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1 Introduction

We consider the interior transmission eigenvalue problem corresponding to the
scattering problem for an isotropic inhomogeneous medium for the Helmholtz
equation. Let us assume that Ω ⊂ R

2 is a bounded convex Lipschitz domain.
The transmission eigenvalue problem is to find k2 ∈ C and non vanishing
w, z ∈ L2(Ω) such that w − z ∈ H2(Ω) and

∆w + k2nw = 0 in Ω, (1a)

∆z + k2z = 0 in Ω, (1b)

w − z = 0 on ∂Ω, (1c)

∂

∂ν
(w − z) = 0 on ∂Ω, (1d)

where ν is the unit outward normal to the boundary ∂Ω. Here, n is the index of
refraction, which is a positive coefficient that may vary along Ω but is always
either greater or less than the index of refraction of the background medium.
More precisely, we assume that there exists two positive numbers n∗ and n∗

such that n has to satisfy either one of the following assumptions for all x ∈ Ω:

1 < n∗ ≤ n(x) ≤ n∗ <∞, (2a)

0 < n∗ ≤ n(x) ≤ n∗ < 1. (2b)

Values of k > 0 such that there exists a nontrivial solution to problem
(1) are called transmission eigenvalues. This problem has important applica-
tions in inverse scattering. It can be used to obtain estimates for the material
properties of the scattering object and have a theoretical importance for the
analysis of reconstruction in inverse scattering theory. For this reason, this
problem has attracted the attention of many researchers.

From the mathematical point of view, transmission eigenvalue problems are
nonstandard and difficult to treat. This is mainly because their different formu-
lations lead either to quadratic or to non standard mixed eigenvalue problems
and, thus, classical theory can not be directly applied. Despite this, the follow-
ing theorem about the existence of infinitely many transmission eigenvalues
has been proved in [2, Theorem 2.5]:

Theorem 1 Let n ∈ L∞(Ω) satisfy either (2a) or (2b). Then, there exists
an infinite set of transmission eigenvalues with +∞ as the only accumulation
point.

The numerical computation of transmission eigenvalues has been studied
for many researchers. Several numerical schemes based on finite elements have
been proposed during the last years. Very likely, the first reference in this re-
spect is [5], where the authors introduced three different formulations of the
problem and approximations of each of them based on Argyris H2-conforming
elements, Raviart-Thomas elements and Lagrange finite elements, respectively.
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Computational results were reported in this reference but not a theoretical ap-
proximation analysis. Rigorous numerical analyses were done in [3,9] for vari-
ants of the method based on Argyris elements, which are significantly expensive
because of the high degree of these elements (see also [14,7]). More recently,
H2-nonconforming methods applied to similar formulations have been also the-
oretically studied in [10,16]. On the other hand, according to our numerical
experiments, the method based on Raviart-Thomas elements allows approxi-
mating the transmission eigenvalues, but also introduces spurious modes.

The aim of this paper is to analyze theoretically the method based on La-
grange elements introduced in [5] and to prove its spectral convergence. Let
us remark that this is not the only method based on Lagrange elements pro-
posed for the computation of transmission eigenvalues. In fact, an alternative
approach based on a formulation in terms of three scalar fields that can be
approximated also by Lagrange elements has been studied in [15]. In this case,
convergence has been proved, but only for elements of degree l ≥ 2.

In this paper, we resort to the formulation proposed in [8] discretized by
piecewise linear continuous elements and provide a theoretical analysis. When
k 6= 0, this method is equivalent to the one proposed in [5, Section 4.2].
However, one advantage of this approach as compared with the Lagrange for-
mulation introduced in [5], is that the zero transmission eigenvalue, which has
an infinitely dimensional space, is eliminated (see [8]). The analysis presented
here follows the theory of spectral approximation of compact operators (see,
for instance, [1, Chapter 2]) and the error analysis of a mixed finite element
method for solving the Stokes problem in stream function-vorticity formulation
studied, for instance, in [6, Section 3].

The article is organized as follows. In Section 2, we recall the mixed for-
mulation proposed in [8], introduce the solution operator and characterize its
spectrum. Next, in Section 3, we introduce the numerical approach based on
piecewise linear elements and prove its convergence. Finally, in Section 4, we
report some numerical experiments.

2 A mixed variational formulation

For the sake of definiteness, we restrict our attention to the case in which
the refractive index n satisfies (2a). The other case, (2b), can be treated in
a similar manner. We write n = 1 + q, so that from (2a) we have that 0 <
n∗ − 1 ≤ q(x) ≤ n∗ − 1 <∞ for all x ∈ Ω.

We first rewrite the transmission eigenvalue problem (1) as in [8,15,3]. We
consider the change of variables u := w − z ∈ H2

0(Ω), v := −k2z ∈ L2(Ω) and
obtain the following equations:

−∆u+ qv = k2 (1 + q)u in Ω, (3a)

∆v + k2v = 0 in Ω. (3b)

It is easy to check that, for k 6= 0, problems (1) and (3) are actually equivalent.
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If we further assume that the index of refraction n is smooth, then it can
be proved that the solutions of problem (3) have some additional regularity.
From now on, we assume that

n = 1 + q ∈ W2,∞(Ω).

Hence, dividing by q and taking Laplacian in (3a), by using (3b) we obtain
that u satisfies

−∆2u = q

[
k2v +∆

(
1 + q

q
k2u

)
+∆

(
1

q

)
∆u+ 2∇

(
1

q

)
· ∇∆u

]
∈ H−1(Ω),

(4a)

u =
∂u

∂ν
= 0 on ∂Ω. (4b)

Thus, u ∈ H3(Ω) ∩ H2
0(Ω) (see, for instance, [6, Theorem I.1.12]), which to-

gether with (3a) imply that v ∈ H1(Ω). Then, multiplying equations (3) by
suitable test functions and integrating by parts, we obtain the following weak
formulation: Find k2 ∈ C and non vanishing (u, v) ∈ H1

0(Ω)×H1(Ω) such that

(∇u,∇ϕ) + (qv, ϕ) = k2 ((1 + q)u, ϕ) ∀ϕ ∈ H1(Ω), (5a)

(∇v,∇ψ) = k2 (v, ψ) ∀ψ ∈ H1
0(Ω). (5b)

This problem is actually equivalent to problem (1), as is shown in what follows.

Lemma 1 If (k2, w, z) is a solution to problem (1) with k 6= 0, then (k2, w −
z,−k2z) is a solution to problem (5). Conversely, if (k2, u, v) is a solution to
problem (5), then k 6= 0 and (k2, u−v/k2,−v/k2) is a solution to problem (1).

Proof. We have just proved the first assertion. For the converse, let (k2, u, v)
be a solution to problem (5). Then, k 6= 0 (in fact, otherwise, taking ϕ = v
and ψ = u would lead to v = 0 and, consequently, u = 0). On the other hand,
integrating by parts the equations of problem (5), we obtain that (k2, u, v)
satisfies (3) and ∂u

∂ν = 0 on ∂Ω. Hence, since Ω is convex, u ∈ H2
0(Ω). Thus,

(k2, u, v) is a solution to problem (3), which, as was stated above, is equivalent
to problem (1). ⊓⊔

The following solution operator will be used to study the numerical ap-
proximation of problem (5):

T : H1
0(Ω)× L2(Ω) −→ H1

0(Ω)× L2(Ω),

(f, g) 7−→ T (f, g) := (u, v),

with (u, v) ∈ H1
0(Ω)×H1(Ω) satisfying

(∇u,∇ϕ) + (qv, ϕ) = ((1 + q) f, ϕ) ∀ϕ ∈ H1(Ω), (6a)

(∇v,∇ψ) = (g, ψ) ∀ψ ∈ H1
0(Ω). (6b)

Next, we prove that this solution operator is well-posed and regularizing.
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Lemma 2 For each (f, g) ∈ H1
0(Ω)×L2(Ω), problem (6) has a unique solution

(u, v) ∈ H1
0(Ω)×H1(Ω). Moreover, u ∈ H3(Ω)∩H2

0(Ω) and there exists C > 0,
independent of f and g, such that

‖u‖3,Ω + ‖v‖1,Ω ≤ C
(
‖f‖1,Ω + ‖g‖0,Ω

)
. (7)

Proof. We start by proving the existence of solution. To this end, for (f, g) ∈
H1

0(Ω)× L2(Ω), let u ∈ H2
0(Ω) be such that

∫

Ω

1

q
∆u∆ϕ = −

∫

Ω

gϕ+

∫

Ω

∇

(
1 + q

q
f

)
· ∇ϕ ∀ϕ ∈ H2

0(Ω).

As a consequence of Lax-Milgram lemma, there exists a unique u that satisfies
the equation above and ‖u‖2,Ω ≤ C(‖f‖1,Ω + ‖g‖0,Ω). In addition, u satisfies

−∆

(
1

q
∆u

)
= g +∆

(
1 + q

q
f

)
∈ H−1(Ω), (8)

Then, proceeding as to derive (4), we obtain

−∆2u = q

[
g +∆

(
1 + q

q
f

)
+∆

(
1

q

)
∆u+ 2∇

(
1

q

)
· ∇∆u

]
∈ H−1(Ω),

u =
∂u

∂ν
= 0 on ∂Ω.

Thus, u ∈ H3(Ω) ∩ H2
0(Ω) (cf. [6, Theorem I.1.12], again) and ‖u‖3,Ω ≤

C(‖f‖1,Ω + ‖g‖0,Ω), too.
Next, we define

v :=
1 + q

q
f +

1

q
∆u.

Since u ∈ H3(Ω), we have that v ∈ H1(Ω) and ‖v‖1,Ω ≤ C(‖f‖1,Ω + ‖g‖0,Ω),
as well. On the other hand, from the definition of v, we conclude that (u, v)
satisfies (6a) and, from (8),

∆v = ∆

(
1 + q

q
f +

1

q
∆u

)
= −g,

which leads to (6b). Thus, (u, v) as defined above is a solution of problem (6).
To prove that this solution is unique, let us consider (f, g) = (0, 0). In such

a case, by taking ϕ = v in (6a) and ψ = u in (6b), it follows that v = 0. Then,
by taking ϕ = u in (6a), we conclude that u = 0. Hence, problem (6) has a
unique solution and we conclude the proof of the lemma. ⊓⊔

From the previous lemma, T is a bounded linear operator and, in addition,
compact. The latter is a consequence of the fact that T (H1

0(Ω) × L2(Ω)) ⊂[
H3(Ω) ∩H2

0(Ω)
]
×H1(Ω) →֒ H1

0(Ω)×L2(Ω), the second inclusion being com-
pact. Thus, the spectrum of T , σ(T ), has 0 as the only possible accumulation
point and any nonzero µ ∈ σ(T ) is an eigenvalue of finite multiplicity. More-
over, it is easy to check that µ = 0 is not an eigenvalue of T .

The spectrum of the solution operator T is related with the solutions of
problem (5) and, a fortiori, with those of problem (1) (cf. Lemma 1). In fact,
the following result is easy to check.
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Lemma 3 T (u, v) = µ(u, v) with µ 6= 0 if and only if (k2, u, v) is a solution
of problem (5) with k2 = 1/µ.

As a consequence of the previous lemma, Lemma 1 and Theorem 1, we know
that σ(T ) contains a sequence of nonzero finite-multiplicity real eigenvalues
converging to zero.

3 Finite element approximation

In this section we consider a Galerkin approximation of problem (5) and prove
convergence for the computed eigenvalues and eigenfunctions. With this end,
we proceed as in [8] and follow the approach from [4], which is based on
discretizing the problem with standard Lagrange finite elements.

We consider a regular family of partitions of Ω in triangles {Th}h>0. The
corresponding discrete spaces to approximate H1(Ω) and H1

0(Ω) are

Lh := {ϕh ∈ C(Ω) : ϕh|K ∈ P1(K) ∀K ∈ Th} and L0
h := Lh ∩H1

0(Ω),

respectively. The Galerkin approximation of problem (5) reads as follows: Find
k2h ∈ C and non vanishing (uh, vh) ∈ L0

h × Lh such that

(∇uh,∇ϕh) + (qvh, ϕh) = k2h ((1 + q)uh, ϕh) ∀ϕh ∈ Lh, (9a)

(∇vh,∇ψh) = k2h (vh, ψh) ∀ψh ∈ L0
h. (9b)

Let us remark that problem (5) does not fit into the classical theoretical
framework for mixed eigenvalue problems analyzed in [12]. Indeed, according
to the terminology used in this reference, this problem is neither of type (Q1)
nor of type (Q2).

On the other hand, the discrete problem (9) can also be seen as a finite
element approximation of the following variationally formulated eigenvalue
problem:

a((u, v), (ψ,ϕ)) = k2b((u, v), (ψ,ϕ)) ∀(ψ,ϕ) ∈ H1
0(Ω)×H1(Ω),

where a((u, v), (ψ,ϕ)) := (∇u,∇ϕ)+(qv, ϕ)+(∇v,∇ψ) and b((u, v), (ψ,ϕ)) :=
((1 + q)u, ϕ)+(v, ψ). Therefore, at first glance, one could try to study the nu-
merical approximation of this problem by using the approximation theory for
variationally posed eigenvalue problems analyzed in [11] (see also [1, Section
II.8]). However, to apply the results from these references, it would be neces-
sary to prove that there exists a constant β (which in principle could depend
on h) such that

sup
(uh,vh)∈L0

h
×Lh

a((uh, vh), (ψh, ϕh))

‖uh‖1,Ω + ‖vh‖1,Ω
≥ β

(
‖ψh‖1,Ω + ‖ϕh‖1,Ω

)
> 0
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and

lim
h→0

[
1

β
inf

(ψh,ϕh)∈L0

h
×Lh

(
‖u− ψh‖1,Ω + ‖v − ϕh‖1,Ω

)]
= 0

∀(u, v) ∈ H1
0(Ω)×H1(Ω),

which, to the best of the authors’ knowledge, is not known to hold true.
Instead, our approach is to define the corresponding discrete solution op-

erator, to prove that it converges in norm to T and to resort to the abstract
spectral approximation theory for compact operators (cf. [1, Chapter 2]). With
this aim, consider the discrete solution operator, which is defined by

Th : H1
0(Ω)× L2(Ω) −→ H1

0(Ω)× L2(Ω),

(f, g) 7−→ Th(f, g) := (uh, vh),

with (uh, vh) ∈ L0
h × Lh satisfying

(∇uh,∇ϕh) + (qvh, ϕh) = ((1 + q) f, ϕh) ∀ϕh ∈ Lh, (10a)

(∇vh,∇ψh) = (g, ψh) ∀ψh ∈ L0
h. (10b)

Uniqueness of solution follows as in the continuous problem. Then, Th is a well-
defined linear operator. Moreover, as in the continuous case, its spectrum is
related with the solutions of the eigenvalue problem (9). In fact, the following
discrete version of Lemma 3 is easy to check.

Lemma 4 Th(uh, vh) = µh(uh, vh) with µh 6= 0 if and only if (k2h, uh, vh) is a
solution of problem (9) with k2h = 1/µh.

Our next step is to analyze the convergence of Th to the continuous operator
T . With this aim, we study the convergence of the proposed Galerkin scheme
(10). First, we notice that problem (6) and its discrete version, problem (10),
are similar to two problems introduced for the analysis of the stream function-
vorticity-pressure formulation of the Stokes problem in [6, Section 3] (see (2.20)
and (2.29) from this reference, respectively). However, the right-hand side of
the problems differ and this prevents us to use directly the error estimates
from [6] to prove the convergence of Th to T .

The following analysis is based on Theorem III.2.6 and Lemma III.3.1 from
[6]. With this in mind, let us first introduce the elliptic projector Ph : H1(Ω) →
Lh defined by

(∇Phv −∇v,∇θh) = 0 ∀θh ∈ Lh,

(Phv − v, 1) = 0.

We also introduce the following sets:

V (f) :=
{
(ψ,ϕ) ∈ H1

0(Ω)× L2(Ω) :

(∇ψ,∇ω) + (qϕ, ω) = ((1 + q) f, ω) ∀ω ∈ H1(Ω)
}
,
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Vh(f) :=
{
(ψh, ϕh) ∈ L0

h × Lh :

(∇ψh,∇ωh) + (qϕh, ωh) = ((1 + q) f, ωh) ∀ωh ∈ Lh
}
.

Our first step is to prove the following auxiliary error estimate.

Lemma 5 Given (f, g) ∈ H1
0(Ω)×L2(Ω), let (u, v) := T (f, g) and (uh, vh) :=

Th(f, g). Then, there exists C > 0, independent of h, f and g, such that

‖u− uh‖1,Ω + ‖v − vh‖0,Ω

≤ C inf
(ψh,ϕh)∈Vh(f)

(
‖u− ψh‖1,Ω + ‖v − ϕh‖0,Ω

)
+ C ‖Phv − v‖0,Ω . (11)

Proof. Let (ψh, ϕh) ∈ Vh(f). The sketch of the proof is as follows: we estimate
‖u− uh‖1,Ω and ‖v − vh‖0,Ω by adding and subtracting ψh and ϕh, respec-
tively, bounding ‖uh − ψh‖1,Ω and ‖vh − ϕh‖0,Ω in terms of ‖v − ϕh‖0,Ω and
‖Phv − v‖0,Ω , and using triangle inequality.

Our first step is to bound ‖vh − ϕh‖0,Ω . With this aim, we recall that
q(x) ≥ n∗ − 1 > 0 in Ω and write

(n∗ − 1) ‖vh − ϕh‖
2
0,Ω ≤ (qvh − qϕh, vh − ϕh)

= (qvh − qϕh, vh − Phv) + (qvh − qϕh, Phv − ϕh) .
(12)

We will show that the first term on the right-hand side above vanishes. In
fact, since (ψh, ϕh) and (uh, vh) belong to Vh(f) (cf. (10a) for the latter), it is
easy to check that

(∇uh −∇ψh,∇ωh) + (qvh − qϕh, ωh) = 0 ∀ωh ∈ Lh. (13)

In particular, for ωh := vh − Phv ∈ Lh, we have

(qvh − qϕh, vh − Phv) = − (∇uh −∇ψh,∇vh −∇Phv) . (14)

On the other hand, since from (6b) and (10b) (∇v,∇θh) = (∇vh,∇θh) for all
θh ∈ L0

h, we have that

(∇vh −∇Phv,∇θh) = (∇v −∇Phv,∇θh) = 0 ∀θh ∈ L0
h,

the last equality because of the definition of the projector Ph. In particular,
taking θh := uh − ψh ∈ L0

h,

(∇vh −∇Phv,∇uh −∇ψh) = 0

and, substituting this in (14),

(qvh − qϕh, vh − Phv) = 0.
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Now, using the equation above in (12) and Cauchy–Schwarz inequality, we
write

(n∗ − 1) ‖vh − ϕh‖
2
0,Ω ≤ (qvh − qϕh, Phv − ϕh)

≤ (n∗ − 1) ‖vh − ϕh‖0,Ω ‖Phv − ϕh‖0,Ω .

Therefore,

‖vh − ϕh‖0,Ω ≤ C ‖Phv − ϕh‖0,Ω ≤ C
(
‖v − ϕh‖0,Ω + ‖Phv − v‖0,Ω

)
(15)

with the positive constant C only depending on the upper and lower bounds
of q.

Next step is to bound ‖uh − ψh‖1,Ω . Taking now ωh := uh − ψh in (13),
Poincaré’s inequality yields

‖∇uh −∇ψh‖
2
0,Ω ≤ ‖qvh − qϕh‖0,Ω ‖uh − ψh‖0,Ω

≤ (n∗ − 1) ‖vh − ϕh‖0,Ω CP ‖∇uh −∇ψh‖1,Ω ,

where CP is the constant in Poincaré’s inequality. Therefore, using again
Poincaré’s inequality,

‖uh − ψh‖1,Ω ≤ C ‖vh − ϕh‖0,Ω (16)

with C only depending on the upper and lower bounds of q and the constant
CP .

To end the proof, we use triangle inequality, (15) and (16) to write

‖u− uh‖1,Ω + ‖v − vh‖0,Ω

≤ ‖u− ψh‖1,Ω + ‖uh − ψh‖1,Ω + ‖v − ϕh‖0,Ω + ‖vh − ϕh‖0,Ω

≤ C
(
‖u− ψh‖1,Ω + ‖v − ϕh‖0,Ω

)
+ C ‖Phv − v‖0,Ω .

Since this inequality holds for all (ψh, ϕh) ∈ Vh(f) with the same constant C,
we conclude the proof. ⊓⊔

Next, we estimate each of the two terms on the right hand side of (11). We
begin with the first one.

Lemma 6 There exists a constant C > 0 such that, for all (ψ,ϕ) ∈ V (f),

inf
(ψh,ϕh)∈Vh(f)

(
‖ψ − ψh‖1,Ω + ‖ϕ− ϕh‖0,Ω

)

≤ C inf
(θh,ωh)∈L0

h
×Lh

[
‖ψ − θh‖1,Ω + ‖ϕ− ωh‖0,Ω + sup

ξh∈Lh

(∇ψ −∇θh,∇ξh)

‖ξh‖0,Ω

]
.

(17)
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Proof. Let (ψ,ϕ) ∈ V (f). For each (θh, ωh) ∈ L0
h×Lh, let τh ∈ Lh be defined

by
(qτh, ξh) = (qϕ− qωh, ξh) + (∇ψ −∇θh,∇ξh) ∀ξh ∈ Lh.

Then,

‖τh‖0,Ω ≤ C ‖ϕ− ωh‖0,Ω + C sup
ξh∈Lh

(∇ψ −∇θh,∇ξh)

‖ξh‖0,Ω
,

with C only depending on the upper and lower bounds of q. Now, the definition
of τh and the fact that (ψ,ϕ) ∈ V (f) yield

(∇θh,∇ξh) + (qωh + qτh, ξh) = (∇ψ,∇ξh) + (qϕ, ξh) = ((1 + q) f, ξh)

for all ξh ∈ Lh. Hence, if we define (ψh, ϕh) := (θh, ωh + τh), then (ψh, ϕh) ∈
Vh(f). Thus, the result is a consequence of the following triangular inequality,

‖ψ − ψh‖1,Ω + ‖ϕ− ϕh‖0,Ω ≤ ‖ψ − θh‖1,Ω + ‖ϕ− ωh‖0,Ω + ‖τh‖0,Ω ,

and the estimate of ‖τh‖0,Ω . ⊓⊔
In order to estimate the last term on the right hand side of (17), we intro-

duce the following elliptic projector: P0,h : H1
0(Ω) → L0

h, defined by

(∇P0,hv −∇v,∇θh) = 0 ∀θh ∈ L0
h,

We have the following estimate.

Lemma 7 For each ε ∈
(
0, 12

)
, there exists a constant C(ε) > 0 such that,

for all ψ ∈ H3(Ω) ∩H1
0(Ω),

sup
ωh∈Lh

(∇ψ −∇P0,hψ,∇ξh)

‖ξh‖0,Ω
≤ C(ε)h1/2−ε ‖ψ‖3,Ω

Proof. Let ψ ∈ H3(Ω)∩H1
0(Ω). According to Lemma III.3.2 from [6], for each

p > 2, there exists C > 0 such that

sup
ωh∈Lh

(∇ψ −∇P0,hψ,∇ωh)

‖ωh‖0,Ω
≤ Ch1/2−1/p ‖ψ‖2,p,Ω .

Since from the Sobolev’s embedding theorem, ‖ψ‖2,p,Ω ≤ C ‖ψ‖3,Ω with a
positive constant C depending on p (cf. [6, Theorem I.1.3]), the result follows
from these estimates by taking p := 1/ε. ⊓⊔

Putting together the last three lemmas, we derive the following estimate.

Lemma 8 For each ε ∈
(
0, 12

)
, there exists a constant C(ε) > 0 such that, for

all (f, g) ∈ H1
0(Ω)× L2(Ω), if (u, v) = T (f, g) and (uh, vh) = Th(f, g), then

‖u− uh‖1,Ω+‖v − vh‖0,Ω ≤ C(ε)h1/2−ε ‖u‖3,Ω+‖P0,hu− u‖1,Ω+‖Phv − v‖0,Ω .

Proof. The result follows by applying Lemma 6 to the first term on the right
hand side of (11), choosing ωh = Phv and θh = P0,hu and using Lemma 7. ⊓⊔

The following result is an immediate consequence of the previous lemma,
estimate (7) and standard error estimates for Ph and P0,h (see, for instance,
[6, Theorem A.2]).
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Lemma 9 The family of operators Th : H1
0(Ω) × L2(Ω) −→ H1

0(Ω) × L2(Ω)
converge in norm to the operator T : H1

0(Ω) × L2(Ω) −→ H1
0(Ω) × L2(Ω),

namely

‖T − Th‖L(H1

0
(Ω)×L2(Ω)) −→ 0 as h→ 0.

Now, we are in a position to write the main result of this paper, which yields
analogous convergence properties of the proposed scheme, as a consequence of
Lemmas 3 and 4.

Theorem 2 Let µ ∈ σ(T ) be an eigenvalue of multiplicity m. Then, there
exists h0 > 0 such that, for all h < h0, σ(Th) contains exactly m eigen-

values µ
(1)
h , . . . , µ

(m)
h (repeated according to their respective multiplicity) that

converges to µ as h→ 0.
Let E be the invariant subspace of T associated to µ. Let Eh be the direct sum

of the invariant subspaces of Th associated to µ
(1)
h , . . . , µ

(m)
h . Let δ̂ (E , Eh) be

the gap between these subspaces, defined by δ̂ (E , Eh) := max{δ(E , Eh), δ(Eh, E)}
with

δ (E , Eh) := sup
(ψ,ϕ)∈E

‖ψ‖2

1,Ω
+‖ϕ‖2

0,Ω
=1

[
inf

(ψh,ϕh)∈Eh

(
‖ψ − ψh‖

2
1,Ω + ‖ϕ− ϕh‖

2
0,Ω

)1/2
]

and analogously for δ(Eh, E). Then,

δ̂(E , Eh) −→ 0 as h→ 0.

Proof. It is a direct consequence of Lemma 9 and Theorems 7.1 and 7.2 from
[1]. ⊓⊔

4 Numerical tests

We report in this section the results of a couple of numerical tests obtained
with the method analyzed above. With this purpose, we have implemented
the numerical solution of problem (9) in a Matlab code.

For the first test, we have considered the transmission eigenvalue problem
in a disk. In such a geometry, when the index of refraction n is constant,
the eigenvalues can be semi-analytically computed by numerically solving an
algebraic equation involving Bessel functions (see [5]).

We have used a disk of radius 1/2 and a refractive index n = 16 as in
[5]. We have solved the problem with our code on several meshes Th with
different levels of refinement; each mesh is identified by its respective number
of triangles Nh. We have computed the five smallest real positive eigenvalues:
kh,1, . . . , kh,5. We report in Table 1 the computed transmission eigenvalues as
well as those determined in a semi-analytical manner, kex,j (see [5]). The table
also includes the estimated rates of convergence computed for each eigenvalue
by means of a least-squares fitting.
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Table 1 Computed and exact eigenvalues, kh,j and kex,j , respectively, and estimated rates
of convergence.

Nh 256 1, 024 4, 096 16, 384 36, 864 kex,j Rates
kh,1 2.0269 1.9978 1.9905 1.9886 1.9883 1.9880 1.992
kh,2 2.6834 2.6306 2.6174 2.6141 2.6134 2.6129 1.992
kh,3 2.6837 2.6308 2.6174 2.6141 2.6134 2.6129 1.988
kh,4 3.3586 3.2599 3.2351 3.2288 3.2276 3.2267 1.988
kh,5 3.3791 3.2644 3.2360 3.2290 3.2277 3.2267 2.016

Problem (1) may have also complex eigenvalues. In fact, in the present
setting, it is shown in [5] that they can be computed by finding complex zeros
of the same algebraic equation as above. In particular, it is reported in [5] that
kex = 4.901± 0.578i are complex eigenvalues of the same problem (radius 1/2
and n = 16). According to our theoretical results (cf. Theorem 2), our code
should also provide approximations of them. We report in Table 2 the same
results as above for these complex eigenvalues.

Table 2 Disk of radius 1/2. Computed and exact complex eigenvalues and estimated rates
of convergence.

Nh = 256 Nh = 1, 024 Nh = 4, 096 Nh = 16, 384 kex Rate
5.025± 0.541i 4.936± 0.578i 4.910± 0.579i 4.903± 0.578i 4.901± 0.578i 1.970

For the second test, we have considered a different domain, a unit square,
and the same refractive index, n = 16. In this case, in absence of an analytical
solution, we have estimated for each eigenvalue the rate of convergence t and
a more accurate approximation of the exact eigenvalue k̂ex,j , by means of a

least-squares fitting of the model: kh,j ≈ k̂ex,j + Cht.

We report in Table 3 the five smallest eigenvalues computed on several
meshes. As in the previous test, Nh denotes the corresponding number of
triangles for each mesh. We also report the more accurate approximation k̂ex,j
and the estimated rates of convergence.

Table 3 Unit square. Computed eigenvalues k̂h,j , more accurate approximations kex,j and
estimated rates of convergence.

Nh 512 2, 048 8, 192 32, 768 131, 072 k̂ex,j Rates
kh,1 1.9073 1.8865 1.8813 1.8800 1.8797 1.8796 2.004
kh,2 2.4857 2.4546 2.4468 2.4449 2.4444 2.4442 1.996
kh,3 2.5089 2.4603 2.4483 2.4452 2.4445 2.4442 2.006
kh,4 2.9635 2.8909 2.8726 2.8680 2.8668 2.8664 1.988
kh,5 3.2392 3.1650 3.1463 3.1417 3.1405 3.1401 1.994

In all the tables, a quadratic rate of convergence can be clearly observed,
which is consistent with the numerical results reported in [5] and [13].
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Finally, Figures 1 and 2 show the eigenfunctions w (left) and z (right) from
problem (1) corresponding to the two lowest transmission eigenvalues kh,1 and
kh,2, respectively.

w z

Fig. 1 Unit square. Eigenfunctions corresponding to kh,1.

w z

Fig. 2 Unit square. Eigenfunctions corresponding to kh,2.
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Véjar: Study of stability and conservative numerical methods for a high order non-
linear Schrödinger equation

2018-04 Julio Aracena, Maximilien Gadouleau, Adrien Richard, Lilian Salinas:
Fixing monotone Boolean networks asynchronously
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