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Abstract

We introduce a discontinuous Galerkin method for the mixed formulation of the
elasticity eigenproblem with reduced symmetry. The analysis of the resulting dis-
crete eigenproblem does not fit in the standard spectral approximation framework
since the underlying source operator is not compact and the scheme is nonconform-
ing. We show that the proposed scheme provides a correct approximation of the
spectrum and prove asymptotic error estimates for the eigenvalues and the eigen-
functions. Finally, we provide several numerical tests to illustrate the performance
of the method and confirm the theoretical results.

Keywords: Mixed elasticity equations, spectral problems, finite elements, discontinuous
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1 Introduction

We present a discontinuous Galerkin (DG) approximation of the linearized vibrations of
an elastic structure. In many applications, the displacement field is not necessarily the
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variable of primary interest. We consider here the dual-mixed formulation of the elasticity
eigenproblem because it delivers a direct finite element approximation of the Cauchy stress
tensor and it permits to deal safely with nearly incompressible materials.

A mixed finite element approximation of the eigenvalue elasticity problem with reduced
symmetry has been analyzed in [17]. It consists in a formulation that only maintains the
stress tensor as primary unknown, besides the rotation whose role is the weak imposi-
tion of the symmetry restriction. It is shown that a discretization based on the lowest
order Arnorld-Falk-Winther element provides a correct spectral approximation and quasi
optimal asymptotic error estimates for the eigenvalues and the eigenfunctions.

The ability of DG methods handle efficiently hp-adaptive strategies make them suitable
for the numerical simulation of physical systems related to elastodynamics. Our aim
here is to introduce an interior penalty discontinuous Galerkin version for the H(div)-
conforming finite element space employed in [17]. The k'-order of this method amounts
to approximate the Cauchy stress tensor and the rotation by discontinuous finite element
spaces of degree k and k — 1 respectively. We point out that an H(curl)-based interior
penalty discontinuous Galerkin method has also been introduced in [8] for the Maxwell
eigensystem. The DG approximation we are considering here may be regarded as its
counterpart in the H(div)-setting. As in [8], our analysis requires conforming meshes, but
the DG method still permits one to employ different polynomial element orders in the
same triangulation. A further advantage of this DG scheme is that it allows to implement
high-order elements in a mixed formulation by using standard shape functions. Let us
remark that the DG method has also been analyzed in [1] for the Laplace operator.

It is well known that the underlying source operator corresponding to mixed formu-
lations is generally not compact. In our case, this operator admits a non physical zero
eigenvalue whose eigenspace is infinite dimensional. It is then essential to use a scheme
that is safe from the pollution that may appear in the form of spurious eigenvalues in-
terspersed among the physically relevant ones. It turns out (cf. [3, 6]) that, for mixed
eigenvalue problems, the conditions guarantying the convergence of the source problem
does not necessarily a correct spectral approximation (as it happens for compact operators
2)).

It has been shown in [8] that DG methods can also benefit from the general theory
developed in [10, 11] to deal with the spectral numerical analysis of non-compact operators.
We follow here the same strategy, combined with techniques from [17, 16|, to prove that
our numerical scheme is spurious free. We also establish asymptotic error estimates for
the eigenvalues and eigenfunctions. We treat with special care the analysis of the limit
problem obtained when the Lamé coefficient tends to infinity.

We end this section with some of the notations that we will use below. Given any
Hilbert space V', let V™ and V"™*" denote, respectively, the space of vectors and tensors
of order n (n = 2,3) with entries in V. In particular, I is the identity matrix of R™*"
and 0 denotes a generic null vector or tensor. Given 7 := (7;;) and o := (0;;) € R™*", we
define as usual the transpose tensor 7* := (7;), the trace tr7 := >""" | 7;;, the deviatoric
tensor 70 := 7 — & (tr7) I, and the tensor inner product 7 : o 1= " 7;;04.

Let € be a polyhedral Lipschitz bounded domain of R" with boundary 0f). For
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s > 0, ||||s.o stands indistinctly for the norm of the Hilbertian Sobolev spaces H*((2),
H*(Q)" or H*(Q)™*", with the convention H(Q) := L?(Q2). We also define for s > 0 the
Hilbert space H*(div,2) := {7 € H*(Q)™*" : divT € H*(2)"}, whose norm is given by
17 s @i ) = 17120 + [[div 712 o and denote H(div, Q) := H(div, Q).

Henceforth, we denote by C' generic constants independent of the discretization pa-
rameter, which may take different values at different places.

2 The model problem

Let Q C R™ (n = 2,3) be an open bounded Lipschitz polygon/polyhedron representing
an elastic body. We denote by n the outward unit normal vector to 9€) and assume that
00 =TpUTy, with int(T'p) Nint(T'y) = . The solid is supposed to be isotropic and
linearly elastic with mass density p and Lamé constants g and A\. We assume that the
structure is fixed at I'p # () and free of stress on I'y. We can combine the constitutive
law

C'lo=e(u) in Q,
and the equilibrium equation

wu=ptdive in €, (1)
to eliminate either the displacement field u or the Cauchy stress tensor o from the global
spectral formulation of the elasticity problem. Here, e(u) = i[Vu + (Vu)?] is the
linearized strain tensor, and C : R™"™ — R™*" is the Hooke operator, which is given in
terms of the Lamé coefficients A and u by

Cr=Xtrr)I+2ur VTRV

Opting for the elimination of the displacement u and maintaining the stress tensor o as a
main variable leads to the following dual mixed formulation of the elasticity eigenproblem:
Find o : Q — R™" symmetric, r : 2 — R™*" skew symmetric and w € R such that,

—V(p'dive) = w*(Cl'o+r) in
dive = 0 on I'p, (2)
on = 0 on I'y.

We notice that the additional variable r := 1 [Vu — (Vu)] is the rotation. It acts as a
Lagrange multiplier for the symmetry restriction. We also point out that the displacement
can be recovered and also post-processed at the discrete level by using identity (1).

Taking into account that the Neumann boundary condition becomes essential in the
mixed formulation, we consider the closed subspace W of H(div,(2) given by

W :={r €H(div,Q): mn=0o0nTy}.
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The rotation r will be sought in the space
Q :={sc ()" s*=—s}.

We introduce the symmetric bilinear forms

B((a,r),(T,s)) :—/QC_la':TnL/Qr:T—l—/Qs:a

A((a', r), (T, s)) = /Qp_1 diveo -divT + B((a, r), (T, s)>

and denote the Hilbertian product norm on H(div, Q) x L*(2)™*" by

and

(T, 8)|? := “TH%{(div,Q) + [Isl3 o

The variational formulation of the eigenvalue problem (2) is given as follows in terms
of k := 1+ w? (see [17] for more details): Find x € R and 0 # (o,7) € W x Q such that

A((e.7).(r.8)) =k B((.7).(T.8)) V(r,8)e Wx Q. (3)
We notice that the bilinear form

(o, T)c.div = / ptdive - divT + / Clo: T
Q Q

also defines an inner product on WW. Moreover, the following well-known result establishes
that the norm induced by (-,-)c.aiv is equivalent to ||-||f(div,0) uniformly in the Lamé
coefficient .

Proposition 2.1. There exist constants co > ¢; > 0 independent of A such that
a1l Tlu@iv,e) < |1Tlleaiv < el Tllu@iv.o) V7T €W,
where |7 le.aiv = V(T,T)¢ qiv-

Proof. The bound from above follows immediately from the fact that

1 1
Clo:1=— UD:TD+—/trG trr 4
/Q 2 Ja nlh+ 2 Jo ) @
is bounded by a constant independent of A. The left inequality may be found, for example,
in [17, Lemma 2.1]. O

As a consequence of Proposition 2.1, there exists a constant M > 0 independent of A
such that

(). (rs)| < M@ nlr.s) Hor).(rs)eWwxQ ()
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Proposition 2.2. There ezists a constant o > 0, depending on p, p and Q (but not on
A), such that

. A((a,r), (T, s))

=z 5 V(o, %% ‘ 6
(T,5)EWXQ Il(T, s)|| > af(e,r)|| V(o,r)e x Q (6)

Proof. 1t follows from Proposition 2.1 that
A((r.0),(7,0)) = (7. Theaw = CHImlfaney ¥ €W,

with C'; > 0 independent of A. On the other hand, there exists a constant 5 > 0 depending
only on Q (see, for instance, [5]) such that

S . T
swp 0TS glslon Vse Q. )
TEW |T||H(div,Q)

Consequently, the Babuska-Brezzi theory shows that, for any bounded linear form L €
L(W x Q), the problem: find (o, 7) € W x Q such that

A((a,r), (T, s)) = L(T, s) V(T,s) e WX Q

is well-posed, which proves (6). O
We deduce from Proposition 2.2 and from the symmetry of A(-,-) that the operator
T : [L2(Q)™"])? - W x @ defined for any (f,g) € [L*(2)"*"]?, by

A(T(f.9).(r.9)) = B((£.9).(r.9)) V(r.s)eWxQ ®)

is well-defined and symmetric with respect to A(:,-). Moreover, there exists a constant
C > 0 independent of A such that

IT(f, 9l < ClI(f.9)loa Y(f.9) € LX) (9)

It is clear that (k, (o, 7)) is a solution of (3) if and only if (n =%, (o, 7)) is an eigenpair
for T'. Let
K={reW: divr=0 in Q}. (10)

From the definition of T, it is clear that T|xxg : K X @ — K x Q reduces to the
identity. Thus, n = 1 is an eigenvalue of T" with eigenspace I x Q. We introduce the
orthogonal subspace to IC x @ in W x Q with respect to the bilinear form B,

(I x Q*F := {(a‘,’r) EWXQ: B((a,r),(7’,s)) =0 VY(r,s) e Kx Q}.
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Lemma 2.1. The subspace [IC x Q]2 is invariant for T, i.e.,
T([K x Q]*#) C [K x Q]**.
Moreover, we have the direct and stable decomposition
WxQ=[Kx Q] [Kx Q]"". (11)
Proof. See Lemma 3.3 and Lemma 3.4 of [17]. O

We deduce from Lemma 2.1 that there exists a unique projection P : W x Q —
W x @ with range [IC x Q]*# and kernel IC x Q associated to the splitting (11).

Let us consider the elasticity problem posed in Q with a volume load in L?(©2)" and with
homogeneous Dirichlet and Neumann boundary conditions on I'p and I'y, respectively.
According to [9, 15], there exists 5 € (0,1) that depends on €2, A and p such that the
displacement field that solves this problem belongs to H**(Q)" for all s € (0,5). The
following result shows that P and T o P are regularizing operators.

Lemma 2.2. Foralls € (0,5), POWx Q) C H¥(Q)"" xH*(Q)"™"™ and T(P(Wx Q)) C
{H(Q)™" x H*(Q)™™ : divT € H(Q)"}. Moreover, there exists a constant C' > 0 such
that

I1P(T, )]

Hs(Q)anXHS(Q)an S O||diVT||O7Q V(T, S) 6 W X Q (12)

and
|T o P(7, s)|

Hs (div,Q) xHs (Q)nxn < CHle THQQ V<T, 8) €W x Q (13)

Proof. Estimate (12) is proved in [17, Lemma 3.2] and (13) follows as a consequence of
(12), see [17, Proposition 3.5]. O

We point out that, in principle, the exponent § and the constant C' in (12) depend
on the Lamé coefficient \. However, we know that (12) also holds true when A\ = 400
(see the Appendix). Hence, it is natural to expect (12) to be satisfied uniformly in A.
However, to the best of authors’ knowledge, such a result is not available in the literature.
For this reason, from now on we make the following assumption.

Assumption 2.1. There exist s € (0,1) and Co>0 independent of X\ such that

||P(’T, S)| Hs(Q)nanHS(Q)an S 60||div ’T||07Q V(T, 8) € W X Q, VS € (0,/8\)

This would immediately imply the existence of C,>0 independent of A such that

HT o P(’T, S)’ Hs (div, Q) x Hs (Q)nxn < élHdiv ’THQQ V(’T, 8) €W x Q, Vs € (0,:9\)

The next result gives the spectral characterization for the solution operator T'.
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Proposition 2.3. The spectrum sp(T') of T' decomposes as follows

sp(T) = {0, 1} U {m }ren

where {nx}r C (0,1) is a real sequence of finite-multiplicity eigenvalues of T which con-
verges to 0. The ascent of each of these eigenvalues is 1 and the corresponding eigenfunc-
tions lie in P(W x Q). Moreover, n = 1 is an infinite-multiplicity eigenvalue of T with
associated eigenspace IC x Q@ and n = 0 is not an eigenvalue.

Proof. See [17, Theorem 3.7]. O
We end this section by providing a bound of the resolvent (ZI — T)_l.

Proposition 2.4. If z ¢ sp(T), there exists a constant C' > 0 independent of \ and z
such that

H(zI — T) (o,r)| > C dist (z7sp(T)) l(o,7)]| V(o,7r)e W x Q,

where dist (z,sp(T)) represents the distance between z and the spectrum of T in the
complex plane, which in principle depends on .

Proof. See Proposition 2.4 in [16]. O

3 A discontinuous Galerkin discretization

We consider shape regular affine meshes 7;, that subdivide the domain € into trian-
gles/tetrahedra K of diameter hx. The parameter h := maxger, {hx} represents the
mesh size of Tj,. Hereafter, given an integer m > 0 and a domain D C R™, P,,(D) denotes
the space of polynomials of degree at most m on D.

We say that a closed subset F' C  is an interior edge/face if F' has a positive (n — 1)-
dimensional measure and if there are distinct elements K and K’ such that F = K N K.
A closed subset F' C € is a boundary edge/face if there exists K € T, such that F' is an
edge/face of K and F' = K N 9. We consider the set F? of interior edges/faces and the
set F? of boundary edges/faces. We assume that the boundary mesh F? is compatible
with the partition 0Q2 =I'p U Ty, i.e.,

lJ F=Tp and J F=rw,

FeFp FeRY
where FP :={F € FY; F CTp}and FY :={F € F?; F CTxy}. We denote
Fp=F UF and  Fpi=FUFY,
and for any element K € 7T, we introduce the set

F(K):={F € F; FcCOoK}
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of edges/faces composing the boundary of K. The space of piecewise polynomial functions
of degree at most m relatively to 7}, is denoted by

Po(Th) = {v € L*(Q); v|x € Pu(K), VK €T}
For any k > 1, we consider the finite element spaces
W, := Pr(Tn)" " R=WLNW and Q= Pr1(Th)"" N Q.

Let us now recall some well-known properties of the Brezzi-Douglas-Marini (BDM)
mixed finite element [7]. For ¢ > 1/2, the tensorial version of the BDM-interpolation
operator II, : HY(Q)™™ — W, satisfies the following classical error estimate, see [4,
Proposition 2.5.4],

|7 — 7 ||o.q < CAMRERD| 7|, VT e HY(Q)™ ", t>1/2. (14)
For less regular tensorial fields we also have the following error estimate
|7 — 7 lloe < CR(||T|lue + 1T lH@iv,e) V7 € H(Q)™ " NH(div,Q), te(0,1/2].
Moreover, thanks to the commutativity property, if div = € H*(Q)", then )
|div(T — I, 7) |0 = ||div T — Ry div 7|joq < CR™ ) ||div 7,0, (16)

where Ry, is the L?(Q)"-orthogonal projection onto Pj_1(7)". Finally, we denote by
S, @ — Q) the orthogonal projector with respect to the L2(2)™"-norm. It is well-
known that, for any ¢ > 0, we have

|r — Surllog < CR™™ER|p||, o Vre H(Q)™"N Q. (17)
For the analysis we need to decompose adequately the space W, x Q. We consider,
Kn={reWwW;j, divr=0}cCK.

Lemma 3.1. There exists a projection Py : W} x Qp — W5 x Q) with kernel ICp, X Qy,
such that for all s € (0,5), there exists a constant C independent of h and \ such that

||(P — Ph)<0'h,’l"h)|| < ChSHdlv O'hHO’Q V(O’}“’rh) € Wz X Q.

Proof. See the proof of estimate (ii) of Lemma 4.2 from [17] O

For any t > 0, we consider the broken Sobolev space
HY(T,) == {v € L*(Q)"; wv|x € H(K)" VK € T,}.

For each v := {vi} € H(T,)" and 7 := {7} € H'(T,)"™ the components vx and 7x
represent the restrictions v|x and 7|x. When no confusion arises, the restrictions of these
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functions will be written without any subscript. We will also need the space given on the
skeletons of the triangulations 7, by

L*(Fn) = [] L9

Similarly, the components xr of x := {xr} € L*(F;,) coincide with the restrictions x|
and we denote

/ =3 / vr and x|y = / v Y ELAF).
Fa F Fhn

FeFy

Similaly, [\[3 7, = S s fp1h for all x € LA(F}) = [Ty s, LA(F).

From now on, hr € L?*(F},) is the piecewise constant function defined by hz|r := hp
for all F' € F, with hr denoting the diameter of edge/face F'.

Given a vector valued function v € H(7,)", with ¢t > 1/2, we define averages {v} €
L2(F,)" and jumps [v] € L2(F;,) by

{vir = (Vg +vg)/2 and [v]r:=vg - -ng+vg  -ng VE € F(K)NF(K'),

where ny is the outward unit normal vector to K. On the boundary of {2 we use the
following conventions for averages and jumps:

{vip:=vk and [v]p :=vxg-n VF e F(K)NIQ.

Similarly, for matrix valued functions 7 € H*(7,)"*", we define {7} € L?(F;,)"*" and
[r] € L*(F»)" by

{t}r=(txk+7K)/2 and [7]r:=7Trkng+7TrNK VF € F(K)NF(K')
and on the boundary of {2 we set
{T}ri =7k and [7]r:=7Tgkn VF € F(K)NOoN.
Given 7 € W), we define div, 7 € L*(Q)" by divy, T|x = div(7|x) for all K € T,

and endow W(h) := W + W, with the seminorm

. ~1/2

vy = lldiva 7l o + 1172 FF1IE 7
and the norm
171wy = TRy + IT15.0-
For the sake of simplicity, we will also use the notation
(7. ) Be = 17wy + lIsll6.0-

The following result will be used in the sequel to ultimately derive a method free of
spurious modes. Since according to Proposition 2.3 the spectrum of T lies in the unit
disk D :={z € C: |z| < 1}, we restrict our attention to this subset of the complex plane.
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Lemma 3.2. There exists a constant C' > 0 independent of h and \ such that for all
z € D\ sp(T) with |z| <1, there holds

[(zI = T)(7,8)lpc = Cdist (z,5p(T)) 2| |(T,8)Ipc V(T,s) € W(h) x Q.
Proof. We introduce
(", r") =T (1,8) € W x Q

and notice that

(zI —T)(o",r") =T (I —T)(T,s).
By virtue of Proposition 2.3 and the boundedness of T : [L?(2)"*"]? — W x Q we have
that

Cdist (z,5p(T)) (", 7*)|| < [|(zI = T)(o",7")[| < | T (I — T)(7, 5)|
< IT(|(=I = T)(7, 8)llo < | T|[|(zI = T)(7, )| pc-

Finally, by the triangle inequality,

(7, $)lpe < 127, P)[I+12 "M (=X = T)(7, 8)lIpc

. T
<2 <1+ . (Z7SP<T>)> (=1 = T)(r, 8)]lne

|| Cdist (z,sp(T)) + | T||
- C dist (z,sp(T))

> |1 = T)(7, 5)lpc-

Hence,

dist (z,sp(T"))
Cle (HTH o (Z’SP(T)J (7, 9)lpe < (T = T)(r 8)llne-

Since dist (z,sp(T)) < |z| <1 and | T'|| < C’ (with C' independent of ), we derive from
the above estimate that

Clz|
1+

and the result follows. O]

dist (=, sp(T))[/(7, ) pe < [[(zI = T)(7. 5)||pc;

Remark 3.1. If E is a compact subset of D\ sp(T'), we deduce from Lemma 3.2 that
there exists a constant C' > 0 independent of h and X\ such that, for all z € F,

) < — ¢ .
dist (£, sp(T))|z|

—1
[(zI =T) " llcowmxewmxe
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Let us now introduce the discrete counterpart of (3). Given a parameter ag > 0, we
introduce the symmetric bilinear form

Ah((o', r), (7, s)) = /Qp_l divy, o - div, T + B((o‘, r), (T, s))

+ [ sk ol I~ [ (7 divio) [l + (o diviT) - [o])

Fh Fh

and consider the DG method: Find k;, € R and 0 # (o, 7,) € W) X Q) such that

Ah<(o'h,rh), (Th,sh)) - /ihB<(0'h,rh), (Th,sh)> V(Th, 81) € Wi x Qn. (18)

We notice that, as it is usually the case for DG methods, the essential boundary condition
is directly incorporated within the scheme.

A straightforward application of the Cauchy-Schwarz inequality shows that, for all
(o,7),(7,8) € H(div,T;) x Q (t > 1/2), there exists a constant M* > 0 independent of
h and A such that

Au((e.m), (7.9)) | < Ml 1)l 7 8) [ (19)
where 12
I, Pllbe = (I, P)libe + 11 {diva iz )

Moreover, we deduce from the discrete trace inequality (see [12])

192 {0} o, < Cllvlon Vo € Pu(Ta), (20)
that for all (o, r) € H'(div,T,) x @ (t > 1/2), and (71, 84) € W), X Qp,
Au((em), (7. 30)) | < Mgl (@,7) [ (T 1)l 1)

with Mpg > 0 is independent of h and A.

4 The DG-discrete source operator

The following discrete projection operator from the DG-space W), onto the H(div, Q2)-
conforming mixed finite element space WW¢ is essential in the forthcoming analysis.

Proposition 4.1. There exists a projection L, : Wy, — W, such that the norm equiva-
lence

1 /2 _
Clirlbwin < (1T g + 115 I71B5 ) < Cllrlwoy (22)

holds true on Wy, with constants C > 0 and C > 0 independent of h. Moreover, we have
that
Idivi(r = L) 3a+ Y bl = T 8. < Collhz"[7]15 5 (23)
KeT,
with Cy > 0 independent of h.
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Proof. See [16, Proposition 5.2]. O

We can prove, with the aid of this result, that the bilinear form A, satisfies the
following inf-sup condition that ensures the stability of our DG method.

Proposition 4.2. There exists a positive parameter a§ such that, for all ag > ag,

. A (o), (71, 51))

(Th,Sh)EWLX Q) \|(Th78h)||DG

> apgll(on, Th)llpe V(owTh) € Wy x Q) (24)

with apg > 0 independent of h and A.

Proof. 1t is shown in [16, Proposition 3.1] that there exists a constant a4 > 0 independent
of h and A such that

. A((ah,rh), (T, sh)>

(Th,Sh)EWS X Qp ||(Th7 sh)H

> Oéi”(d’h,’r'h)H V(O’h,’l"h) € W; X Qh.

It follows that there exists an operator ©, : W; x Q) — W) x Q,, satisfying
A((@n 1), On(an 1)) = a4l (@nra)l|? and [On(en, )| < (@ ra)l  (25)
for all (o, rn) € W5, X Q.

Given (7p, 8n) € W x Qy, the decomposition 7, = 7§ + 74, with 7§ = Z;,7), and
Th = Tn — LpTh, and (25) yield

An((Th 1), O4(75 80) + (74,0)) = a5 (75, )|+

A, (<T;§, 81), (Fn, 0)) + A, ((%h, 0), O (7S, sh)) + A, ((i—h, 0), (7, o)). (26)
By the Cauchy-Schwarz inequality,
Ah((f'h, 0), (T, 0)) = p [ dive, 743 o + asllhF Il £ + / C™' T
Q
9 / {o divi 7} [l > sl *Imal 2 .
7

— 20~ |2 {diva 7 o,z |2 Trul o7

and we deduce from (20) and (23) that

A4 (7,0, (71,0)) = (as = 1) Iz [ral ;.

with a constant C; independent of A and \.
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We proceed similarly for the terms in the right-hand side of (26). Indeed, it is straight-
forward that

Ah((T'fn ), (Th, 0)) > —p H|div 7 loelldivy Talloe — Col|Fallo (| Th o0 + | Sklloe)—
_ 1/2 . c —1/2
p B2 {div T o P T al o

and using again (20) and (23) we obtain

(Th,sn)ll =
_ %

4

A (750, (74,0)) = =Csllhz[ralllo.z;
(75, )2 = Callbz*[ma] 13 .

with Cy > 0 independent of A and \. Similar estimates lead to

Ah((i’-h, 0), Ox(T%, 8h)> > —Cs||h"*[a]llo,z:

On(Ty, 81| >
el =l c
= Gsllhz“[ralllo.z; (75, su)ll,

where the last inequality follows from (25). We conclude that there exists Cs > 0 inde-
pendent of h and A such that

- . af . _
An((74,0),0u(75 81)) = =275, s0)II* = Collhz*[ralll ;.
We then have shown that,
c = O[ACA c 2 -1/2 2
A (70, 81), (75 81) + (71,0) ) = S(75 1)l + (as — Co)IF [l I 5,
with C7 := C; + Cy + Cs. Consequently, if ag > af := C7 + %,
. as . _
An((70s 80), (T 30) + (F,0)) = (1175 s 12+ 105111 ;).
and thanks to (22), we conclude that there exists apg > 0 such that,
A ((h, 1), On(T530) + (71,0)) = avall(Ta, s1)llpe (104(5, s1) + (74,0)1pc )

which gives (24). O

In the sequel, we assume that the stabilization parameter is big enough ag > ag
so that the inf-sup condition (24) is guaranteed. The first consequence of this inf-sup
condition is that the operator T, : L2(2)™*" x L2(Q)"*" — W), x Q;, characterized, for

any (f,g) € [L*(Q)""]?, by

A (Tu(£,9). (T sn)) = B((£,9). (Tnsn)) V(T sn) Wi x Qu (27)
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is well-defined, symmetric with respect to A(-,-) and there exists a constant C' > 0
independent of A and h such that

1T (f,9)llpc < ClI(F,9)lloa V(f.g) € [LX(Q)" "] (28)
We observe that if (kp,, (o, 74)) € R X W), x Q is a solution of problem (18) if and
only if (pn, (on,71)), with p, = 1/(1 4 kp) is an eigenpair of T, i.e.

1
Oh,Th).
1 —|— /{h< h h>
Analogously to the continuous case, we prove that the discrete resolvent associated to

the discrete operator T', is bounded.

Theorem 4.1. Assume that (&,7) := T(f,g) € H (div, Q) x H (Q)"™™ for some t > 1/2.
Then,

Ty(on,Th) =

1\4 . *
(T —T1)(f,9)llpc < (1 + DG) inf |T(f,g) — (Th, s1)ll pe- (29)
apG /) (Thish)EWRXQ)

Moreover, the error estimate

(T =T (.96 < O (I + [Fluopen),  (30)
holds true with a constant C' > 0 independent of h and .

Proof. We first notice that the DG approximation (27) is consistent with regards to its
continuous counterpart (8) in the sense that

Ah((T T, 9), (Th, sh)> —0 Y(Th, ) € Wi X On. (31)

Indeed, by definition,

An((&7), (Th81)) = /Qp_l div & - div, 7 + B((3,7), (74,51))
{p~tdive} - [r4]. (32)
T
It is straightforward to deduce from (8)
V(p'dive)=C'(6—-f)+7—g and (6—36%)/2=(f—F"/2. (33)
Moreover, an integration by parts yields

/ “dive -div, T, = — Z/V “ldive): Th—l-Z/ “tdive - Tank

KeTy, KeTy,

:_Z/ “tdive): T, + | {ptdive} - [T4].

KeTy, i
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Substituting back the last identity and (33) into (32) we obtain

Ah((&,f«), (T4, sh)> - B((f,g), (T4, sh)> V(Th, 81) € Wh x Qi

and (31) follows.

The Céa estimate (29) follows now in the usual way by taking advantage of (31), the
inf-sup condition (24), estimate (21), and the triangle inequality.

It follows from (29) that

T = TF 9l < (14520 16.9) - (6. Silbe. G

Using the interpolation error estimates (14), (16) and (17) we immediately obtain

(& #) (16, 57l pe = 1(6.7)~ (05 i) | < Coh™™ ) (1 a1 e ).
(35)

Moreover, we notice that

1K {div(e — Ihé) o < S Y helldiv(e — 11,6)|2 .
KeT, FEF(K)

Under the regularity hypotheses on &, the commuting diagram property satisfied by 11},
the trace theorem and standard scaling arguments give

hy?|div(e — 11,6)||o.p = hi?||div e — R div &llor < Coh™ || div & |, «

for all F' € F(K), where the L?(K)-orthogonal projection Ry := Rp|x onto Py_1(K) is
applied componentwise. It follows that

1/2
|h#*{div(& — &) o7 < Cshig™ " ( D_ lldiv &niK) < Gt div & o
KeT,
(36)
Combining (36) and (35) with (34) proves the asymptotic error estimate (30). O

Lemma 4.1. For all s € (0,5), there exists a constant C' > 0 independent of h and A,
such that for all (o,7) € W x Q

||(T — Th)P(O', T)HDG S C h? HdiVO’HO’Q.

Proof. The result is a consequence of Theorem 4.1 by noticing that, by virtue of Lemma
2.2 and Assumption 2.1, T o P C {(7,r) € [H*(Q)™"]* : divr € HY(Q)"} for all
s € (0,53). O

Lemma 4.2. For all s € (0,5), there exists a constant C' > 0 independent of h and A
such that

(T — Th)(Th, sn)llpe < Ch° |[(Th, su)llpe V(Th, Sh) € Wh X Q.
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Proof. For any 7T, € W), we consider the splitting 7, = 7§ + 7, with 7§, := Z,7, € W,
We have that

(T — Th)(’Th, Sh) = (T — Th)(’f'h, 0) + (T — Th)("l'z, Sh)
= (T — Th)(%iu 0) + (T — Th)Ph(T?m Sh),

where the last identity is due to the fact that (I — Py)(75,s,) € K, x Qp, and T — T,
vanishes identically on this subspace. It follows that

(T —Th)(Th, s1) = (T —=T4)(Th,0)+ (T =T1)(Pnr—P)(74, 8n) + (T —T4) P(7}, 81),

and the triangle inequality together with (9) and (28) yield

(T = T)(Th, 80)llpe < (T = T)(Tr,0)lpc + (T = Tn)(Pn — P) (T4, sn)l pc
+ (T = Tn)P(75, sn)llpe < <||T||L([L2(Q)nxn}2,ng> + ||Th||£([L2(Q)nxn]2,whx9h)>
(II7sllo + 1Py = P)(r5 s)) + (T = Tw)P(r5, 81 -
Using (23), Lemma 3.1, Assumption 2.1 and Lemma 4.1 we have that

ITrllo0 < CR|ITHIwm,

|(Pr — P) (T4, s1)|| < Ch?||div 73 ]lo.0 < CR®||Th|lwn
and

(T = Tw)P(75. sn)|lpec < CR°||div T lloe < CF°||Thllwn

respectively, which gives the result. O

5 Spectral correctness of the DG method

The convergence analysis follows the same steps introduced in [10, 11], we only need to
adapt it to the DG context, cf. also [§].

For the sake of brevity, we will denote in this section X :=W x Q, X, := W), x Q,,
and X(h) := W(h) x Q. Moreover, when no confusion can arise, we will use indistinctly x,
y, etc. to denote elements in X and, analogously, x, y;,, etc. for those in Xj,. Finally, we

will use ||||z(x, x(n)) to denote the norm of an operator restricted to the discrete subspace
Xp; namely, if S : X(h) — X(h), then

1Sz pa
1Sl cee,xmy = sup  ———— (37)
o£z,ex, ||Tnllpa

Lemma 5.1. If z € D\ sp(T'), there exists hg > 0 such that if h < hy,
||(ZI — Th):z:hHDG > (' dist (Z,Sp(T))|Z| ||wh||DG V), € X;.
with C' > 0 independent of h and X.
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Proof. 1t follows from
(zI —=Ty)xp = (2I —T)xp + (T — Th)x,
and Lemma 3.2 that
|(zI = Th)xnllpe > (Cdist (2,sp(T)) |2 = IT — Th\lc(xh,x(h))> 12x pe
and the result follows from Lemma 4.2. O
Lemma 5.2. If z € D\ sp(T), there exists hg > 0 such that if h < hy,
|(z1 = Th)x|lpe > Cdist (2,sp(T))|2* |zllpec  Va € X(h),
with C' > 0 independent of h and .

Proof. Given x € X(h) we let
17;; = Thx € Xh-

We deduce from the identity
(zI —Ty)x; =Th(zI —Th)x
and from Lemma 5.1 that
Cdist (z,sp(T)) |z[[|@4]lpe < (21 = Tr)xhllpe < | Tllceem xnll (21 = Th)zl|pe-

This and the triangle inequality leads to

lzllpe < 217 =5 llpe + 127 (2 = Th)=l|pe

_ 1Tl cxn) x0)
< 1+ h I-T,)z|pc.
< 4] ( C dist (z,sp(T))|z| I(z wllpe

< o [ G5t (& 5Tl + I Tz )
- C dist (z,sp(T))|2|

) |(zI = T'h)z| pe-

Hence,

Ol ( Cdist (z,sp(T))|z|

' x| pe < ||[(2I —Th)x| pe-
|Th|| £ex(n)x,,) + C dist (Z,Sp(T))|z|> || Il( x|

Now, using that dist (z,sp(T)) < |z] < 1 and || Th||zexn)x,) < C' (with C' independent
of A), from the estimate above we derive

Clz| dist (2,3p(T)) lz| e < (=X = T)(7, 8)]|pe,

and the result follows. O
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Remark 5.1. If E is a compact subset of D\ sp(T) and h is small enough, we deduce
from Lemma 5.2 that (21 — T',) : X(h) — X(h) is invertible for all z € E. Hence, E C
D\ sp(T}). Consequently, for h small enough, the numerical method does not introduce
spurious eigenvalues. Moreover, we have that there exists a constant C' > 0 independent
of h and X\ such that, for all z € F,

C

H(ZI—Th) ”‘3 (X(r),X(R)) = dlst(E sp(T))|z|?

For z € X(h) and E and F closed subspaces of X(h), we set §(z, E) := infycg||z—y|| pe,
6(E,F) := supyep. |yj=1 0(y, F), and 5(E,F) := max{d(E,F),(F,E)}, the latter being the
so called gap between subspaces E and F.

Given an isolated eigenvalue k # 1 of T', we define

d, = %dist (k,sp(T) \ {K}).

It follows that the closed disk D, :={z € C: |z — k| <d,} of the complex plane, with
center  and boundary 'y is such that D, Nsp(T) = {x}. We deduce from Remark 3.1
that the operator £ := 5 f (21 —T)"" dz : X(h) — X(h) is well-defined and bounded
uniformly in h. Moreover 8 |x is a spectral projection in X onto the (finite dimensional)
eigenspace €(X) corresponding to the eigenvalue k of T'. In fact,

E(X(h)) = E(X). (38)

To prove this, let k* € D, be an eigenvalue of T : X(h) — X(h) and x* € X(h) be
the corresponding eigenfunction. Since x* # 0 and T'(X(h)) C X, we actually have that
x* € X. Then, necessarily, * = k and taking into account that £€(X) is the eigenspace
associated with k we deduce (38).

Similarly, we deduce from Remark 5.1 that, for A small enough, the operator &£, :=
o= f (21 —T,)"" dz : X(h) — X(h) is also well-defined and bounded uniformly in h.
Moreover Enlx, 1s a projector in X onto the eigenspace £,(X}) corresponding to the
eigenvalues of T, : X, — X, contained in 7. The same arguments as above show that we

also have,

En(X(R)) = En(Xp).

Our aim now is to compare &€,(X,) to £(X) in terms of the gap 5. In order to do that, we
assume the following regularity assumption €(X) C H!(div, Q) x H(Q)™" with ¢ > s.

Lemma 5.3. There exists C > 0, independent of h and X\, such that

C
1€ — Enlleexnxmy < d—HT — Tl £ x(h)) - (39)

Proof. We deduce from the identity

(2 —T) "' = (2D =T} ' = (I =T) " (T —T)) (21 —T})""
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that, for any x;, € X,

1 - —
(€ = En)anlipe < 5= [ I(zI = T)™" = (I = T) |y peldz]
21
.,
1 - J—
= %/H[(ZI —T) (T = T) (=1 — T1) awn| peldz|
Y
1 - —
= %/”(ZI_T) Y e x| = Thll ecen x| (I = Th) ™l 2500 128l paldz]
Y

and the result follows from Lemmas 3.2 and 5.2, the definition (37) and the fact that for
all z € 7, 2] > k — dy, > 3. O
Theorem 5.1. There exists a constant C' > 0 independent of h and \ such that

|T — Thll cex,xh))
d.

JEX), (X)) < c( n 5(5(x>,xh)).

Proof. As &), is a projector, for h sufficiently small, we have that £,x, = x, for all
xp € E,(X}y). It follows from (38) that Ex;, € £(X), which leads to

6(zn, E(X)) < [|Enxn — Exnllpa < |E0 — E|l 2z, x| EnllDa

for all &), € £,(X}). We deduce from (39) that

C
I(ERXR), E(X)) < d—||T — Thll £exp x(h))- (40)

K

On the other hand, as Ex = x for all € £(X), for h small enough and y,, € X,

|z — Erynllne < €@ —yu)llpe + 1(E — En)ynllpe <
1€ ey xan l(® — yp)llpe + (€ — En)|l iz xmn |Ynllpe
< (1€l ez xny + 21 E || ecemyxan) |2 = ynllpe + 1€ — Erll e, xom 1] pe-

Consequently,
oz, En(Xn)) < C(6(x, Xn) + € — Enllecx, xny)

for all x € £(X) such that ||z||pc = 1 and using that the eigenspace &£(X) is finite
dimensional we deduce that

O(E(X), En(Xn)) < CLO(EX), Xn) + [|€ = Enll ey xmy)

and the result follows from the last estimate and (40). O
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Theorem 5.2. Let k # 1 be an eigenvalue of T' of algebraic multiplicity m and let Dy be a
closed disk in the complex plane centered at k with boundary ~y such that D,,Nsp(T') = {k}.
Let ki, .. Emn),n be the eigenvalues of T, : X, — X, lying in D,, and repeated according
to their algebraic multiplicity. Then, we have that m(h) = m for h sufficiently small and

lim max |k — k;p| = 0.
h—0 1<i<m ’

Moreover, if £(X) is the eigenspace corresponding to k and €,(X}y,) is the Ty -invariant
subspace of X, spanned by the eigenspaces corresponding to {k;p, i =1,...,m} then

~

lim (& (X), E4(Xn)) = 0.

h—0
Proof. We deduce from Lemma 4.2 that
W [T = T £, xny) = 0-
Moreover, as €(X) C H'(div, Q) x HY(2)™" it follows from (30) that
lim §(€(X), X,) = 0.

h—0

Hence, by virtue of Theorem 5.1, we have that

~

h—0
and, as a consequence, €(X) and £,(X},) have the same dimension provided h is sufficiently
small. Finally, being x an isolated eigenvalue and the radius of the circle v arbitrary, we
deduce that

lim max |k — k;p| = 0.
h—0 1<i<m ’

6 Asymptotic error estimates

Along this section we fix a particular eigenvalue k # 1 of T'. We wish to obtain error
estimates for the eigenfunctions and the eigenvalues in terms of the quantity

§"(E€(X),Xp) == sup inf @ — @ pe-

zc&(X),||lz)|=1%nEXn
Theorem 6.1. For h small enough, there exists a constant C' independent of h such that

F(E). E4(X0) < 5 (E(X),K). (41)

K
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Proof. As E(X(h)) = E(X) and E,(X(h)) = E,(X},), it is equivalent to show that

3£, £4(X()) < 5 (EX). %)

K

We consider here again the disk D, centered at x with radius d, and boundary . We
first notice that for all z € v

(2 —T) ' = (2D =T)) ' = (I =T)) (T =T (:2I —T)",
which implies
1 _ .
1€ = Enlecoll = 5 /H(zI —T)" = (2 = Th) " e llldz|
v
1 _ _
= 2—/!\(zI—Th) T = Tw) (21 =T) " |ewlldz|
T Jy
1 _ _
< g/ll(ﬂ = T0)™ ez (T = Ta)leelecexanll (I = T) 7 ez dz|
"

C
< d—||(T —Th)lewllcxxmy (42)

K

Now, on the one hand, it is clear that

5(E(X(h), En(X (1)) < IIE — En)lecoleceanony-

On the other hand, (42), the Céa estimate given by Theorem 4.1 and the fact that £(X)
is finite dimensional yield

C .
1€ = Enlecollecesm) = 7-07(E(X), Xa), (43)
which proves that
C
5(E(X(R)), En(X(h))) < 0" (E(X), X0). (44)
Consequently, as €(X) C H'(div, Q) x H ()" we have that
lim o (£(X(1)), £4(X(h))) = 0. (45)

It is shown in [11] that (45) implies that, for h small enough, Ay = Elex) : E(X) —
E,(X(h)) is bijective and A; ' exists and is uniformly bounded with respect to h. Fur-
thermore, it holds that,

sup 1A e — z[|pe < 2 sup I1Avy = yllpe-
@n€E(X()),|@n ] po=1 ye€(X(h).lyll po=1
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Hence,

s(Exm).EXM) < s fmAlzloe<2 s [Ey-Ewle.
zpe€n(X(M)),llenl D=1 ye€X),llylpe=1

and (43) shows that we also have 6(E(X(h)), E(X(h))) < dgd*(S(X), X}), and the result

follows from this last estimate and (44). i O

Theorem 6.2. Assume that £(X) C H(div, Q) x H(Q)"*" then there exists C > 0
independent of h and \ such that

~

0(En(Xn), £(X)) <

£ Q

hmin{t,k} ) (46)
Moreover, there exists C' > 0 independent of h such that

c’ :
max |k — k| < — h2min{te} (47)
1<i<m ’ d,

Proof. Using the estimate (41) from the last theorem and proceeding as in the proof of
(30) we immediately obtain (46).

Let Kip, -+, Km,n be the eigenvalues of T, : X; — X, lying in D,, and repeated ac-
cording to their algebraic multiplicity. We denote by @; ;, the eigenfunction corresponding
to K, and satisfying ||, n||pe = 1. We know from Theorem 6.1 that, if A is sufficiently
small,

..
Then, there exists an eigenfunction x := (o, r) € £(X) satisfying

||mi,h — CBHDG = 5(13@7;“8(}{)) S A(Sh(Xh),g(X)) S gé*(S(X),Xh) —0 ash— O,

K

which proves that ||z||p¢ is bounded from below and above by constant independent of h.
Proceeding as in the proof of the consistency property in Theorem 4.1 we readily obtain
that

An(z,y,) = kB(z,y,) (48)
for all y;, := (7h, sp) € Xp,. With the aid of (48), it is easy to show that the identity

Ap(x —xip, . —xip) —kB(x —xip, . —xip) = (Kip — K) B(Xin, Tin)

holds true. Now, according to Lemma 3.6 of [17], for any € £(X), x # 0, it holds that
B(x,x) > 0.Thus, since £(X) is finite-dimensional, there exists ¢ > 0, independent of h,
such that B(x,x) > c||x||pe. This proves that B(x;, x:) > § for h sufficiently small.
We obtain from (19) that

c
Slin = 5l <A@ — @i, @ — @) + [K||B(@ — i, @ — 2ip)| < Clll2 = 2inllbe)”
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Since x := (o, r) and x;, := (o, Tp), and by definition of || - |7, we have
" N 1/2( s
|z — zinlloe = (0, 7) = (@n, 1) he = (0. 7) = (Fh, 1) | pe + | R {div(e — o)} 7

It follows from Theorem 5.1, Lemma 4.2 and the interpolation error estimates (14)-(17)
that

(e, 1)~ (an,71)llpe < Cod(E(X), En(X)) < Clhmin{t’k}<1+ o2t aiv. ) + H""HHt(Q)”X")‘

(49)
On the other hand,
1/2( e 1/2( e 1/2( -
[hz™{div(o — on)} 7 < [[hz{div(e — o)}z + [hy {div(llie —ou)}lz (50)
and it follows from (36) that
W {div(e — o) }Hr < Col" P ||div o). (51)
Finally, using (20), (16) and (49) yield
1h{div(IThe — a1)}7; < Cs|| div(Ile — on)lloe
< Cs(|| div(Ilho — o)l + [ divi(o — o4)l0e) .
< C3(Ildiv(o — o)lon + (o 7) = (@) lne) 7
< ™ (1 o areio) + 7y ).
Combining (6), (50)-(52) and (49), we obtain (47). O

Remark 6.1. In the proof provided above for the error estimate (47) the constant C' is
not independent of A. Indeed, according to the proof of Lemma 3.6 from [17], we have

that

n 1
Clo:0>mng ——, — Z,>0.
o a-_mm{n)\—i—Zu’Qu}HUHO’Q_

B((o.r). (o) = |

Q

Therefore, the constant ¢ in the proof above tends to zero when \ goes to infinity. However,
the numerical experiments presented below suggest that (47) holds true uniformly in \.

Remark 6.2. We notice that there is in (46) and (47) a hidden reliance on A through
the constant d, = 1 dist (k,sp(T) \ {x}) because sp(T') depends on X. The constant d,
measures the deterioration of the error estimates given in Theorem 6.2 when the eigenvalue
K is too close to the accumulation point 0.

Remark 6.3. We point out that, thanks to Lemma 2.2, we always have that £(X) C
{(r,7) € [H}Q)™"]? : divr € H(Q)"} for all s € (0,5). Consequently, the error
estimates given in Theorem 6.2 will always hold true for any t € (0,3) even if s < 1/2.

However, it may happen that some eigenspaces satisfy the reqularity assumption of the
theorem with t > 5.
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7 Numerical results

We present a series of numerical experiments to solve the elasticity eigenproblem in mixed
form with the discontinuous Galerkin scheme (18). All the numerical results have been
obtained by using the FEniCS Problem Solving Environment [13]. For simplicity we
consider a two-dimensional model problem. We choose €2 = (0,1) x (0,1), p =1, and a
Young modulus £ = 1. We will let the Poisson ratio v take different values in (0,1/2].
We recall that the Lamé coefficients are related to £ and v by

Ev FE

A= 05 0) 1 =20) and W= m

The limit problem corresponding to A = oo is obtained by taking v = 1/2. In all our
experiments we used uniform meshes with the symmetry pattern shown in Figure 1. The
refinement parameter N represents the number of elements on each edge.

N =4 N =6

Figure 1: Uniform meshes

In the first tests we are concerned with the determination of a reliable stabilization
parameter ag. We know that the spectral correctness of the method can only be guaran-
teed if ag is sufficiently large (Proposition 4.2) and if the meshsize h is sufficiently small
(cf. Remark 5.1). In a first stage, we fix the refinement level to N = 8 and report in
Tables 1, 2 and 3 the 10 smallest vibration frequencies computed for different values of
as. The polynomial degrees are given by k = 3,4, 5, respectively. The boxed numbers are
spurious eigenvalues. We observe that they emerge at random positions when we vary ag
and k£ and they disappear completely when ag is sufficiently large.
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as:5 as=10 as:20 a5:40 aS:8O

0.6804474 0.6804497  0.6804460  0.6804472 0.6804472
1.6988814 1.6988904  1.6988615  1.6988797 1.6988800
1.8222056 1.8222073  1.8221859  1.8222050 1.8222052
2.9476938  2.9476927 | 2.3856290 | 2.9476928  2.9476933
3.0174161 3.0174530 |2.3862301 | 3.0174095 3.0174114
3.4432120 3.4432156 | 2.5833172| 3.4432158 3.4432168
4.1417685 4.1417626 | 2.5839852 | 4.1417697 4.1417750
4.6308354 4.6308072  2.9477062  4.6308465 4.6308549
4.7616007 4.7615186  3.0174627  4.7616237 4.7616317
4.7879824 4.7879191  3.4432320  4.7880173 4.7880298

Table 1: Vibration frequencies for £ = 3, v = 0.35 and N =8

aS:5 aszlo aS:20 as:40 aS:80

0.6805737 0.6805737 0.6805737  0.6805736  0.6805737
1.6990333 1.6990333 1.6990332  1.6990329 1.6990330
1.8222095 1.8222094 1.8222095  1.8222095 1.8222096

2.9476921 2.2970057 2.9476922  2.9476922 2.9476922
3.0176437 2.3909952 3.0176400  3.0176421 3.0176428
3.4432473 2.9476924 3.1845593 | 3.4432470  3.4432472
4.1417687 3.0176452 3.4392819 | 4.1417705 4.1417709

4.5534365 3.4432480 3.4432839  4.6309421 4.6309433

4.6309432 4.1417718 4.1417737  4.7615808  4.7615812

4.7195356 4.6309455 4.6309470  4.7882380 4.7882400

Table 2: Vibration frequencies for £k =4, v = 0.35 and N =8
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as:5 as=10 as:20 a5:40 aS:8O

0.6806522 0.6806522  0.6806522  0.6806522 0.6806522
1.6991254 1.6991254  1.6991255  1.6991250 1.6991253
1.8222137 1.8222137  1.8222138  1.8222137 1.8222137
2.9476935 2.9476935 | 2.4714299 | 2.9476935 2.9476935
3.0177848  3.0177848 | 2.4822317| 3.0177827 3.0177844
3.4432656 3.4432656  2.9476935  3.4432652  3.4432656
4.1417853 4.1417852  3.0177862  4.1417845 4.1417852
4.6310201 4.6310201  3.4432657  4.6310172 4.6310196
4.7615803 4.7615803  4.1417853  4.7615800 4.7615802
4.7883889 4.7883889  4.6310208  4.7883835 4.7883878

Table 3: Vibration frequencies for £ =5, v = 0.35 and N = 8

Next, we present in Table 4 different approximations of the first 10 vibration frequen-
cies corresponding to N = 8,16, 32,64, obtained with ag = 20 and a polynomial degree
k = 3. We notice that as the level of refinement increases the lower frequencies are pro-
gressively cleaned from spurious modes. We conclude that our method provides a correct
approximation of the spectrum as long as N and ag are large enough. In the forthcoming
tests we will take ag = 1000. We point out that the previous tests have been carried out
with a Poisson ratio v = 0.35, but similar results were obtained for values ranging from
0.35 to 0.5.

N =38 N =16 N =32 N =64

0.6804460  0.6806838  0.6807775  0.6808142
1.6988615  1.6991595  1.6992689  1.6993109
1.8221859  1.8222154  1.8222207  1.8222228
2.3856200 |  2.9476935  2.9476956  2.9476963

2.3862301 |  3.0178279  3.0180082  3.0180748

2.5833172 | [3.2760743|  3.4432923  3.4433002

|2.5839852 | |3.2777582| 4.1418082  4.1418158
2.9477062  3.4432656 | 4.4519274 | 4.6311877
3.0174627  [3.5133204 | |4.4548953 | 4.7615817
3.4432320  [3.5153213 | 4.6311437  4.7886836

Table 4: Vibration frequencies for £ = 3, ag = 20 , v = 0.35 and different refinement
levels

The subsequent numerical tests are aimed to determine the convergence rate of the
scheme. With the boundary conditions considered in our model problem, it turns out
that (cf. [17] and the references therein) the regularity exponents 5 defined in Lemma 2.2
are given by Table 5 for different values of the Poisson ratio v.
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0.35 0.6797
0.49 0.5999
0.5 0.5946

v 5

Table 5: Sobolev regularity exponents

27

We present in Tables 6, 7 and 8 (corresponding to the polynomial degrees k = 2, 3,4,
respectively) the first two vibration frequencies computed on a series of nested meshes for
a range of Poisson ratios given by v = 0.35,0.49,0.5. We also report in these tables an
estimate of the order of convergence «, as well as more accurate approximations of the
vibration frequencies obtained by means of the least-squares fitting technique explained
in [17, Section 6]. Comparing with the exponents given in Table 5, we observe that our
method provides a double order of convergence for the vibration frequencies. Namely, in
all cases we have o ~ 25, which corresponds to the the worst possible order of convergence.
The eigenfunctions corresponding to higher natural frequencies are oscillating but they
can be more regular (see Remark 6.3), which justifies the use of high polynomial orders

of approximation. Finally, we point out that the method is clearly locking-free.

14

| N=16

N =32

N =48

N=64 | a |

>\61,’

0.35

0.6806068
1.6990672

0.6807467
1.6992327

0.6807850
1.6992773

0.6808020
1.6992969

1.34
1.37

0.6808381
1.6993373

0.49

0.6987402
1.8359946

0.6991833
1.8366760

0.6993160
1.8368781

0.6993779
1.8369722

1.19
1.20

0.6995295
1.8372009

0.5

0.7007298
1.8472390

0.7012091
1.8479824

0.7013534
1.8482043

0.7014210
1.8483081

1.18
1.19

0.7015881
1.8485623

Table 6: Lowest vibration frequencies for k = 2, ag = 1000 and convergence order

14

| N=16

N =32

N =48

N:64‘a‘

AEI

0.35

0.6806839
1.6991607

0.6807775
1.6992690

0.6808029
1.6992981

0.6808142
1.6993109

1.35
1.37

0.6808379
1.6993373

0.49

0.6989872
1.8363810

0.6992929
1.8368436

0.6993836
1.8369810

0.6994258
1.8370450

1.20
1.20

0.6995284
1.8372002

0.5

0.7009977
1.8476611

0.7013286
1.8481669

0.7014275
1.8483181

0.7014736
1.8483888

1.19
1.19

0.7015868
1.8485618

Table 7: Lowest vibration frequencies for k = 3, ag = 1000 and convergence order
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v N=16 N=32 N=48 N=64 | o | A

0.6807342 0.6807973 0.6808144 0.6808219 | 1.36 | 0.6808376
1.6992195 1.6992917 1.6993112 1.6993198 | 1.36 | 1.6993377
0.6991499  0.6993638 0.6994272  0.6994567 | 1.20 | 0.6995284
1.8366280 1.8369510 1.8370470 1.8370917 | 1.20 | 1.8372000
0.7011738 0.7014060 0.7014751 0.7015075 | 1.19 | 0.7015869
1.8479310 1.8482851 1.8483911 1.8484407 | 1.19 | 1.8485618

0.35

0.49

0.5

Table 8: Computed lowest vibration frequencies for £k = 4, ag = 1000 and convergence
order

8 Appendix. The limit problem

As was shown in the previous section, the proposed method works fine also for the limit
problem (A = +00), namely, for perfectly incompressible elasticity. In this appendix, we
will establish a spectral characterization in this case. Also, we will prove that the eigenval-
ues of the nearly incompressible elasticity problem converge to those of the incompressible
elasticity problem as A\ — co.

In the limit case A = 400, the bilinear forms A and B change in their definitions,
since the term where A appears in (4) vanishes. Therefore, the limit eigenvalue problem
reads as follows: Find x € R and (o,7) € W x Q such that

Ax((o,7),(T,8)) = kB ((o,7), (T, 8)) V(r,s) e WX Q (53)

Boo((e,7),(T,8)) ::i/QJD:TD%—/Qr:TjL/Qs:o-

Ao((o,7),(T,8)) := /Qp_l dive -divT + By ((o,7),(T,5))

with
and

for all (o, 7),(7,8) € W x Q.

It is easy to check that A, is a bounded bilinear form. Moreover, the arguments used
in the proofs of Propositions 2.1 and 2.2 hold true for A = +00, so that A, satisfies the
following inf-sup condition:

s Ax((o,7), (T, 9))
(7.5)EWXQ (7, s)]

>al(er)|  Ver) ewx Q.

In consequence, we are in a position to introduce a solution operator for the limit eigen-
value problem. Let T’ : [L*(2)"*"]> — W x Q be defined for any (f,g) € [L?(Q)™*"]?
by

As(To(f,9), (T,8)) = Bx((f,9),(7,8))  V(T,8) e WX Q.
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It is easy to check that u is a non-zero eigenvalue of T, with eigenfunction (o, 7)
if and only of kK = 1/u is a non-vanishing eigenvalue of problem (53) with the same
eigenfunction.

Our first goal is to prove that the operators T' defined by (8) converges to T, as A
goes to infinity. To recall that T actually depends on A, in what follows we will denote it
by T)\.

Before proving the convergence of T') to T',, we will characterize the spectrum of T'.

Let IC be defined as in (10) and
(KK x QP = {(o,1) e WX Q: By((o,r),(1,8) =0 V(r,5) € KxQ}.

We observe that T |xxg : I X Q — K x Q reduces to the identity, so that = 1 is an
eigenvalue of T',. Moreover, its associated eigenspace is precisely K x Q.

Let us introduce the following operator which will play a role similar to that of P in
the limit problem:

P, WxQ—->WxQ,
(o,7)— Pyo:=(o,7).
where (o, (u,7)) € W x [L2(2)" x Q] is the solution of the following problem:
1 ~ ~ ~
— a'D:TD—i—/u-diVT—l—/T:r:O VT eW, (54)
2u Jo Q Q

/v-div&—i—/&:s:/v-diva Y(v,s) € L*(Q)" x Q. (55)
Q Q Q

The previous problem is well posed, since the ellipticity of fﬂ o” : 7P in the corre-
sponding kernel is established in Lemma 2.3 of [18] and the following inf-sup condition
holds true (see [5]):

-di :
“up Jov-divr+ [ s:T

> B(llvflon + [Islloe) V(v s) € LX(Q)" x Q.
TEW ||7'HH(div,Q)

We observe that problem (54)—(55) is a dual mixed formulation with weakly imposed
symmetry of the following incompressible elasticity problem with volumetric force density
—dive

—dive = —dive inQ, (56)
1 - ~
ﬂUD =e(u) in (2, (57)
on =0 onT'y, (58)
u=0 onI'p. (59)

It is easy to check that (o, w) € H(div, Q) x H!(Q)" satisfies (56)—(59) if and only if
(o, (u,7)) € W x [L*(Q)" x Q] is the solution of (54)—(55) with ¥ = 1[Va — (Va)*].
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Now, by resorting to the relation between the incompressible elasticity and the Stokes
problems, we conclude that there exists S, € (0,1) depending only on € and p (see for
instance [14]) such that, for all s € (0,35,,) the solution @ of (56)—(59) belongs to H*5(Q)"
and the following estimate hold true

[@]l14s.0 < Clldiv e,

with a constant C' independent of o.
The following lemma is a consequence of this regularity result.

Lemma 8.1. For all s € (0,5) and (o,7) € W x Q, if (o,(u,r)) is the solution of
(54)-(55), then o € H¥(Q)™*™, w € H'™$(Q)™", ¥ € H*(Q)"*" and

[o]lse + ullitse + I7]lse < Clldiv oo,
with a constant C independent of o. Consequently, P..(W x Q) C H*(Q)"*™ x H*(Q)"*™.

We observe that P, is idempotent and that ker(P,) = IC x Q. Moreover, being
P, a projector, the orthogonal decomposition W x Q = (I x Q) & P (W x Q) holds
true. On the other hand, P, (W x Q) is an invariant space of T, (see Proposition A.1
in [17]).

Proposition 8.1. For all s € (0,53)
Too(Pso(W x Q)) C {(o*,7*) € H*(Q)™™ x H*(Q)"" : dive* € HY(Q)"},  (60)

and there exists C' > 0 such that for all (f,g) € Poo(W x Q), if (6*,7*) = Tw(f,9),
then
[0 ]ls.0 + l[div a™[[1o + [[77]lso < Cl[(£, 9l (61)

Moreover, T'oo|p owxg) : Poo(W x Q) = Py (W x Q) is a compact operator.
Proof. Let (f,g) € Poo(W x Q) and (o*,7*) = T'».(f,g). Hence, we have

1 1
/p_ldiVO'*'diVT—l-—/O'*D:TD+/’I“*2T——/fD:TD+/giT Vrew,
Q 21 Jo Q 21 Jo Q

/a*:s:/f:s Vs € Q.
Q Q

Then, testing the first equation of the system above with 7 € D(Q)"*™ C W, we have
that

—p 'V(dive*) + Lo +r* = ifD +g.
20 21
Hence, since p and p are constants, we conclude that div o* € HY(Q)".
Since Po.(W x Q) is invariant with respect to T, applying Lemma 8.1 we obtain
directly (60). On the other hand, (61) is a consequence of Lemma 8.1. Finally, the
compactness of T |p_(wxg) is a consequence of the following compact embedding

{(0*,7") € H Q)™ x HH(Q)™" : dive* € H'(Q)"} — W x Q,

which allow us to conclude the proof. O]
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Now we are in position to establish a spectral characterization for T,

Theorem 8.1. The spectrum of T, decomposes as follows: sp(T) = {0, 1} U { g }ren,
where:

(i) p =1 is an infinite-multiplicity eigenvalue of T and its associated eigenspace is

K x Q.
(ii) =0 is an eigenvalue of T« and its associated eigenspace is Z x Q, where

Z={teW: =0 ={ql: ¢qcHY(Q) and ¢=0 on I'y}.

(111) {1 }ren C (0,1) is a sequence of nondefective finite-multiplicity eigenvalues of T o
which converge to zero and the corresponding eigenspaces lie in P (W x Q).

Proof. 1t is enough to follow the steps of Theorem 3.5 from [18]. O
Now we are in position to establish the following convergence result.

Lemma 8.2. There exists a constant C > 0 such that

I(Tx = Too)((f,9))]l < g||(f,g)||o,n V(f.g) € [LA(Q)™ "]

Proof. Let (f,g) € [L2(Q)™"]? and let (ox, 7)) := Tx(f,9) and (0, 7o) := Too(f,9).
Then, from (8) and the definition of C we have

1 1
“ldive -diVT—i-—/O'D:TD—i-—/tra' tr +/r CT
/Qp A 2u Jo A n)\+2u) ( Y ( ) Q *

/f )\+2u)/tr(-f)tr(7'>+/gg:7-,
/UA:S_/f:s.
Whereas ’ N

1
/p‘ldivaoo~div7'+—/0'20:TD—i—/rOO.T——/f /g:T VT e W,
Q 210 Jo Q
/aoo:s:/f:s Vs € Q.

Q Q

Subtracting the above equations we have

/ ptdiv(ey — o) - divT + 1 (0']3\ —o2): 7P
Q 24
1
+ /g;("')\ — roo) T = m /g;tr(f — 0')\> tr(T) VT € W, (62)

/Q(O',\—aoo) :s=0 Vse Q. (63)
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Testing this equation with 7 := o) — 6, and s := r\ — r, we have

_ . 1
p I div(er —o)llfo + @HUR — ol |20 :m /Q(tf(f) —tr(oy)) tr(oy — o)

1
<— tr —tr(o tr(o) — o0
< () = e oa (s = )
1
< — _
_nA+2M(I|f||o7Q+||0A||o,sz)||cu Tosllo.0

C
< _
_n)\H(f,Q)Ho,QHUA T o ll0.0;

where we have used (9) to bound ||o»|/on. Moreover

: 41 . C
win {7 o 4 (Idivios = o)l + 1103 - 0%0) < I @laslor - olon,

Cou
We observe that (o) — 0s) € W is symmetric due to equation (63). Then, we resort to
the following estimate (see [4] for instance)
Clloy = oxllie < o) = o l50 + I div(or — )50

with C' > 0 to deduce that

Cllor = oullin@iva) < (16} = o250 + 1 div(es — o)llf0) '

Hence
[div(oy —ox)lloa+ o} — o2t g

C .
< S22 (£, g)loa(llo” — o2 + | divion — o))"
(64)
and, finally,
C
o — oollu@ive) < <II(F,9)lloq, (65)

with C a positive constant depending on p, ¢ and n.
On the other hand, taking into account the inf-sup condition (7), (62), Cauchy-Schwarz
inequality, (64) and (65), we have

Bllrx — Tocllo

< sup "(”’\1+2u) Jotr(or— o) tr(T) = [op~ i div(ey — o) - divr — ﬁ JoloX —o3) : 70

 rew |7 || (aiv.0)

izl (- DloelTlon + o~ divios — ox)loel div Tlog + 5;l10% — o2 ool Tlloo

TEW ||7'||H(div,sz)

< %1(F Dloa (66)
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Hence, the proof follows by combining (65) and (66).

Now we are in a position to establish the following result.

Theorem 8.2. Let i, > 0 be an eigenvalue of T o, of multiplicity m. Let D be any disc of
the complex plane centered at pis and containing no other element of the spectrum of T .
Then, for X large enough, D contains exactly m eigenvalues of T’y (repeated according to
their respective multiplicities). Consequently, each eigenvalue pio > 0 of T is a limit of
eigenvalues p of Ty, as A goes to infinity.
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