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Abstract

In this paper, we analyze a virtual element method (VEM) for solving a non-selfadjoint fourth-
order eigenvalue problem derived from the transmission eigenvalue problem. We write a variational
formulation and propose a C1-conforming discretization by means of the VEM. We use the classical
approximation theory for compact non-selfadjoint operators to obtain optimal order error estimates
for the eigenfunctions and a double order for the eigenvalues. Finally, we present some numerical
experiments illustrating the behavior of the virtual scheme on different families of meshes.
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1. Introduction

In this work, we study a Virtual Element Method for an eigenvalue problem arising in scat-
tering theory. The Virtual Element Method (VEM), introduced in [5, 7], is a generalization of
the Finite Element Method which is characterized by the capability of dealing with very gen-
eral polygonal/polyhedral meshes, and it also permits to easily implement highly regular discrete
spaces. Indeed, by avoiding the explicit construction of the local basis functions, the VEM can
easily handle general polygons/polyhedrons without complex integrations on the element (see [7]
for details on the coding aspects of the method). The VEM has been developed and analyzed
for many problems, see for instance [2, 3, 6, 9, 11, 13, 15, 17, 19, 20, 21, 29, 31, 36, 48, 52]. Re-
garding VEM for spectral problems, we mention [14, 37, 38, 44, 45, 46]. We note that there are
other methods that can make use of arbitrarily shaped polygonal/polyhedral meshes, we cite as a
minimal sample of them [8, 27, 35, 50].

Due to their important role in many application areas, there has been a growing interest in
recent years towards developing numerical schemes for spectral problems (see [16]). In particular,
we are going to analyze a virtual element approximation of the transmission eigenvalue problem.
The motivation for considering this problem is that it plays an important role in inverse scattering
theory [23, 33]. This is due to the fact that transmission eigenvalues can be determined from the
far-field data of the scattered wave and used to obtain estimates for the material properties of the
scattering object [22, 24].

In recent years various numerical methods have been proposed to solve this eigenvalue problem;

Email addresses: dmora@ubiobio.cl (David Mora), ivelasquez@ing-mat.udec.cl (Iván Velásquez)



see for example the following references [25, 26, 30, 34, 39, 42, 43, 49]. In particular, the transmis-
sion eigenvalue problem is often solved by reformulating it as a fourth-order eigenvalue problem.
In [25], a C1 finite element method using Argyris elements has been proposed, a complete analysis
of the method including error estimates are proved using the theory for compact non-self-adjoint
operators. However, the construction of conforming finite elements for H2(Ω) is difficult in gen-
eral, since they usually involve a large number of degrees of freedom (see [32]). More recently, in
[39] a discontinuous Galerkin method has been proposed and analyzed to solve the fourth-order
transmission eigenvalue problem; moreover, in [30] a C0 linear finite element method has been
introduced to solve the spectral problem.

The purpose of the present paper is to introduce and analyze a C1-VEM for solving a fourth-
order spectral problem derived from the transmission eigenvalue problem. We consider a variational
formulation of the problem written in H2(Ω) ×H1(Ω) as in [25, 39], where an auxiliary variable
is introduced to transform the problem into a linear eigenvalue problem. Here, we exploit the
capability of VEM to build highly regular discrete spaces (see [12, 19]) and propose a conforming
H2(Ω)×H1(Ω) discrete formulation, which makes use of a very simple set of degrees of freedom,
namely 4 degrees of freedom per vertex of the mesh. Then, we use the classical spectral theory for
non-selfadjoint compact operators (see [4, 47]) to deal with the continuous and discrete solution
operators, which appear as the solution of the continuous and discrete source problems, and whose
spectra are related with the solutions of the transmission eigenvalue problem. Under rather mild
assumptions on the polygonal meshes (made by possibly non-convex elements), we establish that
the resulting VEM scheme provides a correct approximation of the spectrum and prove optimal-
order error estimates for the eigenfunctions and a double order for the eigenvalues. Finally, we
note that, differently from the FEM where building globally conforming H2(Ω) approximation
is complicated, here the virtual space can be built with a rather simple construction due to the
flexibility of the VEM. In a summary, the advantages of the present virtual element discretization
are the possibility to use general polygonal meshes and to build conforming H2(Ω) approximations.

The remainder of this paper is structured as follows: In Section 2, we introduce the variational
formulation of the transmission eigenvalue problem, define a solution operator and establish its
spectral characterization. In Section 3, we introduce the virtual element discrete formulation,
describe the spectrum of a discrete solution operator and establish some auxiliary results. In
Section 4, we prove that the numerical scheme provides a correct spectral approximation and
establish optimal order error estimates for the eigenvalues and eigenfunctions using the standard
theory for compact and non-selfadjoint operators. Finally, we report some numerical tests that
confirm the theoretical analysis developed in Section 5.

In this article, we will employ standard notations for Sobolev spaces, norms and seminorms.
In addition, we will denote by C a generic constant independent of the mesh parameter h, which
may take different values in different occurrences.

2. The transmission eigenvalue problem

Let Ω ⊂ R2 be a bounded domain with polygonal boundary ∂Ω. We denote by ν the outward
unit normal vector to ∂Ω and by ∂ν the normal derivative. Let n be a real value function in L∞(Ω)
such that n− 1 is strictly positive (or strictly negative) almost everywhere in Ω. The transmission
eigenvalue problem reads as follows:

Find the so-called transmission eigenvalue k ∈ C and a non-trivial pair of functions (w1, w2) ∈

2



L2(Ω)× L2(Ω), such that (w1 − w2) ∈ H2(Ω) satisfying

∆w1 + k2n(x)w1 = 0 in Ω, (2.1)

∆w2 + k2w2 = 0 in Ω, (2.2)

w1 = w2 on ∂Ω, (2.3)

∂νw1 = ∂νw2 on ∂Ω. (2.4)

Now, we rewrite problem above in the following equivalent form for u := (w1 − w2) ∈ H2
0 (Ω) (see

[25]):

Find (k, u) ∈ C×H2
0 (Ω) such that

(∆ + k2n)
1

n− 1
(∆ + k2)u = 0 in Ω. (2.5)

The variational formulation of problem (2.5) can be stated as: Find (k, u) ∈ C×H2
0 (Ω), u 6= 0

such that ∫
Ω

1

n− 1
(∆u+ k2u)(∆v + k2nv) = 0 ∀v ∈ H2

0 (Ω), (2.6)

where v denotes the complex conjugate of v. Now, expanding the previous expression we obtain
the following quadratic eigenvalue problem:∫

Ω

1

n− 1
∆u∆v + τ

∫
Ω

1

n− 1
u∆v + τ

∫
Ω

1

n− 1
∆unv + τ2

∫
Ω

1

n− 1
unv = 0 ∀v ∈ H2

0 (Ω), (2.7)

where τ := k2. It is easy to show that k = 0 is not an eigenvalue of the problem (see [25]).
Moreover, for the sake of simplicity, we will assume that the index of refraction function n(x)
as a real constant. Nevertheless, this assumption do not affect the generality of the forthcoming
analysis.

For the theoretical analysis it is convenient to transform problem (2.7) into a linear eigenvalue
problem. With this aim, let φ be the solution of the problem: Find φ ∈ H1

0 (Ω) such that

∆φ = τ
n

n− 1
u in Ω, (2.8)

φ = 0 on ∂Ω. (2.9)

Therefore, by testing problem (2.8)-(2.9) with functions in H1
0 (Ω), we arrive at the following

weak formulation of the problem:

Problem 1. Find (λ, u, φ) ∈ C×H2
0 (Ω)×H1

0 (Ω) with (u, φ) 6= 0 such that

a((u, φ), (v, ψ)) = λb((u, φ), (v, ψ)) ∀(v, ψ) ∈ H2
0 (Ω)×H1

0 (Ω),

where λ = −τ and the sesquilinear forms a(·, ·) and b(·, ·) are defined by

a((u, φ), (v, ψ)) :=
1

n− 1

∫
Ω

D2u : D2v +

∫
Ω

∇φ · ∇ψ,

b((u, φ), (v, ψ)) :=
n

n− 1

∫
Ω

∆uv +
1

n− 1

∫
Ω

u∆v −
∫

Ω

∇φ · ∇v +
n

n− 1

∫
Ω

uψ,
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for all (u, φ), (v, ψ) ∈ H2
0 (Ω) ×H1

0 (Ω). Moreover, ” : ” denotes the usual scalar product of 2 × 2-
matrices, D2u := (∂iju)1≤i,j≤2 denotes the Hessian matrix of u.

We endow H2
0 (Ω)×H1

0 (Ω) with the corresponding product norm, which we will simply denote
‖(·, ·)‖.

Now, we note that the sesquilinear forms a(·, ·) and b(·, ·) are bounded forms. Moreover, we
have that a(·, ·) is elliptic.

Lemma 2.1. There exists a constant α0 > 0, depending on Ω, such that

a((v, ψ), (v, ψ)) ≥ α0 ‖(v, ψ)‖2 ∀(v, ψ) ∈ H2
0 (Ω)×H1

0 (Ω).

Proof. The result follows immediately from the fact that {‖D2v‖20,Ω + ‖∇ψ‖20,Ω}1/2 is a norm on

H2
0 (Ω)×H1

0 (Ω), equivalent with the usual norm.

We define the solution operator associated with Problem 1:

T : H2
0 (Ω)×H1

0 (Ω) −→ H2
0 (Ω)×H1

0 (Ω)

(f, g) 7−→ T (f, g) = (ũ, φ̃)

as the unique solution (as a consequence of Lemma 2.1) of the corresponding source problem:

a((ũ, φ̃), (v, ψ)) = b((f, g), (v, ψ)) ∀(v, ψ) ∈ H2
0 (Ω)×H1

0 (Ω). (2.10)

The linear operator T is then well defined and bounded. Notice that (λ, u, φ) ∈ C×H2
0 (Ω)×

H1
0 (Ω) solves Problem 1 if and only if (µ, u, φ), with µ := 1

λ , is an eigenpair of T , i.e., T (u, φ) =
µ(u, φ).

We observe that no spurious eigenvalues are introduced into the problem since if µ 6= 0, (0, φ)
is not an eigenfunction of the problem.

The following is an additional regularity result for the solution of the source problem (2.10)
and consequently, for the generalized eigenfunctions of T .

Lemma 2.2. There exist s, t ∈ (1/2, 1] and C > 0 such that, for all (f, g) ∈ H2
0 (Ω)×H1

0 (Ω), the
solution (ũ, φ̃) of problem (2.10) satisfies ũ ∈ H2+s(Ω), φ̃ ∈ H1+t(Ω), and

‖ũ‖2+s,Ω + ‖φ̃‖1+t,Ω ≤ C‖(f, g)‖.

Proof. The estimate for φ̃ follows from the classical regularity result for the Laplace problem with
its right-hand side in L2(Ω). The estimate for ũ follows from the classical regularity result for the
biharmonic problem with its right-hand side in H−1(Ω) (cf. [41]).

Remark 2.1. The constant s in the lemma above is the Sobolev regularity for the biharmonic
equation with the right-hand side in H−1(Ω) and homogeneous Dirichlet boundary conditions. The
constant t is the Sobolev exponent for the Laplace problem with homogeneous Dirichlet boundary
conditions. These constants only depend on the domain Ω. If Ω is convex, then s = t = 1.
Otherwise, the lemma holds for all s < s0 and t < t0, where s0, t0 ∈ (1/2, 1] depend on the largest
reentrant angle of Ω.

Hence, because of the compact inclusions H2+s(Ω) ↪→ H2
0 (Ω) and H1+t(Ω) ↪→ H1

0 (Ω), we can
conclude that T is a compact operator. So, we obtain the following spectral characterization result.

Lemma 2.3. The spectrum of T satisfies sp(T ) = {0} ∪ {µk}k∈N, where {µk}k∈N is a sequence
of complex eigenvalues which converges to 0 and their corresponding eigenspaces lie in H2+s(Ω)×
H1+t(Ω). In addition µ = 0 is an infinite multiplicity eigenvalue of T .

Proof. The proof is obtained from the compactness of T and Lemma 2.2.
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3. The virtual element discretization

In this section, we will write the C1-VEM discretization of Problem 1. With this aim, we
start with the mesh construction and the assumptions considered to introduce the discrete virtual
element spaces.

Let {Th}h be a sequence of decompositions of Ω into polygons K we will denote by hK the
diameter of the element K and h the maximum of the diameters of all the elements of the mesh,
i.e., h := maxK∈Th hK . In what follows, we denote by NK the number of vertices of K, by e a
generic edge of {Th}h and for all e ∈ ∂K, we define a unit normal vector νeK that points outside of
K.

In addition, we will make the following assumptions as in [5, 14]: there exists a positive real
number CT such that, for every h and every K ∈ Th,

A1: the ratio between the shortest edge and the diameter hK of K is larger than CT ;

A2: K ∈ Th is star-shaped with respect to every point of a ball of radius CT hK .

In order to introduce the method, we first define two preliminary discrete spaces as follows: For
each polygon K ∈ Th (meaning open simply connected set whose boundary is a non-intersecting
line made of a finite number of straight line segments) we define the following finite dimensional
spaces,

W̃K
h :=

{
vh ∈ H2(K) : ∆2vh ∈ P2(K), vh|∂K ∈ C0(∂K), vh|e ∈ P3(e) ∀e ∈ ∂K,

∇vh|∂K ∈ C0(∂K)2, ∂νvh|e ∈ P1(e) ∀e ∈ ∂K
}
,

and

Ṽ Kh := {ψh ∈ H1(K) : ∆ψh ∈ P1(K), ψh|∂K ∈ C0(∂K), ψh|e ∈ P1(e) ∀e ∈ ∂K},

where ∆2 represents the biharmonic operator and we have denoted by Pk(S) the space of polyno-
mials of degree up to k defined on the subset S ⊆ R2.

The following conditions hold:

• for any vh ∈ W̃K
h the trace on the boundary of K is continuous and on each edge is a

polynomial of degree 3;

• for any vh ∈ W̃K
h the gradient on the boundary is continuous and on each edge its normal

(respectively tangential) component is a polynomial of degree 1 (respectively 2);

• for any ψh ∈ Ṽ Kh the trace on the boundary of K is continuous and on each edge is a
polynomial of degree 1;

• P2(K)× P1(K) ⊆ W̃K
h × Ṽ Kh .

Next, with the aim to choose the degrees of freedom for both spaces, we will introduce three
sets D1, D2 and D3. The first two sets (D1,D2) are provided by linear operators from W̃K

h into

R and the set D3 by linear operators from Ṽ Kh into R. For all (vh, ψh) ∈ W̃K
h × Ṽ Kh they are

defined as follows:

• D1 contains linear operators evaluating vh at the NK vertices of K,

• D2 contains linear operators evaluating ∇vh at the NK vertices of K,
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• D3 contains linear operators evaluating ψh at the NK vertices of K.

Note that, as a consequence of definition of the discrete spaces, the output values of the three
sets of operators D1, D2 and D3, are sufficient to uniquely determine vh and ∇vh on the boundary
of K, and ψh on the boundary of K, respectively.

In order to construct the discrete scheme, we need some preliminary definitions. First, we split
the forms a(·, ·) and b(·, ·), introduced in the previous section, as follows:

a((u, φ), (v, ψ)) =
∑
K∈Th

a∆
K(u, v) + a∇K(φ, ψ), (u, φ), (v, φ) ∈ H2

0 (Ω)×H1
0 (Ω),

b((u, φ), (v, ψ)) =
∑
K∈Th

bK((u, φ), (v, ψ)), (u, φ), (v, φ) ∈ H2
0 (Ω)×H1

0 (Ω),

with

a∆
K(u, v) :=

∫
K

D2u : D2v, u, v ∈ H2(K),

a∇K(φ, ψ) :=

∫
K

∇φ · ∇ψ, φ, ψ ∈ H1(K),

and for all (u, φ), (v, φ) ∈ H2(K)×H1(K),

bK((u, φ), (v, ψ)) :=
n

n− 1

∫
K

∆uv +
1

n− 1

∫
K

u∆v −
∫
K

∇φ · ∇v +
n

n− 1

∫
K

uψ.

Now, we define the projector Π∆
2 : H2(K) −→ P2(K) ⊆ W̃K

h for each v ∈ H2(K) as the solution
of

a∆
K

(
Π∆

2 v, q
)

= a∆
K(v, q) ∀q ∈ P2(K), (3.1a)

((Π∆
2 v, q))K = ((v, q))K ∀q ∈ P1(K), (3.1b)

where ((·, ·))K is defined as follows:

((u, v))K =

NK∑
i=1

u(Pi)v(Pi) ∀u, v ∈ C0(∂K),

where Pi, 1 ≤ i ≤ NK , are the vertices of K. We note that the bilinear form a∆
K(·, ·) has a non-

trivial kernel, given by P1(K). Hence, the role of condition (3.1b) is to select an element of the

kernel of the operator. We observe that operator Π∆
2 is well defined on W̃K

h and, most important,

for all v ∈ W̃K
h the polynomial Π∆

2 v can be computed using only the values of the operators D1

and D2 calculated on v. This follows easily with an integration by parts (see [3]).

In a similar way, we define the projector Π∇1 : H1(K) −→ P1(K) ⊆ Ṽ Kh for each ψ ∈ H1(K)
as the solution of

a∇K
(
Π∇1 ψ, q

)
= a∇K(ψ, q) ∀q ∈ P1(K), (3.2a)

(Π∇1 ψ, 1)∂K = (ψ, 1)∂K . (3.2b)

We observe that operator Π∇1 is well defined on Ṽ Kh and, as before, for all ψ ∈ Ṽ Kh the polynomial
Π∇1 ψ can be computed using only the values of the operators D3 calculated on ψ, which follows
by an integration by parts (see [1]).
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Now, we introduce our local virtual spaces:

WK
h :=

{
vh ∈ W̃K

h :

∫
K

(Π∆
2 vh)q =

∫
K

vhq ∀q ∈ P2(K)

}
,

and

V Kh :=

{
ψh ∈ Ṽ Kh :

∫
K

(Π∇1 ψh)q =

∫
K

ψhq ∀q ∈ P1(K)

}
.

It is clear that WK
h ×V Kh ⊆ W̃K

h × Ṽ Kh . Thus, the linear operators Π∆
2 and Π∇1 are well defined

on WK
h and V Kh , respectively.

In [3, Lemma 2.1] has been established that the sets of operators D1 and D2 constitutes a set
of degrees of freedom for the space WK

h . Moreover, the set of operators D3 constitutes a set of
degrees of freedom for the space V Kh (see [1]).

We also have that P2(K)× P1(K) ⊆ WK
h × V Kh . This will guarantee the good approximation

properties for the spaces.

To continue the construction of the discrete scheme, we will need to consider new projectors:
First, we define the projector Π∇2 : H2(K) −→ P2(K) for each w ∈ H2(K) as the solution of

a∇K
(
Π∇2 w, q

)
= a∇K(w, q) ∀q ∈ P2(K), (3.3a)

(Π∇2 w, 1)0,K = (w, 1)0,K . (3.3b)

Moreover, we consider the L2(Ω) orthogonal projectors onto Pl(K), l = 1, 2 as follows: we define
Π0
l : L2(Ω)→ Pl(K) for each p ∈ L2(Ω) by∫

K

(Π0
l p)q =

∫
K

pq ∀q ∈ Pl(K). (3.4)

Now, due to the particular property appearing in definition of the space WK
h , it can be seen

that the right hand side in (3.4) is computable using Π∆
2 vh, and thus Π0

2vh depends only on the
values of the degrees of freedom for vh and ∇vh. Actually, it is easy to check that on the space
WK
h the projectors Π0

2vh and Π∆
2 vh are the same operator. In fact:∫

K

(Π0
2vh)q =

∫
K

vhq =

∫
K

(Π∆
2 vh)q ∀q ∈ P2(K). (3.5)

Repeating the arguments, it can be proved that Π0
1φh and Π∇1 φh are the same operator in V Kh .

Now, for every decomposition Th of Ω into simple polygons K, we introduce our the global
virtual space denoted by Zh as follow:

Zh := Wh × Vh,

where

Wh := {vh ∈ H2
0 (Ω) : vh|K ∈WK

h } and Vh := {ψh ∈ H1
0 (Ω) : ψh|K ∈ V Kh }.

A set of degrees of freedom for Zh is given by all pointwise values of vh and ψh on all vertices
of Th together with all pointwise values of ∇vh on all vertices of Th, excluding the vertices on
∂Ω (where the values vanishes). Thus, the dimension of Zh is four times the number of interior
vertices of Th.

7



In what follows, we discuss the construction of the discrete version of the local forms. With
this aim, we consider s∆

K(·, ·) and s∇K(·, ·) any symmetric positive definite forms satisfying:

c0a
∆
K(vh, vh) ≤ s∆

K(vh, vh) ≤ c1a∆
K(vh, vh) ∀vh ∈WK

h with Π∆
2 vh = 0, (3.6)

c2a
∇
K(ψh, ψh) ≤ s∇K(ψh, ψh) ≤ c3a∇K(ψh, ψh) ∀ψh ∈ V Kh with Π∇1 ψh = 0. (3.7)

We define the discrete sesquilinear forms ah(·, ·) : Zh × Zh → C and bh(·, ·) : Zh × Zh → C by

ah((uh, φh), (vh, ψh)) :=
∑
K∈Th

a∆
h,K(uh, vh) + a∇h,K(φh, ψh) ∀(uh, φh), (vh, ψh) ∈ Zh,

bh((uh, φh), (vh, ψh)) :=
∑
K∈Th

bh,K((uh, φh), (vh, ψh)) ∀(uh, φh), (vh, ψh) ∈ Zh,

where a∆
h,K(·, ·), a∇h,K(·, ·) and bh,K(·, ·) are local forms on WK

h ×WK
h and V Kh × V Kh defined by

a∆
h,K(uh, vh) := a∆

K

(
Π∆

2 uh,Π
∆
2 vh

)
+ s∆

K

(
uh −Π∆

2 uh, vh −Π∆
2 vh

)
, ∀uh, vh ∈WK

h ,

a∇h,K(φh, ψh) := a∇K
(
Π∇1 φh,Π

∇
1 ψh

)
+ s∇K

(
φh −Π∇1 φh, ψh −Π∇1 ψh

)
, ∀φh, ψh ∈ V Kh ,

bh,K((uh, φh), (vh, ψh)) : =
n

n− 1

∫
K

Π0
2(∆uh)Π0

2vh +
1

n− 1

∫
K

Π0
2uhΠ0

2(∆vh)−
∫
K

∇Π∇1 φh · ∇Π∇2 vh

+
n

n− 1

∫
K

Π0
2uhΠ0

1ψh ∀(uh, φh), (vh, ψh) ∈WK
h × V Kh .

The construction of the local sesquilinear forms guarantees the usual consistency and stability
properties, as is stated in the proposition below. Since the proof follows standard arguments in
the VEM literature, it is omitted.

Proposition 3.1. The local forms a∆
h,K(·, ·) and a∇h,K(·, ·) on each element K satisfy

• Consistency: for all h > 0 and for all K ∈ Th we have that

a∆
h,K(vh, q) = a∆

K(vh, q) ∀q ∈ P2(K), ∀vh ∈WK
h , (3.8)

a∇h,K(ψh, q) = a∇K(ψh, q) ∀q ∈ P1(K), ∀ψh ∈ V Kh . (3.9)

• Stability and boundedness: There exist positive constants αi, i = 1, 2, 3, 4, independent of K,
such that:

α1a
∆
K(vh, vh) ≤ a∆

h,K(vh, vh) ≤ α2a
∆
K(vh, vh) ∀vh ∈WK

h , (3.10)

α3a
∇
K(ψh, ψh) ≤ a∇h,K(ψh, ψh) ≤ α4a

∇
K(ψh, ψh) ∀ψh ∈ V Kh . (3.11)

Now, we are in a position to write the virtual element discretization of Problem 1.

Problem 2. Find (λh, uh, ψh) ∈ C× Zh, (uh, φh) 6= 0 such that

ah((uh, φh), (vh, ψh)) = λhbh((uh, φh), (vh, ψh)). (3.12)

It is clear that by virtue of (3.10) and (3.11) the sesquilinear form ah(·, ·) is bounded. Moreover,
we will show in the following lemma that ah(·, ·) is also uniformly elliptic.
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Lemma 3.1. There exists a constant β > 0, independent of h, such that

ah((vh, ψh), (vh, ψh)) ≥ β‖(vh, ψh)‖2 ∀(vh, ψh) ∈ Zh.

Proof. The result is deduced from Lemma 2.1, (3.10) and (3.11).

Now, we introduce the discrete solution operator Th which is given by

Th : H2
0 (Ω)×H1

0 (Ω) −→ H2
0 (Ω)×H1

0 (Ω)

(f, g) 7−→ Th(f, g) = (ũh, φ̃h)

where (ũh, φ̃h) ∈ Zh is the unique solution of the corresponding discrete source problem

ah((ũh, φ̃h), (vh, ψh)) = bh((f, g), (vh, ψh)) ∀(vh, ψh) ∈ Zh. (3.13)

Because of Lemma 3.1, the linear operator Th is well defined and bounded uniformly with
respect to h. Once more, as in the continuous case, (λh, uh, φh) ∈ C× Zh solves Problem 2 if and
only if (µh, uh, φh), with µh := 1

λh
, is an eigenpair of Th, i.e., Th(uh, φh) = µh(uh, φh).

4. Spectral approximation and error estimates

To prove that Th provides a correct spectral approximation of T , we will resort to the classical
theory for compact operators (see [4]). With this aim, we first recall the following approximation
result which is derived by interpolation between Sobolev spaces (see for instance [40, Theorem
I.1.4] from the analogous result for integer values of s). In its turn, the result for integer values is
stated in [5, Proposition 4.2] and follows from the classical Scott-Dupont theory (see [18] and [3,
Proposition 3.1]):

Proposition 4.1. There exists a constant C > 0, such that for every v ∈ Hδ(K) there exists
vπ ∈ Pk(K), k ≥ 0 such that

|v − vπ|`,K ≤ Chδ−`K |v|δ,K 0 ≤ δ ≤ k + 1, ` = 0, . . . , [δ],

with [δ] denoting largest integer equal or smaller than δ ∈ R.

For the analysis we will introduce some broken seminorms:

|ψ|21,h :=
∑
K∈Th

|ψ|21,K and |v|22,h :=
∑
K∈Th

|v|22,K ,

which are well defined for every (ψ, v) ∈ [L2(Ω)]2 such that (ψ, v)|K ∈ H1(K) × H2(K) for all
polygon K ∈ Th.

In what follows, we derive several auxiliary results which will be used in the following to prove
convergence and error estimates for the spectral approximation.

Proposition 4.2. Assume A1–A2 are satisfied, let ψ ∈ H1+t(Ω) with t ∈ (0, 1]. Then, there
exist ψI ∈ Vh and C > 0 such that

‖ψ − ψI‖1,Ω ≤ Cht|ψ|1+t,Ω.

Proof. This result has been proved in [28, Theorem 11] (see also [45, Proposition 4.2]).
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Proposition 4.3. Assume A1–A2 are satisfied, let v ∈ H2+s(Ω) with s ∈ (0, 1]. Then, there
exist vI ∈Wh and C > 0 such that

‖v − vI‖2,Ω ≤ Chs|v|2+s,Ω.

Proof. This result has been establish in [3, Proposition 3.1].

Now, we establish a result which will be useful to prove the convergence of the operator Th to
T as h goes to zero.

Lemma 4.1. There exists C > 0 independent of h such that for all (f, g) ∈ H2
0 (Ω) × H1

0 (Ω), if
(ũ, φ̃) := T (f, g) and (ũh, φ̃h) := Th(f, g), then

‖(T − Th) (f, g)‖ ≤ Ch‖(f, g)‖+ |ũ− ũI |2,Ω + |ũ− ũπ|2,h + |φ̃− φ̃I |1,Ω + |φ̃− φ̃π|1,h,

for all (ũI , φ̃I) ∈ Zh and for all (ũπ, φ̃π) ∈ [L2(Ω)]2 such that (ũπ, φ̃π)|K ∈ P2(K)× P1(K).

Proof. Let (f, g) ∈ H2
0 (Ω)×H1

0 (Ω), for any (ũI , φ̃I) ∈Wh × Vh, we have,

‖(T − Th)(f, g)‖ ≤ ‖(ũ, φ̃)− (ũI , φ̃I)‖+ ‖(ũI , φ̃I)− (ũh, φ̃h)‖. (4.1)

Now, we define (vh, ψh) = (ũh − ũI , φ̃h − φ̃I) ∈ Zh, then from the ellipticity of ah(·, ·) and the
definition of T and Th, we have

β‖(vh, ψh)‖2 ≤ ah((vh, ψh), (vh, ψh)) = ah((ũh, φ̃h), (vh, ψh))− ah((ũI , φ̃I), (vh, ψh))

= bh((f, g), (vh, ψh))−
∑
K∈Th

{
a∆
h,K(ũI , vh) + a∇h,K(φ̃I , ψh)

}
= bh((f, g), (vh, ψh))−

∑
K∈Th

{
a∆
h,K(ũI − ũπ, vh) + a∆

h,K(ũπ, vh) + a∇h,K(φ̃I − φ̃π, ψh) + a∇h,K(φ̃π, ψh)
}

= bh((f, g), (vh, ψh))−
∑
K∈Th

{
a∆
h,K(ũI − ũπ, vh) + a∆

K(ũπ − ũ, vh) + a∆
K(ũ, vh)

+ a∇h,K(φ̃I − φ̃π, ψh) + a∇K(φ̃π − φ̃, ψh) + a∇K(φ̃, ψh)
}

=
∑
K∈Th

{
bh,K((f, g), (vh, ψh))− bK((f, g), (vh, ψh))

}
︸ ︷︷ ︸

E1

−
∑
K∈Th

{
a∆
h,K(ũI − ũπ, vh) + a∆

K(ũπ − ũ, vh)
}

︸ ︷︷ ︸
E2

−
∑
K∈Th

{
a∇h,K(φ̃I − φ̃π, ψh) + a∇K(φ̃π − φ̃, ψh)

}
︸ ︷︷ ︸

E3

, (4.2)

where we have used the consistency properties (3.8)-(3.9). We now bound each term Ei|K , i =
1, 2, 3.
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First, the term E1|K can be written as follows:

bh,K((f, g), (vh, ψh))− bK((f, g), (vh, ψh))

=
n

n− 1

{∫
K

Π0
2(∆f)Π0

2vh −
∫
K

∆fvh︸ ︷︷ ︸
E11

}
+

1

n− 1

{∫
K

Π0
2fΠ0

2(∆vh)−
∫
K

f∆vh︸ ︷︷ ︸
E12

}

−
{∫

K

∇Π∇1 g · ∇Π∇2 vh −
∫
K

∇g · ∇vh︸ ︷︷ ︸
E13

}
+

n

n− 1

{∫
K

(Π0
2f)(Π0

1ψh)−
∫
K

fψh︸ ︷︷ ︸
E14

}
. (4.3)

Now, we will bound each term E1i|K i = 1, 2, 3, 4. The term E11 can be bounded as follows:
Using the definition of Π0

2 and Proposition 4.1, we have

E11 =

∫
K

∆f(vh −Π0
2vh) ≤ |f |2,K ||vh −Π0

2vh||0,K

= |f |2,K inf
q∈P2(K)

||vh − q||0,K ≤ Ch2
K |f |2,K |vh|2,K .

For the term E12, we repeat the same arguments to obtain:

E12 ≤ Ch2
K |f |2,K |vh|2,K .

Now, we bound E13. From the definition of Π∇2 , we have

E13 =

∫
K

∇Π∇1 g · ∇vh −
∫
K

∇g · ∇vh =

∫
K

∇(Π∇1 g − g) · ∇vh

=

∫
K

∇(Π∇1 g − g) · ∇(vh − ṽπ) ≤ |Π∇1 g − g|1,K |vh − ṽπ|1,K

≤ ChK |g|1,K |vh|2,K ,

where we have used the definition and the stability of Π∇1 with ṽπ ∈ P1(K) such that Proposition 4.1
holds true.

For the term E14, we first use the definition of Π0
2, the definition and the stability of Π0

1 with

respect to f̂π ∈ P1(K) such that Proposition 4.1 holds true, thus, we have

E14 =

∫
K

fΠ0
1ψh −

∫
K

fψh =

∫
K

(f − f̂π)(Π0
1ψh − ψh)

≤ Ch2
K |f |2,K ||Π0

1ψh − ψh||0,K ≤ Ch2
K |f |2,K‖ψh‖0,K .

Therefore, using the Cauchy-Schwarz inequality, we can deduce from (4.3) that

E1 ≤ Ch||(f, g)||||(vh, ψh)||.

Finally, from (4.2) we have

β||(vh, ψh)|| ≤ C
{
h||(f, g)||+ |u− uI |2,Ω + |u− uπ|2,h + |φ− φI |1,Ω + |φ− φπ|1,h

}
.

Therefore, the proof follows from (4.1) and the previous inequality.
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For the convergence and error analysis of the proposed virtual element scheme for the trans-
mission eigenvalue problem, we first establish that Th → T in norm as h → 0. Then, we prove a
similar convergence result for the adjoint operators T ∗ and T ∗h of T and Th, respectively.

Lemma 4.2. There exist C > 0 and s̃ ∈ (0, 1], independent of h, such that

‖T − Th‖ ≤ Chs̃.

Proof. Let (f, g) ∈ H2
0 (Ω)×H1

0 (Ω) such that ||(f, g)|| = 1, let (ũ, φ̃) and (ũh, φ̃h) be the solution
of problems (2.10) and (3.13), respectively, so that (ũ, φ̃) := T (f, g) and (ũh, φ̃h) := Th(f, g). From
Lemma 4.1, we have

‖(T − Th) (f, g)‖ ≤ Ch||(f, g)||+ ‖u− uI‖2,Ω + |u− uπ|2,h + ‖φ− φI‖1,Ω + |φ− φπ|1,h

≤ C
(
h||(f, g)||+ hs||f ||2,Ω + ht||g||1,Ω

)
≤ Chs̃||(f, g)||

where we have used the Propositions 4.1, 4.2 and 4.3, and Lemma 2.2, with s̃ := min{s, t}. Thus,
we conclude the proof.

Let T ∗ and T ∗h : H2
0 (Ω) × H1

0 (Ω) → H2
0 (Ω) × H1

0 (Ω) the adjoint operators of T and Th,

respectively, defined by T ∗(f, g) := (ũ∗, φ̃∗) and T ∗h (f, g) := (ũ∗h, φ̃
∗
h), where (ũ∗, φ̃∗) and (ũ∗h, φ̃

∗
h)

are the unique solutions of the following problems:

a((v, ψ), (ũ∗, φ̃∗)) = b((v, ψ), (f, g)) ∀(v, ψ) ∈ H2
0 (Ω)×H1

0 (Ω), (4.4)

ah((vh, ψh), (ũ∗h, φ̃
∗
h)) = bh((vh, ψh), (f, g)) ∀(vh, ψh) ∈ Zh. (4.5)

It is simple to prove that if µ is an eigenvalue of T with multiplicity m, µ is an eigenvalue of
T ∗ with the same multiplicity m.

Now, we will study the convergence in norm T ∗h to T ∗ as h goes to zero. With this aim, first

we establish an additional regularity result for the solution (ũ∗, φ̃∗) of problem (4.4).

Lemma 4.3. There exist s, t ∈ (1/2, 1] and C > 0 such that, for all (f, g) ∈ H2
0 (Ω)×H1

0 (Ω), the
solution (ũ∗, φ̃∗) of problem (4.4) satisfies ũ∗ ∈ H2+s(Ω), φ̃∗ ∈ H1+t(Ω), and

‖ũ∗‖2+s,Ω + ‖φ̃∗‖1+t,Ω ≤ C‖(f, g)‖.

Proof. The result follows repeating the same arguments used in the proof of Lemma 2.2.

Remark 4.1. We note that the constants s and t in Lemma 4.3 are the same as in Lemma 2.2.

Now, we are in a position to establish the following result.

Lemma 4.4. There exist C > 0 and s̃ ∈ (0, 1], independent of h, such that

‖T ∗ − T ∗h‖ ≤ Chs̃.

Proof. It is essentially identical to that of Lemma 4.1.
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Our final goal is to show convergence and obtain error estimates. With this aim, we will apply
to our problem the theory from [4, 47] for non-selfadjoint compact operators.

We first recall the definition of spectral projectors. Let µ be a nonzero eigenvalue of T with
algebraic multiplicity m and let Γ be an open disk in the complex plane centered at µ, such that
µ is the only eigenvalue of T lying in Γ and ∂Γ∩ sp(T ) = ∅. The spectral projectors E and E∗ are
defined as follows:

• The spectral projector of T relative to µ: E := (2πi)−1
∫
∂Γ

(z − T )−1dz;

• The spectral projector of T ∗ relative to µ: E∗ := (2πi)−1
∫
∂Γ

(z − T ∗)−1dz.

E and E∗ are projections onto the space of generalized eigenvectors R(E) and R(E∗), respectively.
It is simple to prove that R(E), R(E∗) ∈ H2+s(Ω)×H1+t(Ω).

Now, since Th → T in norm, there exist m eigenvalues (which lie in Γ) µ
(1)
h , . . . , µ

(m)
h of Th

(repeated according to their respective multiplicities) will converge to µ as h goes to zero.

In a similar way, we introduce the following spectral projector Eh := (2πi)−1
∫
∂Γ

(z − Th)−1dz,
which is a projector onto the invariant subspace R(Eh) of Th spanned by the generalized eigenvec-

tors of Th corresponding to µ
(1)
h , . . . , µ

(m)
h .

We recall the definition of the gap δ̂ between two closed subspaces X and Y of a Hilbert space
V:

δ̂(X ,Y) := max {δ(X ,Y), δ(Y,X )} ,

where
δ(X ,Y) := sup

x∈X : ‖x‖V=1

δ(x,Y), with δ(x,Y) := inf
y∈Y
‖x− y‖V .

Let Ph := P2
h × P1

h : H2
0 (Ω)×H1

0 (Ω)→ Zh ⊆ H2
0 (Ω)×H1

0 (Ω) be the projector defined by

a(Ph(u, φ)− (u, φ), (vh, ψh)) = a∆(P2
hu− u, vh) + a∇(P1

hφ− φ, ψh) = 0 ∀(vh, ψh) ∈ Zh.

We note that the form a(·, ·) is the inner product of H2
0 (Ω)×H1

0 (Ω). Therefore, we have

|(u, φ)− P(u, φ)|H2
0 (Ω)×H1

0 (Ω) = inf
(vh,ψh)∈Zh

|(u, φ)− (vh, ψh)|H2
0 (Ω)×H1

0 (Ω), (4.6)

and

|P(u, φ)|H2
0 (Ω)×H1

0 (Ω) ≤ |(u, φ)|H2
0 (Ω)×H1

0 (Ω) ∀(u, φ) ∈ H2
0 (Ω)×H1

0 (Ω). (4.7)

The following error estimates for the approximation of eigenvalues and eigenfunctions hold true.

Theorem 4.1. There exists a strictly positive constant C such that

δ̂(R(E), R(Eh)) ≤ Chmin{s,t}, (4.8)

|µ− µ̂h| ≤ Ch2 min{s,t}, (4.9)

where µ̂h := 1
m

m∑
k=1

µ
(k)
h and with the constants s and t as in Lemmas 2.2 and 4.3 (see also Re-

mark 2.1).
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Proof. As a consequence of Lemma 4.2, Th converges in norm to T as h goes to zero. Then,
the proof of (4.8) follows as a direct consequence of Theorem 7.1 from [4] and the fact that, for
(f, g) ∈ R(E), ‖(f, g)‖H2+s(Ω)×H1+t(Ω) ≤ ‖(f, g)‖, because of Lemma 2.2.

In what follows we will prove (4.9): assume that T (uk, φk) = µ(uk, φk), k = 1, . . . ,m. Since
a(·, ·) is an inner product in H2

0 (Ω) × H1
0 (Ω), we can choose a dual basis for R(E∗) denoted by

(u∗k, φ
∗
k) ∈ H2

0 (Ω)×H1
0 (Ω) satisfying

a((uk, φk), (u∗l , φ
∗
l )) = δk,l.

Now, from [4, Theorem 7.2], we have that

|µ− µ̂h| ≤
1

m

m∑
k=1

|〈(T − Th)(uk, φk), (u∗k, φ
∗
k)〉|+ C||(T − Th)|R(E)||||(T ∗ − T ∗h )|R(E∗)||,

where 〈·, ·〉 denotes the corresponding duality pairing.

Thus, in order to obtain (4.9), we need to bound the two terms on the right hand side above.

The second term can be easily bounded from Lemmas 4.2 and 4.4. In fact, we have

||(T − Th)|R(E)||||(T ∗ − T ∗h )|R(E∗)|| ≤ Ch2 min{s,t}. (4.10)

Next, we manipulate the first term as follows: adding and subtracting (vh, ψh) ∈ Zh and using
the definition of T and Th, we obtain,

〈(T − Th)(uk, φk), (u∗k, φ
∗
k)〉 = a((T − Th)(uk, φk), (u∗k, φ

∗
k))

= a((T − Th)(uk, φk), (u∗k, φ
∗
k)− (vh, ψh)) + a(T (uk, φk), (vh, ψh))− a(Th(uk, φk), (vh, ψh))

= a((T − Th)(uk, φk), (u∗k, φ
∗
k)− (vh, ψh)) + b((uk, φk), (vh, ψh))− a(Th(uk, φk), (vh, ψh))

+ ah(Th(uk, φk), (vh, ψh))− bh((uk, φk), (vh, ψh))

=
{
a((T − Th)(uk, φk), (u∗k, φ

∗
k)− (vh, ψh))

}
+
{
b((uk, φk), (vh, ψh))− bh((uk, φk), (vh, ψh))

}
+
{
ah(Th(uk, φk), (vh, ψh))− a(Th(uk, φk), (vh, ψh))

}
∀(vh, ψh) ∈ Zh. (4.11)

Now, we estimate each bracket in (4.11) separately. First, to bound the second bracket, we use
the additional regularity of (uk, φk) ∈ R(E) ⊂ H2+s(Ω)×H1+t(Ω) and repeating the same steps
used to derive (4.3) (in this case with (uk, φk) instead of (f, g)), we have

bh,K((uk, φk), (vh, ψh))− bK((uk, φk), (vh, ψh)) = E11 + E12 + E13 + E14.

Now, we will bound each term E1i i = 1, 2, 3, 4, as in the proof of Lemma 4.1, but in this case
exploiting the additional regularity and the estimates in Lemmas 2.2 and 4.3 for (uk, φk) ∈ R(E)
and (u∗k, φ

∗
k) ∈ R(E∗), respectively.

In particular, the terms E11, E12 and E14 can be bound exactly as in the proof of Lemma 4.1.
However, for the term E13, we proceed as follows:

E13 =

∫
K

∇Π∇1 φk · ∇vh −
∫
K

∇φk · ∇vh =

∫
K

∇(Π∇1 φk − φk) · ∇vh

=

∫
K

∇(Π∇1 φk − φk) · ∇(vh − ṽπh) ≤ |Π∇1 φk − φk|1,K |vh − ṽπh |1,K

= inf
qh∈P1(K)

|φk − qh|1,K |vh − ṽπh |1,K ≤ Ch1+t
K |φk|1+t,K |vh|2,K

≤ Ch2 min{s,t}
K |φk|1+t,K |vh|2,K ,
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where we have used the definition of Π∇1 with ṽπh ∈ P1(K) such that Proposition 4.1 holds true
and the fact that φk ∈ H1+t(Ω) together with Proposition 4.1 again.

Therefore taking sum and using the additional regularity for φk, together with Lemma 2.2, we
obtain{
b((uk, φk), (vh, ψh))− bh((uk, φk), (vh, ψh))

}
≤ Ch2 min{s,t}||(uk, φk)||||(vh, ψh)|| ∀(vh, ψh) ∈ Zh.

(4.12)

Now, we estimate the third bracket in (4.11). Let (wh, ξh) := Th(uk, φk) and ΠK
h be defined by

(ΠK
h (v, ψ))|K := (Π∆

2 v,Π
∇
1 ψ) for all K ∈ Th and for all (v, ψ) ∈ H2

0 (Ω) ×H1
0 (Ω), where Π∆

2 and
Π∇1 have been defined in (3.1a)-(3.1b) and (3.2a)-(3.2b), respectively. Hence, we have

ah((wh, ξh), (vh, ψh))− a((wh, ξh), (vh, ψh)) =
∑
K∈Th

{
ah,K((wh, ξh), (vh, ψh))− aK((wh, ξh), (vh, ψh))

}
=
∑
K∈Th

{
ah,K((wh, ξh)− (Π∆

2 wh,Π
∇
1 ξh), (vh, ψh)) + aK((Π∆

2 wh,Π
∇
1 ξh)− (wh, ξh), (vh, ψh))

}
=
∑
K∈Th

{
ah,K((wh, ξh)− (Π∆

2 wh,Π
∇
1 ξh), (vh, ψh)− (Π∆

2 vh,Π
∇
1 ψh))

+ aK((Π∆
2 wh,Π

∇
1 ξh)− (wh, ξh), (vh, ψh)− (Π∆

2 vh,Π
∇
1 ψh))

}
≤ C

∑
K∈Th

{
|(wh, ξh)− (Π∆

2 wh,Π
∇
1 ξh)|H2(K)×H1(K)|(vh, ψh)− (Π∆

2 vh,Π
∇
1 ψh)|H2(K)×H1(K)

}
= C

∑
K∈Th

{
|Th(uk, φk)−ΠK

h Th(uk, φk)|H2(K)×H1(K)|(vh, ψh)−ΠK
h (vh, ψh)|H2(K)×H1(K)

}
,

(4.13)

for all (vh, ψh) ∈ Zh, where we have used (3.8)-(3.9), Cauchy-Schwarz inequality and (3.10)-(3.11).
Now, using the triangular inequality, we have that

|Th(uk, φk)−ΠK
h Th(uk, φk)|H2(K)×H1(K) ≤ |Th(uk, φk)− T (uk, φk)|H2(K)×H1(K)

+ |ΠK
h Th(uk, φk)−ΠK

h T (uk, φk)|H2(K)×H1(K)

+ |ΠK
h T (uk, φk)− T (uk, φk)|H2(K)×H1(K).

Thus, from (4.13), the above estimate, the stability of ΠK
h and the additional regularity for (uk, φk)

together with Lemma 2.2, we have

ah(Th(uk, φk), (vh, ψh))− a(Th(uk, φk), (vh, ψh))

≤ Chmin{s,t}||(uk, φk)||
∑
K∈Th

|(vh, ψh)−ΠK
h (vh, ψh)|H2(K)×H1(K) ∀(vh, ψh) ∈ Zh. (4.14)

Finally, we take (vh, ψh) := P(u∗k, φ
∗
k) ∈ Zh in (4.11). Thus, on the one hand, we bound the

first bracket in (4.11) as follows,

a((T − Th)(uk, φk), (u∗k, φ
∗
k)− (vh, ψh)) = a((T − Th)(uk, φk), (u∗k, φ

∗
k)− P(u∗k, φ

∗
k))

≤ |(T − Th)(uk, φk)|H2
0 (Ω)×H1

0 (Ω)|(u∗k, φ∗k)− P(u∗k, φ
∗
k)|H2

0 (Ω)×H1
0 (Ω)

= |(T − Th)(uk, φk)|H2
0 (Ω)×H1

0 (Ω) inf
(rh,sh)∈Zh

|(u∗k, φ∗k)− (rh, sh)|H2
0 (Ω)×H1

0 (Ω)

≤ |(T − Th)(uk, φk)|H2
0 (Ω)×H1

0 (Ω)|(u∗k, φ∗k)− ((u∗k)I , (φ
∗
k)I)|H2

0 (Ω)×H1
0 (Ω)

≤ Ch2min{s,t}||(u∗k, φ∗k)||,
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where we have used (4.6), Propositions 4.2 and 4.3, the additional regularity for (u∗k, φ
∗
k), Lemma 4.3

and Lemma 4.2.

On the other hand, from (4.14) we have that

|(vh, ψh)−ΠK
h (vh, ψh)|H2(K)×H1(K) = |P(u∗k, φ

∗
k)−ΠK

h P(u∗k, φ
∗
k)|H2(K)×H1(K)

≤ |P(u∗k, φ
∗
k)− (u∗k, φ

∗
k)|H2(K)×H1(K) + |(u∗k, φ∗k)−ΠK

h (u∗k, φ
∗
k)|H2(K)×H1(K)

+ |ΠK
h ((u∗k, φ

∗
k)− P(u∗k, φ

∗
k))|H2(K)×H1(K).

Then, using again (4.6), Propositions 4.2 and 4.3, the additional regularity for (u∗k, φ
∗
k), Lemma 4.3

and Lemma 4.2, we obtain from (4.14) that

ah(Th(uk, φk), (vh, ψh))− a(Th(uk, φk), (vh, ψh)) ≤ Ch2min{s,t}||(uk, φk)||||(u∗k, φ∗k)||. (4.15)

Thus, from (4.11), (4.12) and (4.15), we obtain

|〈(T − Th)(uk, φk), (u∗k, φ
∗
k)〉| ≤ Ch2 min{s,t}. (4.16)

Therefore, the proof follows from estimates (4.10) and (4.16).

Remark 4.2. The error estimate for the eigenvalue µ of T yield analogous estimate for the

approximation of the eigenvalue λ = 1/µ of Problem 1 by means of λ̂h := 1
m

m∑
k=1

λ
(k)
h , where

λ
(k)
h = 1/µ

(k)
h .

5. Numerical results

In this section we present a series of numerical experiments to solve the transmission eigenvalue
problem with the Virtual Element scheme (3.12). However, to complete the choice of the VEM,
we had to fix the forms s∆

K(·, ·) and s∇K(·, ·) satisfying (3.6) and (3.7), respectively. For s∆
K(·, ·), we

consider the same definition as in [46]:

s∆
K(uh, vh) := σK

NK∑
i=1

[uh(Pi)vh(Pi) + h2
Pi
∇uh(Pi) · ∇vh(Pi)] ∀uh, vh ∈WK

h ,

where P1, . . . , PNK
are the vertices of K, hPi corresponds to the maximum diameter of the elements

with Pi as a vertex and σK > 0 is a multiplicative factor to take into account the magnitude of
the parameter and the h-scaling, for instance, in the numerical tests we have picked σK > 0 as
the mean value of the eigenvalues of the local matrix a∆

K

(
Π∆

2 uh,Π
∆
2 vh

)
. This ensures that the

stabilizing term scales as a∆
K(vh, vh). Now, a choice for s∇K(·, ·) is given by

s∇K(φh, ψh) :=

NK∑
i=1

φh(Pi)ψh(Pi) ∀φh, ψh ∈ V Kh ,

which corresponds to the identity matrix of dimension NK . A proof of (3.6) and (3.7) for the above
choices could be derived following the arguments in [10]. Finally, we mention that the previous
definitions are in accordance with the analysis presented in [45, 46] in order to avoid spectral
pollution.

We have implemented in a MATLAB code the proposed VEM on arbitrary polygonal meshes,
by following the ideas presented in [7]. Moreover, we compare our results with those existing in
the literature, for example [25, 30, 34, 43]. We have considered three different domains, namely:
square domain, a circular domain centered at the origin and an L-shaped domain.
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Figure 1: Sample meshes: T 1
h (top left), T 2

h (top right), T 3
h (bottom left) and T 4

h (bottom right), for N = 8.

5.1. Test 1: Square domain

In this test, we have taken Ω := (0, 1)2 and index of refraction n = 4 and n = 16. We have
tested the method by using different families of meshes (see Figure 1):

• T 1
h : triangular meshes;

• T 2
h : rectangular meshes;

• T 3
h : hexagonal meshes;

• T 4
h : non-structured hexagonal meshes made of convex hexagons.

The refinement parameter N used to label each mesh is the number of elements on each edge
of the domain.

We report in Tables 1 and 2 the lowest transmission eigenvalues kih, i = 1, 2, 3, 4 computed
by our method with two different families of meshes and N = 32, 64, 128, and with the index of
refraction n = 16 and n = 4, respectively. The tables include computed orders of convergence,
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as well as more accurate values extrapolated by means of a least-squares fitting. Moreover, we
compare the performance of the proposed method with those presented in [34, 43]. With this aim,
we include in the last row of Tables 1 and 2 the results reported in that references, for the same
problem.

Table 1: Test 1: Lowest transmission eigenvalues kih, i = 1, 2, 3, 4 computed on different meshes and with index of
refraction n = 16.

Meshes kih k1h k2h k3h k4h
N = 32 1.8805 2.4467 2.4467 2.8691
N = 64 1.8798 2.4449 2.4449 2.8671

T 1
h N = 128 1.8796 2.4444 2.4444 2.8666

Order 2.01 2.00 2.00 2.01
Extrapolated 1.8796 2.4442 2.4442 2.8664

N = 32 1.8764 2.4318 2.4318 2.8645
N = 64 1.8788 2.4410 2.4410 2.8658

T 2
h N = 128 1.8794 2.4434 2.4434 2.8663

Order 1.95 1.95 1.95 1.61
Extrapolated 1.8796 2.4443 2.4443 2.8665

[34, Argyris method] 1.8651 2.4255 2.4271 2.8178
[34, Continuous method] 1.9094 2.5032 2.5032 2.9679
[34, Mixed method] 1.8954 2.4644 2.4658 2.8918
[43] 1.8796 2.4442 2.4442 2.8664

Table 2: Test 1: Lowest transmission eigenvalues kih, i = 1, 2, 3, 4 computed on different meshes and with index of
refraction n = 4.

Meshes kih k1h k2h k3h k4h
N = 32 4.2835-1.1367 4.2835+1.1367 5.3373 5.4172
N = 64 4.2745-1.1446 4.2745+1.1446 5.4375 5.4599

T 3
h N = 128 4.2724-1.1467 4.2724+1.1467 5.4661 5.4719

Order 2.10& 1.89 2.10& 1.89 1.81 1.84
Extrapolated 4.2717-1.1475 4.2717+1.1475 5.4775 5.4765

N = 32 4.2870-1.1341 4.2870+1.1341 5.3245 5.4178
N = 64 4.2753-1.1438 4.2753+1.1438 5.4329 5.4602

T 4
h N = 128 4.2726-1.1465 4.2726+1.1465 5.4647 5.4719

Order 2.12 &1.86 2.12&1.86 1.77 1.85
Extrapolated 4.2718-1.1475 4.2718+1.1475 5.4779 5.4765

[43] 4.2717-1.1474i 4.2717+1.1474i 5.4761 5.4761

It can be seen from Tables 1 and 2 that the eigenvalue approximation order of our method is
quadratic (as predicted by the theory for convex domains) and that the results obtained by the
two methods agree perfectly well.

5.2. Test 2: Circular domain

In this test, we have taken as domain the circle Ω := {(x, y) ∈ R2 : x2 + y2 < 1/2}. We have
used polygonal meshes created with PolyMesher [51] (see Figure 2). The refinement parameter N
is the number of elements intersecting the boundary.

We report in Table 3 the five lowest transmission eigenvalues computed with the virtual element
method analyzed in this paper. The table includes orders of convergence, as well as accurate values

18



extrapolated by means of a least-squares fitting. Once again, the last rows show the values obtained
by extrapolating those computed with different methods presented in [25, 30, 34].

Table 3: Test 2: Computed lowest transmission eigenvalues kih, i = 1, 2, 3, 4, 5 with index of refraction n = 16.

k1h k2h k3h k4h k5h
N = 32 1.9835 2.6032 2.6037 3.2115 3.2117
N = 64 1.9869 2.6105 2.6106 3.2225 3.2227
N = 128 1.9877 2.6123 2.6123 3.2255 3.2256
Order 1.98 1.97 2.01 1.86 1.90
Extrapolated 1.9880 2.6129 2.6129 3.2267 3.2267

[25] 1.9881 - - - -
[30] 1.9879 2.6124 2.6124 3.2255 3.2255
[34, Argyris method] 2.0076 2.6382 2.6396 3.2580 3.2598
[34, Continuous method] 2.0301 2.6937 2.6974 3.3744 3.3777
[34, Mixed method] 1.9912 2.6218 2.6234 3.2308 3.2397

Once more, a quadratic order of convergence can be clearly appreciated from Table 3.

We show in Figure 2 the eigenfunctions corresponding to the four lowest transmission eigen-
values.

5.3. Test 3: L-shaped domain

Finally, we have considered an L-shaped domain: Ω := (−1/2, 1/2)2\([0, 1/2]× [−1/2, 0]). We
have used uniform triangular meshes as those shown in Figure 3. The meaning of the refinement
parameter N is the number of elements on each edge.

We report in Table 4 the four lowest transmission eigenvalues computed with the virtual scheme
analyzed in this paper. The table includes orders of convergence, as well as accurate values
extrapolated by means of a least-squares fitting. Once again, we compare the performance of the
proposed virtual scheme with the one presented in [25] for the same problem, using triangular
meshes.

Table 4: Test 3: Computed lowest transmission eigenvalues kih, i = 1, 2, 3, 4 with index of refraction n = 16.

kih k1h k2h k3h k4h
N = 32 2.9690 3.1480 3.4216 3.5744
N = 64 2.9590 3.1417 3.4136 3.5683
N = 128 2.9551 3.1400 3.4113 3.5667
Order 1.37 1.94 1.76 2.00

Extrapolated 2.9527 3.1395 3.4103 3.5662

[25] 2.9553 - - -

We notice that for the first transmission eigenvalue, the method converges with order close to
min{1.089, 1.333}, which corresponds to the Sobolev regularity of the domain for the biharmonic
equation and Laplace equation and with homogeneous Dirichlet boundary conditions, respectively
(see [41]). Moreover, the method converges with larger orders for the rest of the transmission
eigenvalues.

Finally, Figure 3 shows the eigenfunctions corresponding to the four lowest transmission eigen-
values with index of refraction n = 16.
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Figure 2: Test 2. Eigenfunctions u1h (top left), u2h (top right), u3h (bottom left) and u4h (bottom right).
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[26] J. Camaño, R. Rodŕıguez and P. Venegas, Convergence of a lowest-order finite element
method for the transmission eigenvalue problem, CI2MA Preprint 2018–06, Universidad de
Concepción.

22



[27] A. Cangiani, E.H. Georgoulis and P. Houston, hp-version discontinuous Galerkin
methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 24(10),
(2014), pp. 2009–2041.

[28] A. Cangiani, E.H. Georgoulis, T. Pryer and O.J. Sutton, A posteriori error estimates
for the virtual element method, Numer. Math., 137(4), (2017) pp. 857–893.

[29] A. Cangiani, G. Manzini and O.J. Sutton, Conforming and nonconforming virtual ele-
ment methods for elliptic problems, IMA J. Numer. Anal., 37(3), (2017), pp. 1317–1354.

[30] H. Chen, H. Guo, Z. Zhang and Q. Zou, A C0 linear finite element method for two
fourth-order eigenvalue problems, IMA J. Numer. Anal., 37(4), (2017), pp. 2120–2138.

[31] C. Chinosi and L.D. Marini, Virtual element method for fourth order problems: L2-
estimates, Comput. Math. Appl., 72(8), (2016), pp. 1959–1967.

[32] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002.

[33] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed.,
Springer, New York, 2013.

[34] D. Colton, P. Monk and J. Sun, Analytical and computational methods for transmission
eigenvalues, Inverse Problems, 26(4), (2010), 045011.

[35] D. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on
general meshes, Comput. Methods Appl. Mech. Eng., 283, (2015), pp. 1–21.

[36] M. Frittelli and I. Sgura, Virtual element method for the Laplace–Beltrami equation on
surfaces, ESAIM Math. Model. Numer. Anal., DOI: https://doi.org/10.1051/m2an/2017040
(2017).

[37] F. Gardini, G. Manzini and G. Vacca, The nonconforming virtual element method for
eigenvalue problems, arXiv:1802.02942 [math.NA], (2018).

[38] F. Gardini and G. Vacca, Virtual element method for second order elliptic eigenvalue
problems, IMA J. Numer. Anal., DOI: https://doi.org/10.1093/imanum/drx063 (2017).

[39] H. Geng, X. Ji, J. Sun and L. Xu, C0IP methods for the transmission eigenvalue problem,
J. Sci. Comput., 68(1), (2016), pp. 326–338.

[40] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations,
Springer-Verlag, Berlin, 1986.

[41] P. Grisvard, Elliptic Problems in Non-Smooth Domains, Pitman, Boston, 1985.

[42] J. Han, Y. Yang and H. Bi, Non-conforming finite element methodos for a transmission
eigenvalue problem, Comput. Methods Appl. Mech. Engrg., 307, (2016), pp. 144–163.

[43] J. Han, Y. Yang and H. Bi, A new multigrid finite element method for the transmission
eigenvalue problems, Appl. Math. Comput., 292, (2017), pp. 96–106.

[44] D. Mora and G. Rivera, A priori and a posteriori error estimates for a virtual element
spectral analysis for the elasticity equations, arXiv:1712.06441 [math.NA], (2017).
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