
UNIVERSIDAD DE CONCEPCIÓN
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DISPERSION ANALYSIS OF HDG METHODS

JAY GOPALAKRISHNAN ∗, MANUEL SOLANO † , AND FELIPE VARGAS †

Abstract. This work presents a dispersion analysis of the Hybrid Discontinuous Galerkin (HDG)
method. Considering the Helmholtz system, we quantify the discrepancies between the exact and
discrete wavenumbers. In particular, we obtain an analytic expansion for the wavenumber error
for the lowest order Single Face HDG (SFH) method. The expansion shows that the SFH method
exhibits convergence rates of the wavenumber errors comparable to that of the mixed hybrid Raviart-
Thomas method. In addition, we observe the same behavior for the higher order cases in numerical
experiments.
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1. Introduction. In many physical and engineering applications involving wave
propagation, the mathematical model is governed by the Helmholtz system

ik~u+∇φ = ~0 in Ω,(1.1a)

ikφ+∇ · ~u = f in Ω,(1.1b)

φ = 0 on ∂Ω,(1.1c)

where 0 6= k ∈ C is the wavenumber, Ω ⊂ R2, ~u : Ω → R2 is a vector unknown,
φ : Ω → R is a scalar unknown, and f ∈ L2(Ω) is a given source term. For example,
in acoustics, ~u represents linearized velocity and φ represents pressure. When solving
the Helmholtz system using a numerical method, the so-called “pollution effect” [4]
manifests itself in discrepancies between the method’s discrete wavenumber and the
exact k. Dispersion analyses have long been used to determine these discrepancies for
standard methods (see [1, 9] and the bibliography therein).

In a dispersion analysis, one attempts to propagate a wave of exact wavenumber k
using a numerical method on an infinite uniform mesh of grid size h > 0. The
equations of the method then show that the numerical solution can be viewed as
a wave of a possibly different wavenumber kh. Thus, the difference between k and
kh quantifies the wavenumber error of the method. It is traditional to study these
differences in the following three forms: “dispersive error” Re(kh− khk), “dissipative
error” Im(kh−khk), and the “total error” |kh−khh|. The behaviour of these quantities
as kh goes to 0 gives us valuable insights into the method.

Many previous works have focused on dispersion analyses of various numerical
methods [1, 9]. Dispersion relations of some discontinuous Galerkin (DG) methods
were obtained in [2]. Here as well as in [17], the dispersive and dissipative errors of
DG methods applied to linear advection were studied. In an earlier work [15], the
dispersive and dissipative properties of DG methods were analysed in the context of
the one-dimensional scalar advection equation as well as the two-dimensional wave
equation. This was followed by [3], where the dispersive and dissipative errors of the
Interior Penalty Discontinuous Galerkin (IP-DG) method applied to the second-order
wave equation were studied. They also studied a more general family of schemes
applied to the corresponding first order system. A dispersion analysis of the IP-DG
method applied to elastic wave propagation was conducted in [8]. More recently,
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Table 1: Summary of convergence rates of wavenumber errors from [12] (first 3 rows)
and this paper (remaining rows). The “0”s indicate that the errors observed were
close to machine precision. The row in bold shows SFH rates comparable to the
mixed HRT method. All the stated rates are based on observations for p = 0, 1, 2, 3.

Method τ Rates
Dispersive error Dissipative error Total error

LDG-H 1 2p+ 3 2p+ 2 2p+ 2

LDG-H
√

3i/2 2p+ 2 0 2p+ 2
HRT – 2p+ 3 0 2p+ 3
SFH 1 2p+ 3 2p+ 2 2p+ 2
SFH i 2p+ 2 0 2p+ 2
SFH i/kh 2p + 3 0 2p + 3
SFH 1/kh 2p+ 3 2p+ 3 2p+ 3

LDG-H i 2p+ 2 0 2p+ 2
LDG-H 1 2p+ 3 2p+ 2 2p+ 2
LDG-H i/kh 2p+ 1 0 2p+ 1
LDG-H 1/kh 2p+ 1 2p+ 1 2p+ 1

dispersion analysis of other non-conforming methods have received attention. This
includes dispersion analysis of the DPG (discontinuous Petrov-Galerkin) method [13]
and the PWDG (plane wave discontinuos Galerkin) method [11].

The purpose of this paper is to use dispersion analysis to quantify the wavenumber
discrepancies of certain HDG (Hybrid Discontinuous Galerkin) methods. The HDG
method was discovered in [6] and have been applied by many to solve the Helmholtz
system – see e.g., [7, 14, 10]. The first work to perform a dispersion analysis of an HDG
method was [12]. That work considered one of the standard HDG methods, namely
what is called the LDG-H method in [6], studied the influence of its stabilization
parameter τ on the dispersion errors, and compared the HDG errors to those of the
mixed HRT (hybrid Raviart-Thomas) method. The results in [12] were limited to
the lowest order case (p = 0) and the next higher order case (p = 1). Based on
these, the convergence rate of wavenumber errors when τ = 1 was estimated to be
|kh− khh| = O(kh)2p+2. This, together with other rates are summarized in the first
three rows of Table 1. In a later section, we will confirm the above-mentioned LDG-H
rates for higher degrees p also.

The results of [12] made it clear that the HRT method surpassed the LDG-H
method by yielding higher order wavenumber errors as h → 0. Therefore, it was
natural to ask if any other flavor of the HDG method can possibly achieve rates
comparable to the HRT method. The main result of this paper is that the SFH
(Single Face HDG) method does indeed exhibit rates comparable to the HRT method
for a particular choice of τ . The SFH method uses exactly the same stabilization
as the LDG-H method, but applies it in such a way that τ = 0 in all but one edge
of every mesh element. The SFH method was one of the first HDG methods to be
analyzed [5]. Its construction and analysis was motivated by [6] (even though [5] was
published before [6]). Due to its ‘minimal’ stabilization domain, one may view the
SFH method as the HDG method that is in some sense ‘closest’ to the mixed method.

The particular nonzero value of τ to be specified on the single facet to obtain
rates comparable to the HRT method is displayed, together with the accompanying
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convergence rate, in the last row of Table 1. The rates obtained with other commonly
used values of τ are also given in Table 1 for comparison. Table 1 thus summarizes
the results of this paper and compares it with the previously known results of [12],
extrapolating from the limited set of values of p studied.

In the next section, we introduce HDG methods quickly. In Section 3, we focus
on the lowest order SFH method (where p = 0) and perform the dispersion analysis
analytically. We are able to obtain an expansion of khh− kh in closed form in terms
of powers of kh. This lowest order expansion then suggests the value of τ that gives
higher order convergence. In Section 4, we consider the high order case. We are able
to compute kh by numerically solving a nonlinear system (even if we are not able to
find an analytical expansion). The same value of τ that gave the higher rate in the
p = 0 case is found to give a higher rate also for higher p.

2. The HDG method. Let {Th}h>0 be a family triangulations of the domain Ω
and denote by Eh the set of all the edges of a triangulation Th. Let ~nK be the outward
unit normal of a triangle K, writing ~n instead of ~nK when there is no confusion. In
addition, for a given domain D, let Pp(D) denote the space of polynomials of degree
at most p defined on D. Next, define the following discrete spaces:

Vh =
{
~v ∈ [L2(Ω)]2 : ~v|K ∈ [Pp(K)]2, ∀K ∈ Th

}
,

Wh =
{
ψ ∈ L2(Ω) : ψ|K ∈ Pp(K), ∀K ∈ Th

}
,

Mh =
{
ψ̂ ∈ L2(Eh) : ψ̂|e ∈ Pp(e), ∀e ∈ Eh and ψ̂|∂Ω = 0

}
.

The standard HDG method, i.e., the LDG-H method [6], produces an approxi-

mation (~uh, φh, φ̂h) of the exact solution (~u, φ, φ|Eh
) in the space Vh ×Wh ×Mh that

satisfies ∑
K∈Th

ik(~uh, ~vh)K − (φh, ~∇ · ~vh)K + 〈φ̂h, ~vh · ~n〉∂K = 0,(2.1a)

∑
K∈Th

(~∇ · ~uh, ψh)K + 〈τ(φh − φ̂h), ψh〉∂K + ik(φh, ψh)K = (f, ψh)Ω,(2.1b)

∑
K∈Th

〈~uh · ~n+ τ(φh − φ̂h), ψ̂h〉∂K = 0,(2.1c)

for all ~vh ∈ Vh, ψh ∈ Wh and ψ̂h ∈ Mh, where τ is a nonzero stabilization function
defined on ∂Th := {∂K : K ∈ Th}. Here (·, ·)K and 〈·, ·〉∂K denote the inner products
of L2(K) and L2(∂K), respectively. It is traditional to choose τ ≥ 0, but for wave
problems, as noted in [12], it may often be advantageous to choose τ in the complex
plane. Hence, we will not require that τ is non-negative.

Let τK denote the value of τ on ∂K. While τK : ∂K → C is a single-valued
function on each K, note that on each edge shared by two triangular elements, τ is
generally double valued. We shall assume that the restriction of τK to each edge of
K is a constant function. When τK , for every K in Th, is such that τK is zero on all
edges except one, we obtain the SFH method.

In the next section, we will work with the condensed form of the method. The
HDG method was designed specifically to have this condensability feature. The con-
densed form is obtained by statically condensing out ~uh and φh to get a single equation
for the interface variable φ̂h. We refer to [6] for a general description of this form. We
will focus on the condensed form of the lowest order SFH method next.
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3. Dispersion analysis of the lowest order SFH method. In order to per-
form the dispersion analysis of the method (2.1), we follow the approach laid out in
[9, 12]. Consider an infinite triangulation made of isosceles right triangles K with
hypotenuse of length

√
2h and vertical and horizontal edges of length h, as shown in

Fig. 1. On this infinite grid, we will now derive the condensed form.

h

h
√
2h

Fig. 1: Sketch of the mesh.

3.1. Condensed element matrix. We consider the SFH method associated
to (2.1), where the stabilization parameter τ is taken to be zero on all vertical and
horizontal edges of every triangle. We first analyze the lowest order case (p = 0). As
we shall see, it is possible to obtain a series expansion of the wavenumber error in
closed form in the p = 0 case. Later, we shall numerically study the high order cases.

Let K be a triangle with edges e1 (hypotenuse), e2(horizontal) and e3(vertical).
For the polynomial spaces [P0(K)]2, P0(K), P0(e1), P0(e2) and P0(e3), we consider
the Dubiner basis functions (see [16]), which for the lowest order case are given by

~u1 =

[√
2

0

]
, ~u2 =

[
0√
2

]
, φ0 =

√
2 , φ̂1 = 1, φ̂2 = 1 , and , φ̂3 = 1,

respectively. For elements with the orientation of K1 displayed in Fig. 3, the element
matrix associated to (2.1), in the [~u1, ~u2, φ0, φ̂1, φ̂2, φ̂3]-ordering, can be written in
block form as

M =

[
M11 M12

M21 M22

]
,

where

M11 =

ikh2 0 0
0 ikh2 0

0 0 −(ikh2 + 2
√

2τh)

 , M12 =

 √2h 0 −
√

2h

−
√

2h
√

2h 0
2τh 0 0,

 ,
M21 = MT

12, M22 =

−√2τh 0 0
0 0 0
0 0 0

 .
For elements with the orientation of K2, also displayed in Fig. 3, the matrices M11

and M22 are the same, whereas due to the change of the normal vectors, the matrix
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M12 is given by

M12 =

−√2h 0
√

2h√
2h −

√
2h 0

2τh 0 0

 ,
and M21 = MT

12.
The condensation of all interior degrees of freedom is accomplished by taking the

Schur complement S = M22−M21M
−1
11 M12. In both cases (of K1 and K2), the Schur

complement is given by the matrix

S =



4τ2h

ikh+ 2
√

2τ
+

4i

k
−
√

2τh
−2i

k

−2i

k
−2i

k

2i

k
0

−2i

k
0

2i

k

 ,

a 3 × 3 matrix corresponding to the three interface (non-condensable) degrees of
freedom, one per edge. Note that while performing this calculation, we have assumed
that M11 is invertible, which is equivalent to assuming that

(3.1) 2
√

2τ + ikh 6= 0.

We proceed with the derivation of the dispersion relations by making this assumption
throughout.

Fig. 2: The three types of stencils for p = 0.

3.2. Dispersion relation in the lowest order case. The above-mentioned
infinite triangulation has three different types of interface degrees of freedom: the
ones associated to the diagonal edges (first type), the horizontal edges (second type)
and the vertical edges (third type), as displayed in Fig. 2. We denote by C1, C2 and
C3 the infinite set of stencil centers for the three types of stencils present in this case.
Then, we obtain an infinite system of equations for the numerical trace values φ̂1,~p1 ,

φ̂2,~p2 and φ̂3,~p3 at all ~p1 ∈ C1, ~p2 ∈ C2 and ~p3 ∈ C3. Since we are interested in how
this infinite system propagates plane wave solutions, we consider the ansatz

(3.2) φ̂j,~pj = aj exp(i~kh · ~pj),

where a1, a2 and a3 are constants and the components of discrete wave vector ~kh =
(kh1 , k

h
2 ) are given by kh1 := kh cos(θ) and kh2 := kh sin(θ). Here kh is the unknown
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discrete wavenumber corresponding to the exact wavenumber k, and θ is the angle of
propagation of the plane wave solution. We now proceed to determine an expression
that relates kh and k. Since we have three types of degrees of freedom, we need to
construct three equations, but we will only explain the details of the construction of
the first one, associated to diagonal edges: Let’s denote by ~e1 and ~e2 the cartesian
vectors, and suppose that the point P is located at the position ~p1.

K1

K2

P22

P13

P12

P P23

h/2 h/2

h/2

h/2

Fig. 3: Positions of the degrees of freedom in the stencil of the first type.

Then, as seen in Fig. 3, the relative position of the point P12 (the location in
K1 of the degree of freedom of the second type) from P is ~p1 + h

2~e2, and the relative
position of the point P13 (the location in K1 of the degree of freedom of the third
type) from P is ~p1− h

2~e1. Hence, the contribution of K1 to the first equation is given
by

S11φ̂1,~p1 + S12φ̂2,~p1+ h
2 ~e2

+ S13φ̂3,~p1−h
2 ~e1

.

Proceeding in the same way, the contribution of K2 to the same equation is given by

S11φ̂1,~p1 + S12φ̂2,~p1−h
2 ~e2

+ S13φ̂3,~p1+ h
2 ~e1

.

Since plane waves are exact solutions to the Helmholtz equation with zero sources,
the right hand side (f) of the equation is zero. Thus, we can write the first equation
as

(3.3)
2S11φ̂1,~p1 + S12

(
φ̂2,~p1+ h

2 ~e2
+ φ̂2,~p1−h

2 ~e2

)
+ S13

(
φ̂3,~p1−h

2 ~e1
+ φ̂3,~p1+ h

2 ~e1

)
= 0.

Since φ̂j,~pj is given by (3.2) and

φ̂i,~pj±h
2 ~el

= ai exp
(
i~kh ·

(
~pj ±

h

2
~el
))
,

we observe that we can simplify (3.3) to get

0 = 2S11a1 + S12

{
exp

(hi
2
~kh · ~e2

)
+ exp

(
− hi

2
~kh · ~e2

)}
a2

+S13

{
exp

(
− hi

2
~kh · ~e1

)
+ exp

(hi
2
~kh · ~e1

)}
a3

= 2S11a1 + S12

{
exp

(hi
2
kh sin(θ)

)
+ exp

(
− hi

2
kh sin(θ)

)}
a2

+S13

{
exp

(
− hi

2
kh cos(θ)

)
+ exp

(hi
2
kh cos(θ)

)}
a3.

6



Using that exp(iα) = cos(α)+ i sin(α) for any α ∈ R, and some well known properties
of complex numbers, we can write our equation as

2S11a1 + 2S12 cos
(h

2
kh cos(θ)

)
a2 + 2S13 cos

(h
2
kh sin(θ)

)
a3 = 0.

Finally, substituting

S11 =
4τ2h

ikh+ 2
√

2τ
+

4i

k
−
√

2τh, S12 = S13 =
−2i

k
,

multiplying the equation by k
2 (ikh+ 2

√
2τ), and rearranging terms, we obtain{

(4i−
√

2τkh)(ikh+ 2
√

2τ) + 4τ2kh
}
a1 − 2i(ikh+ 2

√
2τ)c2a2

− 2i(ikh+ 2
√

2τ)c1a3 = 0,

where cj = cos(hkhj /2), j = 1, 2, and

kh1 = kh cos(θ), kh2 = kh sin(θ).(3.4)

This is the equation for the first type of degrees of freedom. The other two equations
may be derived in the same way.

The three equations together form a system

F

a1

a2

a3

 = 0

where F is the so-called dispersion matrix, given by

F =

(4i−
√

2τkh)(ikh+ 2
√

2τ) + 4τ2kh −2i(ikh+ 2
√

2τ)c2 −2i(ikh+ 2
√

2τ)c1
−c2 1 0
−c1 0 1

 .
Its determinant is

det(F ) = −2i(2
√

2τ + ikh)(c21 + c22) + (2
√

2τ + ikh)(4i−
√

2τkh) + 4τ2kh.

We are interested in non-trivial solutions of this system. Hence we conclude that the
dispersion relation relating kh to k in the SFH method is

(3.5) det(F ) = 0.

Note that since the entries of F depend on kh, the above forms a nonlinear equation
for the discrete wavenumber kh.

3.3. Asymptotic expansion of the wavenumber error. To get useful qual-
itative information about kh, we must further manipulate (3.5). By virtue of (3.1),
we may multiply (3.5) by −[2i(2

√
2τ + ikh)]−1 and simplify to obtain

(3.6) c21 + c22 +
i
{(

2
√

2τ + ikh
)
(4i−

√
2τkh) + 4τ2kh

}
2
(
2
√

2τ + ikh
) = 0.
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The identity i
{(

2
√

2τ + ikh
)
(4i−

√
2τkh) + 4τ2kh

}
= (
√

2(kh)2−8
√

2)τ−4ikh now
motivates us to set

R = −

(√
2(kh)2 − 8

√
2
)
τ − 4ikh

2
(
2
√

2τ + ikh
) ,

and rewrite (3.6) as

0 = c21 + c22 −R
= (c21 − 1) + (c22 − 1) + (2−R)

= (c21 − 1) + (c22 − 1) + (2−R)
(
cos2 θ + sin2 θ

)
=
{

(c21 − 1) + (2−R) cos2(θ)
}

+
{

(c22 − 1) + (2−R) sin2(θ)
}
.

Thus, we identify two sufficient conditions for det(F ) = 0 to hold, namely

(3.7) c1 = (1− d1)1/2, c2 = (1− d2)1/2,

where d1 = (2−R) cos2(θ) and d2 = (2−R) sin2(θ).
The two sufficient conditions take similar forms. As we shall see now, they are

simple enough to understand by Taylor expansion. In analogy with (3.4), let

k1 = k cos(θ), k2 = k sin(θ).

By (3.7) and the definitions of cj , dj , we have

khj h = 2 cos−1(
√

1− dj), dj =

√
2τ(kjh)2

4
√

2τ + 2i(kh)
.

As kh → 0, clearly dj → 0, so using the Taylor expansion of arccosine near 1, we
obtain

kh1h = cos(θ)(kh)− i
√

2 cos(θ)

8τ
(kh)2 +

8τ2 cos3(θ)− 9 cos(θ)

192τ2
(kh)3 +O(kh)4

kh2h = sin(θ)(kh)− i
√

2 sin(θ)

8τ
(kh)2 +

8τ2 sin3(θ)− 9 sin(θ)

192τ2
(kh)3 +O(kh)4

These relations, together with kh = (kh1 )2 + (kh2 )2, yield

(3.8) khh− kh =
i

4
√

2τ
(kh)2 +

2τ2 cos(4θ) + 6τ2 − 9

192τ2
(kh)3 +O(kh)4

as kh→ 0. This is the main result of this subsection.
The series expansion (3.8) immediately shows that the wavenumber error is of

order 2 (equalling 2p + 2 when p = 0) for any nonzero τ . Next, note how τ appears
in the first and second terms of the expansion (3.8). In the first term, it only appears
in the denominator (while in the second term it appears in equal degrees in the
denominator and numerator). This leads us to an important observation: If we set

(3.9) τ =
i

kh

in (3.8), then we should obtain the higher rate of convergence |khh−kh| = O(kh)3 as
kh → 0. Moreover, we see that all terms in the series expansion of khh − kh, except
the first, have even powers of τ so Im(khh − kh) = 0, if τ is set by (3.9) or any
real multiple of it, i.e., the dissipative errors should vanish. We will gather numerical
confirmation of these statements in the next subsection.
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Table 2: Results for τ = i and τ = 1 in the lowest order SFH method.

τ = i τ = 1
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 8.34e-02 - 4.42e-16 - 8.34e-02 - 1.25e-02 - 1.13e-01 - 1.13e-01 -
π/23 2.37e-02 1.82 7.56e-16 - 2.37e-02 1.82 1.57e-03 2.99 2.75e-02 2.03 2.75e-02 2.04
π/24 6.34e-03 1.90 1.03e-15 - 6.34e-03 1.90 1.97e-04 3.00 6.83e-03 2.01 6.83e-03 2.01
π/25 1.64e-03 1.95 2.90e-15 - 1.64e-03 1.95 2.46e-05 3.00 1.70e-03 2.00 1.70e-03 2.00
π/26 4.18e-04 1.97 9.54e-15 - 4.18e-04 1.97 3.08e-06 3.00 4.26e-04 2.00 4.26e-04 2.00
π/27 1.05e-04 1.99 1.16e-14 - 1.05e-04 1.99 3.85e-07 3.00 1.06e-04 2.00 1.06e-04 2.00
π/28 2.65e-05 1.99 3.55e-14 - 2.65e-05 1.99 4.81e-08 3.00 2.66e-05 2.00 2.66e-05 2.00
π/29 6.64e-06 2.00 2.92e-14 - 6.64e-06 2.00 6.02e-09 3.00 6.66e-06 2.00 6.66e-06 2.00
π/210 1.66e-06 2.00 1.96e-13 - 1.66e-06 2.00 7.52e-10 3.00 1.66e-06 2.00 1.66e-06 2.00

3.4. Numerical computation of kh for the lowest order SFH method.
Since the above-derived error expansion is only asymptotic, we now proceed to check
the practical size of wavenumber errors by direct numerical computation. We solve
the nonlinear dispersion relation (3.5) numerically to find kh. Recall that kh ≡
kh(θ) is a function of the propagation angle θ. In all the cases we present below,
we consider θ ∈ Θ = {jπ/40 : j = 1, . . . , 20}. The exact wavenumber is set so that
kh ∈

{
π/2j+2 : j = 0, . . . , 8

}
. (Note that the dependence on k occurs in the form of

dependence on kh in the dispersion relations.) Define

εdisp = max
θ∈Θ
|Re(kh(θ)h)− kh|, εdissip = max

θ∈Θ
|Im(kh(θ)h)|,

εtotal = max
θ∈Θ
|kh(θ)− kh|.

We report the numerically computed values of these numbers for the following cases.
Case 1: τ = i.. Equation (3.5) can now be simplified to the form

det(F ) = 2(2
√

2 + kh)(c21 + c22)− (2
√

2 + kh)(4−
√

2kh)− 4kh = 0.

This is the form used in our nonlinear solve. For small kh, equation specifies values
of c21 + c22 that admit real solutions for kh. The values of kh found by the numerical
root finder, reported in Table 2, confirms that εdissip is 0 up to machine precision.
The total error εtotal appears to go to 0 at the rate O(kh)2, as expected from the
asymptotic expansion (3.8).

Case 2: τ = 1.. In this case the determinant simplifies to

det(F ) =
{

2kh(c21 + c22)− 4k
}

+ i
{
−4
√

2(c21 + c22) + 8
√

2− 2(kh)2
}
,

and its no longer clear that solutions of the dispersion relation are real. Searching
for roots in the complex plane, we computed kh. These results are compiled in
Table 2. Clearly, the dissipative errors seem to dominate in this case. As before,
εtotal = O(kh)2.

Case 3: τ = i/kh.. This is the interesting value of τ found in (3.9). Here the
determinant simplifies to

det(F ) =

(
2
√

2

kh
+ kh

)(
2(c21 + c22)− 4 +

√
2

)
− 4

kh
.
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Table 3: Results for τ =
i

kh
and τ =

1

kh
in the lowest order SFH method.

τ =
i

kh
τ =

1

kh
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 6.60e-02 - 6.09e-16 - 6.60e-02 - 6.18e-03 - 9.01e-02 - 9.03e-02 -
π/23 9.11e-03 2.86 1.40e-15 - 9.11e-03 2.86 2.12e-03 1.55 1.09e-02 3.05 1.11e-02 3.02
π/24 1.17e-03 2.96 1.60e-15 - 1.17e-03 2.96 3.03e-04 2.80 1.34e-03 3.02 1.38e-03 3.01
π/25 1.47e-04 2.99 2.79e-15 - 1.47e-04 2.99 3.90e-05 2.96 1.67e-04 3.01 1.72e-04 3.00
π/26 1.84e-05 3.00 6.20e-15 - 1.84e-05 3.00 4.92e-06 2.99 2.09e-05 3.00 2.15e-05 3.00
π/27 2.31e-06 3.00 2.42e-14 - 2.31e-06 3.00 6.16e-07 3.00 2.61e-06 3.00 2.69e-06 3.00
π/28 2.88e-07 3.00 1.29e-14 - 2.88e-07 3.00 7.70e-08 3.00 3.27e-07 3.00 3.36e-07 3.00
π/29 3.60e-08 3.00 1.89e-14 - 3.60e-08 3.00 9.63e-09 3.00 4.08e-08 3.00 4.20e-08 3.00
π/210 4.50e-09 3.00 8.42e-14 - 4.50e-09 3.00 1.20e-09 3.00 5.10e-09 3.00 5.24e-09 3.00

The results are now in Table 3. As expected from our discussions following the
asymptotic expansion (3.8), the dissipative errors are zero to machine precision and
moreover, we obtain the higher rate of convergence of O(kh)3 for the total error.

Case 4: τ = 1/kh.. This case differs from the previous case only by a scalar
multiple. Hence, reviewing the expansion (3.8), we expect to obtain higher order
convergence for the total error in this case also. The determinant in this case is

det(F ) = 2

(
2
√

2

kh
+ ikh

)
(c21 + c22)−

(
2
√

2

kh
+ ikh

)
(4i−

√
2) +

4

kh
.

The results, displayed in Table 3, show that although εdissip is no longer zero, the
total error εtotal goes to zero at the faster rate O(kh)3.

4. Wavenumber errors in the higher order SFH method. In order to go
beyond the p = 0 case, we will use the technique of [12]. The main idea is to obtain
an analogue of (3.5) with a larger matrix F . This will then be numerically solved for
the discrete wavenumber kh = kh(θ). As we did in the lowest order case, we will use
the same infinite lattice of isosceles right triangles, and the ansatz that the degrees of
freedom interpolate a plane wave traveling in the θ direction with wavenumber kh.

4.1. The dispersion relation. We describe the technique in detail for a method
with L different node types. Recall that the lowest order SFH method had three node
types. The first order SFH method, with p = 1, will have six node types. As p
increases, L will increase as well. Let us denote the solution value at a node of the
lth type, 1 ≤ l ≤ L, located at ~rh ∈ R2, by ψl,~r. With our ansatz that these solution
values interpolate a plane wave, we have that

ψl,~r = ale
i~kh·~rh,

for some constants al.
We will now construct the equation of a fixed stencil within the lattice. Suppose

that it corresponds to a node of the tth type, 1 ≤ t ≤ L, that is located at ~jh. For
1 ≤ l ≤ L, define the set Jt,l = {~r ∈ R2 : ~r is a node of type s located at (~j + ~r)h}.
For ~r ∈ Jt,l, denote the stencil coefficient of the node at location (~j + ~r)h by Dt,l,~r.
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Since plane waves are exact solutions to the Helmholtz equation with zero sources,
the stencil’s equation is

L∑
l=1

∑
~r∈Jt,l

Dt,l,~rψl,~j+~r = 0.

Finally, we remove all dependence on ~j in this equation by dividing by eik
h·~jh, so

there are L equations in total, with the tth equation given by

(4.1)

L∑
l=1

al
∑
~r∈Jt,l

Dt,l,~re
i~kh·~rh = 0.

Thus, we can now define the L× L matrix F (kh) by

[F (kh)]t,l =
∑
~r∈Jt,l

Dt,l,~re
ikh[cos(θ),sin(θ)]·~rh,

and observe that (4.1) has a non-trivial solution a1, . . . , aL if and only if kh is such
that

(4.2) det(F (kh)) = 0.

This is the analogue of (3.5) for higher p. We need to solve it to determine kh for any
given θ.

4.2. Numerical computation of kh for the higher order SFH method..
We will use the same values for the exact wavenumber kh and the angle θ as in the low-
est order case, namely, θ ∈ {jπ/40 : j = 1, . . . , 20} and kh ∈

{
π/2j+2 : j = 0, . . . , 8

}
.

We also measure the errors εdisp, εdissip and εtotal, defined before. Due to the increased
complexity, we are unable to write down analytical expressions for the determinant
in each case, as we did in Section 3.4. The results for p = 1, 2 and 3 are shown in
Tables 4–5, Tables 6–7 and Tables 8–9, respectively. We continue to consider the
standard case of τ = 1, in addition to the nonstandard cases of τ = i, τ = i/kh and
τ = 1/kh. Recall that the latter two cases were motivated by the asymptotic ex-
pansion (3.8) in the lowest order case. The tabulated results show that these choices
continue to remain superior in the higher order case also.

Taken together, these results and those of Section 3.4, indicate that for τ = i/kh,
the dissipative error is zero, and the total error goes to zero at the rate

εtotal = O(kh)2p+3, kh→ 0

for p = 0, 1, 2 and 3. For the remaining values of τ considered, we get convergence of
the total error at one less rate. These are the rates we summarized in the introduction
(see Table 1). To our knowledge, the SFH method with τ = i/kh is the only DG method
to give such rates comparable to the mixed (HRT) method.

5. Results for LDG-H method. In this section we consider (2.1) with τ set to
the same nonzero positive constant on every edge and numerically explore the relation
between kh and k. This was already done in [12] for p = 0, 1 and τ = 1,

√
3i/2.

A natural question that arises, in view of the previously described results on SFH
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Table 4: Results for τ = i and τ = 1 for the SFH method with p = 1.

τ = i τ = 1
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 2.37e-03 - 4.96e-16 - 2.37e-03 - 3.71e-04 - 2.69e-03 - 2.72e-03 -
π/23 1.62e-04 3.87 1.64e-15 - 1.62e-04 3.87 1.14e-05 5.02 1.73e-04 3.96 1.74e-04 3.97
π/24 1.05e-05 3.94 3.39e-15 - 1.05e-05 3.94 3.55e-07 5.01 1.09e-05 3.99 1.09e-05 3.99
π/25 6.72e-07 3.97 5.61e-15 - 6.72e-07 3.97 1.11e-08 5.00 6.84e-07 4.00 6.84e-07 4.00
π/26 4.24e-08 3.99 8.49e-15 - 4.24e-08 3.99 3.46e-10 5.00 4.28e-08 4.00 4.28e-08 4.00
π/27 2.66e-09 3.99 1.75e-14 - 2.66e-09 3.99 1.09e-11 4.99 2.67e-09 4.00 2.67e-09 4.00
π/28 1.67e-10 4.00 3.11e-14 - 1.67e-10 4.00 4.51e-13 4.59 1.67e-10 4.00 1.67e-10 4.00
π/29 1.04e-11 4.00 8.21e-14 - 1.04e-11 4.00 4.93e-13 - 1.04e-11 4.00 1.05e-11 4.00
π/210 9.22e-13 3.50 3.07e-13 - 9.72e-13 - 6.43e-13 - 7.39e-13 3.82 9.00e-13 -

Table 5: Results for τ =
i

kh
and τ =

1

kh
for the SFH method with p = 1.

τ =
i

kh
τ =

1

kh
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 1.91e-03 - 7.29e-16 - 1.91e-03 - 2.21e-04 - 2.13e-03 - 2.14e-03 -
π/23 6.58e-05 4.86 2.68e-15 - 6.58e-05 4.86 1.99e-06 6.79 6.84e-05 4.96 6.84e-05 4.97
π/24 2.11e-06 4.96 4.09e-15 - 2.11e-06 4.96 9.17e-08 4.44 2.15e-06 4.99 2.15e-06 4.99
π/25 6.62e-08 4.99 7.82e-15 - 6.62e-08 4.99 3.09e-09 4.89 6.72e-08 5.00 6.72e-08 5.00
π/26 2.07e-09 5.00 8.19e-15 - 2.07e-09 5.00 9.84e-11 4.97 2.10e-09 5.00 2.10e-09 5.00
π/27 6.48e-11 5.00 1.99e-14 - 6.48e-11 5.00 3.06e-12 5.01 6.56e-11 5.00 6.56e-11 5.00
π/28 1.95e-12 5.05 2.33e-14 - 1.95e-12 5.05 1.95e-13 3.97 2.06e-12 4.99 2.07e-12 4.99
π/29 3.56e-13 - 4.39e-14 - 3.57e-13 - 4.05e-13 - 8.88e-14 - 4.08e-13 -
π/210 1.03e-12 - 1.60e-13 - 1.03e-12 - 5.19e-13 - 3.31e-13 - 5.21e-13 -

method, is whether the LDG-H exhibits better rates if the new-found parameter
τ = i/kh is used.

To answer this, we compute the wavenumber errors of the LDG-H method for
the same four values of τ we have been considering in Section 3–4 for p = 0, 1, 2
and 3. The results are in Tables 10–17. We find that for the imaginary values of τ ,
the dissipative errors are zero. However, the best rates for the total error that we
could observe was O(hp)2p+2, one order less than the best rates observed for the SFH
method. We also note that the values of τ = i/kh and τ = 1/kh that gave better
rates for the SFH method, do not give good rates for the LDG-H method.

All the rates observed individually in Tables 10–17 are summarized together in
Table 1 of the introduction, where the cases from other sections are also included to
facilitate comparison.
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Table 6: Results for τ = i and τ = 1 for the SFH with p = 2.

τ = i τ = 1
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 2.35e-05 - 1.55e-15 - 2.35e-05 - 2.67e-06 - 2.51e-05 - 2.53e-05 -
π/23 3.87e-07 5.92 1.25e-15 - 3.87e-07 5.92 2.11e-08 6.98 4.02e-07 5.97 4.03e-07 5.97
π/24 6.20e-09 5.97 2.96e-15 - 6.20e-09 5.97 1.66e-10 7.00 6.32e-09 5.99 6.32e-09 5.99
π/25 9.79e-11 5.98 3.78e-15 - 9.79e-11 5.98 1.29e-12 7.00 9.89e-11 6.00 9.89e-11 6.00
π/26 1.50e-12 6.03 1.41e-14 - 1.50e-12 6.03 6.21e-14 - 1.56e-12 5.99 1.56e-12 5.99
π/27 1.54e-13 - 3.98e-14 - 1.54e-13 - 1.02e-13 - 5.40e-14 - 1.02e-13 -

Table 7: Results for τ =
i

kh
and τ =

1

kh
for the SFH with p = 2.

τ =
i

kh
τ =

1

kh
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 1.88e-05 - 1.16e-15 - 1.88e-05 - 1.77e-06 - 1.98e-05 - 1.99e-05 -
π/23 1.58e-07 6.90 1.90e-15 - 1.58e-07 6.90 5.35e-09 8.37 1.58e-07 6.97 1.58e-07 6.97
π/24 1.26e-09 6.97 2.80e-15 - 1.26e-09 6.97 2.50e-11 7.74 1.24e-09 6.99 1.24e-09 6.99
π/25 9.87e-12 6.99 1.30e-14 - 9.87e-12 6.99 1.64e-13 - 9.71e-12 7.00 9.71e-12 7.00
π/26 1.16e-13 - 1.92e-14 - 1.16e-13 - 8.44e-14 - 8.54e-14 - 1.18e-13 -
π/27 8.72e-14 - 1.79e-14 - 8.90e-14 - 1.40e-13 - 3.30e-14 - 1.44e-13 -

Table 8: Results for τ = i and τ = 1 for the SFH with p = 3.

τ = i τ = 1
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 1.20e-07 - 2.70e-15 - 1.20e-07 - 1.12e-08 - 1.25e-07 - 1.26e-07 -
π/23 4.87e-10 7.94 2.80e-15 - 4.87e-10 7.94 2.23e-11 8.98 4.99e-10 7.97 4.99e-10 7.98
π/24 1.94e-12 7.97 4.62e-15 - 1.94e-12 7.97 3.29e-14 - 1.96e-12 7.99 1.96e-12 7.99
π/25 6.06e-14 - 1.35e-14 - 6.06e-14 - 1.03e-13 - 1.16e-14 - 1.03e-13 -

Table 9: Results for τ =
i

kh
and τ =

1

kh
for the SFH with p = 3.

τ =
i

kh
τ =

1

kh
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 9.61e-08 - 9.47e−16 - 9.61e−08 - 7.89e-09 - 9.84e-08 - 9.88e-08 -
π/23 1.98e-10 8.92 2.71e−15 - 1.98e−10 8.92 7.60e-12 10.02 1.96e-10 8.97 1.96e-10 8.98
π/24 3.95e-13 8.97 3.44e−15 - 3.95e−13 8.97 5.99e-14 - 3.81e-13 9.01 3.85e-13 8.99
π/25 6.25e-14 - 5.77e−15 - 6.26e−14 - 2.50e-14 - 8.20e-15 - 2.52e-14 -
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Table 10: Results for τ = i and τ = 1 for the LDG-H with p = 0.

τ = i τ = 1
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 1.41e-01 - 6.39e-16 - 1.41e-01 - 6.16e-02 - 1.74e-01 - 1.84e-01 -
π/23 3.08e-02 2.20 1.77e-15 - 3.08e-02 2.20 8.73e-03 2.82 4.80e-02 1.85 4.88e-02 1.92
π/24 7.23e-03 2.09 1.44e-15 - 7.23e-03 2.09 1.13e-03 2.95 1.23e-02 1.96 1.24e-02 1.98
π/25 1.75e-03 2.04 1.55e-15 - 1.75e-03 2.04 1.42e-04 2.99 3.11e-03 1.99 3.11e-03 1.99
π/26 4.32e-04 2.02 3.44e-15 - 4.32e-04 2.02 1.79e-05 3.00 7.78e-04 2.00 7.79e-04 2.00
π/27 1.07e-04 2.01 1.60e-14 - 1.07e-04 2.01 2.23e-06 3.00 1.95e-04 2.00 1.95e-04 2.00
π/28 2.67e-05 2.01 2.29e-14 - 2.67e-05 2.01 2.79e-07 3.00 4.87e-05 2.00 4.87e-05 2.00
π/29 6.67e-06 2.00 3.00e-14 - 6.67e-06 2.00 3.49e-08 3.00 1.22e-05 2.00 1.22e-05 2.00
π/210 1.67e-06 2.00 1.01e-13 - 1.67e-06 2.00 4.36e-09 3.00 3.04e-06 2.00 3.04e-06 2.00

Table 11: Results for τ =
i

kh
and τ =

1

kh
for the LDG-H with p = 0.

τ =
i

kh
τ =

1

kh
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 2.39e-01 - 7.28e-16 - 2.39e-01 - 7.97e-02 - 1.93e-01 - 2.09e-01 -
π/23 1.51e-01 0.67 1.46e-15 - 1.51e-01 0.67 3.33e-02 1.26 8.83e-02 1.13 9.43e-02 1.15
π/24 7.98e-02 0.92 1.37e-15 - 7.98e-02 0.92 1.59e-02 1.07 4.30e-02 1.04 4.59e-02 1.04
π/25 4.05e-02 0.98 3.07e-15 - 4.05e-02 0.98 7.84e-03 1.02 2.14e-02 1.01 2.28e-02 1.01
π/26 2.03e-02 0.99 7.53e-15 - 2.03e-02 0.99 3.91e-03 1.00 1.07e-02 1.00 1.14e-02 1.00
π/27 1.02e-02 1.00 1.09e-14 - 1.02e-02 1.00 1.95e-03 1.00 5.33e-03 1.00 5.68e-03 1.00
π/28 5.08e-03 1.00 2.73e-14 - 5.08e-03 1.00 9.76e-04 1.00 2.67e-03 1.00 2.84e-03 1.00
π/29 2.54e-03 1.00 6.68e-14 - 2.54e-03 1.00 4.88e-04 1.00 1.33e-03 1.00 1.42e-03 1.00
π/210 1.27e-03 1.00 6.10e-14 - 1.27e-03 1.00 2.44e-04 1.00 6.67e-04 1.00 7.10e-04 1.00

Table 12: Results for τ = i and τ = 1 for the LDG-H with p = 1.

τ = i τ = 1
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 2.90e-03 - 4.80e-16 - 2.90e-03 - 7.69e-04 - 4.82e-03 - 4.88e-03 -
π/23 1.79e-04 4.02 1.40e-15 - 1.79e-04 4.02 2.37e-05 5.02 3.16e-04 3.93 3.17e-04 3.95
π/24 1.11e-05 4.01 3.01e-15 - 1.11e-05 4.01 7.36e-07 5.01 1.99e-05 3.98 2.00e-05 3.99
π/25 6.89e-07 4.01 4.10e-15 - 6.89e-07 4.01 2.30e-08 5.00 1.25e-06 4.00 1.25e-06 4.00
π/26 4.29e-08 4.00 4.50e-15 - 4.29e-08 4.00 7.18e-10 5.00 7.82e-08 4.00 7.82e-08 4.00
π/27 2.68e-09 4.00 4.00e-14 - 2.68e-09 4.00 2.24e-11 5.00 4.89e-09 4.00 4.89e-09 4.00
π/28 1.67e-10 4.00 3.54e-14 - 1.67e-10 4.00 9.13e-13 4.62 3.05e-10 4.00 3.05e-10 4.00
π/29 1.04e-11 4.01 5.14e-14 - 1.04e-11 4.01 6.05e-13 - 1.91e-11 4.00 1.91e-11 4.00
π/210 1.47e-12 - 1.14e-13 - 1.47e-12 - 9.16e-13 - 1.20e-12 3.99 1.49e-12 3.68
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Table 13: Results for τ =
i

kh
and τ =

1

kh
for the LDG-H with p = 1.

τ =
i

kh
τ =

1

kh
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 4.47e-03 - 4.63e-16 - 4.47e-03 - 9.86e-04 - 5.57e-03 - 5.65e-03 -
π/23 6.80e-04 2.71 1.59e-15 - 6.80e-04 2.71 8.79e-05 3.49 6.40e-04 3.12 6.46e-04 3.13
π/24 8.90e-05 2.93 1.36e-15 - 8.90e-05 2.93 9.98e-06 3.14 7.81e-05 3.03 7.88e-05 3.04
π/25 1.13e-05 2.98 5.10e-15 - 1.13e-05 2.98 1.22e-06 3.04 9.71e-06 3.01 9.78e-06 3.01
π/26 1.41e-06 3.00 6.11e-15 - 1.41e-06 3.00 1.51e-07 3.01 1.21e-06 3.00 1.22e-06 3.00
π/27 1.76e-07 3.00 1.98e-14 - 1.76e-07 3.00 1.89e-08 3.00 1.51e-07 3.00 1.53e-07 3.00
π/28 2.21e-08 3.00 5.99e-14 - 2.21e-08 3.00 2.36e-09 3.00 1.89e-08 3.00 1.91e-08 3.00
π/29 2.76e-09 3.00 5.11e-14 - 2.76e-09 3.00 2.94e-10 3.00 2.36e-09 3.00 2.38e-09 3.00
π/210 3.45e-10 3.00 1.77e-13 - 3.45e-10 3.00 3.74e-11 2.98 2.96e-10 3.00 2.98e-10 3.00

Table 14: Results for τ = i and τ = 1 for the LDG-H with p = 2.

τ = i τ = 1
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 2.64e-05 - 8.49e-16 - 2.64e-05 - 5.58e-06 - 4.54e-05 - 4.58e-05 -
π/23 4.12e-07 6.01 2.82e-15 - 4.12e-07 6.01 4.45e-08 6.97 7.33e-07 5.95 7.34e-07 5.96
π/24 6.39e-09 6.01 7.56e-15 - 6.39e-09 6.01 3.50e-10 6.99 1.15e-08 5.99 1.16e-08 5.99
π/25 9.94e-11 6.01 7.11e-15 - 9.94e-11 6.01 2.72e-12 7.01 1.81e-10 6.00 1.81e-10 6.00
π/26 1.63e-12 5.93 5.96e-15 - 1.63e-12 5.93 3.44e-14 6.30 2.83e-12 6.00 2.83e-12 6.00
π/27 1.22e-13 - 7.05e-14 - 1.22e-13 - 1.28e-13 - 6.86e-14 - 1.36e-13 -

Table 15: Results for τ =
i

kh
and τ =

1

kh
for the LDG-H with p = 2.

τ =
i

kh
τ =

1

kh
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 4.04e−05 - 1.34e−15 - 4.04e−05 - 7.23e-06 - 5.26e-05 - 5.31e-05 -
π/23 1.54e−06 4.72 1.40e−15 - 1.54e−06 4.72 1.68e-07 5.42 1.49e-06 5.14 1.50e-06 5.14
π/24 5.03e−08 4.93 3.88e−15 - 5.03e−08 4.93 4.85e-09 5.12 4.54e-08 5.04 4.57e-08 5.04
π/25 1.59e−09 4.98 1.35e−14 - 1.59e−09 4.98 1.48e-10 5.03 1.41e-09 5.01 1.42e-09 5.01
π/26 4.98e−11 5.00 1.27e−14 - 4.98e−11 5.00 4.61e-12 5.01 4.40e-11 5.00 4.43e-11 5.00
π/27 1.80e−12 4.79 3.33e−14 - 1.80e−12 4.79 1.63e-13 4.82 1.41e-12 4.96 1.41e-12 4.97

Table 16: Results for τ = i and τ = 1 for the LDG-H with p = 3.

τ = i τ = 1
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 1.30e-07 - 1.54e-15 - 1.30e-07 - 2.34e-08 - 2.27e-07 - 2.28e-07 -
π/23 5.08e-10 8.00 1.87e-15 - 5.08e-10 8.00 4.68e-11 8.97 9.10e-10 7.96 9.11e-10 7.97
π/24 2.00e-12 7.99 5.43e-15 - 2.00e-12 7.99 1.14e-13 8.68 3.58e-12 7.99 3.58e-12 7.99
π/25 7.71e-14 - 9.44e-15 - 7.75e-14 - 5.68e-14 - 1.91e-14 - 5.99e-14 -
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Table 17: Results for τ =
i

kh
and τ =

1

kh
for the LDG-H with p = 3.

τ =
i

kh
τ =

1

kh
kh εdisp rate εdissip rate εtotal rate εdisp rate εdissip rate εtotal rate
π/22 1.98e-07 − 8.52e-16 − 1.98e-07 − 3.04e-08 − 2.63e-07 − 2.65e-07 −
π/23 1.87e-09 6.72 2.35e-15 - 1.87e-09 6.72 1.78e-10 7.41 1.86e-09 7.15 1.87e-09 7.15
π/24 1.53e-11 6.94 9.38e-15 - 1.53e-11 6.94 1.28e-12 7.12 1.41e-11 7.04 1.42e-11 7.04
π/25 6.20e-14 - 1.05e-14 - 6.20e-14 - 7.77e-14 - 1.16e-13 - 1.27e-13 -
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[4] Babuška, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz
equation considering high wave numbers? SIAM Journal on Numerical Analysis 34(6),
2392–2423 (1997)

[5] Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method
for second-order elliptic problems. Mathematics of Computation 77(264), 1887–1916 (2008)

[6] Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous
Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems.
SIAM Journal on Numerical Analysis 47(2), 1319–1365 (2009)

[7] Cui, J., Zhang, W.: An analysis of HDG methods for the Helmholtz equation. IMA Journal of
Numerical Analysis 34(1), 279–295 (2014)

[8] De Basabe, J.D., Sen, M.K., Wheeler, M.F.: The interior penalty discontinuous galerkin method
for elastic wave propagation: grid dispersion. Geophysical Journal International 175(1),
83–93 (2008)
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