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Abstract

In this work we develop an a posteriori error estimator, of the hierarchical type, for the Local Projection
Stabilized (LPS) finite element method introduced in [5], applied to the incompressible Navier–Stokes equa-
tions. The technique use the solution of locals problems posed on appropriate finite dimensional spaces of
bubble-like functions, to approach the error. Several numerical tests confirm the theoretical properties of
the estimator and its performance.
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1. Introduction

The simulations of realistic fluid flows may be carried out by the Navier–Stokes equations, but it is not
an easy task to compute accurate solutions to this equation, mainly because we need to capture small flow
structures, which normally is prohibitively expensive if we use uniform refined meshes. Thus, numerical
schemes ought to involve local mesh refinements which in turn demand prior knowledge on approximation
errors. This adaptive strategy is behind the design of a posteriori error estimators, which have been devel-
oped for Navier–Stokes, applying mainly a residual strategy, i.e. computations of the norm of volumetric
and edge residuals and not in solving local differential equations, (see, for instance [4], [11] and [21] and the
references therein).

Another type of error estimators, called hierarchical estimators, were first introduced by Bank and col-
laborators in [7] and [6]. The idea here is to enrich the standard finite element subspace with some “bubble”
like functions to improve the quality of the error estimator. This idea, which in practice is more expensive to
compute than the residual, normally yields some better approximation of the true approximation error, with
a better effectivity index. This hierarchical approach was extended in [2] to the advection-diffusion-reaction
equation, in [1] to the generalized Stokes equations and later to the 2D steady incompressible Navier–Stokes
equations, using a SUPG scheme, in [3].

On the other hand, in this work we mixed a stabilized scheme introduced in [5] with a hierarchical a
posteriori error estimator, with the end of improve the quality of the numerical solution with a small com-
putational effort. Stabilized schemes for fluid equations have a long history since the first works of Hughes,
Brooks and Franca ([14], [20] or [17]). The main idea behind these methods is to add ”stability” to the
numerical solution of the problems, in particular overcoming the need that the discrete subspaces satisfy the
Babuska–Brezzi condition, allowing, for instance, equal order of polynomials both for velocity and pressure,
which is a very appreciated property at the moment of the numerical implementation. On the other hand,
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stabilized methods also help to diminish non physical instabilities coming from inner or boundary layers
present, for example, when the advection is dominant with respect to viscosity.

In the present work, we extend the approach given in [3], to the Local Projection Stabilized (LPS) scheme
introduced in [5] for the Navier–Stokes equations both in 2D as in 3D. This kind of stabilized methods, as
most of stabilized ones, allow the use of equal order interpolation spaces, for velocity and pressure, which
are easy to use in practice but that are no inf-sup stable. Besides that, the local projection methods, in-
troduced originally in [10] for Stokes and in [12] for Oseen, are easier to compute than the residual based
stabilized methods, avoiding the local computation of strong differential operators, decoupling the veloc-
ity and pressure terms in the stabilized terms, and have better approximation capabilities near the boundary.

Unfortunately, the LPS method is not strongly consistent, which is a major drawback when we try to
develop an a posteriori error estimator, which is particularly difficult when we use low-order finite element
spaces. Nevertheless, with our hierarchical approach we were able to overcome the lack of consistency, at
the price of adding a higher order term to the reliability estimate. We have to mention that the consistency
problem does not allow to use the standard techniques (see Verfürth in [30]) to develop an a posteriori
error estimate based in the computations of the norm of the residuals terms, due to the difficulty to obtain
volumetric and edge residuals in the reliability proof.

The outline of this work is as follows: in Section 2 we introduce our model problem and some useful
preliminary results. In Section 3 we present the LPS method and its main approximation results. In Section
4 we define our a posteriori error estimator, of hierarchical type, and prove the equivalence of this error
estimator with the approximation error, using an intermediate auxiliary problem. Finally, in Section 5, we
present some numerical tests which allow us to assess the convergence property of the LPS method and the
quality of our a posteriori error estimator.

2. Model problem and preliminary results

Let Ω ⊂ Rd (d = 2 or d = 3) be a bounded polygonal open domain. The steady incompressible
Navier–Stokes problem consists in finding a velocity vector field u and a pressure scalar field p such as

(NS)

 −ν∆u+ (∇u)u+∇p = f in Ω,
∇·u = 0 in Ω,
u = 0 on ∂Ω,

where the fluid viscosity ν > 0 and the force field f ∈ L2(Ω)d are given. As usual, L2(Ω) denotes the space
of square integrable functions over Ω.

We utilize standard simplified terminology for Sobolev space, inner product and norms (see, e.g. [16]).
In particular, if O ⊆ Ω, then (·, ·)O denotes the L2(O) inner product for scalar, vector or tensor valued
functions, as appropriate. Also we denote by ‖ · ‖m,O the usual norm of the Sobolev Hm(O), with m ≥ 0,
and H−1(O) the dual space of H1

0 (O) equipped with the dual norm ‖ · ‖−1,O.
Furthermore, we introduce the spaces

H := H1
0 (Ω)d := {v ∈ H1(Ω)d : v = 0 on ∂Ω}

and

Q := L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω

q = 0},

equipped with the norms | · |1,Ω and ‖ · ‖0,Ω, respectively, recalling that, thanks to Poincaré’s inequality, the
seminorm | · |1,Ω is indeed a norm on H.
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The standard weak formulation for the problem (NS) is the following: Find (u, p) ∈ H×Q such that

a(u,v)− b(u, q) + b(v, p) + c(u;u,v) = (f ,v)Ω (1)

for all (v, q) ∈ H × Q, where the bilinear forms a(·, ·) and b(·, ·), and the trilinear form c(· ; · , ·) are given
by

a(u,v) := ν (∇u,∇v)Ω ∀u,v ∈ H, (2)

b(v, q) := −(q,∇·v)Ω ∀q ∈ Q,∀v ∈ H, (3)

c(u;v,w) := ((∇v)u,w)Ω ∀u,v,w ∈ H. (4)

In addition, we introduce the symmetric bilinear form d : Q×Q→ R given by

d(p, q) :=
1

ν
(p, q)Ω.

The bilinear forms a(·, ·) and d(·, ·) induce the norms

‖v‖a := a(v,v)1/2 ∀v ∈ H,

‖q‖d := d(q, q)1/2 ∀q ∈ Q.

Also, we denote by ‖ · ‖a,O the norm induced by a(·, ·) on the set O ⊂ Ω. We equip the space H×Q with
the product norm given by

‖(v, q)‖ :=
{
‖v‖2a + ‖q‖2d

}1/2

∀(v, q) ∈ H×Q.

The next result states some important inequalities related to the forms a, b and c.

Lemma 2.1. Let a(·, ·) and b(·, ·) be the bilinear forms given by (2) and (3), respectively, and let c(· ; · , ·)
be the trilinear form given by (4). Then

|a(v,w)| ≤ ‖v‖a‖w‖a ∀v,w ∈ H,

|b(v, q)| ≤
√
d ‖v‖a‖q‖d ∀(v, q) ∈ H×Q,

sup
v∈H
v 6=0

b(v, q)

‖v‖a
≥ αb ‖q‖d ∀q ∈ Q,

c(w;u,v) ≤ β |w|1,Ω|u|1,Ω|v|1,Ω ∀u,v,w ∈ H,

where αb and β are positive constants depending only on Ω. Moreover, for all u,v,w ∈ H1(Ω)d such that
∇·w = 0 and w · n = 0, it holds

c(w;u,v) = −c(w;v,u),

c(w;v,v) = 0.

Proof. The first two statements are straightforward and the others are classical results (see, for instance,
[19]).

The well-posedness of the variational problem (1) is ensured by the following result

Theorem 2.1. Assume that ν and f ∈ L2(Ω)d satisfy the following condition:

|(f ,v)Ω| ≤ γ
ν2

β
|v|1,Ω ∀v ∈ H (5)

for some fixed number γ ∈ [0, 1[. Then, there exists a unique solution (u, p) ∈ H×Q of (1) and it holds

|u|1,Ω ≤ γ
ν

β
.
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Proof. See Theorem 2.4, Chapter IV in [19].

In order to introduce finite element subspaces, let {Th}h>0 be a regular family of triangulations of Ω̄ composed
by elements K (triangles or tetrahedra in 2D or 3D, respectively) of diameter hK such that Ω̄ = ∪{K : K ∈
Th} and define h := max{hK : K ∈ Th}. The finite element subspaces to be used in this work are defined
as follows

Hh := {v ∈ C0(Ω̄)d : v|K ∈ P1(K)d, ∀K ∈ Th} ∩H,

and
Qh := {q ∈ L2(Ω) : q|K ∈ P0(K), ∀K ∈ Th} ∩Q,

where Pl(K) denotes the space of polynomials of total degree less than or equal to l, with l = 0, 1. In turn,
we denote by EΩ the set of all the interior edges (d = 2) or faces (d = 3) of Th and hF the diameter of each
F ∈ EΩ.

In the sequel we will denote by C a generic positive constant, independent of the discretization parameter
h and the viscosity ν, which may take different values at different places.

Given K ∈ Th and F ∈ EΩ we define the following neighborhoods:

ωK :=
⋃

E(K)∩E(K′)6=∅

K ′, ω̃K :=
⋃

N (K)∩N (K′) 6=∅

K ′,

ωF :=
⋃

F∈E(K′)

K ′, ω̃F :=
⋃

N (F )∩N (K′) 6=∅

K ′,

where E(K) denotes the set of edges (or faces if d = 3) of the element K, N (K) the set of nodes of K and
N (F ) the set of nodes of F .

Let Ih : H −→ Hh be the Clément interpolation operator introduced in [15]. It can be easily shown (see
[15, 16] for details) that the Clément interpolation operator satisfies the following estimates

‖v − Ihv‖0,K ≤ C ν−1/2hK ‖v‖a,ω̃K
, (6)

‖v − Ihv‖0,F ≤ C ν−1/2h
1/2
F ‖v‖a,ω̃F

, (7)

‖Ihv‖a,K ≤ C ‖v‖a,ω̃K
, (8)

for all v ∈ H1(Ω)d.
Finally, for each K ∈ Th, we denote by ΠKq the average of a function q ∈ L2(K), i.e.,

ΠKq :=
1

|K|

∫
K

q dx.

Lemma 2.2.

‖v −ΠKv‖0,K ≤
hK
π
|v|1,K ∀v ∈ H1(K), (9)

‖ΠKv‖0,K ≤ ‖v‖0,K ∀v ∈ L2(K). (10)

Proof. See Proposition 1.134 and Lemma 1.131 in [16].

Hereafter, we will use intensively the fluctuation operator χh defined by χh := I−ΠK , where I is the identity
operator. Observe that, from Lemma 2.2, it holds

‖χh(x ·ΠKv)‖0,K ≤
hK
π
‖v‖0,K ∀v ∈ L2(K)d. (11)

Finally, we define the jump of a function q across F ∈ Eh by

JqKF (x) := lim
δ→0+

q(x+ δnF )− lim
δ→0+

q(x− δnF )

where nF is the outward normal vector at F with respect to an element K of Th.
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3. The local projection stabilized method

The Local Projection Stabilized (LPS) method for the Navier–Stokes equations, introduced and analyzed
in [5], has the following form: Find (uh, ph) ∈ Hh ×Qh such that

(LPS)



ν (∇uh,∇vh)Ω + ((∇uh)uh,vh)Ω − (ph,∇·vh)Ω + (qh,∇·uh)Ω

+
∑
K∈Th

αK
ν

(χh(x ·ΠK [(∇uh)uh]), χh(x ·ΠK [(∇vh)uh]))K

+
∑
K∈Th

γK
ν

(χh(x∇·uh), χh(x∇·vh))K +
∑
F∈EΩ τF (JphK, JqhK)F = (f ,vh)Ω,

where the stabilization parameters are given by

αK :=
1

max {1, P eK}
and γK :=

1

max
{

1, PeK24

} ,
with

PeK :=
|uh|KhK

18 ν
and |uh|K :=

‖uh‖0,K
|K| 12

,

and

τF :=


hF
12 ν

, if |uh|F = 0,

1

2 |uh|F
− 1

|uh|F (1− exp(PeF ))

(
1 +

1

PeF
(1− exp(PeF ))

)
, otherwise.

Here

PeF :=
|uh|F hF

ν
with |uh|F :=

‖uh‖0,F
h

1/2
F

.

We recall, from Lemma 2 in [8], that τF satisfies

τF ≤ C
hF
ν

for all F ∈ EΩ.

Remark 3.1. Note that the method LPS has the disadvantage of being non consistent, which complicate
the a priori and a posteriori analysis. On the other hand, LPS is easier to implement than the traditional
residual projection methods (RELP). Finally, note that in the presence of Neumann boundary conditions,
we only need to change the jump term accordingly.

The well-posedness and error estimates for the LPS method were studied in [5], for completeness we
present some of the main results concerning existence and uniqueness of the discrete solution, as well as
error bounds.

Theorem 3.1. There is a positive constant C, independent of h and ν, such that if

h1/2

ν2
‖f‖−1,Ω ≤ C,

then LPS problem admits at least one solution.

Proof. See Theorem 3.4 in [5].
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Theorem 3.2. There exists a positive constant C, independent of h and ν, such that if

1

ν

{
1 +

1

ν3/2

}
(1 + h)2 < C,

then the solution of the LPS problem is unique.

Proof. See Theorem 3.5 in [5].

The next theorem establishes an optimal convergence result of the LPS method in the natural norm.

Theorem 3.3. Assume that (u, p) belongs to the space H2(Ω)d × H1(Ω). Then there exists a positive
constant h0, such that for all h with 0 < h ≤ h0, the following estimate holds{

|u− uh|21,Ω + ‖p− ph‖20,Ω
}1/2 ≤ C h,

where C > 0 does not depend on h but can depend on ν.

Proof. See Theorem 4.4 in [5].

4. A Hierarchical Error Estimator

In this section we propose and analyze a hierarchical estimator for the LPS method adapting the ideas
of [3] to our problem.

4.1. The Auxiliary Problem

In what follows, the functions e and E stand for the velocity and pressure approximation errors, i.e.,

e := u− uh,
E := p− ph.

In the sequel we will need the following linear auxiliary problem: Find (φ, ψ) ∈ H×Q such that

a(φ,v) + d(ψ, q) = a(e,v)− b(e, q) + b(v, E) + l(u;uh,v) ∀(v, q) ∈ H×Q, (12)

where
l(u;uh,v) := c(u;u,v)− c(uh;uh,v).

Clearly, the well-posedness of the above system arises from the ellipticity of a(·, ·) and d(·, ·) on H and Q,
respectively.

Next, we establish an equivalence between the norms of (e, E) ∈ H × Q and the norms of the solution
(φ, ψ) ∈ H × Q of (12), thus opening the door to design an error estimate based on the functions (φ, ψ)
only.

Theorem 4.1. Assume that (5) holds and |e|1,Ω is sufficiently small in the sense that there exists ε > 0
such that

γ +
ε2

2
+
β

ν
|e|1,Ω < 1.

Then, there exists positive constants C1 and C2, independent of h, such that

C1

{
‖φ‖2a + ‖ψ‖2d

}
≤ ‖e‖2a + ‖E‖2d ≤ C2

{
‖φ‖2a + ‖ψ‖2d

}
.

Proof. See Theorem 4.1 in [3].
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From the definition of e and E, the auxiliary problem (12) is equivalent to

a(φ,v) + d(ψ, q) = (f ,v)Ω − a(uh,v) + b(uh, q)− b(v, ph)− c(uh;uh,v) (13)

for all (v, q) ∈ H×Q. The above equation can be rewritten in a more compact form as

a(φ,v) + d(ψ, q) = Rh(v, q) ∀(v, q) ∈ H×Q,

where Rh ∈ (H×Q)′ stands for the residual functional given by

Rh(v, q) := (f ,v)Ω − a(uh,v) + b(uh, q)− b(v, ph)− c(uh;uh,v) ∀(v, q) ∈ H×Q.

Remark 4.1. Note that the auxiliary problem (12), or equivalently (13), can be decoupled in two different
problems. First, taking v = 0 in (13) we obtain

d(ψ, q) = b(uh, q) ∀q ∈ Q,

now, using that ∇·uh ∈ Q, we get that
ψ = −ν∇·uh. (14)

Second, taking q = 0 in (13), we arrive at

a(φ,v) = R1
h(v) ∀v ∈ H, (15)

where R1
h ∈ H′ is given by the expression

R1
h(v) := (f ,v)Ω − a(uh,v)− b(v, ph)− c(uh;uh,v) ∀v ∈ H.

An equivalent and useful expression for R1
h is obtained using integration by parts, which leads to

R1
h(v) =

∑
K∈Th

(RK ,v)K +
∑
F∈EΩ

(RF ,v)F ,

where RK and RF are the local residuals defined by

RK := (f + ν∆uh − (∇uh)uh −∇ph)|K and RF := J−ν ∂nuh + phnKF .

The following technical result will be useful in the sequel.

Lemma 4.1. For all vh ∈ Hh it holds

R1
h(vh) ≤ C

[ ∑
K∈Th

h4
K

ν3

{(
‖RK‖0,K + ‖f‖0,K

)
‖uh‖∞,K + ‖∇·uh‖0,K

}2
]1/2

‖vh‖a.

Proof. From the definition of R1
h, using LPS scheme with qh = 0 and recalling that uh|K and ph|K are a

linear and constant polynomial in each K ∈ Th, respectively, it holds

R1
h(vh) = (f ,vh)Ω − a(uh,vh)− b(vh, ph)− c(uh;uh,vh)

=
∑
K∈Th

{αK
ν

(χh(x ·ΠK [(∇uh)uh]), χh(x ·ΠK [(∇vh)uh]))K +
γK
ν

(χh(x∇·uh), χh(x∇·vh))K

}
=
∑
K∈Th

{αK
ν

[
− (χh(x ·ΠK [RK ]), χh(x ·ΠK [(∇vh)uh]))K + (χh(x ·ΠK [f ]), χh(x ·ΠK [(∇vh)uh]))K

]
+
γK
ν

(χh(x∇·uh), χh(x∇·vh))K

}
. (16)
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Thus, using Hölder’s inequality, (11), (16), Cauchy–Schwarz’s inequality, and recalling that αK , γK ≤ 1, we
obtain

R1
h(vh) ≤ C

∑
K∈Th

h2
K

ν

{(
‖RK‖0,K + ‖f‖0,K

)
‖uh‖∞,K‖∇vh‖0,K + ‖∇·uh‖0,K‖∇·vh‖0,K

}
≤ C

∑
K∈Th

h2
K

ν

{(
‖RK‖0,K + ‖f‖0,K

)
‖uh‖∞,K + ‖∇·uh‖0,K

}
‖∇vh‖0,K

≤ C
[ ∑
K∈Th

h4
K

ν3

{(
‖RK‖0,K + ‖f‖0,K

)
‖uh‖∞,K + ‖∇·uh‖0,K

}2
]1/2

‖vh‖a.

Remark 4.2. The equivalence result in Theorem 4.1 can be rewritten using the characterization of ψ, given
in (14), as follows

C1

{
‖φ‖2a + ν ‖∇·uh‖20,Ω

}
≤ ‖e‖2a + ‖E‖2d ≤ C2

{
‖φ‖2a + ν ‖∇·uh‖20,Ω

}
. (17)

Therefore, we only need to estimate ‖φ‖a using an a posteriori error estimator. This idea is pursued in the
next section.

4.2. Hierarchical Error Estimator

Following closely the ideas of [1] and [3], let Wh be a finite element subspace such that Hh ⊆Wh ⊆ H.
Let us suppose that Wh can be decomposed in the following way

Wh = Hh +
∑
K∈Th

Hb
K +

∑
F∈EΩ

Hb
F ,

where the finite dimensional subspaces Hb
K and Hb

F satisfy

Hb
K ⊂ H1

0 (K)d and Hb
F ⊂ H1

0 (ωF )d.

Associated to each subspace Hb
S , with S = K or F , there is a projection operator PS : H −→ Hb

S defined
as the solution of the local problem

a(PSv,vS) = a(v,vS) ∀vS ∈ Hb
S . (18)

Thus we define our a posteriori error estimator ηH by

ηH :=

{ ∑
K∈Th

a(PKφ, PKφ) +
∑
F∈EΩ

a(PFφ, PFφ)

}1/2

. (19)

Using the definition of φ we obtain that PSφ, with S = K or F , is the solution of the local problem

a(PSφ,vS) = R1
h(vS) ∀vS ∈ Hb

S . (20)

Remark 4.3. Notice that the solution φ of (15), used throughout previous estimates, does not need to be
computed but only its projection PSφ onto finite dimensional subspaces Hb

S.

Remark 4.4. The linear local problem (20) incorporates the Navier–Stokes non-linearity through its right
hand side. This way of accounting for non-linearities in the a posteriori estimator represents a compromise
between low computational cost and accuracy in the context of high speed flow.
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We also require that the local subspaces Hb
K and Hb

F , hereafter called bubble subspaces, be piecewise
affine-equivalent to a finite-dimensional space on a reference configuration, so that the following estimate
holds:

‖bS‖20,K ≤ Ch2
K |bS |21,K ∀bS ∈ Hb

S , S = K or F,

for all K ∈ Th.
Second, the bubble spaces must fulfil the following inf-sup conditions: there exists β∗ > 0, independent

of h and ν, such that

sup
bK∈Hb

K
bK 6=0

(bK ,RK)K
‖bK‖a,K

≥ β∗ν−1/2hK‖RK‖0,K ∀K ∈ Th, (21)

sup
bF∈Hb

F
bF 6=0

(bF ,RF )F
‖bF ‖a,ωF

≥ β∗ν−1/2h
1/2
F ‖RF ‖0,F ∀F ∈ EΩ. (22)

In [1, Appendix B] was proved that the following pair of bubble subspaces satisfy conditions (21) and (22)

Hb
K = 〈{bK RK}〉 ∀K ∈ Th,

Hb
F = 〈{bF RF }〉 ∀F ∈ EΩ,

where bK and bF are the standard polynomial bubble functions defined with respect to the barycentric
coordinates. We recall that Hb

F is well defined because in our case RF is constant on each F ∈ EΩ.
The next result is recalled as it is needed for the proof of the reliability of our estimator.

Lemma 4.2. Suppose that (21) and (22) hold. Then,

R1
h(v) ≤Cν1/2

{ ∑
K∈Th

h−1
K a(PKφ, PKφ)1/2‖v‖0,K

+
∑
F∈EΩ

h
−1/2
F

[
a(PFφ, PFφ)1/2 +

∑
K′⊂ωF

a(PK′φ, PK′φ)1/2

]
‖v‖0,F

}

for all v in H.

Proof. See Lemma 12 in [1].

Now we are ready to prove the reliability of the error estimator.

Lemma 4.3. Let φ be the solution of (15). If (21) and (22) hold, then

‖φ‖a ≤ C

ηH +

[ ∑
K∈Th

h4
K

ν3

{(
‖RK‖0,K + ‖f‖0,K

)
‖uh‖∞,K + ‖∇·uh‖0,K

}2
]1/2

 .

Proof. Using, Lemma 4.2 with v = φ−Ihφ, the mesh regularity, Cauchy–Schwarz inequality, (6) and (7),
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it holds

R1
h(φ− Ihφ) ≤ Cν1/2

∑
K∈Th

h−1
K a(PKφ, PKφ)1/2‖φ− Ihφ‖0,K

+ Cν1/2
∑
F∈EΩ

h
−1/2
F

[
a(PFφ, PFφ)1/2 +

∑
K′⊂ωF

a(PK′φ, PK′φ)1/2
]
‖φ− Ihφ‖0,F

≤ C
{ ∑
K∈Th

a(PKφ, PKφ) +
∑
F∈EΩ

a(PFφ, PFφ)

}1/2

×
{ ∑
K∈Th

νh−2
K ‖φ− Ihφ‖20,K +

∑
F∈EΩ

νh−1
F ‖φ− Ihφ‖20,F

}1/2

≤ C ηH
{ ∑
K∈Th

‖φ‖2a,ω̃K
+
∑
F∈EΩ

‖φ‖2a,ω̃F

}1/2

≤ C ηH‖φ‖a. (23)

Now, from (15), Lemma 4.1, estimates (23) and (8), Cauchy–Schwarz inequality and mesh regularity, it
holds

‖φ‖2a = a(φ,φ) = R1
h(φ) = R1

h(φ− Ihφ) +R1
h(Ihφ)

≤ C ηH‖φ‖a + Cν−3/2
∑
K∈Th

h2
K

{
(‖RK‖0,K + ‖f‖0,K)‖uh‖∞,K + ‖∇·uh‖0,K

}
‖Ihφ‖a

≤ C
{
η2
H +

∑
K∈Th

h4
K

ν3

[
(‖RK‖0,K + ‖f‖0,K)‖uh‖∞,K + ‖∇·uh‖0,K

]2}1/2

‖φ‖a,

and the result follows.

From the previous results, we can state the following auxiliary equivalence theorem.

Theorem 4.2. Let φ be the solution of (15), and assume that (21) and (22) hold. Then, there exist
C1, C2 > 0, independents of h and ν, such that

C1 ηH ≤ ‖φ‖a ≤ C2

ηH +

[ ∑
K∈Th

h4
K

ν3

{(
‖RK‖0,K + ‖f‖0,K

)
‖uh‖∞,K + ‖∇·uh‖0,K

}2
]1/2

 ,

where ηH is given by (19).

Proof. The upper bound has been stated in Lemma 4.3. To proof the lower bound we first write the
subspace Wh in the following way

Wh = Hh +
∑
K∈Th

Hb
K +

∑
F∈EΩ

Hb
F =: Hh +

∑
i∈Th∪EΩ

Hb
i .

From the definition of Piφ in (20), and by Cauchy–Schwarz’s inequality we have[ ∑
i∈Th∪EΩ

a(Piφ, Piφ)

]2

=

[ ∑
i∈Th∪EΩ

a(φ, Piφ)

]2

=

[
a

(
φ,

∑
i∈Th∪EΩ

Piφ

)]2

≤ a(φ,φ) a

( ∑
i∈Th∪EΩ

Piφ,
∑

i∈Th∪EΩ

Piφ

)
= a(φ,φ)

∑
i∈Th∪EΩ

∑
j∈Ii

a(Piφ, Pjφ)

≤ a(φ,φ)
∑

i∈Th∪EΩ

∑
j∈Ii

{
1

2
a(Piφ, Piφ) +

1

2
a(Pjφ, Pjφ)

}
≤ Kmax a(φ,φ)

∑
i∈Th∪EΩ

a(Piφ, Piφ), (24)
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here Ii denotes the set of spaces Hb
j which are neighbors of Hb

i , i.e.,

Ii := {j : ∃vj ∈ Hb
j and vi ∈ Hb

i such that a(vi,vj) 6= 0}

and Kmax is the maximum number of neighbors, i.e.,

Kmax := max{card(Il) : l ∈ Th ∪ EΩ},

which is uniformly bounded due to the mesh regularity. Then, the result follows from (24), the definition of
the norm ‖ · ‖a and noticing that

η2
H =

∑
K∈Th

a(PKφ, PKφ) +
∑
F∈EΩ

a(PFφ, PFφ) =
∑

i∈Th∪EΩ

a(Piφ, Piφ).

Finally, we establish the main result of this work. From (17), (19) and Theorem 4.2 the approximation error
can be estimated as follows.

Theorem 4.3. Let (u, p) and (uh, ph) be the solution of (1) and LPS, respectively, and suppose that (21)
and (22) hold. Then

C1η̃H ≤ ‖(u− uh, p− ph)‖ ≤ C2

η̃H +

[ ∑
K∈Th

h4
K

ν3

{(
‖RK‖0,K + ‖f‖0,K

)
‖uh‖∞,K + ‖∇·uh‖0,K

}2
]1/2


where

η̃2
H :=

∑
K∈Th

η̃2
H,K

with

η̃2
H,K := ‖PKφ‖2a,K +

1

2

∑
F∈E(K)∩EΩ

‖PFφ‖2a,F + ν ‖∇·uh‖20,K ,

and the positive constants C1 and C2 are independent of h.

Remark 4.5. Note that the term

T :=

( ∑
K∈Th

h4
K

ν3

{
(‖RK‖0,K + ‖f‖0,K)‖uh‖∞,K + ‖∇·uh‖0,K

}2
)1/2

,

appearing in Theorem 4.3, is, asymptotically, a high order term compared to η̃H . In fact, we can see this, for
instance, in Figures 1– 4 where we observe that η̃H is O(h) and T is O(h2). For this reason we may omit

T in our numerical tests. The behavior of this h.o.t. term is quite similar to
(∑

K∈Th h
2
K‖f − Phf‖20,K

)1/2
,

with Phf a projection of f , which appears in the a posteriori error estimates of the residual type (see Remark
1.8 in [31]).

5. Numerical validation

In order to validate our a posteriori error estimator we present some numerical tests. In examples 5.1 and
5.2 we analyze two problems with analytical solution in two and three dimensions, respectively, comparing
in each case the exact approximation error with its estimated error η̃H .

Also, as a mesure of the quality of our error estimator, we define the so called effectivity index, by

Ei :=
η̃H

‖(u− uh, p− ph)‖ ,

11



we expect that Ei remain bounded as h goes to 0 through a sequence of uniform refined meshes.
Finally, in examples 5.3 and 5.4, we address numerical comparisons with some well-documented bench-

marks from the literature, namely, 2D driven cavity flow and 3D flow around a cylinder.

The adaptive procedure handles the nonlinearity by a Newton algorithm and uses a structured coarse
mesh to start the process. At each step, we solve the LPS problem and compute its corresponding local
error estimator η̃H,K for each element K ∈ Th, and refine those elements accordingly to

η̃H,K ≥ θ max{η̃H,K′ : K ′ ∈ Th},
where θ ∈]0, 1[ is a prescribed parameter. Then we evaluate the stopping criterion and decide to finish or go
to the next step. In addition, when it comes to adapt meshes, the solution computed in the previous mesh,
after an interpolation process on the current mesh [25], is set as the initial guess solution for the Newton
iteration method in the current mesh.

In the case ν � 1, the numerical algorithm demands a continuation strategy to reach the target viscosity.
This strategy consists in beginning with a relatively big viscosity value and decreasing it gradually to attain
the desired value.

For practical purposes, we used the mesh generators Triangle [27] and Tetgen [28] to create the initial
and adapted meshes in 2D and 3D, respectively, as it allowed us to create successively refined meshes based
on a hybrid Delaunay refinement algorithm.

Remark 5.1. Note that problem (NS) have homogeneous Dirichlet boundary condition, but in our numerical
examples we consider both non homogeneous Dirichlet and Neumann boundary conditions, which are not
covered by our theory. The changes necessary to deal with these boundary conditions are: in the case of non
homogeneous Dirichlet conditions it appears an extra term in the estimator that measures the error in the
approximation of the exact Dirichlet condition, in general, this is a high order term that can be neglected
in the numerical computations. In the case of Neumann boundary conditions it is necessary to change the
rhs of the equation and add, to the definition of η̃H in (19), the terms a(PFφ, PFφ) for the edges F on the
Neumann boundary.

5.1. Two-dimensional analytic solution
In this example we consider Ω =]0, 1[2 and the boundary conditions such as the exact solution is given

by u(x, y) := (u1(x, y), u2(x, y)), with

u1(x, y) := 256 y2(y − 1)2x(x− 1)(2x− 1),

u2(x, y) := −u1(y, x),

and
p(x, y) := 150(x− 0.5)(y − 0.5).

For the viscosity we consider the cases: ν = 1, 10−2.
The error, a posteriori estimator and effectivity index are shown in Tables 1 and 2 for ν = 1 and ν = 10−2,

respectively. Likewise, the corresponding convergence history for ν = 1 and ν = 10−2 is presented in Figures
1 and 2.

Table 1: Exact error, a posteriori error estimator and effectivity index for the 2D example with analytical solution with ν = 1.

h ‖(u− uh, p− ph)‖ η̃H Ei

0.031250 0.557676 0.523659 0.939002
0.015625 0.276208 0.263430 0.953736
0.007813 0.137523 0.132090 0.960493
0.003906 0.068629 0.066137 0.963677
0.001953 0.034284 0.033091 0.965216
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Figure 1: Convergence history for the 2D example with analytical solution, case ν = 1 (left) and the behavior of T when h
goes to 0 (right).

Table 2: Exact error, a posteriori error estimator and effectivity index for the 2D example with analytical solution with
ν = 10−2.

h ‖(u− uh, p− ph)‖ η̃H Ei

0.031250 3.656915 2.163265 0.591555
0.015625 1.684914 1.075223 0.638147
0.007813 0.811511 0.533646 0.657596
0.003906 0.400764 0.266174 0.664166
0.001953 0.199667 0.132940 0.665810
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Figure 2: Convergence history for the 2D example with analytical solution, case ν = 10−2 (left) and the behavior of T when h
goes to 0 (right).

In both cases, ν = 1 or ν = 10−2, we observe a good agreement between the numerical results and the
results predicted by the theory.

5.2. Three-dimensional analytic solution

We consider Ω :=]0, 1[3 and choose the data f so that the exact solution is given by

u(x, y, z) := (ex sin(z), −ex sin(z), ex cos(z)− ex cos(y))

13



and

p(x, y) :=
−1

2
e2x +

1

4
(e2 − 1).

As in the 2D example, we analyze the cases ν = 1, 10−2.
In Figures 3 and 4, we summarize the convergence history of the LPS method with ν = 1 and ν = 10−2,

respectively. Also, in Tables 3 and 4 we show the exact error, a posteriori error estimator and effectivity
index for the cases ν = 1 and ν = 10−2.

Table 3: Exact error, a posteriori error estimator and effectivity index for the 3D example with analytical solution with ν = 1.

h ‖(u− uh, p− ph)‖ η̃H Ei

0.444081 0.544975 0.438047 0.803793
0.247472 0.283073 0.232354 0.820826
0.143330 0.150263 0.131043 0.872088
0.081658 0.080683 0.072337 0.896558
0.045780 0.043711 0.039629 0.906613
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Figure 3: Convergence history for the 3D example with analytical solution, case ν = 1 (left) and the behavior of T when h
goes to 0 (right).

Table 4: Exact error, a posteriori error estimator and effectivity index for the 3D example with analytical solution with
ν = 10−2.

h ‖(u− uh, p− ph)‖ η̃H Ei

0.2474718 2.8269643 0.4619786 0.1634186
0.1433296 1.2279783 0.2728947 0.2222309
0.0816576 0.5090968 0.1525166 0.2995827
0.0457801 0.2144706 0.0848238 0.3955032

14



0.001

0.01

0.1

1

10

0.01 0.1 1

lo
g
er
ro
r

log h

h2

h
‖p− ph‖0,Ω
‖u− uh‖0,Ω
|u− uh|1,Ω

‖(u, p)− (uh, ph)‖

1

0.01

0.1

1

10

100

1000

0.01 0.1 1

lo
g
er
ro
r

log h

h

h2

T

η̃H

Figure 4: Convergence history for the 3D example with analytical solution, case ν = 10−2 (left) and the behavior of T when h
goes to 0 (right).

Remark 5.2. Note that from Tables 1–2 and Tables 3–4 we observe that the errors grow when we change
ν from 1 to 10−2, which means that we have some inrobustness with respect to ν. In our computations for
the Stokes problem we observe the same phenomena, this lead us to think that the problem is the lack of
robustness of the method related to the pressure in the sense of [23].

5.3. Two-dimensional lid-driven cavity problem

In this case we considered the well-known 2D cavity problem, where the domain Ω is ]0, 1[×]0, 1[, f = 0
and the boundary conditions are defined as in Figure 5 (we refer the reader to [18], [24] and [29] for a complete
bibliography on this problem). In our particular case, ν = 1/Re, with Reynolds number Re = 5, 000.

Figure 5: Domain and boundary conditions for the driven cavity problem.

The Figure 6 depicts the final mesh obtained with our adaptive scheme together the streamlines given
by the solution obtained using that mesh. We observe that mesh refinement concentrates mainly around
the primary vortex but also we recover secondary vortices in the expected locations.
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Figure 6: Lid-driven cavity problem for Re = 5, 000. Adaptive mesh and streamlines. The mesh has 345,947 elements.

In Table 5, we compare our results with the ones obtained from other approaches in the literature. Note
that we get similar values compared with others solvers.

Scheme x y

Ghia et al. (1982) 0.5117 0.5352
Medic & Mohammadi (1999) 0.53 0.53
LPS P1 × P0 0.5156 0.5343

Table 5: Position of the center of the primary vortex. The LPS results were obtained with the adaptive mesh of Figure 6.

5.4. Flow around of a circular cylinder

This problem, depicted in Figure 7, represents a channel with a cylindrical obstacle. The domain Ω is
the region ]0, 2.5[×]0, H[×]0, H[, with H = 0.41m, without a cylinder of diameter D = 0.1 m. The inflow
velocity field is

up = H−4
(
16Uyz(H − y)(H − z), 0, 0

)t
,

with U = 0.45 m/s, the fluid viscosity is given by ν = 10−3 and the right-hand side of the momentum
equation vanishes, i.e. f = 0. For further details see [22] and [26].

The benchmark coefficients to compute are the following three: the pressure difference ∆p between the
points (0.55, 0.2, 0.205) and (0.45, 0.2, 0.205), and the drag and lift coefficients defined as follows:

Cdrag :=
2Fdrag

ρū2DH
and Clift :=

2Flift

ρū2DH
,

where ρ = 1 and ū = 0.2, are the density of the fluid and the mean inflow, respectively, and

Fdrag :=

∫
S

(
ρν
∂ut
∂n

ny − p nx
)

dS and Flift :=

∫
S

(
ρν
∂ut
∂n

nx − p ny
)

dS

be the drag and lift forces, respectively. Here S is the surface of the cylinder, n = (nx, ny, nz) the inward
pointing unit vector with respect to Ω, t a tangential vector on S and ut = u · t is the projection of the
velocity into the direction t.
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Figure 7: Configuration of the cylinder benchmark problem.

The Table 6 shows the results from the LPS method obtained from the adaptive meshes. The reference in-
tervals for the three coefficients (see [22]) are: Cdrag ∈ [6.05, 6.25], Clift ∈ [0.008, 0.01] and ∆p ∈ [0.165, 0.175].

elements Cdrag Clift ∆p

628,725 6.1911 0.0173540 0.17092
908,760 6.1236 0.0078108 0.16566
1,080,148 6.1023 0.0082491 0.17000

Table 6: The benchmark coefficients Cdrag, Clift and ∆p.

In Figure 8 we show the final adapted mesh, obtained with our adaptive scheme, and a zoom of a cut
made at z = 0.205. Note, as expected, that most of the refinement is done near the cylinder. To complement
the information, in Figure 9 we show the streamtracers of the velocity field and in Figure 10 the magnitude
of the velocity and the pressure at the cross-section z = 0.205 in the final adapted mesh. Observe that the
overall results are in accordance with the expected behavior of the flow (see, for instance, [5] and [9]).

Figure 8: Initial mesh (left), final adapted mesh with 1,080,148 elements (center) and a cut through the plane z = 0.205 (right).

17



Figure 9: Sreamtracers (left) and velocity vector field (right).

Figure 10: Isovalues of the magnitude of the velocity field (left) and of the pressure (right).

Remark 5.3. A more accurate approximation of the drag and lift coefficients is presented in [13], where
the authors used a Q2 approximation joint with an a posteriori error estimator based in the computation of
quantities of interest. Note that our estimator is designed with an “energy norm” in mind, then it is not
optimal in the sense of the computation of those parameters. On the other hand, a goal oriented estimator
is, normally, more expensive to compute due to the cost implied in solving the dual problem.

6. Conclusions

In this paper we adapted the ideas of [1] and [3] to develop an a posteriori error analysis of hierarchical-
type for the LPS method, introduced in [5], which approximates the solution of the fully nonlinear incom-
pressible Navier–Stokes equations. Our a posteriori estimator is based on the solution of local problems
posed in specific one-dimensional spaces of bubble-like functions, so is easy to implement with low com-
putational cost. In order to study the performance of our a posteriori estimator we presented numerical
examples with analytical solutions checking that the effectivity index stays bounded as h goes to zero, and
we tested well known benchmark problems which live outside of the theoretical framework showing that
our a posteriori estimator generates a sequence of adapted meshes improving the quality of the numerical
solutions even in turbulent regime, as was shown with the lid-driven cavity problem.
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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