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Abstract. A spatio-temporal eco-epidemiological model is formulated by com-
bining an available non-spatial model for predator-prey dynamics with infected
prey [D. Greenhalgh and M. Haque, Math. Meth. Appl. Sci., 30 (2007), 911–
929] with a spatio-temporal susceptible-infective (SI)-type epidemic model of
pattern formation due to di↵usion [G.-Q. Sun, Nonlinear Dynamics, 69 (2012),
1097–1104]. It is assumed that predators exclusively eat infected prey, in agree-
ment with the hypothesis that the infection weakens the prey and increases
its susceptibility to predation. Furthermore, the movement of predators is de-
scribed by a non-local convolution of the density of infected prey as proposed in
[R.M. Colombo and E. Rossi, Commun. Math. Sci., 13 (2015), 369–400]. The
resulting convection-di↵usion-reaction system of three partial di↵erential equa-
tions for the densities of susceptible and infected prey and predators is solved by
an e�cient method that combines weighted essentially non-oscillatory (WENO)
reconstructions and an implicit-explicit Runge-Kutta (IMEX-RK) method for
time stepping. Numerical examples illustrate the formation of spatial patterns
involving all three species. Future directions of research are suggested.
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1. Introduction.

1.1. Scope. Mathematical models are powerful tools to characterize the spatial-
temporal changes in complex dynamical systems. More specifically, mathematical
models are frequently used to gain novel insight into the dynamics and control of
natural and social phenomena [38]. For example, systems of mathematical models
are often simple and crude approximations that aim to capture key mechanisms
underlying the dynamics of infectious disease transmission in human, animal, and
plant populations. Such first approximation models can be subsequently refined to
study the e↵ects of additional factors and processes including spatial heterogeneity
in host density and their characteristics (e.g., fitness, susceptibility, infectivity) as
well as specific host behaviors (e.g, movement patterns) in response to local host
density or disease prevalence.

It is the purpose of this contribution to advance a spatio-temporal predator-
prey model taking into account infected prey with a particular focus on its e�cient
numerical solution. The resulting eco-epidemiological model combines several sub-
models that have been proposed in the recent literature. The population of prey
is described by a spatio-temporal SIR-type epidemiological model similar to the
one studied by Sun [39] while the predator-prey interaction follows the treatment
by Greenhalgh and Haque [20] (formulated in a non-spatial setting in that paper).
The movement of predators is based on the nonlocal velocity model advanced for
the predator movement in a spatio-temporal predator-prey model by Colombo and
Rossi [13]. That velocity model was also used for the male compartments in a
recently published model of hantavirus infection [12]. In particular the implicit-
explicit numerical technique for e�ciently solving the governing partial di↵erential
equations (PDEs) is adapted to the new model presented herein.

In most general terms, the governing model considers a prey population with
a susceptible and infective compartment, denoted by S and I, and a variable Y

denoting the population of the predator. In the spatio-temporal context, these
variables are understood as local densities that are functions of position x 2 ⌦ and
time t 2 T := [0, T ] on a bounded domain ⌦ ⇢ R2. The final model for

u := (u1, u2, u3)
T := (S, I, Y )T, u = u(x, t)

is given by a convection-di↵usion reaction system of the type

@u

@t

+r · F c(u) = D�u+ s(u), (1.1)

supplied with initial and boundary conditions, where the convective fluxes F

c(u),
the di↵usion matrix D, and the vector of reaction terms s(u) are specified in later
parts of the paper.

It is proposed to describe the movement of the predators in a particular way
that depends non-locally on the density I of infected prey, while the movement of
infected and susceptible prey, that is of members of the compartments I and S,
is standard di↵usion. This property calls for numerical methods that allow the
e�cient computation of numerical fluxes based on the non-local evaluation of data
but avoid the severe time step restriction incurred by explicit time discretizations
of the di↵usion term D�u. As in [12] the first goal can be achieved by a technique
based on Fast Fourier Transforms (FFT) in combination with an implicit-explicit
(IMEX) discretization to handle the second. The numerical method constructed in
this way is applied to simulate several scenarios that allow comparing the e↵ect of
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initial conditions and di↵erent parameter values. The numerical results exhibit a
rich variety of behavior, including formation of patterns taking the shapes of spots,
stripes, both from randomized perturbations of steady states and in a scenario that
describes the invasion of a prey habitat by the predator. The structure of solutions
obtained in the latter case are reminiscent of permanent wave fronts.

1.2. Related work. The spatial spread of infectious diseases is described mathe-
matically in a number of monographs that include [15,30,31,35,42]. The temporal
evolution of diseases is also treated in [10,18]. Our assumption that all epidemiolog-
ical compartments are distributed over the whole spatial domain is opposed to the
alternative metapopulation approach that describes spatial structure through well-
identified sub-populations or “patches” (cf., e.g., [1–3,11,40,41]). The description of
spatial structure by explicitly specifying the mobilities between “patches” is typical
for characterizing the behavior of humans who undertake directed travels, while a
description through a convection-di↵usion-reaction mechanism is more suitable for
non-human infectious agents such as spores, insects, and bacteria that would dis-
perse [15,31,32]. A decisive advantage of the spatially continuous approach, namely
its amenability to mathematical analysis is emphasized in [43].

The introduction of [20] and Hadeler and Freedman [21] provide extensive refer-
ences to real-world examples of three-species eco-epidemiological systems of sound
prey, infected prey, and predators. Specifically, in [21] a predator-prey model is
described in which the prey is infected by a parasite and the prey in turn infects
the predator with that parasite. The models studied in [20] and herein are based
on the general assumption that the infection weakens the prey and increases its
susceptibility to predation.

A less common ingredient in mathematical epidemiology is the convective term
r · F c(u). Related advection terms, for which the essential functional dependence
for one compartment is F

c = F

c(x, u) = b(x)u with a given velocity b(x), arise
if the population under study is transported (as is the case with wind-borne infec-
tious agents, plankton, etc.). In our model the main role of the convective term
is similar to that of [31, Ch. 14] in that it imposes a preferred direction of move-
ment of predators, where the global dependence of the direction is determined by
convolution with population data within a certain horizon of the current position.
This idea of non-local dependence of biological fluxes goes back to a non-local
predator-prey model introduced and analyzed by Colombo and Rossi [13], and for
which a numerical scheme was analyzed in [34]. The scheme of [34] is based on
the Lax-Friedrichs scheme for the ease of demonstrating convergence properties; we
here employ higher-order weighted essentially non-oscillatory (WENO) reconstruc-
tions [22, 29] to achieve high-order spatial accuracy.

Furthermore, IMEX Runge-Kutta (IMEX-RK) schemes play an important role
for the e�cient numerical solution of (1.1). Roughly speaking, an IMEX-RK
method for the convection-di↵usion-reaction equation (1.1) consists of a Runge-
Kutta scheme with an implicit discretization of the di↵usive term D�u combined
with an explicit one for the convective and reactive terms, F c(u) and s(u), respec-
tively. To introduce the main idea, we assume that

dv

dt
= �⇤(v) + �(v) (1.2)

represents a method-of-lines semi-discretization of (1.1), where �⇤(v) and �(v) are
spatial discretizations of the convective and reactive terms and of the di↵usive term,
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respectively. Assume that the spatial mesh width is h > 0 in both the x- and y-
direction. Then the stability restriction on the time step �t that explicit schemes
impose when applied to (1.2) is very severe (�t must be proportional to h

2), due to
the presence of �(v). The implicit treatment of both �⇤(v) and �(v) would remove
any stability restriction on �t. However, the upwind nonlinear discretization of the
convective terms in �⇤(v) that is needed for stability makes its implicit treatment
extremely involved. This situation becomes even more complicated due to the
use of WENO reconstructions [22, 29, 36, 44]. However, numerical integrators that
deal implicitly with �(v) and explicitly with �⇤(v) can be used with a time step
restriction dictated by the convective-reactive term alone. These schemes have been
profusely used in convection-di↵usion problems and convection problems with sti↵
reaction terms [4, 6–9,14,16,24,33,45].

1.3. Outline of the paper. The remainder of the paper is organized as follows.
In Section 2 the governing mathematical model is introduced. To this end, we first
formulate (in Section 2.1) a non-spatial predator-prey model, defined by three non-
linear ordinary di↵erential equations (ODEs), in which an epidemic spreads in the
prey. This model gives rise to five equilibrium points whose respective stability is
discussed in Section 2.2. (These stability results will motivate the choice of param-
eters of the simulated spatio-temporal scenarios.) Then, in Section 2.3, we obtain
the full spatio-temporal model by equipping the ODE model with di↵usive terms
for the prey species and a non-local convection term for predators. These ingredi-
ents are specified in detail in Section 4.3. Section 4 is devoted to the description
of the numerical scheme proposed to solve the spatio-temporal model developed in
Section 2.3. Specifically, the (standard) spatial discretization of local convection
and di↵usion terms is introduced in Section 3.1. The spatial discretization of the
convolution defining the non-local predator velocities is described in Section 3.2.
These velocities, in turn, are utilized in the definition of the final discretization of
the convective flux by means of a fifth-order WENO discretization, as is detailed in
Section 3.3. The time discretization of the complete model by an IMEX-RK scheme
is outlined in Section 3.4. In Section 4, which is at the core of this paper, numerical
solutions to the spatio-temporal model are presented. To motivate the choice of pa-
rameters, we focus on two equilibrium points of the three-equation ODE model of
Section 2.1, as is briefly discussed in Section 4.1. In Section 4.2 we present a total
number of 10 examples of numerical solutions of the spatio-temporal model that
give rise to patterns. In Section 4.3 we present Example 11 that has been designed
to demonstrate in a purely visual way the convergence of the numerical scheme to
a definite solution upon refinement of the computational grid, while Example 12
illustrates the influence of the choice of the radius of the convolution kernel of the
non-local prey velocity. Finally, some conclusions and possible directions of future
work are collected in Section 5.

2. Mathematical model.

2.1. Dynamical system for a predator-prey model. Combining the SIR epi-
demic model of [39] with a second species corresponding to a predator (as in the
model of [20]), and assuming that the predator only eats infected prey, we obtain
the following model:

dS

dt
= A� dS � �SI

2
, (2.1a)
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dI

dt
= �SI

2 � (d+ µ)I � cY I

mY + I

, (2.1b)

dY

dt
= �Y

✓
1� hY

I

◆
, (2.1c)

where t is time, S(t) is the population of susceptible prey, I(t) is the population of
infected prey, A is the recruitment rate of the prey population, d is the natural death
rate of the prey population, � is the force of infection or the rate of transmission,
µ is the disease-related death from the infected, Y (t) is the population of predators,
c is the search rate of the predators towards infected prey, � is the per capita growth
rate of the predators, h is a constant related to the density dependent mortality of
the predator population, and m > 0 is a constant.

The incidence rate in (2.1a) and (2.1b) is chosen here as the nonlinear expression
�SI

2 in agreement with Sun [39], who in turn appeals to the justification by Liu
et al. [27, 28]. The last term in the right-hand side of (2.1b) is a ratio-dependent
predation term; see, e.g., [25] for further justification of such expressions. Further-
more, note that (2.1c) coincides with the predator equation [20, Eq. (1)], and that
hY/I in that equation is the Leslie-Gower term [26] which measures the loss in the
predator population due to the relative scarcity of the (infected) prey [19].

It is well known that the use of a ratio-dependent terms requires carefully han-
dling situations of zero denominators. The right-hand sides of the ODE version
(2.1) are potentially ill-defined if I(0) = 0. This issue is treated in [20] as follows:
if I(0) = 0 and Y (0) � 0, then (2.1c) is interpreted as implying that Y (t) = 0 for
t > 0 and if I(0) = Y (0) = 0, then (2.1b) is interpreted as implying that I(t) = 0 for
all t. With respect to the PDE version (2.5), we have not encountered any di�culty
of division by zero in our numerical experiments since in all cases we choose the
initial datum I(x, 0) > 0 for x 2 ⌦.

Theorem 2.1. The system (2.1) has the following equilibrium points:

i) The equilibrium E1 = (A/d, 0, 0) corresponding to the extinction of the epi-

demic.

ii) The following equilibria in absence of the predator:

E2 =

 
A� +

p
R

2d�
,

2d(d+ µ)

A� +
p
R

, 0

!
, E3 =

 
A� �pR

2d�
,

2d(d+ µ)

A� �pR, 0

!
,

where we define R := A

2
�

2 � 4d3� � 8d2�µ � 4d�µ2
. These equilibria are

feasible if R > 0, which occurs if � > 4d(d+ µ)2/A2
.

iii) The following equilibria with presence of the predator:

E4 =

✓
A

d+ �I

2
4

, I4,
I4

h

◆
, E5 =

✓
A

d+ �I

2
5

, I5,
I5

h

◆
, (2.2)

where I4 < I5 are the solutions of the quadratic equation

↵�I

2 � �AI + d↵ = 0, where ↵ = d+ µ+
c

m+ h

.

They are feasible if � > 4d↵2
/A

2
; then

I4 =
A

2↵
�
✓

A

2

4↵2
� d

�

◆1/2

, I5 =
A

2↵
+

✓
A

2

4↵2
� d

�

◆1/2

.
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Figure 1. Hopf bifurcation diagram of the stability of equilib-
ria E4 and E5 (2.2) of the dynamical system (2.1) in the (�, c)-
plane, based on the Routh-Hurwitz conditions (2.3) and with (2.4).
In region I, the conditions (2.3) for e = e

i

(�, c), i = 1, 2, 3, are not
satisfied, and in region II they are satisfied.

2.2. Behavior of the dynamical system. The point E1 corresponds to the ex-
tinction of the epidemic. On the other hand, it is obtained in [39] that E2 is unstable
and E3 is stable. To handle the dynamics of the system around E4 and E5, we first
recall that at E5, the stability matrix is given by

J

⇤(E5) =

2

6664

��I25 � d � 2c

m+ h

� 2d� 2µ 0

�I

2
5

2c

m+ h

+ d+ µ� cm

(m+ h)2
� ch

2

(m+ h)2

0 �/h ��

3

7775
,

and that J

⇤(E4) is given by the same expression with I4 in place of I5. The
characteristic equation associated with possible equilibria E4 and E5 is

det(J⇤ � �I) = 0, �

3 + e1�
2 + e2�+ e3 = 0,

where e1 = � tr(J⇤), e2 =
P3

i=1 Mi

, where M

i

is the determinant of the matrix
obtained by eliminating row i and column i from J

⇤, and e3 = � detJ⇤. Here, the
Routh-Hurwitz conditions (cf., e.g., [17, Sect. 6.4]) mean that there are only roots
with strictly negative real parts, and hence the corresponding state is stable, when

e1 > 0, e3 > 0, and e1e2 > e3. (2.3)

This criterion is applied to J

⇤(E5). In order to determine a set of parameters, where
scenarios will be studied to determine the e↵ect of considering di↵erent values of
the infectious force of the epidemic expressed by the parameter � and of the search
rate c of the predators towards infected prey, we fix the parameters

A = 1, µ = 1.8, d = 1, m = 30, h = 0.1, � = 0.4, (2.4)
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where the values of A, µ, and d are those proposed in [39] while the choices of m,
h, and � are assumed but are comparable with those utilized in [20]. To determine
suitable choices of � and c, we assume that e1 = e1(�, c), e2 = e2(�, c) and e3 =
e3(�, c) and analyze satisfaction of the Routh-Hurwitz condition (2.3). This gives
rise to two distinct regions in the (�, c)-plane, see Figure 1. A Hopf bifurcation
occurs across the curve that separates these regions.

2.3. Spatio-temporal predator-prey model. The ODE model (2.1) exhibits a
rich solution behaviour, which motivates us to analyze a spatial variant that in turn
generalizes the spatio-temporal hyperbolic-parabolic predator-prey model studied
by Colombo and Rossi [13]. Following [12, 13], we then replace (2.1c) by a non-
local spatio-temporal PDE that contains a term describing the spatial movement of
predators towards infected prey, and equip (2.1a) and (2.1b) with di↵usion terms.
The resulting spatio-temporal model is given by

@S

@t

�D

S

�S = A� dS � �SI

2
, (2.5a)

@I

@t

�D

I

�I = �SI

2 � (d+ µ)I � cY I

mY + I

, (2.5b)

@Y

@t

+r · F
Y

�
S, I, Y

�
= �Y

✓
1� hY

I

◆
, (2.5c)

where r· denotes the (spatial) divergence operator. Here x and y are the space
variables, � = @

2
/@x

2 + @

2
/@y

2 is the two-dimensional Laplace operator, and D

S

and D

I

are the di↵usion coe�cients, i.e. we assume standard linear di↵usion for the
prey compartments S and I.

The right-hand sides of (2.5) are identical to that of the non-spatial ODE model
(2.1), i.e., this model is recovered if all divergence terms on the left-hand sides are
set to zero and variables are considered to depend on t only, and the unknowns
represent suitably scaled densities.

2.4. Convective fluxes and di↵usion matrix. The flux F

Y

appearing in the
left-hand side of (2.5c) is assumed to have the form F

Y

(I, Y ) = 

Y

Y V (I), where


Y

� 0 is constant and

V (w) =
r(w ⇤ ⌘)p

1 + kr(w ⇤ ⌘)k2 (2.6)

is the non-local unscaled velocity function [13]. Here ⌘ denotes a radial convolution
kernel with radius ", i.e., ⌘ is a piecewise smooth function such that

⌘(x) = ⌘(kxk2), ⌘(x) � 0, ⌘(x) = 0 for kxk > ", and

Z

R2

⌘(x) dx = 1, (2.7)

i.e., for any function w defined on ⌦⇥ T and x 2 ⌦ such that B
"

(x) := {y 2 R2 :
ky � xk < "} ⇢ ⌦, we have

(w(·, t) ⇤ ⌘)(x) =
Z

B"(x)
w(y, t)⌘(x� y) dy =

Z

R2

w(y, t)⌘(x� y) dy

(with slight modifications for points x with dist(x, @⌦) < ".) Since r(w ⇤ ⌘) =
w⇤r⌘, the velocity V (w) indeed depends (non-locally) on w and not on its gradient.

Summarizing, we obtain F

c(u) =
�
0, 0, F

Y

(I, Y ))T and D = diag(D
S

, D

I

, 0).
The vector s(u) = (s1(u), s2(u), s3(u))T is given by the right-hand sides of (2.5).
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The system (2.5) is considered on ⌦⇥ T along with the initial condition

u(x, 0) = u0(x), x 2 ⌦, (2.8)

where u0 is a given function, and zero-flux boundary conditions
�
F

c(u)�Dru� · n = 0, x 2 @⌦, t 2 (0, T ], (2.9)

where n is the unit exterior normal vector to the boundary @⌦ of ⌦.

3. Numerical method.

3.1. Spatial discretization of local convection and di↵usion terms. We take
⌦ = [0, L] ⇥ [0, L] and use a Cartesian grid with nodes (x

i

, y

j

), i, j = 1, . . . ,M ,
with x

i

= y

i

= (i � 1/2)h, h = L/M . We discretize r · F c(u) by WENO finite
di↵erences and �u by the standard second-order scheme with a five-point stencil to
get a spatial semi-discretization of (1.1) for a 3⇥M ⇥M -matrix v(t) of unknown
approximations v

`,i,j

(t) ⇡ u

`

(x
i

, y

j

, t) for i, j = 1, . . . ,M and ` = 1, . . . , 3. This
spatial semi-discretization is given by

v

0 = �r
h

· F̃ c
(v) +Bv + S(v). (3.1)

Applying a suitable IMEX-RK scheme to (3.1) yields the final fully-discrete scheme
(see Section 3.4). Here r

h

· F̃ c
(v) is the discretization of r · F c(u), to be defined

in Section 3.3, and

(Bv)
`,i,j

= µ

`

(�
h

v

`

)
i,j

, i, j = 1, . . . ,M, ` = 1, . . . , 3 (3.2)

denotes the discretization of the di↵usion terms. Here v

`

denotes the M ⇥ M

submatrix given by (v
`

)
i,j

= v

`,i,j

and�
h

is the approximation of the standard two-
dimensional Laplacian operator with Neumann boundary conditions. Furthermore,
S(v) is the 3⇥M ⇥M -matrix with components

S(v)
`,i,j

= s

`

(v
`,i,j

), i, j = 1, . . . ,M, ` = 1, . . . , 3,

with corresponding submatrices S
`

(v), given by S

`

(v)
i,j

= s

`

(v
`,i,j

).

3.2. Discretization of the convolutions. The following identity arises from (2.6)
if we take into account that r(w ⇤ ⌘) = w ⇤ r⌘:

V (w) =
w ⇤ ⌫p

1 + kw ⇤ ⌫k2 , ⌫ =

✓
@⌘

@x

,

@⌘

@y

◆
. (3.3)

The corresponding convolutions w ⇤ @⌘/@x and w ⇤ @⌘/@y are calculated approxi-
mately on the discrete grid via a composite Newton-Cotes quadrature formula, such
as the composite Simpson rule.

Since B
"

(0) ✓ [�rh, rh]2, r = d"/he < M , and according to boundary conditions,
w is extended to the exterior of ⌦ by reflection, e.g. by setting w(�x, y) = w(x, y),
(x, y) 2 ⌦, we obtain

(w ⇤ �)(x
i

, y

j

) ⇡
rX

p=�r

rX

q=�r

�

p,q

w(x
i�p

, y

j�q

), �

p,q

= h

2
↵

p

↵

q

�(x
p

, y

q

), (3.4)

where ↵

p

and ↵

q

are the coe�cients in the quadrature rule (e.g., for the composite
Simpson rule, ↵ = (1, 4, 2, 4, . . . , 2, 4, 1)). Consequently, the approximation (3.4)
for W = (w

i,j

) 2 RM⇥M , w
i,j

⇡ w(x
i

, y

j

), is given by

(w ⇤ �)(x
i

, y

j

) ⇡ (W ⇤
h

�)
i,j

:=
rX

p=�r

rX

q=�r

�

p,q

w[i�p]M ,[j�q]M , (3.5)
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where we define

[i]
M

:=

8
><

>:

�i+ 1 for �r + 1  i  0,

i for 1  i M ,

2M + 1� i for M + 1  i M + r.

The discrete approximation of V (w) in (3.3) is then given by

V

h

(W ) =
W ⇤

h

⌫p
1 + kW ⇤

h

⌫k2 .

Since r ⇡ "/h = "M/L, the computational cost of this discrete convolution is
M

2(2r + 1)2 ⇡ 4"2M4
/L

2, which can be very high for large M . This cost can be
substantially reduced to O(M2 logM) by performing a convolution with periodic
data by Fast Fourier Transforms (FFTs) (see [23, 37]). To achieve this goal, we
define from W = (w

i,j

) 2 RM⇥M a matrix W̃ = (w̃
i,j

) 2 R2M⇥2M such that

w̃

i,j

= w[i]M ,[j]M , i, j = 1, . . . , 2M

and use the notation [i]02M = mod (i � 1, 2M) + 1, i.e., [i]02M = i + 2kM , with k

being the integer such that 1  [i]02M  2M . It is then readily checked that

w[i]M ,[j]M = w̃[i]02M ,[j]02M
, i, j = �r + 1, . . . ,M + r.

Therefore (3.5) for i, j = 1, . . . ,M can be rewritten as

(W ⇤
h

�)
i,j

=
rX

p=�r

rX

q=�r

�

p,q

w̃[i�p]02M ,[j�q]02M
. (3.6)

The convolution on the right-hand side of (3.6) can be performed by FFTs applied
to the (2M) ⇥ (2M) matrix W̃ . To save further computational costs, the FFT
of the kernel �

p,q

is performed only once, son each convolution entails two two-
dimensional FFT of (2M) ⇥ (2M) matrices and a product of 4M2 numbers, with
an overall computational cost of O(M2 logM).

3.3. Discretization of the convective term. The convective flux for the prey
compartments (S and I, corresponding to ` 2 {1, 2}) is zero and for the predator
(species Y , ` = 3) is given by F

c
3(u) = u3(3V (u2)). To discretize its divergence

r · F c
3(u) for the approximation v, we first approximate the convolution terms as

expounded in Section 3.2 to obtain

F̃

c

3(v)i,j = v

`,i,j

�
3V h

(v2)
i,j

� 2 R2
.

We introduce the notation (fx

i,j

, f

y

i,j

) := F̃

c

`

(v)
i,j

, where we have dropped the index
` in f

x

i,j

etc. to obtain clearer expressions. Our purpose is to use a fifth-order WENO
finite di↵erence discretization [22,29,36] of r · F c

`

(u) for which

r · F c
`

(u)(x
i

, y

j

) ⇡ r
h

· F̃ c
(v)

`,i,j

:=
f̂

x

i+1/2,j � f̂

x

i�1/2,j

h

+
f̂

y

i,j+1/2 � f̂

y

i,j�1/2

h

for suitable numerical fluxes f̂

x

i+1/2,j , f̂
y

i,j+1/2 obtained by WENO reconstructions
of split fluxes. For the numerical flux in the x-direction, the Lax-Friedrichs-type
flux splitting f

x,± is given by

f

x,±
i,j

=
1

2

�
f

x

i,j

± ↵

x

v

`,i,j

�
, ↵

x = max
i,j

��
V

x

h

(v)
i,j

��
,
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with an analogous formula for fy,±
i,j

. IfR± denotes fifth-order WENO upwind biased
reconstructions and we use matlab-type notation for submatrices, then

f̂

x

i+1/2,j = R+
�
f

x,+
i�2:i+2,j

�
+R��

f

x,�
i�1:i+3,j

�
,

f̂

y

i,j+1/2 = R+
�
f

y,+
i,j�2:j+2

�
+R��

f

y,�
i,j�1:j+3

�
.

3.4. Implicit-explicit Runge-Kutta schemes. To specify the IMEX-RK inte-
grators for (3.1), we rewrite (3.1) as (1.2), where

�⇤(v) := �r
h

· F̃ c
(v) + S(v), �(v) := Bv. (3.7)

The di↵usive part �(v) is handled by an implicit s-stage diagonally implicit (DIRK)
scheme with coe�cients A 2 Rs⇥s, b, c 2 Rs, in the common Butcher notation,
where A = (a

ij

) with a

ij

= 0 for j > i. For the term �⇤(v) we employ an s-stage
explicit scheme with coe�cients Â 2 Rs⇥s, b̂, ĉ 2 Rs and Â = (â

ij

) with â

ij

= 0 for
j � i. In our simulations, we limit ourselves to the second-order IMEX-RK scheme
H-DIRK2(2,2,2) that corresponds to the pair of Butcher arrays

c A

b

T =

1/2 1/2 0

1/2 0 1/2

1/2 1/2

,

ĉ Â

b̂

T =

0 0 0
1 1 0

1/2 1/2

.

Alternative choices are provided and discussed in [5,6,33]. If applied to the equation
(1.2), the IMEX-RK scheme gives rise to the following algorithm (see [33]).

Algorithm 3.1.

Input: approximate solution vector v

n

of (1.2) for t = t

n

for p = 1, . . . , s
if p = 1 then

v̂

(1)  v

n

, v̄

(1)  v

n

else compute v̂

(p)
and v̄

(p)
from the known values K1, . . . ,Kp�1:

v̂

(p)  v

n +�t

p�1X

j=1

â

pj

K

j

, v̄

(p)  v

n +�t

p�1X

j=1

a

pj

K

j

endif
solve for K

p

the linear system

K

p

= �⇤�
v̂

(p)�+ �
�
v̄

(p) +�ta

pp

K

p

�
(3.8)

endfor

v

n+1  v

n +�t

sX

j=1

b

j

K

j

Output: approximate solution vector v

n+1
of (1.2) for t = t

n+1 = t

n +�t.

To solve the linear equation (3.8) for K
p

, in view of (3.7) we rewrite it as
�
I ��ta

pp

B
�
K

p

= b

(p)
, b

(p) := �⇤�
v̂

(p)�+Bv̄

(p)
, (3.9)

where I denotes the identity operator for 3⇥M ⇥M matrices. From the definition
of the matrix B in (3.2) and from the definition of �⇤ in (3.7), if we equate the `

submatrices along the first dimension of both sides of (3.9) we get
�
I

M⇥M

��ta

pp

µ

`

�
h

�
(K

p

)
`

= �r
h

· F̃ c
`

(v̂(p)) + S

`

(v̂(p)) + µ

`

�
h

v̄

(p)
`

, ` = 1, 2, 3,
(3.10)
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Figure 2. Numerical solution of the ODE model (2.1) with pa-
rameters (2.4) and (4.1), starting from S(0) = 0.2, I(0) = 0.3, and
Y (0) = 0.3. The blue curve in the right plot is the solution curve
in (S, I, Y )-space. The other curves represent projections into the
(S, I)-, (Y, S)- and (Y, I)-planes.

where I

M⇥M

is the M ⇥M identity operator and, e.g., (K
p

)
`

is the ` submatrix
of K

p

along the first dimension, i.e., ((K
p

)
`

)
i,j

= (K
p

)
`,i,j

. If µ
`

= 0 (for ` = 3),
then

(K
p

)
`

= ��r
h

· F̃ c
(v̂(p))

�
`

+ S

`

(v),

otherwise (3.10) is solved by Fast Cosine Transforms (due to boundary conditions),
which entails a nearly optimal computational cost of O(M2 logM).

4. Numerical results. We wish to compare the ODE model (2.1) with the spatio-
temporal model (2.5) in di↵erent scenarios.

4.1. Solution to the ODE model. For this model we consider parameter values
(2.4) along with

� = 42, c = 5. (4.1)

This choice is in accordance with the region of stability shown in Figure 1 (these
parameters will be varied within the numerical solution of spatio-temporal models).
For the parameters (2.4) and (4.1), we obtain the following equilibria of Theorem 2.1
(besides E1 = (1, 0, 0)) where the predator is absent:

E2 = (0.7516611, 0.0886924, 0), E3 = (0.2483389, 0.2684504, 0), (4.2)

as well as the two points

E4 = (0.7013155, 0.1006989, 1.0069894), E5 = (0.2986844, 0.2364426, 2.3644263).

Since all eigenvalues of

J

⇤(E5) =

2

4
�3.3480149 �5.9322259 0
2.3480149 2.9666648 �0.000055

0 4 �0.4

3

5
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Figure 3. Examples 1 to 10: initial data S0(x, y), I0(x, y), and
Y0(x, y) (a) for Examples 1, 4, and 7, (b) for Examples 2, 5, and 8,
(c) for Examples 3, 6, 9, and 10.

have negative real part, the equilibrium E5 is stable. On the other hand, J⇤(E4)
has an eigenvalue with positive real part and therefore the point E4 is unstable. As
a consequence, whenever predators and prey are present the solution orbits of (2.1)
approach the stable equilibrium E5, as is illustrated in Figure 2.

4.2. Solution to the spatio-temporal model. In Examples 1 to 10 we select
the spatial domain ⌦ = [0, L]⇥ [0, L] with L = 100. For the spatial discretization we
use M = 400, such that �x = L/M = 0.25. For the time discretization we employ
Algorithm 3.1. The parameters " = 4 and 

Y

= 1 are chosen in the nonlocal term,
and the di↵usion constants are chosen as D

S

= 6 and D

I

= 1, corresponding to the
assumption that infected individuals of the prey population exhibit a lower degree
of mobility than their susceptible counterparts. The initial condition for S and I

is always a spatially distributed random perturbation of the respective values 0.3
and 0.2. Three cases will be considered for the initial condition of the predators,
namely (a) absence of predators, (b) a “triangular” initial condition for predators
to describe how predators invade a region initially occupied by prey only, and (c)
a random initial condition for predators. These three scenarios are illustrated in
Figure 3. The simulations are carried out until the nonlocal system (2.5) attains a
stable non-homogeneous steady state.

Furthermore, we wish to compare the numerical results with the predictions made
by the non-spatial ODE model. To this end we determine for each compartment
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Figure 4. Example 1: numerical solution of (2.5) in absence of
predators with parameters (2.4) and (4.1) at three di↵erent times.
The initial datum is given in Figure 3 (a).

X 2 {S, I, Y } and time instants tn = n�t the following quantity:

I(X) = I(X, t

n) := h

2
NX

i,j=1

X

n

i,j

⇡
Z

⌦
X(x, tn) dx, (4.3)

which represents the approximate total number in ⌦ of individuals of compart-
ment X at time t

n. We recall that in the PDE model, the unknowns X 2 C are
densities, and so an integration over ⌦ is necessary to make results comparable with
those of a model that predicts the total number of individuals in each compartment
(as does the dynamical system (2.1)).

Example 1. Here, we consider absence of the predators, i.e., only the equations
(2.5a), (2.5b) are considered, with the parameters given by (2.4) and (4.1). The
values of � and µ in combination with D

S

= 6 and D

I

= 1 have been chosen
such that they lie in the Turing region, see [39, Example 6], which means that
the formation of a permanent spatial pattern by the standard Turing mechanism
in reaction-di↵usion systems (see, e..g., [31]) is expected. In our simulation the
initial conditions for S and I are those of Figure 3 (a). In Figure 4 we display the
numerical solution at three di↵erent times. We observe the formation of a pattern
of spots similar to that observed in [39]. This distribution will remain constant over
time. Moreover, Figure 5 shows the integral quantities I(S), I(I), and wherever
appropriate I(Y ), for Examples 1 to 6. For Example 1, and consistently with
the nearly stationary spatial pattern, we observe (in Figures 5 (a) and (b)) that
I(S) and I(I) become practically stationary after very short time, and assume
values close to L

2 ⇥ 0.2483389 ⇡ 2483 and L

2 ⇥ 0.2684504 ⇡ 2684 that would be
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Figure 5. Examples 1 to 6: integral quantities (4.3).

obtained if the solution were equal to the stable equilibrium E3 (see (4.2)) on the
whole domain. In this sense, in this example the global behaviour of the model is
consistent with (2.1).
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Figure 6. Example 2: numerical solution of (2.5) with parameters
(2.4) and (4.1) at three di↵erent times. The initial datum is given
in Figure 3 (b).

Example 2. Here we introduce predators through the “triangular” initial condition
of Figure 3 (b). All other parameters are the same as in Example 1. In Figure 6
we display the dynamics of model (2.5). The convective term in (2.5c) defined in
terms of the non-local velocity function (2.6) allows the movement of the predators
to places where infective prey are present. At simulated time t = 30 we observe
that the distribution of prey varies in comparison with Example 1 in places where
predators are present. At t = 90 we observe that in places where the predators
are absent, preys are distributed in forming spots as in Example 1, however, where
predators are present, these patterns take the form of stripes. At t = 200, predators
are present in the whole domain, and this has motivated that the distribution of the
prey in the domain varies drastically from its natural distribution without predator
(Example 1). This distribution will remain constant over time. The corresponding
plots of I(S) and I(I) (Figure 5 (c)) and I(Y ) indicate a growth of the predator
population over a very long period of time. Shortly before t = 200 these quantities
become constant. It is worth noting that while I(S) and I(I) tend to values that
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Figure 7. Example 3: numerical solution of (2.5) with parameters
(2.4) and (4.1) at three di↵erent times. The initial datum is given
in Figure 3 (c).

are close to L

2 times the first and second component of E5, namely 2986.8 and
2364.4, respectively, the limit value of I(Y ) exceeds L2 times the Y -component of
E5, that is 23644.3, by more than a factor of two.

Example 3. Here we consider a random initial condition for predators with the
same parameters of Example 1. The initial condition is shown in Figure 3 (c).
In Figure 7 we display the dynamics of the model with this initial condition. At
simulated time t = 30 we observe that stripes and some spots patterns emerge
mixed in the distribution of each species. After the stripe patterns form, they grow
steadily with time until they reach certain arm length, and the spatial patterns
become distinct at t = 200. It is observed that these stripe patterns are not similar
to those obtained in Example 1, instead these patterns in form of stripes or filaments
are very similar to those observed in Example 2. Furthermore, Figures 5 (e) and (f)
indicate that I(S), I(Y ) and I(Y ) quickly attain steady states, with final values
similar to those of Example 2.
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Figure 8. Example 4: numerical solution of (2.5) with parameters
(2.4) and (4.4) at three di↵erent times. The initial datum is given
in Figure 3 (a).

Example 4. Here, we consider absence of predators like in Example 1 and we use
here and in Examples 5 and 6 the parameter values

� = 46, c = 4. (4.4)

In this case the parameters � and µ together with the di↵usion constants are not
in the Turing space. The steady states according to Theorem 2.1 are now, besides
E1 = (1, 0, 0),

E2 = (0.7820731, 0.0778310, 0), E3 = (0.2179270, 0.2793118, 0), (4.5)

E4 = (0.7510048, 0.0848976, 0.8489759), E5 = (0.2489953, 0.2560630, 2.5606299).
(4.6)

Considering the initial conditions of Figure 3 (a), we obtain in this case that
no patterns are formed and the system quickly arrives at a constant equilibrium
(uniform distribution for S and I in whole domain), which is maintained over time,
as can be observed in Figure 8. This figure, as well as Figures 5 (g) and (h), indicate
that the global equilibrium is E3 given by (4.5).

Example 5. In this case we consider the same scenario as in Example 2, namely the
triangular initial condition of Figure 3 (b), but utilize the parameters (4.4) instead
of (4.1). In this case, as in Example 2, predators are heading towards the infected
prey, and as is shown in Figure 9, the whole domain becomes successively filled with
a pattern formed of stripes. Note that in regions occupied by the prey before the
arrival of predators the solution is constant (see Example 4), and in particular does
not exhibit any formed pattern (in contrast to Example 2). In a sense this scenario
illustrates how the model (2.5), under the appropiate choice of parameters, predicts
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Figure 9. Example 5: numerical solution of (2.5) with parameters
(2.4) and (4.4) at three di↵erent times. The initial datum is given
in Figure 3 (b).

the formation of spatial patterns among the prey upon arrival of the predators.
Furthermore, we observe that a “front” of predators is moving into the domain
initially occupied by prey only, which seems to move at a lower velocity than in
Example 2. It is worth noting that the final distribution of prey corresponds to
total S and I populations close to L

2 times the corresponding entries of E5 given
by (4.6), while as in previous cases the final population of predators is much higher
than L

2 times the Y -component of E5.

Example 6. This case is the analogue of Example 2, namely we impose the initial
conditiom of Figure 3 (c). In Figure 10 we display the dynamics of the model
with this initial condition. We observe that at simulated time t = 50, some stripes
and spots emerge as patterns in the distribution of each species. Comparing the
successive solutions for t = 50, t = 100 and t = 200, we observe that once the
stripes form, they grow steadily in time incorporating “spots”, until they reach
certain arm length, and the spatial patterns become slightly distinct at t = 200
since at this time there are strips and spots. It is observed that these patterns di↵er
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Figure 10. Example 6: numerical solution of (2.5) with parame-
ters (2.4) and (4.4) at three di↵erent times. The initial datum is
given in Figure 3 (c).

from those obtained in Example 5, where only stripe-like patterns are formed. The
observations corresponding to the evolution of I(S), I(I) and I(Y ) are analogous
to those of Example 3.

Example 7. Here and in Examples 8 and 9 we use the values

� = 46, c = 10. (4.7)

The equilibrium points are E1 = (1, 0, 0), E2 and E3 given by (4.5), and

E4 = (0.6916269, 0.984517, 0.9845173), E5 = (0.3083731, 0.2208100, 2.2081005).

The integral quantities for this case and Examples 8 to 10 are plotted in Figure 12.
As in Example 4, the parameters � and µ together with the di↵usion constants

are not in the Turing space. Considering the initial condition of Figure 3 (a), it is
obtained that in this case no patterns are formed and the system rapidly tends to
constant equilibrium which is maintained in time, see Figure 11. For this case we
observe a behavior similar to that of Example 7.
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Figure 11. Example 7: numerical solution of (2.5) with parame-
ters (2.4) and (4.7) at three di↵erent times. The initial datum is
given in Figure 3 (a).

Example 8. This case is based on the same initial “triangular” scenario (Figure 3 (b))
as Examples 2 and 5. The numerical solution (Figure 13) shows that the predators
are heading towards the infected prey, and for t = 50 and t = 150 we observe that
the distribution of the prey varies in comparison with the uniform distribution of
Example 7 in those places were the predators are present. The final spatial con-
figuration is marked by spots and stripes for the prey as well as for the predators,
and remains in time. However, the stucture of patterns that are formed di↵ers
from the results of Example 5. It is interesting to note that the stripes visible at
t = 600 are still roughly aligned with the original “front” of predators separating
the triangular region from the rest of the domain. The conclusions concerning the
evolution of I(S), I(I) and I(Y ) (see Figure 12 (c) and (d)) are similar to those
for Example 5.

Example 9. We now consider an analogue of Examples 3 and 6 corresponding to the
initial configuration of Figure 3 (c). In Figure 14 we display the dynamics of the
model with this initial condition. At t = 50 we observe that some stripes and spots
patterns emerge mixed in the distribution of each species. The pattern distribution
is maintained over time after its formation. It is observed that these patterns di↵er
from those obtained in Examples 5, 6, and 8. As in Examples 3 and 6, the quantities
I(S), I(I) and I(Y ) very quickly attain constant values (see Figures 12 (e) and (f)).

Example 10. In this example, a constant value is considered for � = 48 and in
combination with the three di↵erent values c = 4, c = 6 and c = 10. For these three
pairs that are in the region of stability shown in the Figure 1 a variation is obtained
in the formation of patterns for the di↵erent values of c. The initial datum is given
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Figure 12. Examples 7 to 10: integral quantities (4.3).

by Figure 1(c). In Figure 15 the corresponding numerical results are shown. It
turns out that with increasing c the species tend to form more filament-like rather
than spot-like spatial structures. Moreover, there is a marked di↵erence in behavior
of I(S), I(I) and I(Y ), as can be inferred from Figures 12 (g) to (l). Note that
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Figure 13. Example 8: numerical solution of (2.5) with parame-
ters (2.4) and (4.7) at three di↵erent times. The initial datum is
given in Figure 3 (b).

the steady-state value of I(I) decreases with increasing c, as does the steady-state
value of I(Y ).

4.3. Convergence test and e↵ect of the choice of ". In Example 11, we investi-
gate the sensitivity of (2.5) to the variation of discretization parameter �x = L/M .
We take L = 25 and the model parameters (2.4), (4.4) as in Examples 4 to 6. The
initial datum is a random distribution (similar to Figure 1 (c)) defined for a 50⇥50
discretization, which is also utilized for finer discretizations with M = 100, 200,
and 400, so the initial condition is exactly the same in all cases. We compute the
solution at time t = 15 until we obtain a steady state. The results are displayed in
Figure 16. It is observed that the resolution in the solution is improved as �x is re-
duced, and that the steady-state solution is apparently the same (modulo, of course,
sharpness of resolution) for all values of M . These results do not provide a rigorous
convergence proof but indicate that the numerical simulator is reliable.

Finally, in Example 12 we utilize the same scenario as in Example 11, and now fix
the spatial discretizationM = 400 but vary the parameter ", that is the radius of the
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Figure 14. Example 9: numerical solution of (2.5) with parame-
ters (2.4) and (4.7) at three di↵erent times. The initial datum is
given in Figure 3 (c).

convolution kernel of the nonlocal velocity function (see (2.7)). The corresponding
results are given in Figures 17 and 18. We observe that the results for the prey
compartments S and I are practically the same for all values of " condered, while
the prey distribution depends appreciably on ". As " decreases, the regions in which
predators concentrate become smaller and the densities become higher. Moreover,
Figures 18 (b), (d), (f), and (h) indicate a decrease of the steady state value of I
as " is decreased.

5. Conclusions. We have shown that a relatively simple three-species model can
produce complex spatio-temporal patterns of predators and prey. As is stated in
Section 1.1, the treatment combines the spatio-temporal epidemic model of [39],
the non-spatial three-species predator-prey model analyzed in [20], the non-local
velocity function introduced in [13] and the numerical method developed in [12].
The numerical method is not fully analyzed herein, and certainly leaves potential
for further improvements. For instance, its accuracy deserves further investigation
(particularly to establish that its order of convergence corresponds to its design
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Figure 15. Example 10: variation of the parameter c for � = 48,
showing the numerical solution atr t = 50 for (left) c = 4, (middle)
c = 6 and (right) c = 10. All the remaining parameters are as in
(2.4). The initial datum is as shown in Figure 3 (c).

order), and we use a second-order spatial discretization of the Laplacian and a
second-order time-stepping, which limit the high-order accuracy of the fifth-order
WENO spatial semidiscretization. Nevertheless, on the basis of our (limited) ev-
idence of robustness of the scheme (provided by Examples 11 and 12 along with
the fact that numerical solutions of Examples 1, 4 and 7 are consistent with those
of [39], where, however, the domain ⌦ has slightly di↵erent dimensions), the numer-
ical results allow us to draw some conclusions and conjectures about solutions of
(2.5). Let us first point out that long-time stable patterned configurations obtained
in our numerical experiments are formed by stripes. This contrasts with the results
in [13] obtained for a predator-prey model with one single prey species only, where
the system tends to an asymptotic state with regular arrangements of spots of high
predator concentrations, in agreement with the radial structure introduced by the
nonlocal velocity function and where the di↵usion caused by the Laplacian in the
prey equation counterbalances the first order nonlocal di↵erential operator in the
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Figure 16. Example 11: variation of the spatial discretization
�x = L/M of the numerical solution at t = 15 on a domain of side
length L = 25.

predator equation [13]. A similar tendency was observed in some scenarios of the
eight-compartment epidemiological model studied in [12], where male individuals
are supposed to move non-locally in response to the sampled density of their fe-
male counterparts. Furthermore, it is calling to attention that in our Example 12,
the dominant mechanism of pattern formation seems to be the interaction between
susceptible and infected prey, since the solution (see Figure 17) for the prey com-
partments S and Y is practically independent of ". That the e↵ect of predator
location on the formation of the prey pattern should be weak, at least for the pa-
rameters (2.4) and (4.4), can probably be explained by the relative smallness of the
predation term on the right-hand side of (2.5b). Finally, it would be interesting to
investigate whether the invasion of predators into a domain initially occupied by
prey solely, as in Examples 2, 5 and 8, can possibly be modeled by simpler, spatially
one-dimensional version of (2.5). Clearly, a more in-depth mathematical analysis
to describe the mechanisms that compel these and other phenomena is necessary.

With respect to further extensions, we mention that the spatio-temporal ap-
proach could also be applied to the model by Greenhalgh et al. [19] that generalizes
(2.1) and [20] in the sense that the assumption that the predator eats infected prey
only is replaced by the assumption that the susceptible and infected populations
are both exposed to the predator but to varying degrees. Concerning the numerical
scheme, further analysis could compare results with higher-order discretizations of
the di↵usion operator and time-stepping scheme.
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Figure 17. Example 12: e↵ect of the variation of convolution
radius " on the numerical solution at t = 15 on a domain of side
length L = 25.
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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