thermally-dependent viscosity. In the recent contribution [3]
the authors construct an augmented mixed-primal finite element method for such a problem restricting
the analysis to two-dimensional bounded domains with polygonal boundary. More precisely, in the
problem at hand one seeks a velocity field u, a pressure field p and a temperature field ϕ such that

−div (µ(ϕ)e(u)) + (∇u)u +∇p− ϕg = 0 in Ω, (1.1a)

div u = 0 in Ω, (1.1b)

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω, (1.1c)

u = uD on Γ, (1.1d)

ϕ = ϕD on Γ, (1.1e)

where Ω ⊂ R2, Γ := ∂Ω, the symbol e(u) denotes the strain rate tensor (symmetric part of the
velocity gradient tensor ∇u), −g ∈ L∞(Ω) is a body force per unit mass (e.g., gravity), K ∈ L∞(Ω) is
a uniformly positive definite tensor describing thermal conductivity and µ : R→ R+ is a temperature-
dependent viscosity function, which is assumed to be bounded and Lipschitz continuous, that is, there
exist constants µ2 ≥ µ1 > 0 and Lµ > 0 such that

µ1 ≤ µ(s) ≤ µ2 ∀ s ∈ R,

and
|µ(s)− µ(t)| ≤ Lµ|s− t| ∀ s, t ∈ R.

With respect to the boundary conditions for (1.1), we assume that uD ∈ H1/2(Γ), ϕD ∈ H1/2(Γ) and
that uD verifies the compatibility condition∫

Γ
uD · ν = 0 , (1.2)

where ν denotes the unit outward normal on Γ.

The construction of the mixed-primal formulation considered in [3] begins with the introduction of
the pseudostress and vorticity tensors, respectively defined as

σ := µ(ϕ)e(u)− u⊗ u− pI and γ := ω(u) ∈ L2
skew(Ω), (1.3)

where ω(u) is the skew-symmetric part of the velocity gradient tensor ∇u and

L2
skew(Ω) :=

{
η ∈ L2(Ω) : η + ηt = 0

}
. (1.4)

Therefore, after eliminating the pressure p, problem (1.1) is rewritten as: Find (σ,u,γ, ϕ) such that

∇u− γ − 1

µ(ϕ)
(u⊗ u)d =

1

µ(ϕ)
σd in Ω, (1.5a)

−divσ − ϕg = 0 in Ω, (1.5b)

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω, (1.5c)

u = uD on Γ, (1.5d)

ϕ = ϕD on Γ, (1.5e)∫
Ω

tr(σ + u⊗ u) = 0 , (1.5f)
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where (1.5f) constitutes a uniqueness condition for the pressure. At this point we remark that, with
the term ∇u free in (1.5a) thanks to the division by µ(ϕ) in this equation, integration by parts upon
multiplication by a test function is now possible. However, it can be seen that this leads to the usage
of a continuous injection from H1(Ω) into L8(Ω), as required by the following estimate:∫

Ω

∣∣∣ϕ(u⊗w)d : τ
∣∣∣ ≤ ‖ϕ ‖L4(Ω)‖u ‖L8(Ω)‖w ‖L8(Ω)‖ τ ‖0,Ω

≤ C(Ω) ‖ϕ ‖1,Ω‖u ‖1,Ω‖w ‖1,Ω‖ τ ‖1,Ω ,

with C(Ω) > 0 and valid for any ϕ ∈ H1(Ω); u,w ∈ H1(Ω); τ ∈ L2(Ω), and more important, for
Ω ⊂ Rd, d ∈ {1, 2}, according to the Sobolev embedding theorem (cf., e.g., [16, Theorem 1.3.5]).
This estimate is used in several ways throughout [3], at both continuous and discrete levels (see, [3,
Lemmas 3.8, 4.5 and 5.3]), and its main purpose is to help in the proof of Lipschitz continuity of the
fixed-point operator T (respectively Th) that consequently provides well-posedness of the continuous
formulation (respectively the Galerkin scheme).

The purpose of this work is to derive a new augmented mixed-primal finite element method for the
Boussinesq problem (1.1) considering an n-dimensional domain, n ∈ {2, 3}. To this end, we have a
look at works such as [7, 8, 14] where the strain rate tensor e(u) is considered as a new variable in
the system, in addition to the vorticity and pseudostress tensors. This fact provides more flexibility
in the scheme, as it is no longer necessary (nor advisable) to divide in (1.5a) by the viscosity to set
the gradient free. Instead, the decomposition of the velocity gradient tensor into its symmetric and
skew-symmetric parts provides equation to be integrated by parts. We will see that this problem
can be analysed by suitably modifying the approach from [3], thus yielding an augmented mixed-
primal finite element method that uses discontinuous piecewise polynomial functions of degree ≤ k to
approximate the strain rate, vorticity and normal heat flux, Raviart-Thomas elements of order k for
the pseudostress, and Lagrange elements of order k + 1 for the velocity and temperature of the fluid.

The rest of this work is organized as follows. In Section 2 we rewrite the Boussinesq problem
(1.1) considering the strain rate, pseudostress and vorticity tensors as new variables, to then derive an
augmented mixed-primal formulation, whose well-posedness will be proved by means of a fixed-point
approach. Similarly, in Section 3 we provide the corresponding Galerkin scheme and its associated
well-posedness result, to then, in Section 4, proceed to derive a priori error estimates and state the
rates of convergence of the scheme when a particular choice of finite element subspaces is made.
Finally, to complement our theoretical results, we present in Section 5 a set of numerical examples
that serve to confirm the properties of the proposed schemes.

2 The continuous formulation

In order to avoid the division by µ(ϕ) in (1.5a), we have a look at recent work [7], where the authors
develop a augmented mixed finite element method for the Navier-Stokes equations with nonlinear
viscosity. This approach relies on the definition of the strain rate tensor as a new unknown

t := e(u) ∈ L2
tr(Ω),

where
L2
tr(Ω) =

{
s ∈ L2(Ω) : s = st and tr(s) = 0

}
,

which together with the pseudostress and vorticity tensors already defined in (1.3), allows us to rewrite
(1.5) as: Find (t,σ,u,γ) such that
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t + γ = ∇u in Ω, (2.1a)

µ(ϕ)t− (u⊗ u)d = σd in Ω, (2.1b)

−divσ − ϕg = 0 in Ω, (2.1c)

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω, (2.1d)

u = uD on Γ, (2.1e)

ϕ = ϕD on Γ, (2.1f)∫
Ω

tr(σ + u⊗ u) = 0. (2.1g)

2.1 An augmented mixed-primal formulation

Multiplying (2.1a) by a test function τ ∈ H(div; Ω), integrating by parts and using the Dirichlet
condition (2.1e), we obtain∫

Ω
t : τ d +

∫
Ω
γ : τ +

∫
Ω

u · div τ = 〈 τν,uD 〉Γ ∀ τ ∈ H(div; Ω).

Then, we multiply (2.1b) and (2.1c) by appropriate test functions, imposing at the same time the
symmetry of the pseudostress tensor σ, thus obtaining∫

Ω
µ(ϕ)t : s−

∫
Ω

(u⊗ u)d : s−
∫

Ω
σd : s = 0 ∀ s ∈ L2

tr(Ω), (2.2)

and

−
∫

Ω
v · divσ −

∫
Ω
σ : η =

∫
Ω
ϕg · v ∀ (v,η) ∈ L2(Ω)× L2

skew(Ω).

The equations associated with the primal formulation of the energy equation are recalled next from
[3]: ∫

Ω
K∇ϕ · ∇ψ + 〈λ, ψ 〉Γ = −

∫
Ω
ψu · ∇ϕ ∀ ψ ∈ H1(Ω), (2.3)

〈 ξ, ϕ 〉Γ = 〈 ξ, ϕD 〉Γ ∀ ξ ∈ H−1/2(Γ) , (2.4)

where λ := K∇ϕ · ν ∈ H−1/2(Γ) is introduced as the Lagrange multiplier taking care of the Dirichlet
boundary condition on Γ. Notice that, due to the second term in (2.2) and the right hand side of
(2.3), the velocity u must live in H1(Ω), since appealing to the continuous injection of H1(Ω) into
L4(Ω), there exist positive constants c1(Ω) and c2(Ω) such that∣∣∣∣∫

Ω
(u⊗w)d : s

∣∣∣∣ ≤ c1(Ω)‖u ‖1,Ω‖w ‖1,Ω‖ s ‖0,Ω ∀ u,w ∈ H1(Ω), ∀ s ∈ L2(Ω), (2.5)

and ∣∣∣∣∫
Ω
ψu · ∇ϕ

∣∣∣∣ ≤ c2(Ω)‖u ‖1,Ω‖ψ ‖1,Ω|ϕ|1,Ω ∀ u ∈ H1(Ω) ∀ ϕ,ψ ∈ H1(Ω). (2.6)

Also, obeying to the orthogonal decomposition

H(div; Ω) = H0(div; Ω)⊕RI,

where

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫
Ω

tr(ζ) = 0

}
,
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we can consider σ and τ in H0(div; Ω) (see [3, Lemma 3.1] for a detailed justification of this
change). Having in mind these considerations, at a first glance, the weak formulation reads: Find
(t,σ,u,γ, ϕ, λ) ∈ L2

tr(Ω)×H0(div; Ω)×H1(Ω)× L2
skew(Ω)×H1(Ω)×H−1/2(Γ) such that∫

Ω
µ(ϕ)t : s−

∫
Ω

(u⊗ u)d : s−
∫

Ω
σd : s = 0 ∀ s ∈ L2

tr(Ω),∫
Ω

t : τ d +

∫
Ω
γ : τ +

∫
Ω

u · div τ = 〈 τν,uD 〉Γ ∀ τ ∈ H0(div; Ω),

−
∫

Ω
v · divσ −

∫
Ω
σ : η =

∫
Ω
ϕg · v ∀ (v,η) ∈ L2(Ω)× L2

skew(Ω), (2.7)∫
Ω
K∇ϕ · ∇ψ + 〈λ, ψ 〉Γ = −

∫
Ω
ψu · ∇ϕ ∀ ψ ∈ H1(Ω),

〈 ξ, ϕ 〉Γ = 〈 ξ, ϕD 〉Γ ∀ ξ ∈ H−1/2(Γ).

To achieve a conforming scheme, and to properly analyse (2.7), we augment this variational formu-
lation using redundant Galerkin terms arising from equations of the strong problem (2.1), but tested
differently from (2.7), namely:

κ1

∫
Ω

{
σd + (u⊗ u)d − µ(ϕ)t

}
: τ d = 0 ∀ τ ∈ H0(div; Ω),

κ2

∫
Ω

{
divσ + ϕg

}
· div τ = 0 ∀ τ ∈ H0(div; Ω),

κ3

∫
Ω

{
e(u)− t

}
: e(v) = 0 ∀ v ∈ H1(Ω),

κ4

∫
Ω

{
γ − ω(u)

}
: η = 0 ∀ η ∈ L2

skew(Ω),

κ5

∫
Γ

u · v = κ5

∫
Γ

uD · v ∀ v ∈ H1(Ω),

where κj , j ∈ {1, . . . , 5} are stabilization (or augmentation) positive constants to be specified later
on. In this way, and denoting by H := L2

tr(Ω)×H0(div; Ω)×H1(Ω)× L2
skew(Ω), ~t := (t,σ,u,γ) and

~s := (s, τ ,v,η), we arrive to the following augmented mixed-primal formulation: Find (~t, (ϕ, λ)) ∈
H ×H1(Ω)×H−1/2(Γ) such that

Aϕ(~t,~s) + Bu(~t,~s) = Fϕ(~s) + FD(~s) ∀ ~s ∈ H,
a(ϕ,ψ) + b(ψ, λ) = Fu,ϕ(ψ) ∀ ψ ∈ H1(Ω), (2.8)

b(ϕ, ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ),

where, given an arbitrary (w, φ) ∈ H1(Ω)×H1(Ω), the forms Aφ, Bw, a, b, and the functionals FD,
Fφ, Fw,φ and G are defined as

Aφ(~t,~s) :=

∫
Ω
µ(φ)t :

{
s− κ1τ

d
}

+

∫
Ω

t :
{
τ d − κ3e(v)

}
−
∫

Ω
σd :

{
s− κ1τ

d
}

+

∫
Ω

u · div τ −
∫

Ω
v · divσ +

∫
Ω
γ : τ −

∫
Ω
σ : η − κ4

∫
Ω
ω(u) : η

+ κ2

∫
Ω

divσ · div τ + κ3

∫
Ω

e(u) : e(v) + κ4

∫
Ω
γ : η + κ5

∫
Γ

u · v,
(2.9)

Bw(~t,~s) :=

∫
Ω

(u⊗w)d :
{
κ1τ

d − s
}
, (2.10)
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for all ~t,~s ∈ H;

a(ϕ,ψ) :=

∫
Ω
K∇ϕ · ∇ψ, (2.11)

for all ϕ,ψ ∈ H1(Ω);
b(ψ, ξ) := 〈 ξ, ψ 〉Γ, (2.12)

for all (ψ, ξ) ∈ H1(Ω)×H−1/2(Γ);

FD(~s) := 〈 τν,uD 〉Γ + κ5

∫
Γ

uD · v, (2.13)

Fφ(~s) :=

∫
Ω
φg ·

{
v − κ2div τ

}
, (2.14)

for all ~s ∈ H;

Fw,φ(ψ) = −
∫

Ω
ψw · ∇φ, (2.15)

for all ψ ∈ H1(Ω); and
G(ξ) = 〈 ξ, ϕD 〉Γ, (2.16)

for all ξ ∈ H−1/2(Γ).

2.2 The fixed-point argument

A crucial tool in [3] to prove the well-posedness of the continuous and discrete formulations is a
technique that decouples the problem into the mixed formulation of the momentum equation and the
primal formulation of the energy equation, which further enables us to rewrite the formulation as a
fixed-point problem. Hence, we denote H := H1(Ω)×H1(Ω) and consider in what follows the operator
S : H→ H defined by

S(w, φ) = (S1(w, φ),S2(w, φ),S3(w, φ),S4(w, φ)) := ~t,

where ~t is the solution of the problem: Find ~t ∈ H such that

Aφ(~t,~s) + Bw(~t,~s) = Fφ(~s) + FD(~s) ∀ ~s ∈ H. (2.17)

In addition, let S̃ : H→ H1(Ω) be the operator defined by

S̃(w, φ) := ϕ,

where ϕ is the first component of the solution of the problem: Find (ϕ, λ) ∈ H1(Ω)×H−1/2(Γ) such
that

a(ϕ,ψ) + b(ψ, λ) = Fw,φ(ψ) ∀ ψ ∈ H1(Ω),

b(ϕ, ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ) .
(2.18)

In this way, by introducing the operator T : H→ H as

T(w, φ) =
(
S3(w, φ), S̃(S3(w, φ), φ)

)
∀ (w, φ) ∈ H, (2.19)

we realize that (2.8) can be rewritten as the fixed-point problem: Find (u, ϕ) ∈ H such that

T(u, ϕ) = (u, ϕ). (2.20)

As in [3], the objective is to use the Banach fixed-point theorem to prove existence and uniqueness
of (2.20). We recall that the key difference in the present work with respect to [3] is in the problem
that defines the operator S, and therefore, those results associated to the operator S̃ and the primal
formulation of the energy equation will be considered here as well, but we only cite them.
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2.3 Well-posedness of the uncoupled problems

In what follows, we consider∥∥~s∥∥ :=
{
‖ s ‖20,Ω + ‖ τ ‖2div;Ω + ‖v ‖21,Ω + ‖η ‖20,Ω

}1/2
∀ ~s ∈ H,

and

‖ (ψ, ξ) ‖ :=
{
‖ψ ‖21,Ω + ‖ ξ ‖2−1/2,Γ

}1/2
∀ (ψ, ξ) ∈ H1(Ω)×H−1/2(Γ).

We first recall some results that will be used for ellipticity purposes.

Lemma 2.1. There exists c3(Ω) > 0 such that

c3(Ω) ‖ τ0 ‖20,Ω ≤
∥∥ τ d ∥∥2

0,Ω
+ ‖div τ ‖20,Ω ∀ τ = τ0 + cI ∈ H(div; Ω).

Proof. See [6, Proposition 3.1], [13, Lemma 2.3].

Lemma 2.2. There exists κ0(Ω) > 0 such that

κ0(Ω) ‖v ‖21,Ω ≤ ‖ e(v) ‖20,Ω + ‖v ‖20,Γ ∀ v ∈ H1(Ω).

Proof. See [12, Lemma 3.1].

The following results establish sufficient conditions for the operators S and S̃ being well-defined,
equivalently, (2.17) and (2.18) being well-posed.

Lemma 2.3. Assume that for δ1 ∈
(

0, 2
µ2

)
, δ2, δ3 ∈ (0, 2) we choose

κ1 ∈
(

0,
2µ1δ1

µ2

)
, κ2, κ5 ∈ (0,∞),

κ3 ∈
(

0, 2δ2

(
µ1 −

κ1µ2

2δ1

))
and κ4 ∈

(
0, 2δ3κ0(Ω) min

{
κ3

(
1− δ2

2

)
, κ5

})
.

Then, there exists r0 > 0 such that for each r ∈ (0, r0), the problem (2.17) has a unique solution
~t := S(w, φ) ∈ H for each (w, φ) ∈ H such that ‖w ‖1,Ω ≤ r. Moreover, there exists a constant
CS > 0, independent of (w, φ) such that there holds

‖S(w, φ) ‖ =
∥∥~t ∥∥ ≤ CS

{
‖g ‖∞,Ω‖φ ‖0,Ω + ‖uD ‖1/2,Γ

}
. (2.21)

Proof. Given (w, φ) ∈ H, we notice from (2.9) that Aφ is bilinear. Then, by using the upper bound
of the viscosity function, the Cauchy-Schwarz inequality and the trace theorem with constant c0(Ω),
we see that for any ~t,~s ∈ H,

|Aφ(~t,~s)| ≤ µ2(1 + κ2
1)1/2 ‖ t ‖0,Ω

∥∥~s∥∥+ (1 + κ2
3)1/2 ‖ t ‖0,Ω

∥∥~s ∥∥+ (1 + κ2
1)1/2

∥∥σd
∥∥

0,Ω

∥∥~s ∥∥
+‖u ‖0,Ω‖div τ ‖0,Ω + ‖γ ‖0,Ω‖ τ ‖0,Ω + ‖divσ ‖0,Ω‖v ‖0,Ω + ‖σ ‖0,Ω‖η ‖0,Ω

+κ4‖u ‖1,Ω‖η ‖0,Ω + κ2‖divσ ‖0,Ω‖div τ ‖0,Ω + κ3‖u ‖1,Ω‖v ‖1,Ω

+κ4‖γ ‖0,Ω‖η ‖0,Ω + κ5c0(Ω)2‖u ‖1,Ω‖v ‖1,Ω ,

and therefore, there exists a constant CA > 0 depending only on µ2, c0(Ω) and the stabilization
parameters κj , such that

|Aφ(~t,~s)| ≤ CA

∥∥~t ∥∥∥∥~s ∥∥ ∀ ~t,~s ∈ H. (2.22)
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On the other hand, from (2.10), Bw is a bilinear form, and by using the estimate (2.5), we obtain for
any ~t,~s ∈ H that

|Bw(~t,~s)| ≤ c1(Ω)(1 + κ1)2‖u ‖1,Ω‖w ‖1,Ω
∥∥~s ∥∥, (2.23)

which together with (2.22) implies the existence of a positive constant denoted by ‖Aφ + Bw ‖, inde-
pendent of (w, φ) such that

|(Aφ + Bw)(~t,~s)| ≤ ‖Aφ + Bw ‖
∥∥~t ∥∥∥∥~s ∥∥. (2.24)

To prove that Aφ + Bw is elliptic, we first prove that Aφ is elliptic. Indeed, for any ~s ∈ H we have

Aφ(~s,~s) =

∫
Ω
µ(φ)s : s− κ1

∫
Ω
µ(φ)s : τ d − κ3

∫
Ω

s : e(v)− κ4

∫
Ω
ω(v) : η

+ κ1

∥∥ τ d ∥∥2

0,Ω
+ κ2‖div τ ‖20,Ω + κ3‖ e(v) ‖20,Ω + κ4‖η ‖20,Ω + κ5‖v ‖20,Γ ,

and then, using the bounds for the viscosity and the Cauchy-Schwarz and Young inequalities, we
obtain for any δ1, δ2, δ3 > 0 and any ~s ∈ H that

Aφ(~s,~s) ≥ µ1‖ s ‖20,Ω −
κ1µ2

2δ1
‖ s ‖20,Ω −

κ1µ2δ1

2

∥∥ τ d ∥∥2

0,Ω
− κ3

2δ2
‖ s ‖20,Ω −

κ3δ2

2
‖ e(v) ‖20,Ω

− κ4

2δ3
‖ω(v) ‖20,Ω −

κ4δ3

2
‖η ‖20,Ω + κ1

∥∥ τ d ∥∥2

0,Ω
+ κ2‖div τ ‖20,Ω + κ3‖ e(v) ‖20,Ω

+ κ4‖η ‖20,Ω + κ5‖v ‖20,Γ

≥
(
µ1 −

κ1µ2

2δ1
− κ3

2δ2

)
‖ s ‖20,Ω + κ1

(
1− µ2δ1

2

)∥∥ τ d ∥∥2

0,Ω
+ κ2‖div τ ‖20,Ω

+ κ3

(
1− δ2

2

)
‖ e(v) ‖20,Ω + κ5‖v ‖20,Γ −

κ4

2δ3
|v|21,Ω + κ4

(
1− δ3

2

)
‖η ‖20,Ω.

Then, defining the following constants:

α1 := µ1 −
κ1µ2

2δ1
− κ3

2δ2
, α2 := min

{
κ1

(
1− µ2δ1

2

)
,
κ2

2

}
, α3 := min

{
κ3

(
1− δ2

2

)
, κ5

}
,

α4 := κ4

(
1− δ3

2

)
, α5 := min

{
α2c3(Ω),

κ2

2

}
, α6 := α3κ0(Ω)− κ4

2δ3
,

and using Lemmas 2.1 and 2.2, it is possible to find a constant α(Ω) := min{α1, α4, α5, α6}, indepen-
dent of (w, φ), such that

Aφ(~s,~s) ≥ α(Ω)
∥∥~s∥∥2 ∀ ~s ∈ H.

Then, from the foregoing inequality, together with the definition of Bw (cf. (2.10)) and the estimation
(2.5), we get that, for any ~s ∈ H, there holds

(Aφ + Bw)(~s,~s) ≥
(
α(Ω)− c1(Ω)(1 + κ1)1/2‖w ‖1,Ω

)∥∥~s∥∥2
.

Therefore, we easily see that

(Aφ + Bw)(~s,~s) ≥ α(Ω)

2

∥∥~s ∥∥2 ∀ ~s ∈ H, (2.25)

provided that
α(Ω)

2
≥ c1(Ω)(1 + κ2

1)1/2‖w ‖1,Ω,
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that is,

‖w ‖1,Ω ≤
α(Ω)

2c1(Ω)(1 + κ2
1)1/2

=: r0, (2.26)

thus proving ellipticity for Aφ + Bw under the requirement (2.26). Finally, the linearity of the
functionals FD and Fφ is clear, and from (2.13), (2.14), using the Cauchy-Schwarz inequality, the
trace estimates in H(div; Ω) and H1(Ω), with constants 1 and c0(Ω), and the continuous injection
from H1/2(Γ) into L2(Γ) with constant C1/2 we have

|FD(~s)| ≤
(

1 + κ5c0(Ω)C1/2

)
‖uD ‖1/2,Γ

∥∥~s∥∥,
and

|Fφ(~s)| ≤ (1 + κ2
2)1/2‖g ‖∞,Ω‖φ ‖0,Ω

∥∥~s∥∥, (2.27)

for all ~s ∈ H. Thus, there exists a constant MS := max
{

(1 + κ2
2)1/2, 1 + κ5c0(Ω)C1/2

}
such that

‖Fφ + FD ‖ ≤MS

{
‖g ‖∞,Ω‖φ ‖0,Ω + ‖uD ‖1/2,Γ

}
,

and by the Lax-Milgram theorem (see, e.g. [13, Theorem 1.1]), there exists a unique ~t ∈ H solution of
(2.17), and the corresponding dependence result (2.21) is satisfied with CS := 2MS

α(Ω) , a constant clearly

independent of (w, φ).

Lemma 2.4. For each (w, φ) ∈ H there exists a unique pair (ϕ, λ) ∈ H1(Ω) ×H−1/2(Γ) solution of
the problem (2.18). Moreover, there exists C

S̃
> 0 such that∥∥∥ S̃(w, φ)

∥∥∥ ≤ ‖ (ϕ, λ) ‖ ≤ C
S̃

{
‖w ‖1,Ω|φ |1,Ω + ‖ϕD ‖1/2,Γ

}
. (2.28)

Proof. The results comes from a direct application of the Babuška-Brezzi theory (see [3, Lemma 3.6]).
In particular, the right hand side of (2.28) is obtained after bounding the functionals Fw,φ (cf. (2.15))
and G (cf. (2.16)), respectively.

From the previous two lemmas, it is now clear that T is well-defined for any element (w, φ) ∈W,
where

W :=
{

(w, φ) ∈ H : ‖ (w, φ) ‖ ≤ r
}
, (2.29)

which is nothing but the closed ball in H with center (0, 0) and radius r, with r ∈ (0, r0) and r0 defined
as in (2.26). We also notice that, for computational purposes, a particular choice of stabilization
parameters is necessary. Therefore, we choose them so that α(Ω) is as large as possible. We begin by
selecting the middle points of the ranges for δ1, δ2, δ3, κ1 and κ3, that is,

δ1 =
1

µ2
, δ2 = δ3 = 1, κ1 =

µ1δ1

µ2
=
µ1

µ2
2

, κ3 = δ2

(
µ1 −

κ1µ2

2δ1

)
=
µ1

2
,

to then pick κ2 and κ5 so that α2 and α3 can attain the largest value possible, that is

κ2 =
µ1

µ2
2

, κ5 =
µ1

4
,

and hence, we can pick κ4 as the middle point of its range,

κ4 = κ0(Ω)
µ1

4
.

Notice that κ0(Ω), the constant in the Korn-type Lemma 2.2, is still unknown. Nevertheless, works
such as [3, 7] suggest that a heuristic choice of this parameter is enough.

9



2.4 Further-regularity assumption

Although the problem that defines the operator S, that is (2.17), is well-posed, a small further-
regularity assumption has to be made in order to continue with the analysis. More precisely, and
inspired by [4, 5], we assume that uD ∈ H1/2+ε(Γ) for some ε ∈ (0, 1) when n = 2, or ε ∈

[
1
2 , 1
)

when
n = 3, and that for each (z, ψ) ∈ H with ‖ z ‖1,Ω ≤ r, r > 0 given, there hold (q, ζ,v,χ) := S(z, ψ) ∈
L2
tr(Ω) ∩Hε(Ω)×H0(div; Ω) ∩Hε(Ω)×H1+ε(Ω)× L2

skew(Ω) ∩Hε(Ω) and

‖q ‖ε,Ω + ‖ ζ ‖ε,Ω + ‖v ‖1+ε,Ω + ‖χ ‖ε,Ω ≤ C̃S(r)
{
‖g ‖∞,Ω‖ψ ‖0,Ω + ‖uD ‖1/2+ε,Γ

}
, (2.30)

with C̃S(r) > 0 independent of z but depending on the upper bound r of its H1-norm.

2.5 Solvability analysis of the fixed-point equation

We now proceed to directly fulfill the hypotheses of the Banach fixed-point theorem. The following
result shows that T can map the ball W into itself.

Lemma 2.5. Consider the closed ball W defined in (2.29) with r ∈ (0, r0) and r0 as given in (2.26).
Suppose the data satisfy

c(r)
{
‖g ‖∞,Ω + ‖uD ‖1/2,Γ

}
+ C

S̃
‖ϕD ‖1/2,Γ ≤ r,

where
c(r) :=

(
1 + C

S̃
r
)
CS max{1, r},

and CS, C
S̃

are given in Lemmas 2.3 and 2.4, respectively. Then, there holds T(W) ⊆W.

Proof. It follows as a consequence of the continuous dependence results (2.21) and (2.28), much in an
identical way as in [3, Lemma 3.7].

Next, we prove some results that will help us to arrive to the Lipschitz continuity of T.

Lemma 2.6. Let r ∈ (0, r0) with r0 as given in (2.26). Then, there exists a positive constant ĈS,
independent of r, such that

‖S(w1, φ1)− S(w2, φ2) ‖ ≤ ĈS

{
‖S1(w1, φ1) ‖ε,Ω‖φ1 − φ2 ‖Ln/ε(Ω)

+ ‖S3(w1, φ1) ‖1,Ω‖w1 −w2 ‖1,Ω + ‖g ‖∞,Ω‖φ1 − φ2 ‖0,Ω
}
, (2.31)

for all (w1, φ1), (w2, φ2) ∈ H such that ‖w1 ‖1,Ω, ‖w2 ‖1,Ω ≤ r.

Proof. Let (w1, φ1), (w2, φ2) ∈ H as indicated and let ~tj := (tj ,σj ,uj ,γj) = S(wj , φj) ∈ H, j ∈ {1, 2}
be the corresponding solutions of (2.17). Then, adding and subtracting the equality

Aφ1(~t1,~s) + Bw1(~t1,~s) = Fφ1(~s) + FD(~s) ∀~s ∈ H ,

we find that

(Aφ2 + Bw2)(~t1 −~t2,~s) = Aφ2(~t1,~s)−Aφ1(~t1,~s) + Bw2−w1(~t1,~s) + Fφ1−φ2(~s) ∀~s ∈ H .
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Thus, using the ellipticity of Aφ2 + Bw2 (cf. (2.25)) and the foregoing expression, we obtain

α(Ω)

2

∥∥~t1 −~t2

∥∥ ≤ (Aφ2 + Bw2)(~t1 −~t2,~t1 −~t2)

=

∫
Ω

[
µ(φ2)− µ(φ1)

]
t1 :

{
(t1 − t2)− κ1(σ1 − σ2)d

}
+

∫
Ω

[
u1 ⊗ (w2 −w1)

]d
:
{
κ1(σ1 − σ2)d − (t1 − t2)

}
+

∫
Ω

(φ1 − φ2)g ·
{

(u1 − u2)− κ2div (σ1 − σ2)
}
.

(2.32)

First, we bound the last two terms in the same way as Lemma 2.3 (that is, using the estimates (2.23)
and (2.27)): ∣∣∣∣ ∫

Ω

[
u1 ⊗ (w2 −w1)

]d
:
{
κ1(σ1 − σ2)d − (t1 − t2)

}∣∣∣∣
≤ c1(Ω)(1 + κ2

1)1/2 ‖u1 ‖1,Ω‖w1 −w2 ‖1,Ω
∥∥~t1 −~t2

∥∥ , (2.33)

and ∣∣∣∣ ∫
Ω

(φ1 − φ2)g ·
{

(u1 − u2)− κ2div (σ1 − σ2)
}∣∣∣∣

≤ (1 + κ2
2)1/2 ‖g ‖∞,Ω ‖φ1 − φ2 ‖0,Ω

∥∥~t1 −~t2

∥∥ , (2.34)

Next, for the first term, we use the Lipschitz continuity of µ and the Cauchy-Schwarz and Hölder
inequalities to show in a similar way to [3, Eq. (3.56)] that∣∣∣∣ ∫

Ω

[
µ(φ2)− µ(φ1)

]
t1 :

{
(t1 − t2)− κ1(σ1 − σ2)d

}∣∣∣∣
≤ Lµ‖ (φ2 − φ1)t1 ‖0,Ω

∥∥ (t1 − t2)− κ1(σ1 − σ2)d
∥∥

0,Ω

≤ Lµ(1 + κ2
1)1/2‖φ2 − φ1 ‖L2q(Ω)‖ t1 ‖L2p(Ω)

∥∥~t1 −~t2

∥∥ ,
(2.35)

with p, q ∈ [1,+∞) such that 1
p + 1

q = 1. At this point, we take into consideration the further-
regularity assumption in Section 2.4 and we recall from the Sobolev embedding theorem that Hε(Ω)
is continuously embedded into L2p(Ω), with

2p =


2

1− ε
if n = 2,

6

3− 2ε
if n = 3,

(cf. [1, Theorem 4.12], [16, Theorem 1.3.4]) meaning that there exists Cε > 0 such that

‖ t ‖L2p(Ω) ≤ Cε‖ t ‖ε,Ω ∀ t ∈ Hε(Ω).

In this way,

2q =
2p

p− 1
=


2

ε
if n = 2,

3

ε
if n = 3

=
n

ε
,

and (2.35) now yields∣∣∣∣ ∫
Ω

[
µ(φ2)− µ(φ1)

]
t1 :

{
(t1 − t2)− κ1(σ1 − σ2)d

}∣∣∣∣
≤ Lµ(1 + κ2

1)1/2Cε‖ t1 ‖ε,Ω‖φ1 − φ2 ‖Ln/ε(Ω)

∥∥~t1 −~t2

∥∥ . (2.36)
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Therefore, putting (2.33), (2.34) and (2.36) together into (2.32), we obtain∥∥~t1 −~t2

∥∥ ≤ ĈS

{
‖ t1 ‖ε,Ω‖φ1 − φ2 ‖Ln/ε(Ω)+‖u1 ‖1,Ω‖w1 −w2 ‖1,Ω+‖g ‖∞,Ω‖φ1 − φ2 ‖0,Ω

}
, (2.37)

with

ĈS :=
2

α(Ω)
max

{
Lµ(1 + κ2

1)1/2Cε, c1(Ω)(1 + κ2
1)1/2, (1 + κ2

2)1/2
}
,

and since t1 = S1(w1, φ1) and u1 = S3(w1, φ1), the last inequality is exactly the estimate (2.31).

Notice how the foregoing Lemma shows the main difference with respect to the previous work [3]:
the tensor-product term in (2.33) no longer appears multiplied by an H1-term, thus avoiding the use
of the injection H1(Ω) ↪→ L8(Ω) (not ensured for Ω ⊂ R3) when splitting them as in [3, Eq. (3.54)],
yielding a more robust formulation for both two and three-dimensional cases. On the other hand, the
analogous result for S̃ remains intact.

Lemma 2.7. There exists a positive constant Ĉ
S̃

such that∥∥∥ S̃(w1, φ1)− S̃(w2, φ2)
∥∥∥ ≤ ĈS̃

{
‖w1 ‖|φ1 − φ2 |1,Ω + ‖w1 −w2 ‖1,Ω|φ2 |1,Ω

}
. (2.38)

Proof. See [3, Lemma 3.9].

As a consequence of the previous Lemmas, T is a Lipschitz continuous operator, as shown next.

Lemma 2.8. Let r ∈ (0, r0), with r0 given as in (2.26). Then, there exists a constant CT > 0 such
that

‖T(w1, φ1)−T(w2, φ2) ‖ ≤ CT

{
‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ

}
‖ (w1, φ1)− (w2, φ2) ‖

Proof. The result comes from the definition of T (cf. (2.19)) and the estimates obtained in the previous
two lemmas (cf. (2.31) and (2.38)) in an identical way to [3, Lemma 3.10]. We omit further details.

In summary, from Lemmas 2.3 and 2.4, T : W → W is well-defined and does map the ball into
itself (thanks to Lemma 2.5). Then, Lemma 2.8 shows that T is Lipschitz continuous, so that when
its Lipschitz constant is < 1, it becomes a contraction, yielding the existence and uniqueness of a fixed
point, thanks to the Banach fixed-point theorem. By what has been explained in Section 2.2, this fact
is equivalent to the well-posedness of the augmented mixed-primal formulation (2.8), thus providing
us the main result for this section.

Theorem 2.9. Assume that for δ1 ∈
(

0, 2
µ2

)
, δ2, δ3 ∈ (0, 2) we choose

κ1 ∈
(

0,
2µ1δ1

µ2

)
, κ2, κ5 ∈ (0,∞),

κ3 ∈
(

0, 2δ2

(
µ1 −

κ1µ2

2δ1

))
and κ4 ∈

(
0, 2δ3κ0(Ω) min

{
κ3

(
1− δ2

2

)
, κ5

})
.

and consider the ball W (cf. (2.29)) with radius r ∈ (0, r0) and r0 as in (2.26). In addition, assume
that the data satisfy

c(r)
{
‖g ‖∞,Ω + ‖uD ‖1/2,Γ

}
+ C

S̃
‖ϕD ‖1/2,Γ ≤ r,

with c(r) as in Lemma 2.5, and

CT

{
‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ

}
< 1.
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Then, the problem (2.8) has a unique solution (~t, (ϕ, λ)) ∈ H ×H1(Ω)×H−1/2(Γ), with (u, ϕ) ∈W.
Moreover, there hold ∥∥~t ∥∥ ≤ CS

{
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ

}
(2.39)

and
‖ (ϕ, λ) ‖ ≤ C

S̃

{
r‖u ‖1,Ω + ‖ϕD ‖1/2,Γ

}
, (2.40)

with CS and C
S̃

as in Lemmas 2.3 and 2.4, respectively.

3 The Galerkin scheme

In this section, we derive the corresponding Galerkin scheme for the augmented mixed-primal for-
mulation (2.8). To begin with, let us consider Th a regular triangulation of Ω̄ by triangles T (when
n = 2) or tetrahedra T (when n = 3) of diameter hT and define the meshsize h := max{hT : T ∈ Th}.
Then, consider arbitrary finite-dimensional subspaces Ht

h ⊂ L2
tr(Ω), Hσ

h ⊂ H0(div; Ω), Hu
h ⊂ H1(Ω),

Hγ
h ⊂ L2

skew(Ω), Hϕ
h ⊂ H1(Ω), Hλ

h ⊂ H−1/2(Γ) and denote by Hh := Ht
h × Hσ

h × Hu
h × Hγ

h ,
~th := (th,σh,uh,γh) and ~sh := (sh, τh,vh,ηh). Hence, according to (2.8), the Galerkin scheme
reads: Find (~th, (ϕh, λh)) ∈ Hh ×Hϕ

h ×H
λ
h such that

Aϕh(~th,~sh) + Buh(~th,~sh) = Fϕh(~sh) + FD(~sh) ∀ ~sh ∈ Hh,
a(ϕh, ψh) + b(ψh, λh) = Fuh,ϕh(ψh) ∀ ψh ∈ Hϕ

h , (3.1)

b(ϕh, ξh) = G(ξh) ∀ ξh ∈ Hλ
h ,

where the forms Aϕh , Buh , a and b; and the functionals Fϕh , FD, Fuh,ϕh are defined by (2.9)-(2.16).
Since the proof of well-posedness follows the steps of the previous section, and moreover, analogously
to [3, Section 4], we only state the requirements to be imposed over the finite-dimensional subspaces
and the main result, which is analogous to [3, Theorem 4.8].

3.1 Well-posedness of the Galerkin scheme

It can be seen that no restrictions have to be added to Ht
h, Hσ

h , Hu
h and Hγ

h other than being finite-
dimensional subspaces of the described spaces, however, for ellipticity purposes of a in the discrete
kernel of the operator induced by b (according the Babuška-Brezzi theory), the following inf-sup
conditions must be met:

(H.1) There exists a constant α̂ > 0, independent of h such that

sup
ψh∈Vh
ψh 6=0

a(ψh, φh)

‖ψh ‖1,Ω
≥ α̂‖φh ‖1,Ω ∀ φh ∈ Vh, (3.2)

where
Vh :=

{
ψh ∈ Hϕ

h : b(ψh, ξh) = 0 ∀ ξh ∈ Hλ
h

}
,

and,

(H.2) There exists a constant β̂ > 0, independent of h such that

sup
ψh∈Hϕ

h
ψh 6=0

b(ψh, ξh)

‖ψh ‖1,Ω
≥ β̂‖ ξh ‖−1/2,Γ ∀ ξh ∈ Hλ

h . (3.3)
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Then, denoting by Wh the closed ball in Hh := Hu
h ×H

ϕ
h of radius r and center (0, 0), that is

Wh :=
{

(wh, φh) ∈ Hh : ‖ (wh, φh) ‖ ≤ r
}
,

the main result of this section reads as follows.

Theorem 3.1. Assume that for δ1 ∈
(

0, 2
µ2

)
, δ2, δ3 ∈ (0, 2) we choose

κ1 ∈
(

0,
2µ1δ1

µ2

)
, κ2, κ5 ∈ (0,∞),

κ3 ∈
(

0, 2δ2

(
µ1 −

κ1µ2

2δ1

))
and κ4 ∈

(
0, 2δ3κ0(Ω) min

{
κ3

(
1− δ2

2

)
, κ5

})
,

and consider the ball Wh with radius r ∈ (0, r0), r0 as in (2.26). Then, there exist positive constants
CS, C̃

S̃
and c̃(r) such that, if the data satisfy

c̃(r)
{
‖g ‖∞,Ω + ‖uD ‖1/2,Γ

}
+ C̃

S̃
‖ϕD ‖1/2,Γ ≤ r,

then the problem (3.1) has at least one solution (~th, (ϕh, λh)) ∈ Hh ×Hϕ
h ×H

λ
h with (uh, ϕh) ∈Wh.

Moreover, there hold ∥∥~th ∥∥ ≤ CS

{
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ

}
(3.4)

and
‖ (ϕh, λh) ‖ ≤ C̃

S̃

{
r‖uh ‖1,Ω + ‖ϕD ‖1/2,Γ

}
.

Proof. We only mention that (3.1) is transformed into a fixed-point problem that is analysed by means
of the Brouwer fixed-point theorem in the convex and compact set Wh (see [3, Theorem 4.8]).

3.2 Specific choice of finite element subspaces

Given a set S ⊂ R := Rn and an integer k ≥ 0, we define Pk(S) as the space of polynomial functions
on S of degree ≤ k, and for each T ∈ Th, we define the local Raviart-Thomas spaces of order k as

RTk(T ) := Pk(T ) + Pk(T )x,

where x is a generic vector in R. Hence, the strain rate, pseudostress, velocity, vorticity and temper-
ature variables can be approximated using the following finite element subspaces:

Ht
h :=

{
sh ∈ L2

tr(Ω) : sh

∣∣∣
T
∈ Pk(T ) ∀ T ∈ Th

}
, (3.5)

Hσ
h :=

{
τh ∈ H0(div; Ω) : ctτh

∣∣
T
∈ RTk(T ), ∀ c ∈ R, ∀ T ∈ Th

}
, (3.6)

Hu
h :=

{
vh ∈ C(Ω̄) : vh

∣∣
T
∈ Pk+1(T ), ∀ T ∈ Th

}
, (3.7)

Hγ
h :=

{
ηh ∈ L2

skew(Ω) : ηh
∣∣
T
∈ Pk(T ), ∀ T ∈ Th

}
, (3.8)

Hϕ
h :=

{
ψh ∈ C(Ω̄) : ψh

∣∣
T
∈ Pk+1(T ), ∀ T ∈ Th

}
, (3.9)

whereas for the normal component of the heat flux, we let {Γ̃1, Γ̃2, . . . , Γ̃m} be an independent trian-
gulation of Γ (made of straight segments in R2 or triangles in R3), and define h̃ := maxj∈{1,...,m} |Γ̃j |.
Then, with the same integer k ≥ 0 used in definitions (3.5)-(3.9), we approximate λ by piecewise
polynomials of degree ≤ k over this new mesh, that is

Hλ
h̃

:=
{
ξ
h̃
∈ L2(Γ) : ξ

h̃

∣∣
Γ̃j
∈ Pk(Γ̃j) ∀ j ∈ {1, . . . ,m}

}
. (3.10)
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It can be seen that Hϕ
h and Hλ

h̃
do satisfy the inf-sup conditions (3.2) and (3.3) as long as h ≤ C0h̃ for

some C0 > 0 (cf. [3, Section 4.3]), and from [6, 13], the approximation properties for these subspaces
are

(APt
h) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each t ∈
Hs(Ω) ∩ L2

tr(Ω), there holds
dist

(
t,Ht

h

)
≤ Chs‖ t ‖s,Ω,

(APσ
h ) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each σ ∈
Hs(Ω) ∩H0(div; Ω) with divσ ∈ Hs(Ω), there holds

dist (σ,Hσ
h ) ≤ Chs

{
‖σ ‖s,Ω + ‖divσ ‖s,Ω

}
,

(APu
h) there exists C > 0, independent of h, such that for each s ∈ (0, k+1], and for each u ∈ Hs+1(Ω),
there holds

dist (u,Hu
h) ≤ Chs‖u ‖s+1,Ω,

(APγ
h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each γ ∈
Hs(Ω) ∩ L2

skew(Ω), there holds

dist
(
γ,Hγ

h

)
≤ Chs‖γ ‖s,Ω,

(APϕ
h) there exists C > 0, independent of h, such that for each s ∈ (0, k+1], and for each ϕ ∈ Hs+1(Ω),
there holds

dist
(
ϕ,Hϕ

h

)
≤ Chs‖ϕ ‖s+1,Ω,

(APλ
h̃
) there exists C > 0, independent of h̃, such that for each s ∈ (0, k + 1], and for each λ ∈
H−1/2+s(Γ), there holds

dist
(
λ,Hλ

h̃

)
≤ Ch̃s‖λ ‖−1/2+s,Γ.

4 A priori error analysis

Let (~t, (ϕ, λ)) ∈ H ×H1(Ω) ×H−1/2(Γ) with (u, ϕ) ∈W be the solution of the continuous problem
(2.8), and (~th, (ϕh, λh)) ∈ Hh ×Hϕ

h ×H
λ
h with (uh, ϕh) ∈ Wh be a solution of the discrete problem

(3.1), that is,

(Aϕ + Bu)(~t,~s) = (Fϕ + FD)(~s) ∀ ~s ∈ H, (4.1a)

(Aϕh + Buh)(~th,~sh) = (Fϕh + FD)(~sh) ∀ ~sh ∈ Hh, (4.1b)

and

a(ϕ,ψ) + b(ψ, λ) = Fu,ϕ(ψ) ∀ ψ ∈ H1(Ω),

b(ϕ, ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ);

a(ϕh, ψh) + b(ψh, λh) = Fuh,ϕh(ψh) ∀ ψh ∈ Hϕ
h ,

b(ϕh, ξh) = G(ξh) ∀ ξh ∈ Hλ
h .

In what follows, we denote as usual

dist
(
~t,Hh

)
:= inf

~sh∈Hh

∥∥~t−~sh ∥∥
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and
dist

(
(ϕ, λ), Hϕ

h ×H
λ
h

)
:= inf

(ψh,ξh)∈Hϕ
h×H

λ
h

‖ (ϕ, λ)− (ψh, ξh) ‖.

First, the error estimate related to the variables of the momentum equation is obtained by means of
the Strang Lemma, applied to the pair (4.1). We recall the Lemma, and its consequent result next.

Lemma 4.1 (Strang). Let V be a Hilbert space, F ∈ V ′, and A : V × V → R be a bounded and
V -elliptic bilinear form. In addition, let {Vh}h>0 be a sequence of finite-dimensional subspaces of V ,
and for each h > 0, consider a bounded bilinear form Ah : Vh × Vh → R and a functional Fh ∈ V ′h.
Assume that the family {Ah}h>0 is uniformly elliptic in Vh, that is, there exists a constant α̃ > 0,
independent of h, such that

Ah(vh, vh) ≥ α̃‖ vh ‖2V ∀ vh ∈ Vh, ∀ h > 0.

In turn, let u ∈ V and uh ∈ Vh such that

A(u, v) = F (v) ∀ v ∈ V and Ah(uh, vh) = F (vh) ∀ vh ∈ Vh.

Then, for each h > 0, there holds

‖u− uh ‖V ≤ CST

 sup
wh∈Vh
wh 6=0

|F (wh)− Fh(wh)|
‖wh ‖V

+ inf
vh∈Vh
vh 6=0

‖u− vh ‖V + sup
wh∈Vh
wh 6=0

|A(vh, wh)−Ah(vh, wh)

‖wh ‖V


 ,

where CST := α̃−1 max{1, ‖A ‖}.

Proof. See [17, Theorem 11.1].

Lemma 4.2. Let CST := 2
α(Ω) max{1, ‖Aϕ + Bu ‖}, where α(Ω)

2 is the ellipticity constant of Aϕ+Bu

(cf. (2.25)). Then, there holds

∥∥~t−~th ∥∥ ≤ CST
{(

1 + 2‖Aϕ + Bu ‖
)

dist
(
~t,Hh

)
+ c1(Ω)(1 + κ2

1)1/2‖u ‖1,Ω‖u− uh ‖

+
{
LµCεC̃ε(1 + κ2

1)1/2‖ t ‖ε,Ω + (1 + κ2
2)1/2‖g ‖∞,Ω

}
‖ϕ− ϕh ‖1,Ω

}
. (4.2)

Proof. From Lemma 2.3, we see that Aϕ + Bu and Aϕh + Buh are bilinear, bounded (both with
constant ‖Aϕ + Bu ‖, w.l.o.g. since it is independent of (u, ϕ)) and uniformly elliptic (both with

constant α(Ω)
2 ). Also, Fϕ+FD and Fϕh +FD are linear bounded functionals in H and Hh, respectively.

Hence, a straightforward application of Lemma 4.1 to the pair (4.1) yields

∥∥~t−~th ∥∥ ≤ CST
 sup
~sh∈Hh
~sh 6=~0

|Fϕ(~sh)− Fϕh(~sh)|∥∥~sh ∥∥ + inf
~qh∈Hh
~qh 6=~0

∥∥~t− ~qh ∥∥

+ sup
~sh∈Hh
~sh 6=~0

|(Aϕ + Bu)(~qh,~sh)− (Aϕh + Buh)(~qh,~sh)|∥∥~sh ∥∥

 , (4.3)
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where CST := 2
α(Ω) max

{
1, ‖Aϕ + Bu ‖

}
. First, we notice that

|Fϕ(~sh)− Fϕh(~sh)| = |Fϕ−ϕh(~sh)| ≤ (1 + κ2
2)1/2‖g ‖∞,Ω‖ϕ− ϕh ‖1,Ω

∥∥~sh ∥∥ ∀ ~sh ∈ Hh. (4.4)

Then, in order to estimate the last supremum in (4.3), we add and subtract suitable terms to write

(Aϕ + Bu)(~qh,~sh)− (Aϕh + Buh)(~qh,~sh)

= (Aϕ + Bu)(~qh −~t,~sh) + (Aϕ −Aϕh)(~t,~sh)

+ (Bu −Buh)(~t,~sh)− (Aϕh + Buh)(~qh −~t,~sh) ,

and so, using the boundedness of the bilinear forms Aϕ + Bu and Aϕh + Buh (cf. (2.24)), the esti-

mate (2.5), the continuous embedding H1(Ω) ↪→ Ln/ε(Ω) with constant C̃ε and the further-regularity
assumption in a similar way to (2.36), we obtain

|(Aϕ + Bu)(~qh,~sh)− (Aϕh + Buh)(~qh,~sh)| ≤ 2‖Aϕ + Bu ‖
∥∥~qh −~t ∥∥∥∥~sh ∥∥

+

∣∣∣∣ ∫
Ω

[
µ(ϕ)− µ(ϕh)

]
t :
{

sh − κ1τ
d
h

}∣∣∣∣+

∣∣∣∣ ∫
Ω

[
u⊗ (u− uh)

]d
:
{
κ1τ

d
h − sh

}∣∣∣∣
≤
{

2‖Aϕ + Bu ‖
∥∥~t− ~qh ∥∥+ LµCεC̃ε(1 + κ2

1)1/2‖ t ‖ε,Ω‖ϕ− ϕh ‖1,Ω

+ c1(Ω)(1 + κ2
1)1/2‖u ‖1,Ω‖u− uh ‖1,Ω

}∥∥~sh ∥∥.
The previous inequality, together with (4.4), back into (4.3), results in (4.2), concluding this way the
proof.

Next, we recall from [3] the error estimate of the variables in the energy equation.

Lemma 4.3. There exists a positive constant ĈST , depending only on ‖a ‖, ‖b ‖, α̂ and β̂ (cf. (3.2),
(3.3)), such that

‖ (ϕ, λ)− (ϕh, λh) ‖

≤ ĈST
{
c2(Ω)

(
|ϕ |1,Ω‖u− uh ‖1,Ω + ‖uh ‖1,Ω|ϕ− ϕh |1,Ω

)
+ dist

(
(ϕ, λ), Hϕ

h ×H
λ
h

)}
.

Proof. See [3, Lemma 5.4].

Hence, adding the estimates obtained in the previous two lemmas, we have a preliminary estimate
for the total error:∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))

∥∥ ≤ CST (1 + 2‖Aϕ + Bu ‖) dist
(
~t,Hh

)
+ ĈST dist

(
(ϕ, λ), (Hϕ

h ×H
λ
h )
)

+
{
C1‖u ‖1,Ω + C2|ϕ |1,Ω

}
‖u− uh ‖1,Ω +

{
C3‖ t ‖ε,Ω + C4‖g ‖∞,Ω + C2‖uh ‖1,Ω

}
‖ϕ− ϕh ‖1,Ω,

(4.5)

where
C1 := CST c1(Ω)(1 + κ2

1)1/2, C2 := ĈST c2(Ω),

C3 := CSTLµCεC̃ε(1 + κ2
1)1/2, C4 = CST (1 + κ2

2)1/2.
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Then, bounding the terms ‖u ‖1,Ω, |ϕ |1,Ω and ‖uh ‖1,Ω using the continuous dependence results (2.39),
(2.40) and (3.4), and the further-regularity assumption (2.30) to bound ‖ t ‖ε,Ω, (4.5) becomes

∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))
∥∥ ≤ CST (1 + 2‖Aϕ + Bu ‖) dist

(
~t,Hh

)
+ ĈST dist

(
(ϕ, λ), (Hϕ

h ×H
λ
h )
)

+

{
(C1 + C2CS̃

r + C2)CS

(
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ

)
+ C3C̃S(r)

(
r‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ

)
+ C4‖g ‖∞,Ω + C2CS̃

‖ϕD ‖1/2,Γ
}∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))

∥∥. (4.6)

Therefore, using the continuous injection H1/2+ε(Γ) ↪→ H1/2(Γ) with constant Ĉi and denoting by

C5 := C2CS̃
, C6 := (C1 + C5r + C2)CS, C7 := C6r + C3C̃S(r)r + C4, C8 := C6Ĉi + C3C̃S(r),

and
C0 := max{C5, C7, C8},

we see from (4.6) that

∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))
∥∥ ≤ CST (1 + 2‖Aϕ + Bu ‖) dist

(
~t,Hh

)
+ ĈST dist

(
(ϕ, λ), (Hϕ

h ×H
λ
h )
)

+ C0

(
‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ + ‖ϕD ‖1/2,Γ

)∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))
∥∥, (4.7)

which leads us the main result of this section.

Theorem 4.4. Assume that

C0

(
‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ + ‖ϕD ‖1/2,Γ

)
<

1

2
. (4.8)

Then, there exists C > 0 depending only on parameters, data and other constants, all of them inde-
pendent of h, such that∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))

∥∥ ≤ C dist
(

(~t, (ϕ, λ)),Hh ×Hϕ
h ×H

λ
h

)
. (4.9)

Proof. The assumption (4.8) allows us to subtract the total error term in the right-hand side of (4.7),

thus verifying the Céa’s estimate with C = 2 max
{
CST (1 + 2‖Aϕ + Bu ‖), ĈST

}
.

Finally, we state the rates of convergence of the Galerkin scheme (3.1) when the finite element
subspaces (3.5)-(3.10) are used.

Lemma 4.5. In addition to the hypotheses of Theorems 2.9, 3.1 and 4.4, assume that there exists
s > 0 such that t ∈ Hs(Ω), σ ∈ Hs(Ω), divσ ∈ Hs(Ω), u ∈ Hs+1(Ω), γ ∈ Hs(Ω), ϕ ∈ Hs+1(Ω) and
λ ∈ H−1/2+s(Γ). Then, there exists Ĉ > 0, independent of h and h̃ such that for all h ≤ C0h̃ there
holds∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))

∥∥ ≤ Ĉh̃min{s,k+1}‖λ ‖−1/2+s,Γ

+ Ĉhmin{s,k+1}
{
‖ t ‖s,Ω + ‖σ ‖s,Ω + ‖divσ ‖s,Ω + ‖u ‖s+1,Ω + ‖γ ‖s,Ω + ‖ϕ ‖s+1,Ω

}
.

Proof. It follows from Céa’s estimate (4.9) and the approximation properties (APt
h), (APσ

h ), (APu
h),

(APγ
h), (APϕ

h), and (APλ
h̃
) described in Section 3.2.
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5 Numerical Results

We now present three numerical examples that will show the performance of the augmented mixed-
primal finite element method (3.1) with the subspaces specified in Section 3.2. The computational
implementation uses the finite element library FreeFem++ (cf. [15]), and the inversion of the linear
systems arising at each Picard step is performed employing the unsymmetric multi-frontal direct
solvers MUMPS (cf. [2]) and UMFPACK (cf. [10]).

Here, the iterative method mimics the fixed-point strategy presented in Section 2.2: it begins with
a given initial point (in all the subsequent examples, this point is (u, ϕ) = (0, 0)) and it stops whenever
the relative error between two consecutive iterations of the complete coefficient vector measured in
the discrete `2 norm is sufficiently small, i.e.,∥∥ coeff m+1 − coeff m

∥∥
`2∥∥ coeff m+1

∥∥
`2

< tol,

where tol is a specified tolerance (in this case, tol = 10−8). We also recall that the pressure is
post-processed as

ph := − 1

n
tr(σh + uh ⊗ uh),

and, as explained in [3, Section 5.2], the computed pressure converges to the exact one at the same
rate as the other variables (cf. Theorem 4.5). In this way, we define the error per variable

e(t) := ‖ t− th ‖0,Ω, e(σ) := ‖σ − σh ‖div;Ω, e(u) := ‖u− uh ‖1,Ω, e(p) := ‖ p− ph ‖0,Ω,
e(γ) := ‖γ − γh ‖0,Ω, e(ϕ) := ‖ϕ− ϕh ‖1,Ω, e(λ) :=

∥∥λ− λ
h̃

∥∥
0,Γ
,

as well as their corresponding rates of convergence

r(t) :=
log(e(t)/e′(t))

log(h/h′)
, r(σ) :=

log(e(σ)/e′(σ))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
,

r(p) :=
log(e(p)/e′(p))

log(h/h′)
, r(γ) :=

log(e(γ)/e′(γ))

log(h/h′)
,

r(ϕ) :=
log(e(ϕ)/e′(ϕ))

log(h/h′)
, r(λ) :=

log(e(λ)/e′(λ)),

log(h̃/h̃′)
,

where h and h′ (respectively h̃ and h̃′) denote two consecutive mesh sizes with errors e and e′.

5.1 Example 1

We first consider Ω := (−1, 1)2, viscosity, thermal conductivity and body force given by µ(ϕ) =
exp(−0.25ϕ), K = I, g = (0, 1)t, and boundary conditions such that the exact solution to (1.1) is
given by

u =

(
sin(πx) cos(πy)
− cos(πx) sin(πy)

)
, t = e(u), γ = ∇u− e(u), p = x2 − y2,

σ = µ(ϕ)e(u)− u⊗ u− pI, ϕ = −0.6944 y4 + 1.6944 y2, λ = −K∇ϕ · ν.

Notice that nonzero source terms appear in the right-hand sides of the momentum and energy equa-
tions. Nevertheless, well-posedness is still ensured, since the smoothness of the exact solution makes
these terms immediately belong to L2(Ω), thus requiring only a minor modification in the functionals
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Figure 5.1: Numerical results for Example 1. From left to right and from up to down: XX, XY and
YY pseudostress, XX strain rate, velocity magnitude (with the corresponding vector field overlapped),
postprocessed pressure, true vorticity magnitude (computed as twice the YX component of the full
vorticity tensor; velocity vector field overlapped), temperature and effective viscosity fields. Snapshots
obtained from a simulation with 243,540 DOF and a second order approximation.

of the variational formulation. Concerning the stabilization parameters, these are taken as pointed out
in Section 2.3, where the viscosity bounds are estimated in µ1 = 0.5, µ2 = 1.25 and κ0(Ω) is simply
taken as κ0(Ω) = 1, thus resulting in κ1 = κ2 = 0.32, κ3 = 0.25 and κ4 = 0.125. We also remark that
the trace condition on the stress is enforced through a penalization strategy, not only in the present
case but also in the upcoming examples.

In Figure 5.1 we show part of the obtained numerical solution with 171,402 DOF and a second
order approximation, whereas in Table 5.1 we show the convergence history given the specified data
and the finite element spaces from Section 3.2 with successive quasi-uniform mesh refinements. In
both cases, it can be seen that the rates of convergence are the expected ones according to Theorem
4.5, that is, O(h) for the first case, and O(h2) for the second one.
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Finite Element: P0 - RT0 - P1 - P0 - P1 - P0

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)
1,283 0.4129 1.3213 3.5473 2.0880 0.5528 3.1251 0.3535 0.1602
4,845 0.1901 0.6133 1.7652 0.9576 0.2597 1.6453 0.1733 0.0724
18,629 0.0968 0.2987 0.8684 0.4758 0.1219 0.9224 0.0827 0.0286
73,422 0.0527 0.1488 0.4413 0.2390 0.0637 0.4286 0.0426 0.0112
294,878 0.0307 0.0740 0.2181 0.1187 0.0301 0.2301 0.0211 0.0035

1,165,980 0.0150 0.0365 0.1088 0.0584 0.0146 0.1155 0.0105 0.0014

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)
10 0.5000 - - - - - - -
10 0.2500 0.9892 0.8996 1.0048 0.9735 0.8270 0.9187 1.1466
10 0.1250 1.0652 1.0506 1.0358 1.1207 0.8570 1.0962 1.3385
10 0.0625 1.1475 1.1150 1.1340 1.0677 1.2625 1.0938 1.3471
10 0.0312 1.2886 1.3002 1.2919 1.3846 1.1474 1.2979 1.6812
10 0.0156 0.9902 0.9742 0.9930 1.0104 0.9657 0.9690 1.2759

Finite Element: P1 - RT1 - P2 - P1 - P2 - P1

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)
4,122 0.4129 0.1732 0.5091 0.2737 0.1058 0.2728 0.0409 0.0076
15,846 0.1940 0.0409 0.1199 0.0642 0.0287 0.0773 0.0097 0.0031
61,494 0.0995 0.0102 0.0305 0.0159 0.0071 0.0236 0.0023 0.0009
243,540 0.0527 0.0026 0.0077 0.0041 0.0018 0.0054 0.0006 0.0002

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)
10 0.5000 - - - - - - -
10 0.2500 1.9095 1.9145 1.9203 1.7272 1.6691 1.9046 1.3089
10 0.1250 2.0857 2.0509 2.0902 2.0988 1.7794 2.1711 1.7274
10 0.0625 2.1427 2.1662 2.1350 2.1851 2.3063 2.0953 1.8947

Table 5.1: Convergence history for Example 1, with a quasi-uniform mesh refinement and approxima-
tions of first and second order.

5.2 Example 2

We next consider Ω := (0, 1)2; viscosity, thermal conductivity and body force as in Example 1, and
boundary conditions and source terms such that the exact solution is the one considered in [11] for
viscoelastic flow, that is,

u1(x, y) =

[
1− cos

(
2π(er1x − 1)

er1 − 1

)]
sin

(
2π(er2y − 1)

er2 − 1

)
r2

2π

er2y

er2 − 1
,

u2(x, y) = −
[
1− cos

(
2π(er2y − 1)

er2 − 1

)]
sin

(
2π(er1x − 1)

er1 − 1

)
r1

2π

er1x

er1 − 1
,

p(x, y) = r1r2 sin

(
2π(er1x − 1)

er1 − 1

)
sin

(
2π(er2y − 1)

er2 − 1

)
er1x+r2y

(er1 − 1)(er2 − 1)
,

where r1 and r2 are positive parameters, and

u =

(
u1(x, y)
u2(x, y)

)
, t = e(u), γ = ∇u− e(u), σ = µ(ϕ)e(u)− u⊗ u− pI

ϕ = u1(x, y) + u2(x, y), λ = −K∇ϕ · ν.

It is expected to find a counter-clockwise rotating vortex with center (x̂, ŷ), where

x̂ =
1

r1
log

(
er1 + 1

2

)
, ŷ =

1

r2
log

(
er2 + 1

2

)
.
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Figure 5.2: Numerical results for Example 2. From left to right and from up to down: XX, XY and
YY pseudostress, XX and XY strain rate, velocity magnitude (with the corresponding vector field
overlapped), postprocessed pressure, true vorticity magnitude (computed as twice the YX component
of the full vorticity tensor; velocity vector field overlapped) and temperature fields. Snapshots obtained
from a simulation with 1,165,005 DOF and a first order approximation.

In particular, taking r1 = r2 = 4.5, the center of the vortex is expected to appear at the top-right
corner of the cavity (that is, (x̂, ŷ) = (0.829, 0.829)) in a similar way to the examples shown in [9].
Then, considering the stabilization parameters as in Section 2.3, estimating the viscosity bounds in
µ1 = 0.74, µ2 = 1.35 and taking κ0(Ω) = 1, we obtain the following values: κ1 = κ2 = 0.406, κ3 = 0.37
and κ4 = 0.185.

Part of the solution is shown in Figure 5.2, where a first order of approximation has been used with
1,165,005 DOF, whereas in Table 5.2 we show the corresponding convergence history. As expected,
when using the finite-element subspaces of Section 3.2 with k = 0 and k = 1, the rates of convergence
are near 1 and 2, respectively. Notice that a high degree of refinement was needed to obtain a good
solution; a drawback that can be easily overcome by implementing an adaptive algorithm, instead of
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Finite Element: P0 - RT0 - P1 - P0 - P1 - P0

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)
1,268 0.1901 2.5548 49.1289 9.5647 1.1838 3.7866 3.8763 85.8576
4,740 0.0950 1.3353 28.3875 2.9504 0.7207 2.3406 2.2414 56.0199
18,494 0.0490 0.6594 12.3390 1.1265 0.3370 1.2941 1.0635 24.0197
73,167 0.0244 0.3416 6.4760 0.5563 0.1809 0.6812 0.5513 11.9313
294,323 0.0140 0.1650 3.1796 0.2638 0.0866 0.3404 0.2687 5.9119

1,165,005 0.0078 0.0793 1.6011 0.1278 0.0395 0.1796 0.1304 2.9356

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)
7 0.2500 - - - - - - -
6 0.1250 0.9360 0.7913 1.6968 0.7159 0.6940 0.7903 0.6160
6 0.0625 1.0657 1.2584 1.4542 1.1481 0.8950 1.1260 1.2217
6 0.0312 0.9445 0.9258 1.0134 0.8938 0.9215 0.9435 1.0095
6 0.0156 1.3016 1.2721 1.3342 1.3179 1.2406 1.2857 1.0131
6 0.0078 1.2501 1.1701 1.2362 1.3399 1.0903 1.2334 1.0100

Finite Element: P1 - RT1 - P2 - P1 - P2 - P1

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)
4,072 0.1901 0.9820 16.9574 1.9820 0.7614 1.2657 2.2098 47.0700
15,496 0.1025 0.2914 6.5567 0.4721 0.2827 0.3505 0.5027 9.0859
61,044 0.0490 0.0638 1.5747 0.0939 0.0517 0.0922 0.1020 4.1253
242,690 0.0256 0.0174 0.4668 0.0252 0.0137 0.0266 0.0266 1.2049

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)
6 0.2500 - - - - - - -
6 0.1250 1.9686 1.5396 2.3244 1.6055 2.0805 2.3991 2.3731
6 0.0625 2.0583 1.9327 2.1882 2.3013 1.8088 2.1610 1.1391
6 0.0312 2.0002 1.8724 2.0245 2.0429 1.9167 2.0705 1.7756

Table 5.2: Convergence history for Example 2, with a quasi-uniform mesh refinement and approxima-
tions of first and second order.

the quasi-uniform mesh refinement that was considered.

5.3 Example 3

The implementation of the numerical scheme and the accuracy for the three-dimensional case are
assessed with this last computational test. The domain is the unit cube Ω = (0, 1)3 and we consider
the following closed-form solutions to the governing equations (1.1)

u =

 sin(πx) cos(πy) cos(πz)
−2 cos(πx) sin(πy) cos(πz)

cos(πx) cos(πy) sin(πz)

 , t = e(u), γ = ∇u− e(u), p = sin(πx) sin(πy) sin(πz),

σ = µ(ϕ)e(u)− u⊗ u− pI, ϕ = 1− sin(πx) cos(πy) sin(πz), λ = −K∇ϕ · ν,

with K = I, µ(ϕ) = exp(−0.25ϕ), and g = (0, 0, 1)t. The manufactured velocity is divergence
free, it satisfies the compatibility condition (1.2) and it is used as Dirichlet datum on Γ. The exact
temperature is uniformly bounded and it is also exploited as Dirichlet datum. In this configuration
the viscosity bounds can be set as µ1 = 0.5, µ2 = 1 and the augmentation constants are again chosen
according to Section (2.3), leading to the values κ1 = κ2 = 0.5, κ3 = 0.25, κ5 = 0.125, and as κ4

depends on the (unknown) Korn constant, we simply take κ4 = κ5. The error history, associated with
the schemes of order one and two, are performed using six steps of uniform mesh refinement applied
to an initial structured tetrahedral mesh. On each level we compute approximate solutions, as well as
errors and convergence rates defined as above. The boundary partition is considered conforming with

23



the interior mesh, for sake of convenience and simplicity of the 3D mesh generation. Our findings are
collected in Table 5.3, where errors and Picard iteration count are tabulated by number of degrees of
freedom and meshsize. As in the 2D case, optimal error decay is observed for all individual errors,
and we also note that the stress and velocity errors e(σ), e(u) are dominant. One can also see that
(perhaps assisted by the conformity between the interior and boundary meshes, and only noticed for
the lowest-order method) the error associated with the boundary heat flux exhibits a convergence
slightly better than the optimal predicted by Lemma 4.5. Finally, we portray in Figure 5.3 a sample
of the approximate solutions generated by the lowest-order mixed method on a relatively coarse mesh.

Finite Element: P0 - RT0 - P1 - P0 - P1 - P0

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)
900 0.7071 1.9873 5.6367 4.2163 0.6140 1.3454 1.9131 0.0137

2,848 0.4714 1.1368 4.0751 2.9781 0.3299 1.0208 1.3774 0.0065
12,564 0.2828 0.7463 2.5402 1.8903 0.2071 0.7146 0.7827 0.0027
71,068 0.1571 0.3888 1.4463 1.1242 0.1267 0.4591 0.4332 0.0011
451,690 0.0882 0.1925 0.7612 0.6791 0.0698 0.2300 0.2179 0.0006

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)
7 0.7071 - - - - - - -
7 0.4714 0.8933 0.9000 0.9574 1.0935 0.8809 0.8378 1.4345
8 0.2828 0.8937 0.9525 0.9898 0.9877 0.8982 1.1064 1.6061
8 0.1571 0.9199 0.9852 0.9840 0.9828 0.9525 1.0064 1.5084
8 0.0882 0.9382 0.9874 1.0522 0.9703 0.9554 0.9849 1.4690

Finite Element: P1 - RT1 - P2 - P1 - P2 - P1

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)
3,693 0.7071 0.7084 2.5493 2.8720 0.2803 0.7668 1.0241 0.0069
11,741 0.4714 0.2268 0.8202 0.9132 0.0846 0.1949 0.3093 0.0023
51,825 0.2828 0.0603 0.2192 0.2609 0.0217 0.0625 0.0794 0.0006
286,905 0.1571 0.0169 0.0516 0.0689 0.0575 0.0164 0.0197 0.0002

1,879,712 0.0882 0.0052 0.0135 0.0186 0.0167 0.0043 0.0051 0.0001

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)
6 0.7071 - - - - - - -
7 0.4714 1.8533 1.8196 1.8459 1.8286 1.7980 1.8655 2.4821
7 0.2828 1.9406 1.8871 1.8970 1.9550 1.9123 1.8493 2.6157
8 0.1571 1.9807 1.9501 1.8931 1.9715 1.9837 1.9916 2.4768
8 0.0882 1.9463 1.9192 1.9054 1.9469 1.9508 1.9377 2.0842

Table 5.3: Convergence history for Example 3, with a quasi-uniform mesh refinement and approxima-
tions of first and second order.
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