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WENO RECONSTRUCTIONS OF UNCONDITIONALLY

OPTIMAL HIGH ORDER

ANTONIO BAEZAA, RAIMUND BÜRGERB, PEP MULETC, AND DAVID ZORÍOD

Abstract. A modified Weighted Essentially Non-Oscillatory (WENO) tech-

nique preventing accuracy loss near smooth extrema, regardless of their order,
is presented. This approach uses only local data from around the reconstruc-

tion stencil. The resulting weights to account for discontinuities are non-

dimensional and scale-independent. Two different ways to define the weights
and prove that both give the sought accuracy order are provided. Several val-

idation tests are also presented, in which the method is applied to algebraic
equations, scalar conservation laws and systems of conservation laws.

1. Introduction

1.1. Scope. Weighted Essentially Non-Oscillatory (WENO) schemes, initially pro-
posed in [16] and later improved in [13], have become a very useful tool to solve
hyperbolic conservation laws, that is, initial-value problems of the type

ut +

d∑
i=1

f i(u)xi = 0, (1.1)

where x = (x1, . . . , xd) ∈ Rd, t > 0, u = u(x, t) = (u1, . . . , uN )T is the sought
vector of unknowns, and f i(u) = (fi,1(u), . . . , fi,N (u))T for i = 1, . . . , d, supplied
with the initial condition

u(x, 0) = u0(x), x ∈ Rd. (1.2)

WENO schemes present a high order of accuracy in smooth zones and avoid the
oscillatory behaviour typical of the reconstructions from discontinuous data through
a sophisticated construction of non-linear weights [13]. However, such weights are
sensitive not only to discontinuities, but also, and in general, to abrupt changes in
any higher derivative of the function that generates the data, which leads to an un-
desired loss of accuracy near smooth extrema. A variety of solutions to handle this
problem have been proposed in the literature; see for instance [1,2,11,21]. However,
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none of the proposed solutions allows to unconditionally attain the optimal order of
accuracy (that is, regardless of the order of the smooth extrema) depending only on
the local data without ending up with dimensional or scale-dependent weights. In
other words, the proposed solutions either use some dimensional (namely, depend-
ing on the grid size) or not properly scaled parameter, or use data from the global
numerical solution to define a non-dimensional and scale-independent parameter to
prevent such loss of accuracy.

It is the purpose of this paper to perform an extensive accuracy analysis of the
elements involved in the definition of weights in WENO schemes, mainly smoothness
indicators and undivided differences, and to find solid upper and lower bounds on
these quantities in order to allow a fine theoretical analysis. Such analysis is also
used to find a suitable weight design whose associated reconstruction algorithm
does not loose accuracy in smooth zones, even in presence of smooth extrema of
any order, through non-dimensional and scale-independent weights that only use
the information from the local data of the stencil.

1.2. Related work. Many works in the literature tackle the problem of achieving
optimal order of accuracy near smooth extrema. In [11] the authors obtain optimal
order convergence near critical points for the case of fifth order through a simple
modification of Jiang-Shu weights [13], which involves mapping the weights to values
that verify an optimality condition. The approach was further extended up to order
17 in [9] and further enhanced in [8] by means of a different mapping.

A different weight design was followed in the fifth order WENO-Z method of [3],
which attains fourth order accuracy even at critical points. In [4] the WENO-
Z scheme was extended to any odd order of accuracy, getting optimal order at
smooth extrema by proper parameter tuning.

Yamaleev and Carpenter introduced in [21] a new method, named ESWENO,
based on the third-order case previously introduced in [20] that ensures energy
stability in an L2 norm. Even though it was not their primary goal to enhance order
at critical points, it turns out that the resulting scheme achieves optimal order in
the presence of smooth extrema provided that the number of zero derivatives is at
most the order of the scheme minus three.

Another way to handle the problem of the order loss at critical points is the
modification of the smoothness indicators. In [10] a new smoothness measurement
provides optimal order for functions with critical points, but in which the second
derivative is not zero.

The design of weights in WENO schemes typically involves a quantity that avoids
division by zero whenever an smoothness indicator becomes zero. It was noted in [1]
that the choice of this parameter is crucial for the achievement of optimal order
at critical points and that, for the case of the original weights of Jiang and Shu,
the choice of the parameter proportional to the square of the mesh size provides
the desired accuracy even at critical points. A similar analysis was later performed
in [6], regarding WENO-Z schemes, and in [2] with respect to the ESWENO weights
of Yamaleev and Carpenter. See also [14].

1.3. Outline of this paper. To properly support the grounds of this work, the
required theoretical background is presented in Section 2. Section 3 is devoted to
the definition of a modified WENO scheme which attains optimal order of accuracy
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regardless of the number of consecutive zero derivatives of the function to be recon-
structed, and without using any scaling parameter. We prove that the new scheme
has unconditionally optimal order of accuracy under those conditions. The section
is divided into two subsections in which we propose two alternative definitions of the
weights. Both methods attain unconditionally the optimal order for smooth data:
on one hand, Subsection 3.1 introduces a new weight design based on adding an
additional node to the stencil, together with the theoretical results which guarantee
that this scheme entails the optimal order; on the other hand, in Subsection 3.2 a
second alternative is presented in which no additional node is required to attain the
optimal order, whose accuracy is proven using previous results from Subsection 3.1
and some additional results provided in Appendix A. In section 4 we present some
numerical experiments, both for algebraic problems in Subsection 4.1 and problems
involving hyperbolic conservation laws in Subsection 4.2. Finally, in Section 5 some
conclusions are drawn. Some additional results required to prove the accuracy of
the novel schemes are collected in Appendix A.

2. Regularity properties of functions

2.1. Preliminaries. In this work, given a function f : R −→ R the notation
f(h) = O(hα) for α ∈ Z always corresponds to the behaviour of a function f as
h→ 0 in the standard sense, that is,

f(h) = O(hα)⇔ lim sup
h→0

∣∣∣∣f(h)

hα

∣∣∣∣ <∞.
Furthermore, we write f(h) = Ō(hα) to express the more restrictive property

f(h) = Ō(hα)⇔ lim sup
h→0

∣∣∣∣f(h)

hα

∣∣∣∣ <∞ and lim inf
h→0

∣∣∣∣f(h)

hα

∣∣∣∣ > 0.

Since for positive functions f and g,

lim sup
h→0

f(h)g(h) ≤ lim sup
h→0

f(h) lim sup
h→0

g(h),

lim inf
h→0

f(h)g(h) ≥ lim inf
h→0

f(h) lim inf
h→0

g(h),

it follows for α, β ∈ Z that O(hα)O(hβ) = O(hα+β) and Ō(hα)Ō(hβ) = Ō(hα+β).
Since, for Ai ⊆ (0,∞), supi inf Ai = infi supA−1

i , A−1
i = {1/x : x ∈ Ai}, it

follows that for positive f ,

lim inf
h→0

f(h) =

(
lim sup
h→0

f(h)−1

)−1

,

therefore, if f is positive, f(h) = Ō(hα) implies f(h)−1 = O(h−α).

Definition 2.1. We say that a function f has a smooth critical point of maximal
order k ≥ 0 at x if f (l)(x) = 0, l = 1, . . . , k and f (k+1)(x) 6= 0.

2.2. WENO reconstructions. For a (2r−1)-point stencil S = {x−r+1, . . . , xr−1}
and a scalar function f we assume that the data {f−r+1, . . . , fr−1} is defined either
as the point values

fj = f(xj) − r + 1 ≤ j ≤ r − 1 (2.1)
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or the cell averages

fj =
1

h

∫ xj+1/2

xj−1/2

f(x) dx − r + 1 ≤ j ≤ r − 1, (2.2)

where in both cases xj = xj,h, xj+1 − xj = h for −r+ 1 ≤ j ≤ r− 1, and assuming
that we wish to approximate the point value f(x1/2). In what follows we state
some results that will be helpful for the analysis of the accuracy of the WENO
reconstructions for both cases.

We denote by pr,i ∈ Πr−1 the reconstruction polynomials of the corresponding
substencils Sr,i = {x−r+1+i, . . . , xi}, 0 ≤ i ≤ r − 1, where the corresponding
interpolation property on Sr,i is assumed to be satisfied, i.e., pr,i(xj) = fj for all
xj ∈ Sr,i. In what follows we omit the subindex r when no confusion may arise.

The WENO strategy consists in defining a reconstruction q as a convex com-
bination of the individual reconstructions pi with appropriately designed weights
ω0, . . . , ωr−1 ≥ 0, where ω0 + · · ·+ ωr−1 = 1:

q(x) =

r−1∑
i=0

ωipi(x). (2.3)

The weights ωi are functions of some smoothness indicators, which we take ac-
cording to the proposal by Jiang and Shu [13]:

Ir,i =

r−1∑
l=1

∫ x1/2

x−1/2

h2l−1
(
p

(l)
r,i(x)

)2
dx. (2.4)

In the remainder of the paper, we denote by Πk, k ∈ N0, the space of polynomials
of maximal degree k, and by Π̄k the space of polynomials of exact degree k, k ∈ N0.

Lemma 2.1. Let c0 < c1 < · · · < cn and z be fixed real numbers. Let S =
{x0,h, . . . , xn,h} be an (n + 1)-point stencil with xi,h = z + cih for h > 0. For any
real function f , let ph = ph[f ] ∈ Πn be the reconstruction polynomial that satisfies
either ph(xi,h) = f(xi,h) for i = 0, . . . , n or∫ xi,h+h/2

xi,h−h/2
ph(x) dx =

∫ xi,h+h/2

xi,h−h/2
f(x) dx for i = 0, . . . , n,

depending on whether the underlying data are point values (2.1) or cell averages
(2.2).

Then, for 1 ≤ j ≤ n and s ≥ j, there exists polynomials bs,j ∈ Πn−j, depending
uniquely on the type of reconstruction and parameters c0, . . . , cn, such that for any
f ∈ Cm+1

p
(j)
h (z + wh) =

m∑
s=j

bs,j(w)hs−jf (s)(z) +O(hm+1−j) (2.5)

for sufficiently small wh. The functions bs,j have the following properties:

(1) For j ≤ s ≤ n,

bs,j(w) = s!

(
s

j

)
ws−j .

(2) bs,1 ≡ 0 if and only if n = 1, s is even and c0 = −c1, and bs,1 6≡ 0 otherwise.



OPTIMAL ORDER WENO 5

The proof relies on applying appropriate operators to Taylor expansions, based
on the following result.

Lemma 2.2. Let L : Cm+1[a, b] → Πn be a linear and continuous operator with
respect to the norm ‖ · ‖ = ‖ · ‖∞. Then there exists K > 0 such that for any
ζ ∈ [a, b] and w ∈ [a, b],

L[f ](w) =

m∑
s=0

f (s)(ζ)

s!
L[(w − ζ)s] + ∆m+1,ζL[f ],

where ∆m+1,ζL[f ] is a remainder term that satisfies∥∥∆m+1,ζL[f ]
∥∥ ≤ K∥∥f (m+1)

∥∥.
Proof of Lemma 2.2. The result follows by applying L to the Taylor expansion of f
about ζ

f(w) =

m∑
s=0

f (s)(ζ)

s!
(w − ζ)s +Rm+1,ζf(w),

taking ∆m+1,ζL[f ] = L[Rm+1,ζf ] and using the bound ‖Rm+1,ζf‖ ≤ K1‖f (m+1)‖
to set K = K1‖L‖. �

Proof of Lemma 2.1. We let a = c0−1/2 and b = cn+1/2 and define the operators
L̃ν ,Lν,j : Cm+1[a, b]→ Πn, ν = 1, 2, j ≥ 1 through the following conditions, where
i = 0, . . . , n and j ≤ n:

L̃1[f ](ci) = f(ci), L1,j [f ] =
(
L̃1[f ]

)(j)
, (2.6)∫ ci+1/2

ci−1/2

L̃2[f ](x) dx =

∫ ci+1/2

ci−1/2

f(x) dx, L2,j [f ] =
(
L̃2[f ]

)(j)
. (2.7)

The linearity of L̃ν and Lν,j is clear and the continuity can be proven by ex-
ploiting the finite set of conditions (2.6), (2.7), e.g., by using Lagrange basis poly-
nomials ϕi (standard ones for point evaluation); namely, if we define

L̃1[f ] :=

n∑
i=0

f(ci)ϕi,

this implies

L1,j [f ] =

n∑
i=0

f(ci)ϕ
(j)
i ,

∥∥L1,j [f ]
∥∥ ≤ max

0≤i≤n
(f(ci))

n∑
i=0

∥∥ϕ(j)
i

∥∥ ≤ ‖f‖ n∑
i=0

∥∥ϕ(j)
i

∥∥.
Similar arguments apply to the cell-average case (ν = 2).

With the notation Sz,h(w) := z+wh, the polynomials (2.5) can be expressed as
ph = L̃[f ◦ Sz,h] ◦ S−1

z,h, which means that

ph(x) = L̃[f ◦ Sz,h]

(
x− z
h

)
and where L̃ denotes either L̃1 or L̃2, and Lj the corresponding operator L1,j

or L2,j . Since (f ◦ Sz,h)(s)(w) = hsf (s)(z + wh), Lemma 2.2 for ζ = 0 yields

p
(j)
h (x) = h−jL̃[f ◦ Sz,h](j)

(
x− z
h

)
= h−jLj [f ◦ Sz,h]

(
x− z
h

)
,

p
(j)
h (z + wh) = h−jLj [f ◦ Sz,h](w)
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= h−j
m∑
s=0

(f ◦ Sz,h)(s)(0)

s!
Lj [ws] + h−j∆m+1,0Lj [f ◦ Sz,h]

=

m∑
s=j

hs−j
f (s)(z)

s!
Lj [ws] +O(hm+1−j),

since L̃[ws] = ws for s ≤ n, therefore Lj [ws] = (L̃[ws])(j) = 0 for s < j, and

∆m+1,0Lj [f ◦ Sz,h] ≤ K
∥∥(f ◦ Sz,h)(m+1)

∥∥
[a,b]

= Khm+1
∥∥f (m+1)

∥∥
Sz,h([a,b])

.

Therefore, the result follows with

bs,j(w) =
Lj [ws]
s!

.

Finally, if n ≥ 1 and bs,1(w) = 0, then for the first operator we have the equiva-
lences

L̃1[ws] = α⇔ csi = α, i = 0, . . . , n⇔ n = 1, s is even and c0 = −α1/s, c1 = α1/s.

For the second operator, we have

bs,1(w) = 0⇔ L̃2[ws] = α

⇔ qs(ci) =

(
ci +

1

2

)s+1

−
(
ci −

1

2

)s+1

= (s+ 1)α, i = 0, . . . , n,

which means that

qs(x) =

(
x+

1

2

)s+1

−
(
x− 1

2

)s+1

=

s+1∑
l=0

(
s+ 1

l

)
xs+1−l 1

2l
(1− (−1)l)

=

bs/2c∑
l=0

(
s+ 1

2l + 1

)
1

22l
xs−2l.

This implies, by Rolle’s theorem, that there exist numbers c̃i ∈ (ci−1, ci), i =
1, . . . , n such that q′s(c̃i) = 0. But

q′s(x) =

bs/2c∑
l=0

(
s+ 1

2l + 1

)
1

22l
(s− 2l)xs−2l−1

has only even-degree terms, with strictly positive coefficients, when s is odd (and
therefore no roots) and only odd-degree terms, with strictly positive coefficients,
when s is even (and therefore 0 as only root). This implies that s is even, n = 1
and c̃1 = 0, which yields c0 < c̃1 = 0 < c1. Since qs is an even function and strictly
increasing in (0,∞), for even s, qs(c0) = qs(−c0) = qs(c1) implies c1 = −c0. The
converse is clear, since n = 1, c1 = −c0 and even s implies that qs(c1) = qs(c0) = α
and therefore L̃2[ws] = α and bs,1(w) = 1

s! L̃2[ws]′ = 0. �

Lemma 2.3. If f ∈ C∞(z − γ, z + γ) for some γ > 0 and

f (s′)(z) = 0 for all s′ < s, (2.8)

then

ei(h) := f(z + h/2)− pi(z + h/2) = O(hmax(r,s)), (2.9)

e(h) := f(z + h/2)− q(z + h/2) = O(hmax(r,s)). (2.10)
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Proof. We prove the result for the interpolatory case, the cell-average case is sim-
ilar. Without loss of generality assume z = 0. Using the representation of the
interpolation error by divided differences (see e.g. [5]), we get

ei(h) = f(x1/2)− pi(x1/2)

= f [xi−r+1, . . . , xi, x1/2]

r−1∏
l=0

(x1/2 − xi−l) =
f (r)(ξ)

r!
hr

r−1∏
l=0

(
1

2
− i+ l

)
,

where |ξ − z| < max(r− 1− i, i)h < rh. The result follows for s ≤ r. For s > r, by
(2.8) and Taylor’s remainder theorem, we get

f (r)(ξ) =
f (s)(ξs,r)

(s− r)!
(ξ − z)s−r|ξs,r − z| < |ξ − z|.

It follows that ∣∣ei(h)
∣∣ ≤ max

|ξ−z|<rh0

∣∣f (s)(ξ)
∣∣ rs

r!(s− r)!
hs

for 0 < h < h0 so that rh0 < γ. This concludes the proof of (2.9), and (2.10)
follows from

∑
j ωj = 1. �

In order to use the previous results, we consider xi,h = z + (α+ i)h, with α ∈ R
fixed and i ∈ Q, so that, for instance x1/2,h = z + (α + 1/2)h. The reconstruction
polynomial pr,i associated to the substencil Sr,i = {x−r+1+i, . . . , xi} corresponds
to ph in Lemma 2.1 for n = r − 1 and

cj = cj,i := α− r + i+ 1 + j, j = 0, . . . , r − 1. (2.11)

Theorem 2.1. If f has a smooth extremum of maximal order k at z, then the
Jiang-Shu smoothness indicator Ir,i (see (2.4)) satisfies Ir,i = Ō(h2q), where

q =

{
min{l ∈ N : 2|l, l ≥ k, f (l+1)(z) 6= 0} for r = 2 and α+ i = 1/2,

k + 1 otherwise.

Proof. From Lemma 2.1 applied to n = r − 1 and (2.11), we obtain

p
(j)
r,i (z + wh) =

m∑
s=j

bi,s,j(w)hs−jf (s)(z) +O(hm+1−j), (2.12)

where bi,s,j denotes the function bs,j given by Lemma 2.1 corresponding to the
stencil Sr,i. Notice that the condition α+ i = 1/2 is equivalent to c0,i = −c1,i. We
apply (2.12) for m = q, where

q = min
{
ν ∈ N : bi,ν,1(w)f (ν)(z) 6= 0

}
.

Then by the definition of k and Lemma 2.1 we get for j ≤ min(r − 1, q):

p
(j)
r,i (z + wh) = bi,q,j(w)hq−jf (q)(z) +O(hq+1−j). (2.13)

We use the change of variables x = z + wh to get from (2.13) for j = 1:∫ x1/2

x−1/2

(
p

(1)
r,i (x)

)2
dx = h

∫ α+1

α

(
bi,q,1(w)hq−1f (q)(z) +O(hq)

)2
dw

= h2q−1µi,1 +O(h2q), µi,1 := f (q)(z)2

∫ α+1

α

bi,q,1(w)2dw > 0.
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For 1 < j ≤ q (and, a fortiori, r > 2, therefore q = k + 1) we obtain∫ x1/2

x−1/2

(
p

(j)
r,i (x)

)2
dx = h

∫ x1/2

x−1/2

(
bi,q,j(w)hq−jf (q)(z) +O(hq+1−j)

)2
dw

= µi,jh
2(q−j)+1 +O(h2(q−j)+2), µi,j := f (q)(z)2

∫ α+1

α

(
bi,q,j(w)

)2
dw ≥ 0.

For j > q we get∫ x1/2

x−1/2

(
p

(j)
r,i (x)

)2
dx = h

∫ x1/2

x−1/2

(
bi,j,j(w)f (j)(z) +O(h)

)2
dw = O(h).

The proof is complete after substitution of these terms into (2.4):

Ir,i =

r−1∑
j=1

h2j−1

∫ x1/2

x−1/2

(
p

(j)
r,i (x)

)2
dx

=

min(q,r−1)∑
j=1

h2j−1
(
µi,jh

2(q−j)+1 +O(h2(q−j)+2)
)

+

r−1∑
j=min(q,r−1)+1

h2j−1O(h)

= h2q

min(q,r−1)∑
j=1

µi,j +O(h2q+1),

taking into account that
∑min(q,r−1)
j=1 µi,j > 0. �

3. Design of WENO weights

We next proceed to the definition of our modified scheme. The goal is to define
weights in a way such that the resulting scheme has the maximal order of accuracy
2r−1, for r > 2. For simplicity, assume a right-biased reconstruction (the procedure
for left-biased reconstructions is analogous, nevertheless we will state the differences
along the construction of the scheme where required).

From this point on, two alternative approaches are presented in which the opti-
mal accuracy is unconditionally attained in presence of smooth data. Approach 1
relies on the inclusion of an additional node to the stencil. Approach 2 is based on
a modification of a parameter of Approach 1, in a way so that no additional node
is required and the optimal accuracy is still attained.

In both approaches we will work under the assumption r > 2, namely, considering
WENO reconstructions of order greater than 3.

3.1. Approach 1: Optimal WENO reconstructions with an additional
node. Weights ωi in WENO schemes are defined through a relation of the type

ωi =
αi

α0 + · · ·+ αr−1
, 0 ≤ i ≤ r − 1, (3.1)

so that the sum of the weights is 1.
In this section the quantities α0, . . . , αr−1 are given by

αi = ci

(
1 +

d(ε, h)s1

Is1i + ε

)s2
, 0 ≤ i ≤ r − 1, (3.2)

for some s1, s2 > 0, ci > 0 with
∑r−1
i=0 ci = 1 and d(ε, h) to be defined below. This

approach is related to the one of Yamaleev and Carpenter [21]. The ultimate goal
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is to obtain the maximal order of convergence 2r − 1, regardless of the presence of
neighboring extrema [1, 2, 11, 21] and without using the small number ε > 0 that
ensures the strict positivity of the denominators. Contrarily to other approaches
[1, 2], our design does not rely on a functional relation between ε and h. Although
this parameter is necessary if conditionals are to be avoided (which in turn may
be necessary to avoid divisions by zero), our arguments will show that ε can be
neglected in the asymptotical analysis of the order with respect to h.

3.1.1. Motivation. In the classical WENO order-enhancing argument in case of
sufficient smoothness (see the proof of Lemma 3.2 below), for a function with
an extremum of maximal order k, the order of the reconstruction is ordmax =
min(max(2r−1, k+1), s+max(r, k+1)), where max(2r−1, k+1), resp. max(r, k+1),
are the orders of the reconstructions with p2r−1,r−1, resp. pr,i (see Lemma 2.3) and
s ≥ 0 satisfies ωi = ci +O(hs).

A natural way of defining αi in (3.2) could be to define d(ε, h) independently of ε
through the following squared undivided difference related to the 2r−1 consecutive
values (f−r+1, . . . , fr−1):

d(ε, h) = dr,2r−2(h) :=

(
r−1∑

j=−r+1

(−1)j+r−1

(
2r − 2

j + r − 1

)
fj

)2

. (3.3)

With this definition of d(ε, h) it holds that d(0, h) = O(h4r−4) which, together
with Ij = Ō(h2k+2), gives from Theorem 2.1:

1 +
d(0, h)s1

Is1i
= 1 +O(h4r−2k−6).

The order-enhancing argument in this context requires d(0,h)s1

I
s1
i

→ 0, which is not

met if k = 2r− 3. On the other hand, if k ≥ 2r− 2, then ordmax ≥ 2r− 1. So there
remains an order loss gap at k = 2r − 3.

3.1.2. Theoretical analysis. Based on the previous analysis, in order to design a
reconstruction procedure that attains the optimal order of accuracy, we include
an additional node to the stencil, namely, we sample an additional value of f .
In our case, the most convenient value for that purpose is fr = f(xr) with xr =
xr−1+h, since in that case, the resulting extended stencil, S̄ = {f−r+1, . . . , fr−1, fr}
is centered with respect to x1/2. For the case of a left-biased reconstruction at x−1/2

the added value would be f−r = f(x−r).
After the above preliminaries, which for now are all the elements used by Jiang-

Shu in their original WENO scheme, we can proceed to define our additional items
and modified weights. Now, we also consider the square of the undivided difference
of degree 2r − 1, associated to the whole extended stencil S̄. We use the notation
d1 := dr,2r−2 as given by (3.3), and define

d2 := dr,2r−1 :=

(
r∑

j=−r+1

(−1)j+r
(

2r − 1

j + r − 1

)
fj

)2

, (3.4)

d̄(ε, h) :=
ds11 d

s1
2

ds11 + ds12 + ε
. (3.5)
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The function d̄(ε, h) is related to the harmonic mean of ds11 and ds12 (for ε = 0 is
actually half the harmonic mean) and its definition is motivated by the following
fact:

d̄(0, h) =


O(h4r−2) if S̄ is smooth,

O(h4r−4) if S is smooth, but a discontinuity crosses S̄,

Ō(1) if a discontinuity crosses S.

(3.6)

We perform now an asymptotical analysis of the weights for ε→ 0. To be precise,
for 0 ≤ i ≤ r − 1, ε > 0, we denote:

β̄i(ε, h) := 1 +
d̄(ε, h)

Is1i (h) + ε
=

(ds11 + ds12 + ε)
∏
k(Is1k + ε) + ds11 d

s1
2

∏
k 6=i(I

s1
k + ε)

(ds11 + ds12 + ε)
∏
k(Is1k + ε)

=
µi(ε, h)

(ds11 + ds12 + ε)
∏
k(Is1k + ε)

,

ω̄i(ε, h) :=
ciβ̄i(ε, h)s2∑r−1
j=0 cj β̄j(ε, h)s2

=
ciµi(ε, h)s2∑r−1
j=0 cjµj(ε, h)s2

,

with Πk ≡ Πr−1
k=0, Πk 6=i ≡ Πr−1

k=0,k 6=i and where we have denoted

µi(ε, h) = (ds11 + ds12 + ε)
∏
k

(Is1k + ε) + ds11 d
s1
2

∏
k 6=i

(Is1k + ε).

We define the index set Ps := {J ⊆ {0, . . . , r − 1} : |J | = s}. Then, since

r−1∏
k=0

(Is1k + ε) =

r∑
l=0

εl
∑

J∈Pr−l

∏
k∈J

Is1k ,

r−1∏
k=0
k 6=i

(Is1k + ε) =

r−1∑
l=0

εl
∑

J∈Pr−l
i/∈J

∏
k∈J

Is1k ,

it follows that

µi(ε, h) = εr+1 +

r∑
l=0

µi,l(h)εl,

where

µi,r =

r−1∑
k=0

Is1k + ds11 + ds12 ,

µi,l =
∑

J∈Pr−l+1

∏
k∈J

Is1k + (ds11 + ds12 )
∑

J∈Pr−l

∏
k∈J

Is1k + ds11 d
s1
2

∑
J∈Pr−l

i/∈J

∏
k∈J

Is1k ,

l = 1, . . . , r − 1,

µi,0 = (ds11 + ds12 )

r−1∏
k=0

Is1k + ds11 d
s1
2

r−1∏
k=0
k 6=i

Is1k .

For a fixed h, it follows:

(1) If d̄(ε, h) = 0, then β̄i(ε, h) = 1 for all i and ε, and ω̄i(ε, h) = ci for any
ε > 0.

(2) Assume that d̄(ε, h) 6= 0) and assume that there exists some k with Ik = 0.
(This excludes that Ik = 0 for all k, since in that case we would have
d̄(ε, h) = 0). Then take J∗ := {k : Ik 6= 0} with |J∗| = r − s, r > s ≥ 1. If
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l < s − 1 then µi,l = 0 for all i, since any J with |J | = r − l > r − s + 1
intersects {0, . . . , r − 1} \ J , so that the products are 0. By a similar
argument, if i /∈ J∗ (i.e., Ii = 0),

µi,s−1(h) = ds11 d
s1
2

∏
k∈J∗

Is1k 6= 0, (3.7)

and if i ∈ J∗, then µi,s−1 = 0. Therefore, for i /∈ J∗,

ω̄i(ε, h) =

(
cid

s1
1 d

s1
2

∏
k∈J∗ I

s1
k ε

s−1 +O(εs)
)s2

(
∑
j /∈J∗ cjd

s1
1 d

s1
2

∏
k∈J∗ I

s1
k ε

s−1 +O(εs))s2

=
(ci +O(ε))s2(∑
j /∈J∗ cj +O(ε)

)s2
=

cs2i(∑
j /∈J∗ cj

)s2 +O(εs2)
ε→0−→ cs2i(∑

j /∈J∗ cj
)s2

On the other hand, if i ∈ J∗,

ω̄i(ε, h) =
O(εs)s2

(
∑
j /∈J∗ cjd

s1
1 d

s1
2

∏
k∈J∗ I

s1
k ε

s−1 +O(εs))s2

= O(εs2)
ε→0−→ 0

(3) If d 6= 0 and Ik 6= 0 for all k, then

ω̄i(ε, h)

=
ci
(
µi,0 +O(ε)

)s2∑
j cj
(
µj,0 +O(ε)

)s2 =
ciµ

s2
i,0∑

j cjµ
s2
j,0

+O(εs2)

=
ci
(
(ds11 + ds12 )

∏r−1
k=0 I

s1
k + ds11 d

s1
2

∏r−1
k=0,i/∈J I

s1
k

)s2∑
j cj
(
(ds11 + ds12 )

∏r−1
k=0 I

s1
k + ds11 d

s1
2

∏r−1
k=0,j /∈J I

s1
k

)s2 +O(εs2)

Dividing both terms of this fraction by (ds11 + ds12 )
∏r−1
k=0 I

s1
k 6= 0, we get

ω̄i(ε, h) =
ci
(
1 + d̄(0, h)/Is1i

)s2∑
j cj
(
1 + d̄(0, h)/Is1j

)s2 +O(εs2). (3.8)

Defining ωi(h) = limε→0 ω̄i(ε, h) := ω̄i(0, h), we have just proved that

ω̄i(ε, h) = ωi(h) +O(εs2). (3.9)

We also define

q̄[ε, h](x) :=

r−1∑
i=0

ω̄i(ε, h)pi(x), q[h](x) :=

r−1∑
i=0

ωi(h)pi(x).

Theorem 3.1. If f is 2r − 1 times continuously differentiable in a neighborhood
of z then

e(ε, h) = f(x1/2)− q̄(x1/2) = O(h2r−1) +O(εs2). (3.10)
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The first step to prove Theorem 3.1 is to use the previous results to bound

e(ε, h) := f(x1/2)− q̄(x1/2) = f(x1/2)− q(x1/2) + q(x1/2)− q̄(x1/2)

= e(h) +

r−1∑
i=0

(
ωi(h)− ω̄i(ε, h)

)
pi(x1/2) = e(h) +

r−1∑
i=0

O(εs2)O(1)

= e(h) +O(εs2).

(3.11)

The proof of Theorem 3.1 will be complete when we prove that

e(h) = O(h2r−1), (3.12)

which we will achieve through several intermediate results.
To analyze the behavior of ωi(h) we distinguish the two mutually exclusive cases:

(1) There exist {hn} = {hn}n∈N > 0 and {jn} = {jn}n∈N ⊂ {0, . . . , r−1} with
limn→∞ hn = 0 and Ijn(hn) = 0.

(2) There exists h0 > 0 such that Ij(h) 6= 0 for all j and 0 < h < h0.

Lemma 3.1. If f ∈ Cs(z−γ, z+γ), γ > 0, and Case (1) is in effect, then condition
(2.8) of Lemma 2.3 is satisfied.

Proof of Lemma 3.1. From the definition of Ij(h) it follows that p′j is zero on an
interval of positive length, so that p′j is overall zero, i.e., f is constant at the
points {z + (α + j)hn}, j = −r + 1 + jn, . . . , jn. Therefore there exists {zn}n∈N
with zn → z with f ′(zn) = 0. A recursive use of Rolle’s theorem and continuity
yields (2.8). �

If we define

k := inf
{
l ∈ N : f (l)(z) 6= 0

}
− 1, (3.13)

then Lemma 2.3 yields that e(h) = O(hk+1), so, in order to prove (3.12) we may
assume

k < 2r − 2. (3.14)

In this case Lemma 3.1 implies the existence of h0 > 0 such that Ik(h) > 0 for
k ∈ {0, . . . , r − 1}, 0 < h < h0 (i.e., Case (2) is in effect), therefore (3.8) yields

ωi(h) =
ci∑

j cj(βj(0, h)/βi(0, h))s2
. (3.15)

From now on we use the simplified notations d = d̄(0, h) and βi = β̄i(0, h) =
1 + d

I
s1
i

Lemma 3.2. Assume f ∈ C2r−1(z − ε, z + ε), r ≥ 3, and that k defined by (3.13)
satisfies (3.14). Then (3.12) holds for any s1, s2 ∈ N.

Proof of Lemma 3.2. As mentioned above, Case (2) is in effect, i.e., we may assume
that there exists h0 > 0 such that Ik(h) > 0 for k ∈ {0, . . . , r − 1}, 0 < h < h0.
We have by Theorem 2.1 and (3.6) Ij = Ō(h2(k+1)) and d = O(h4r−2). We analyze
(3.15) with these estimates:∣∣∣∣βjβi − 1

∣∣∣∣ =
d

1 + d/Is1i

|Is1i − I
s1
j |

Is1i I
s1
j

≤
d(Is1i + Is1j )

Is1i I
s1
j

=
O(hs1(4r−2))O(h(2(k+1))s1)

Ō(h4s1(k+1))
,

which means that

βj/βi = 1 +O(hζ), ζ := 2s1(2r − 2− k). (3.16)
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It follows from (3.15) that

ωi(h) =
ci∑

j cj (1 +O(hζ))
s2 =

ci∑
j cj(1 +O(hζ))

= ci +O(hζ). (3.17)

By using that
∑
i ωi =

∑
i ci, f(z + h/2) − p2r−1,r−1(z + h/2) = O(h2r−1), and

Lemma 2.3, we obtain from (3.17)

e(h) =

r−1∑
i=0

ωiei(h) =

r−1∑
i=0

(
ci +O(hζ)

)(
f

(
z +

h

2

)
− pi

(
z +

h

2

))

=

r−1∑
i=0

ci

(
f

(
z +

h

2

)
− pi

(
z +

h

2

))
+

r−1∑
i=0

O(hζ)O(hmax(r,k+1))

= f(z + h/2)− p(z + h/2) +O(hζ+max(r,k+1))

= O(h2r−1) +O(hζ+max(r,k+1)) = O(hmin(2r−1,ζ+max(r,k+1))).

Utilizing the definition of ζ in (3.16), one can easily verify that

ζ + max(r, k + 1) ≥ 2r − 1 ∀k ≤ 2r − 3, s1 ≥ 1.

This completes the proof. �

Proof of Theorem 3.1. Lemmas 3.1 and 3.2 establish (3.12) in the alternative cases
(1) and (2) identified above. �

Remark 3.1. All these precautions on the possibility of having smoothness indica-
tors that vanish asymptotically are not void, since the function

f(x) =

{
e−1/x2

for x > 0,

0 for x ≤ 0

satisfies f ∈ C∞(R) and f (n)(0) = 0 for all n ∈ N, therefore, for z = 0, it follows
that I0(h) = 0 for all h > 0.

Theorem 3.2. If f has a discontinuity at z and is r times continuously differen-
tiable in (z − δ0, z) ∪ (z, z + δ0), for some δ0 > 0, then

e(ε, h) = f(x1/2)− q̄(x1/2) = O(hr) +O(εs2). (3.18)

Proof. Let Jr := {0 ≤ j ≤ r − 1 : Sr,j does not cross z}. Note that Jr 6= ∅, since
the stencils Sr,j do not overlap for 0 ≤ j ≤ r − 1.

Then, if i 6∈ Jr, (3.15) reads

βj
βi

=
1 + d/Is1j
1 + d/Is1i

=
1 + d/Is1j
1 + d/Is1i

=
1 + Ō(1)/Is1j

1 + Ō(1)/Ō(1)
= Ō(1)

(
1 +
Ō(1)

Is1j

)
.

Therefore,

βj
βi

=

{
Ō(1) if j 6∈ Jr,
Ō(h−2(k+1)s1) if j ∈ Jr.

Similarly, if i ∈ Jr,

βj
βi

=
1 + d/Is1j
1 + d/Is1i

=
1 + Ō(1)/Is1j

1 + Ō(1)/Ō(h2(k+1)s1)
= Ō(h2(k+1)s1)

(
1 +
Ō(1)

Is1j

)
.
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Hence,

βj
βi

=

{
Ō(h2(k+1)s1) if j 6∈ Jr,
Ō(1) if j ∈ Jr.

Therefore, the denominator of (3.15) reads

r−1∑
j=0

cj

(
βj
βi

)s2
=
∑
j∈Jr

cj

(
βj
βi

)s2
+
∑
j 6∈Jr

cj

(
βj
βi

)s2
.

Thus, if i 6∈ Jr
r−1∑
j=0

cj

(
βj
βi

)s2
=
∑
j 6∈Jr

Ō(h−2(k+1)s1s2) +
∑
j∈Jr

Ō(1) = Ō(h−2(k+1)s1s2).

Therefore, if i 6∈ Jr then

ωi = O(h2(k+1)s1s2).

On the other hand, if i ∈ Jr
r−1∑
j=0

cj

(
βj
βi

)s2
=
∑
j 6∈Jr

Ō(1) +
∑
j∈Jr

Ō(h2(k+1)s1) = Ō(1).

Hence, if i ∈ Jr, then ωi = O(1). Therefore, following a similar accuracy analysis
as in the smooth case, the result holds by imposing 2s1s2 ≥ r. �

Remark 3.2. During the whole theoretical analysis we have considered the defini-
tion of d̄ in (3.5).

We point out that it is straightforward to check that the choice d̄ = d2 = dr,2r−1,
with dr,2r−1 defined in (3.4) also attains the required properties both in case of
smoothness and discontinuity in the data, except the case in which a discontinuity
is located between xr−1 and xr. In this case, one ideally would like to obtain optimal
accuracy since the reconstructions are performed in the region [x−r+1, xr−1], which
contains smooth data. This is satisfied by d̄ defined as in (3.5), but not for d̄ =
dr,2r−1, which in this case is Ō(1). However, we will also use the choice d̄ = d2 =
dr,2r−1 in the numerical experiments for the sake of comparison.

3.1.3. Summary of the algorithm. For the ease of reference we summarize here the
steps of the new WENO reconstruction.

Input: S̄ = {f−r+1, . . . , fr}, with fi = Lm[f ](xi), and ε > 0.

(1) Compute pr,i = Im(x−r+1+i, . . . , xi; f−r+1+i, . . . , fi), 0 ≤ i ≤ r − 1, the
corresponding interpolating polynomials, computed assuming the data as
pointwise data for m = 1 and as cell averages of a certain unknown function
if m = 2, with Im the associated interpolating operator, at x = x1/2.

(2) Compute the Jiang-Shu smoothness indicators:

Ir,i =

r−1∑
l=1

∫ x1/2

x−1/2

h2l−1(p
(l)
r,i(x))2 dx, 0 ≤ i ≤ r − 1.

(3) Obtain the squares of the corresponding undivided differences of order 2r−2
and 2r − 1:

dr,2r−2 =

(
r−1∑

j=−r+1

(−1)j+r−1

(
2r − 1

j + r − 1

)
fj

)2

,



OPTIMAL ORDER WENO 15

dr,2r−1 =

(
r∑

j=−r+1

(−1)j+r
(

2r

j + r − 1

)
fj

)2

.

(4) Compute the harmonic mean of the aforementioned terms:

d̄(ε, h) =
dr,2r−2dr,2r−1

dr,2r−2 + dr,2r−1 + ε
. (3.19)

(5) Compute the terms

αr,i = cr,i

(
1 +

d̄(ε, h)s1

Is1r,i + ε

)s2
, 0 ≤ i ≤ r − 1

with cr,i the ideal linear weights, for some s1, s2 chosen by the user such
that s1 ≥ 1 and s2 ≥ r

2s1
.

(6) Generate the WENO weights:

ωr,i =
αr,i

αr,0 + · · ·+ αr,r−1
.

(7) Obtain the OWENO reconstruction at x1/2:

qr(x1/2) =

r−1∑
i=0

ωr,ipr,i(x1/2). (3.20)

Output: qr(x1/2).

3.1.4. Application to conservation laws. The optimal WENO interpolators pre-
sented along this section have been proven to attain unconditionally the optimal
order, at the cost of adding an additional node to the stencil used for the reconstruc-
tion. We next describe the procedure to apply them to semi-discrete finite-difference
conservative schemes for hyperbolic conservation laws. We here limit the discus-
sion of the initial value problem (1.1), (1.2) to d = 1 space dimension, for which we
write x instead of x and drop the index i = 1. The methods under consideration
correspond to a spatial discretization of (1.1) [18] in the form

ut(xj , t
n) +

f̂ j+1/2 − f̂ j−1/2

h
= 0

for approximations f̂ j+1/2 ≈ f(u(xj+1/2, t
n)), which is further advanced in time

on a discretization of the time variable tn = nk, k = T/N , N ∈ N, by means of an
ODE solver, so as to approximate the value u(x, T ).

The application of the WENO scheme to solve hyperbolic conservation laws
amounts to approximate the values f̂ j+ 1

2
by means of the WENO reconstruction de-

scribed in this Section, i.e., either the value qr(x1/2) in (3.20) or the value qr(x−1/2)
which is computed analogously. The choice of one or another depends on the direc-
tion of movement of the characteristics of the system, which in turn depends on the
sign of the eigenvalues of the Jacobian matrix of the conservation law, in a process
called upwinding (see [15]). In general, to obtain a (2r − 1)-th order accurate
upwind reconstruction of the flux at a given cell interface xj+1/2, both left-biased
and right-biased reconstructions are required for different flux components, so that
one uses the information of the 2r-point stencil S = {f j−r+1, . . . ,f j+r} with

f i ≈
1

h

∫ xi+1/2

xi−1/2

f
(
u(x)

)
dx
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(for the sake of simplicity, we drop the time dependence). For instance, if all char-
acteristics move to the right, upwinding imposes a left-biased reconstruction, and
one would just take the substencil of S defined by S′ = {f j−r+1, . . . ,f j+r−1} to
obtain f̂ j+1/2 ≈ f(u(xj+1/2)). The only difference in this case is that we instead
pass to the interpolation routine the whole stencil S, that is, adding the rightmost
node f j+r to S′. On the other hand, if characteristics move in both directions
then a flux-splitting algorithm is required, so that the reconstruction acts on char-
acteristic fluxes f±i obtained from f i by transformations that depend on the direc-
tion of movement. The transformed stencils are S+ = {f+

j−r+1, . . . ,f
+
j+r−1} and

S− = {f−j−r+2, . . . ,f
−
j+r} with f±i = G±(f i) for a pair of invertible functions G±,

and that the corresponding left- and right-biased reconstructions are f̂+
j+1/2 and

f̂−j+1/2, respectively, so that the reconstruction is given by

f̂ j+1/2 =
1

2

(
G−1

+

(
f̂+
j+1/2

)
+ G−1

−
(
f̂−j+1/2

))
.

In this case one must also compute the corresponding transformation of each missing
node, that is, consider instead S̄+ = {f+

j−r+1, . . . ,f
+
j+r} with f+

j+r = G+(f j+r),
and S̄− = {f−j−r+1, . . . ,f

−
j+r} with f−j−r+1 = G−(f j−r+1), and pass these extended

stencils to the corresponding left and right-biased reconstruction routines, respec-
tively.

3.2. Approach 2: Optimal WENO schemes of order using only the origi-
nal nodes. In this section we describe a way to obtain a reconstruction that keeps
the optimal order under the same circumstances as in Section 3.1, through a dif-
ferent definition of d̄(ε, h) that does not require an additional node. For clarity we
state here the construction of the WENO weights and move the complete theoretical
justification of the accuracy of the method to Appendix A.

Let ph(x) be the interpolating polynomial associated to the stencil S. By Lemma
A.3 (see Appendix A for further details) with n = 2r − 2, z = 0 and s = 2r − 4,
the polynomial Ph(w) := ph(wh) satisfies

P
(2r−4)
h (w) =

2∑
j=0

Lj(f−r+1,h, . . . , fr−1,h)wj ,

where Lj : R2r−1 → R, j = 0, . . . 2 are linear functions. Now, by Theorem A.1
with n = 2r − 2, the expression

Dr := B2
h − 4AhCh (3.21)

satisfies

Dr =

{
Ō(1) if a discontinuity crosses the stencil,

O(h4r−3) if the stencil converges to a critical point of order k = 2r − 3,

with

Ah := L2(f−r+1,h, . . . , fr−1,h),

Bh := L1(f−r+1,h, . . . , fr−1,h),

Ch := L0(f−r+1,h, . . . , fr−1,h).
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For instance, for a WENO5 scheme with reconstructions from point values these
terms can be written as

Ah =
1

2
f−2 − 2f−1 + 3f0 − 2f1 +

1

2
f2 =

1

2
d3,4,

Bh = −1

2
f−2 + f−1 − f1 +

1

2
f2,

Ch = − 1

12
f−2 +

4

3
f−1 −

5

2
f0 +

4

3
f1 −

1

12
f2,

and for reconstructions from cell averages

Ah =
1

2
f−2 − 2f−1 + 3f0 − 2f1 +

1

2
f2 =

1

2
d3,4,

Bh = −1

2
f−2 + f−1 − f1 +

1

2
f2,

Ch = −1

8
f−2 +

3

2
f−1 −

11

4
f0 +

3

2
f1 −

1

8
f2.

Therefore, the parameter d̄(ε, h) given by

d̄(ε, h) :=
ds1r,2r−2|Dr|s1

ds1r,2r−2 + |Dr|s1 + ε
(3.22)

satisfies, given a critical point of maximal order k,

d̄(ε, h) =


O(h(4r−4)s1) +O(ε) if 0 ≤ k ≤ 2r − 4,

O(h(4r−3)s1) +O(ε) if k = 2r − 3,

Ō(1) +O(ε) if a discontinuity crosses the stencil.

(3.23)

By the same argument as in Section 3.1 and reasoning as in Theorem 3.1 and
Theorem 3.2 it can be readily checked that in this case the suitable bounds for s1

and s2 are the same as those obtained by using Approach 1, that is,

s1 ≥ 1, s2 ≥
r

2s1
. (3.24)

We refer to Appendix A for the justification of (3.23).

Remark 3.3. Since Dr is not guaranteed to be positive, we included its absolute
value |Dr|. If one wants to avoid using an absolute value (and thus a Boolean
condition in a WENO scheme), one has simply to chose an even s1 satisfying the
bounds in Equation (3.24).

Summary of the algorithm. The algorithm in this case has the same steps as the
one expounded for the additional node modality in Section 3.1.3, with the only
difference that now the input is the original stencil S instead of the extended stencil
S̄ and that (3.19) is replaced by (3.22), i.e., the occurrences of dr,2r−1 in (3.19) are
replaced by Dr from (3.21).

4. Numerical experiments

In this section, the chosen exponents are s1 = dr/2e when considering the ad-
ditional node modality, s1 = 2dr/4e when considering the modality with original
nodes (taking into account Remark 3.3) and s2 = 1. The reason for this choice
is due to the fact that the choice of ε in (3.2) is ill-conditioned by the exponent
s2, since one ought to take ε ≥≈ s2

√
ε0, with ε0 the lowest positive number of the
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working precision, in order to avoid arithmetic underflow/overflow. Moreover, al-
though unnecessary according to the accuracy requirements in case of smoothness,
the greater the parameter s1 is, the closer are simultaneously the weights to the
ideal weights in case of smoothness and to zero in case of discontinuity.

4.1. Algebraic test cases. We start our numerical tests with several numerical
experiments devoted to stress out the accuracy properties analyzed theoretically
beforehand. We will perform tests involving JS-WENO (with the Jiang-Shu weight
design [13]), YC-WENO (with the improved version of the Yamaleev-Carpenter
weight design [2,21]) and OWENO (with our design) schemes of order 2r− 1, with
2 ≤ r ≤ 5. All the tests are performed both with the modality of reconstructions
from cell average values to pointwise values and from pointwise values to pointwise
values.

In order to perform these experiments, we will use the multiple-precision library
MPFR [17] through its C++ wrapper [12], using a precision of 3322 bits (≈ 1000

digits) and taking in all the cases ε = 10−106

.

Example 1: Smooth problem. Let us consider the family of functions fk : R → R,
k ∈ N, given by

fk(x) = xk+1ex.

The function fk has a smooth extremum at x = 0 of order k. Results involving the
different values of r and k considered (0 ≤ k ≤ 2r − 3) are shown for 3 ≤ r ≤ 5
in Table 1 for the case of the traditional JS-WENO and YC-WENO schemes, and
in Table 2 for the optimal WENO schemes, being OWENO+1H the modality with
an additional node where d̄ is defined by (3.5), OWENO+1 the modality with an
additional node where d̄ = dr,2r−1 and OWENO the modality with the original
nodes, i.e., with d̄ defined by (3.22). The error is given by Ek,n = |Pn(0)− fk(0)|,
with P the corresponding reconstruction at x1/2 = 0, with the grid xi = (i−1/2)h,
−r + 1 ≤ i ≤ r − 1, with h = 1/n for n ∈ N, when pointwise values are taken,
namely, fk,i = fk(xi) and reconstructions from pointwise values to pointwise values
are performed. On the other hand, it is also presented in the tables the same setup

when cell average values are taken instead: fk,i =
∫ xi+h/2

xi−h/2 f(x)dx, by performing

reconstructions from cell average values to pointwise values. In all the cases, the
tables show the corresponding average reconstruction orders, Ok = 1

80

∑80
j=1 ok,j ,

where ok,j = log2(Ek,nj−1
/Ek,nj

)), with nj = 5 · 2j , 0 ≤ j ≤ 80.
As we can see, the JS-WENO looses accuracy near critical points, presenting the

order r+ |k− r+ 1|, with k the order of the critical point, whereas the YC-WENO
scheme looses accuracy in the corner case k = 2r−3, as suggested in our theoretical
considerations. In contrast, we can see that our proposed optimal schemes attain
the optimal accuracy in all cases.

Example 2: Discontinuous problem. We next consider the function g : R→ R given
by

g(x) =

{
ex if x ≤ 0

ex+1 if x > 0

and test the accuracy of the methods with the same parameters as above, where,
in order to highlight the behaviour of our optimal scheme at discontinuities, in this
case we change the location of the discontinuity by considering a grid of the form
xi = (i− 1

2 + θ)h, −r+ 1 ≤ i ≤ r− 1, for −r+ 2 ≤ θ ≤ r− 1. Since x1/2 = θh, the
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k JS-WENO YC-WENO JS-WENO YC-WENO

Order 5 (from point values) Order 5 (from cell averages)

0 4.9915 4.9983 4.9909 4.9983
1 3.9742 4.9980 3.9802 4.9981

2 3.0198 5.0331 3.0348 5.0324
3 3.9946 3.9945 3.9928 3.9928

Order 7 (from point values) Order 7 (from cell averages)

0 6.9902 6.9984 6.9899 6.9984
1 5.9743 6.9981 5.9699 6.9981
2 5.0494 7.0002 5.0432 7.0001

3 4.0005 7.0627 4.0001 7.0600
4 5.0747 7.0040 5.0655 7.0108
5 6.0008 6.0008 6.0011 6.0011

Order 9 (from point values) Order 9 (from cell averages)

0 8.9831 8.9984 8.9829 8.9985
1 8.0225 8.9983 8.0226 8.9983

2 7.0368 8.9981 7.0229 8.9981
3 6.0712 8.9978 6.0625 8.9978

4 5.0133 9.0628 5.0072 9.0625
5 5.9855 9.0325 5.9815 9.0283
6 7.0409 9.0121 7.0746 9.0143

7 7.9898 7.9898 7.9880 7.9880

Table 1. Example 1 (smooth problem): Fifth-order, seventh-
order, and ninth-order traditional schemes.

k OWENO+1H OWENO+1 OWENO OWENO+1H OWENO+1 OWENO

Order 5 (from point values) Order 5 (from cell averages)

0 4.9983 4.9983 4.9983 4.9983 4.9983 4.9983

1 4.9979 4.9979 4.9980 4.9979 4.9979 4.9980
2 5.0136 5.0161 5.0324 5.0131 5.0157 5.0317

3 5.0070 5.0070 5.0056 5.0052 5.0053 5.0035

Order 7 (from point values) Order 7 (from cell averages)

0 6.9984 6.9984 6.9984 6.9984 6.9984 6.9984

1 6.9981 6.9981 6.9981 6.9981 6.9981 6.9981

2 6.9979 6.9979 7.0000 6.9979 6.9979 6.9998
3 7.0535 7.0543 7.0548 7.0439 7.0452 7.0482

4 7.0039 7.0040 7.0040 7.0107 7.0108 7.0108
5 6.9907 6.9907 6.9907 6.9970 6.9970 6.9970

Order 9 (from point values) Order 9 (from cell averages)

0 8.9984 8.9984 8.9984 8.9985 8.9985 8.9985
1 8.9983 8.9983 8.9983 8.9983 8.9983 8.9983

2 8.9981 8.9981 8.9981 8.9981 8.9981 8.9981

3 8.9978 8.9978 8.9978 8.9979 8.9979 8.9979
4 9.0175 9.0179 8.9976 9.0173 9.0177 8.9976
5 9.0325 9.0325 9.0185 9.0282 9.0283 9.0082

6 9.0121 9.0121 9.0121 9.0143 9.0143 9.0143
7 8.9856 8.9856 8.9541 8.9875 8.9875 8.9872

Table 2. Example 1 (smooth problem): Fifth-order, seventh-
order, and ninth-order optimal schemes.

error in this case is thus given by |P (θh)−g(θh)|. The results are shown in Table 3
for the traditional schemes and in Table 4 for the optimal schemes.
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θ JS-WENO YC-WENO JS-WENO YC-WENO

Order 5 (from point values) Order 5 (from cell averages)

-2 2.9955 2.9951 2.9955 2.9951
-1 2.9927 2.9925 2.9935 2.9934

0 3.0029 3.0045 3.0033 3.0050
1 3.0271 3.0390 3.0294 3.0411

Order 7 (from point values) Order 7 (from cell averages)

-3 3.9970 4.0035 3.9971 4.0041
-2 4.0088 4.0089 4.0071 4.0072
-1 3.9509 3.9493 4.0086 4.0087

0 4.0086 4.0086 4.0086 4.0086
1 4.0234 4.0234 4.0234 4.0234
2 4.0206 4.0368 4.0211 4.0370

Order 9 (from point values) Order 9 (from cell averages)

-4 4.9937 4.9937 4.9938 4.9938
-3 4.9933 4.9933 4.9933 4.9933

-2 4.9928 4.9928 4.9927 4.9927
-1 4.9925 4.9925 4.9924 4.9924

0 4.9886 4.9886 4.9917 4.9917
1 5.0561 5.0561 5.0561 5.0561
2 5.0564 5.0564 5.0574 5.0574

3 5.0129 5.0992 5.0154 5.1006

Table 3. Example 2 (discontinuous problem): Fifth-order,
seventh-order, and ninth-order traditional schemes.

θ OWENO+1H OWENO+1 OWENO OWENO+1H OWENO+1 OWENO

Order 5 (from point values) Order 5 (from cell averages)

-2 2.9951 2.9955 2.9917 2.9951 2.9955 2.9929
-1 2.9925 2.9927 2.9923 2.9934 2.9935 2.9933

0 3.0051 3.0034 3.0070 3.0056 3.0039 3.0071
1 3.0454 3.0389 3.0517 3.0474 3.0410 3.0517

Order 7 (from point values) Order 7 (from cell averages)

-3 4.0035 3.9970 4.0140 4.0041 3.9971 4.0297

-2 4.0089 4.0088 4.0090 4.0072 4.0071 4.0073
-1 3.9492 3.9508 3.9473 4.0087 4.0086 4.0088
0 4.0086 4.0086 4.0086 4.0086 4.0086 4.0086
1 4.0234 4.0234 4.0234 4.0234 4.0234 4.0235

2 4.0368 4.0368 4.0344 4.0369 4.0370 4.0353

Order 9 (from point values) Order 9 (from cell averages)

-4 4.9937 4.9937 4.9937 4.9938 4.9938 4.9938
-3 4.9933 4.9933 4.9933 4.9933 4.9933 4.9933
-2 4.9928 4.9928 4.9928 4.9927 4.9927 4.9927
-1 4.9925 4.9925 4.9925 4.9924 4.9924 4.9924

0 4.9886 4.9886 4.9886 4.9917 4.9917 4.9917
1 5.0561 5.0561 5.0561 5.0561 5.0561 5.0561

2 5.0564 5.0564 5.0564 5.0574 5.0574 5.0574
3 5.1095 5.0992 5.1073 5.1109 5.1006 5.1042

Table 4. Example 2 (discontinuous problem): Fifth-order,
seventh-order, and ninth-order optimal schemes.

The table shows clearly that the optimal accuracy is also attained in all the cases
when a discontinuity is on the data.
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JS-WENO5 YC-WENO5

‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞
n Error rate Error rate Error rate Error rate

10 8.44e-03 — 1.28e-02 — 9.52e-04 — 1.45e-03 —

20 3.59e-04 4.56 6.93e-04 4.20 2.95e-05 5.02 4.65e-05 4.96
40 1.09e-05 5.04 2.37e-05 4.87 9.03e-07 5.03 1.42e-06 5.03

80 3.29e-07 5.05 7.00e-07 5.08 2.78e-08 5.02 4.37e-08 5.02

160 1.02e-08 5.01 2.21e-08 4.98 8.63e-10 5.01 1.36e-09 5.01
320 3.19e-10 5.00 6.65e-10 5.06 2.68e-11 5.01 4.22e-11 5.01

640 9.96e-12 5.00 2.02e-11 5.04 8.37e-13 5.00 1.32e-12 5.00

Table 5. Example 3 (linear advection equation, solution at
T = 1): traditional fifth-order schemes.

OWENO5+1H OWENO5+1 OWENO5
‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞

n Error rate Error rate Error rate Error rate Error rate Error rate

10 9.48e-04 — 1.46e-03 — 9.51e-04 — 1.46e-03 — 9.52e-04 — 1.45e-03 —
20 2.95e-05 5.01 4.65e-05 4.98 2.95e-05 5.01 4.65e-05 4.98 2.95e-05 5.01 4.65e-05 4.96

40 9.03e-07 5.03 1.42e-06 5.03 9.03e-07 5.03 1.42e-06 5.03 9.03e-07 5.03 1.42e-06 5.03
80 2.78e-08 5.02 4.37e-08 5.02 2.78e-08 5.02 4.37e-08 5.02 2.78e-08 5.02 4.37e-08 5.02
160 8.63e-10 5.01 1.36e-09 5.01 8.63e-10 5.01 1.36e-09 5.01 8.63e-10 5.01 1.36e-09 5.01

320 2.68e-11 5.01 4.22e-11 5.01 2.68e-11 5.01 4.22e-11 5.01 2.68e-11 5.01 4.22e-11 5.01
640 8.37e-13 5.00 1.32e-12 5.00 8.37e-13 5.00 1.32e-12 5.00 8.37e-13 5.00 1.32e-12 5.00

Table 6. Example 3 (linear advection equation, solution at
T = 1): optimal fifth-order schemes.

4.2. Experiments for conservation laws. In this section some numerical exper-
iments involving hyperbolic conservation laws will be considered. For this purpose,
we use a Local Lax-Friedrichs type flux splitting for smooth problems, and Donat-
Marquina’s flux formula [7] for problems with weak solutions. On the other hand,
for the time discretization, the approximate Lax-Wendroff schemes proposed in [22]
matching the spatial order will be considered. In this Section we work in all exper-
iments with double precision representation and set ε = 10−100. For all schemes we
consider the case of fifth-order accuracy.

Example 3: Linear advection equation. We consider the linear advection equation
with the following domain, boundary condition and initial condition:

ut + f(u)x = 0, Ω = (−1, 1), u(−1, t) = u(1, t),

f(u) = u, u0(x) = 0.25 + 0.5 sin(πx),

whose exact solution is u(x, t) = 0.25+0.5 sin(π(x−t)). We run several simulations
with final time T = 1, for resolutions h = 2/n, for some n ∈ N using the classical
JS-WENO and YC-WENO schemes and our OWENO schemes, and compare them
for the case of fifth-order accuracy, both with the ‖ · ‖1 and ‖ · ‖∞ errors. Since the
characteristics point to the right, we use left-biased reconstructions. The results
are shown in Table 5 for the traditional fifth-order schemes and in Table 6 for the
optimal fifth-order schemes.

The numerical results show that all schemes keep the fifth-order accuracy. The
results of the OWENO schemes are almost identical to the ones of the YC-WENO
scheme.
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JS-WENO5 YC-WENO5

‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞
n Err. O Err. O Err. O Err. O
40 6.28e-05 — 2.73e-04 — 2.55e-05 — 2.62e-04 —

80 3.14e-06 4.32 4.26e-05 2.68 8.46e-07 4.91 1.04e-05 4.65
160 1.55e-07 4.35 2.87e-06 3.89 2.62e-08 5.01 3.27e-07 4.99

320 9.44e-09 4.03 2.75e-07 3.38 7.97e-10 5.04 1.02e-08 5.00

640 5.38e-10 4.13 3.29e-08 3.06 2.45e-11 5.02 3.14e-10 5.02
1280 3.46e-11 3.96 3.58e-09 3.20 7.59e-13 5.01 9.71e-12 5.02

2560 2.10e-12 4.04 4.80e-10 2.90 2.34e-14 5.02 3.03e-13 5.00

Table 7. Example 4 (Burgers equation, smooth solution at T =
0.3): traditional fifth-order schemes.

OWENO5+1H OWENO5+1 OWENO5

‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞
n Error rate Error rate Error rate Error rate Error rate Error rate

40 2.45e-05 — 2.62e-04 — 2.44e-05 — 2.62e-04 — 2.49e-05 — 2.62e-04 —

80 8.46e-07 4.85 1.04e-05 4.66 8.46e-07 4.85 1.04e-05 4.66 8.46e-07 4.88 1.04e-05 4.65
160 2.62e-08 5.01 3.27e-07 4.99 2.62e-08 5.01 3.27e-07 4.99 2.62e-08 5.01 3.27e-07 4.99

320 7.97e-10 5.04 1.02e-08 5.00 7.97e-10 5.04 1.02e-08 5.00 7.97e-10 5.04 1.02e-08 5.00

640 2.45e-11 5.02 3.14e-10 5.02 2.45e-11 5.02 3.14e-10 5.02 2.45e-11 5.02 3.14e-10 5.02
1280 7.59e-13 5.01 9.71e-12 5.02 7.59e-13 5.01 9.71e-12 5.02 7.59e-13 5.01 9.71e-12 5.02

2560 2.34e-14 5.02 3.03e-13 5.00 2.34e-14 5.02 3.03e-13 5.00 2.34e-14 5.02 3.03e-13 5.00

Table 8. Example 4 (Burgers equation, smooth solution at T =
0.3): optimal fifth-order schemes.

Examples 4 and 5: Burgers equation. We now consider the Burgers equation with
following setup involving the domain, boundary conditions and initial condition:

ut + f(u)x = 0, Ω = (−1, 1), u(−1, t) = u(1, t),

f(u) =
u2

2
, u0(x) = 0.25 + 0.5 sin(πx).

(4.1)

In this case, f(u0(x)) has a first-order smooth extremum at x = −1/2 and x =
1/2. In Example 4, we consider the solution of (4.1) at T = 0.3, when it remains
smooth, while in Example 5 we set T = 12, when the solution of (4.1) has become
discontinuous.

In Example 4 we run simulations for different resolutions, with a Local Lax-
Friedrichs flux splitting, showing the behaviour of the traditional fifth order schemes
in Table 7 and the optimal fifth order schemes in Table 8. The exact solution is
computed through a characteristic line method together with the Newton method,
setting as tolerance the machine accuracy of the double precision. An accuracy
loss is observed for the JS-WENO scheme. In contrast, the accuracy order of the
YC-WENO and all the OWENO schemes is optimal.

In Example 5 we run the simulation instead until T = 12. At t = 1, the wave
breaks and a shock is generated. Therefore, in this case we use the Donat-Marquina
flux-splitting algorithm. The results are shown in Figure 1 with a resolution of
n = 80 points, and are compared against a reference solution computed with a
resolution of n = 16000 points. In this case, we can see that YC-WENO and
OWENO schemes have a similar resolution, which in turn are slightly higher than
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Figure 1. Example 5 (Burgers equation, discontinuous solution
at T = 12): fifth-order schemes.

the resolution shown by the JS-WENO scheme. This ranking of resolution is also
consistent with the behaviour that these schemes present in the smooth case.

Example 6: Customized equation with a third-order zero. We now consider the
following initial-boundary value problem for a customized equation:

ut + f(u)x = 0, Ω = (−1, 1), u(−1, t) = u(1, t),

f(u) =
u2

2
+ 0.25u, u0(x) = 0.25 + 0.5 sin(πx).

(4.2)

In this case, f(u0(x)) has a third-order smooth extremum at x = −1/2 and a
first-order smooth extremum at x = 1/2.

We now compare the behaviour of the three schemes with the same setup as
in Example 4, by running a simulation until T = 0.3, in which the solution is
smooth. For the computation of the exact solution, we once again use the method
of characteristic lines, with a Newton method matching the machine accuracy for
the double precision. Since in this case the characteristics point always to the
right, we use a left-biased upwind scheme. The results are shown in Table 9 for the
traditional fifth-order schemes and in Table 10 for the optimal fifth-order schemes.
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JS-WENO5 YC-WENO5

‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞
n Error rate Error rate Error rate Error rate

40 7.96e-05 — 5.17e-04 — 4.97e-05 — 3.15e-04 —

80 4.67e-06 4.09 7.31e-05 2.82 2.88e-06 4.11 5.58e-05 2.50
160 2.70e-07 4.11 9.73e-06 2.91 1.69e-07 4.09 7.98e-06 2.81

320 1.60e-08 4.08 1.25e-06 2.96 1.01e-08 4.06 1.06e-06 2.91

640 9.70e-10 4.04 1.59e-07 2.98 6.16e-10 4.03 1.36e-07 2.96
1280 5.95e-11 4.03 2.01e-08 2.99 3.81e-11 4.02 1.72e-08 2.98

2560 3.68e-12 4.02 2.52e-09 2.99 2.36e-12 4.01 2.17e-09 2.99

Table 9. Example 6 (customized equation, smooth solution at
T = 0.3): traditional fifth-order schemes.

OWENO5+1H OWENO5+1 OWENO5

‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞ ‖ · ‖1 ‖ · ‖∞
n Error rate Error rate Error rate Error rate Error rate Error rate

40 3.07e-05 — 2.01e-04 — 3.09e-05 — 2.01e-04 — 2.93e-05 — 2.01e-04 —

80 9.74e-07 4.98 9.83e-06 4.35 9.75e-07 4.98 9.83e-06 4.35 1.01e-06 4.86 9.83e-06 4.35
160 2.69e-08 5.18 3.26e-07 4.91 2.69e-08 5.18 3.26e-07 4.91 3.05e-08 5.05 3.42e-07 4.85
320 7.94e-10 5.08 1.03e-08 4.99 7.94e-10 5.08 1.03e-08 4.99 8.82e-10 5.11 1.22e-08 4.81

640 2.46e-11 5.01 3.22e-10 5.00 2.46e-11 5.01 3.22e-10 5.00 2.61e-11 5.08 3.95e-10 4.95
1280 7.67e-13 5.00 1.01e-11 5.00 7.67e-13 5.00 1.01e-11 5.00 7.91e-13 5.04 1.25e-11 4.99
2560 2.47e-14 4.96 3.10e-13 5.02 2.47e-14 4.96 3.10e-13 5.02 2.51e-14 4.98 3.90e-13 5.00

Table 10. Example 6 (customized equation, smooth solution at
T = 0.3): optimal fifth-order schemes.

In this example, one can see that the optimal accuracy order is lost for both the
JS-WENO and YC-WENO schemes. In contrast, the fifth-order accuracy is solidly
kept by the OWENO schemes.

Example 7: Shu-Osher problem. The 1D Euler equations for gas dynamics are given
by u = (ρ, ρv,E)T and f(u) = f1(u) = (ρv, p + ρv2, v(E + p))T, where ρ is the
density, v is the velocity and E is the specific energy of the system. The variable p
stands for the pressure and is given by the equation of state

p = (γ − 1)

(
E − 1

2
ρv2

)
,

where γ is the adiabatic constant that will be taken as γ = 1.4. We now consider
the interaction with a Mach 3 shock and a sine wave. The spatial domain is now
given by Ω := (−5, 5), with the initial condition

(ρ, v, p)(x, 0) =


(

27

7
,

4
√

35

9
,

31

3

)
if x ≤ −4,(

1 +
1

5
sin(5x), 0, 1

)
if x > −4,

with left inflow and right outflow boundary conditions. This problem was first
considered in [19].

We run the simulation until T = 1.8 and compare the schemes against a reference
solution computed with a resolution of n = 16000. Figures 2 and 3 correspond to
resolutions of n = 200 and n = 400 points, respectively.



OPTIMAL ORDER WENO 25

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

u

Reference 
JS-WENO5
YC-WENO5
OWENO5+1H 
OWENO5+1 
OWENO5

-3 -2.5 -2 -1.5 -1 -0.5 0
x

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

u

Reference 
JS-WENO5 
YC-WENO5 
OWENO5+1H 
OWENO5+1 
OWENO5

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
x

2.5

3

3.5

4

4.5

u

Reference 
JS-WENO5 
YC-WENO5 
OWENO5+1H 
OWENO5+1 
OWENO5

2.25 2.5 2.75 3 3.25 3.5 3.75 4
x

0.8

1

1.2

1.4

1.6

1.8

2

u

Reference
JS-WENO5 
YC-WENO5 
OWENO5+1H 
OWENO5+1 
OWENO5

Figure 2. Example 7 (Euler equations, Shu-Osher problem):
fifth-order schemes, n = 200.

We can see that both YC-WENO and OWENO schemes have similar resolu-
tions, being the one presented by the OWENO schemes slightly higher in the case
of the OWENO5+1H and OWENO5 schemes and slightly lower for the choice
OWENO5+1. The lowest resolution clearly corresponds to the JS-WENO scheme,
especially for the case n = 200. For n = 400 it can be seen that the OWENO5+1H
and OWENO5 schemes capture notably better the shock than the other schemes.
The slightly poorer performance of the OWENO5+1 scheme in this case might be
due to the loss of accuracy that happens in the situation explained in Remark 3.2,
or to the fact that it loses accuracy near a discotinuity when it is located at the
extended stencil S̄, but not at S.

Finally, we show in Figure 4 a comparison involving the error of each scheme
with respect to the corresponding CPU time required to achieve it. We can see that
the efficiency of all schemes is nearly the same in the case of fifth-order accuracy,
although minor differences are found for lower resolution in benefit of both YC-
WENO and OWENO schemes. Such asymptotic behaviour is probably due to
the fact that there is no zero of order higher than 1 along the derivative of the
composition of the flux with the solution. All the considered schemes can cope
with the phenomena properly.
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Figure 3. Example 7 (Euler equations, Shu-Osher problem):
fifth-order schemes, n = 400.

5. Conclusions

In this paper we have proposed a novel scheme, based on the approach of Ya-
maleev and Carpenter [21], in which the accuracy is not lost regardless of the order
of the critical point to which the stencil converges. This approach requires the us-
age of an additional node or the computation of some additional quantities in order
to build the weights so that the accuracy of the approximation is unconditionally
optimal. However, the requirement of using an additional node in the former case
is not a major problem in the context in which we have worked along the paper,
focused on finite-difference schemes for hyperbolic conservation laws, in the sense
that both the additional implementation and computational cost is not higher than
for other WENO schemes, as is shown in the numerical experiments.

This new family of schemes has been proven to outperform the previous schemes
under some circumstances, both in smooth and discontinuous solutions, and behave
similarly under other situations. However, we expect a much more significative
improvement for third-order schemes, whose original version proposed by Jiang-
Shu [13] loses order near first order critical points, which in this case, unlike higher
order smooth extrema, is a very common phenomena appearing on solutions of
any type of ODE or PDE. Therefore, fixing this issue would entail a substantial
improvement in the case of third-order WENO schemes. Since the procedure that
we have described here is not valid for the case of third-order schemes, we are



OPTIMAL ORDER WENO 27

0 1 2 3 4 5 6
CPU time (s)

10 -2

10 -1

E
rr

or

JS-WENO5
YC-WENO5 
OWENO5+1H 
OWENO5+1 
OWENO5

Figure 4. Example 7 (Euler equations, Shu-Osher problem):
fifth-order schemes, efficiency plot.

currently working on the development of a third order scheme with unconditionally
optimal accuracy for smooth data.

Appendix A. Theoretical results for the accuracy of OWENO
schemes without additional nodes

This additional section stands for the theoretical grounds involving the moti-
vation for the definition of the parameter Dr in (3.21) according to its accuracy
properties. For the sake of simplicity, we will assume for now reconstructions from
point values, albeit a similar analysis can be done for reconstructions from cell
averages.

Lemma A.1. Let n ∈ N and p ∈ Π̄n. If p has exactly n different roots, then p(s)

has exactly n− s roots, for 0 ≤ s ≤ n.

Proof. The result is direct consequence of applying inductively Rolle’s theorem to
deduce that the number of roots of p(s) is at least n − s and the Fundamental
Theorem of Algebra, together with the fact that p(s) ∈ Π̄n−s, to conclude that p(s)

has exactly n− s roots. �

Lemma A.2. Let {xi}ni=0 be a stencil such that xi < xj if i < j. Let 0 ≤ i0 ≤ n−1
and p ∈ Πn be an interpolating polynomial such that p(xi) = fL if i ≤ i0 and
p(xi) = fR if i > i0, with fL 6= fR. Then, p(s) has exactly n − s roots, for
1 ≤ s ≤ n, and p(s) ∈ Π̄n−s for 0 ≤ s ≤ n. In particular, the parabola p(n−2) has
two simple roots.

Proof. Let 0 ≤ i ≤ n − 1 such that i 6= i0. Then, by construction, we have
p(xi) = p(xi+1), and therefore by Rolle’s therem exists ξi ∈ (xi, xi+1) such that
p′(ξi) = 0, 0 ≤ i ≤ n−1. Therefore, p′ ∈ Πn−1 has at least n−1 roots. However, by
hypothesis p is not a constant polynomial, and thus p′ 6≡ 0. Hence, p′ ∈ Π̄n−1, and
p′ must have exactly n−1 roots. Thus, by Lemma A.1 we have that (p′)(s) = p(s+1)
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has exactly (n − 1) − s = n − (s + 1) roots for 0 ≤ s ≤ n − 1. Replacing s + 1 by
s, we thus have that p(s) has exactly n− s roots for 1 ≤ s ≤ n. Since in particular
p(s) ∈ Πn−s with n− s roots, 1 ≤ s ≤ n, we deduce that the degree of p(s) ∈ Π̄n−s,
and thus it also deduced that the degree of p ∈ Π̄n, which proves the result. �

Lemma A.3. Let xi,h = z + aih, 0 ≤ i ≤ n, be a grid such that ai < aj if i < j
and ph ∈ Πn the interpolating polynomial such that ph(xi,h) = fi,h, for fi,h ∈ R,
0 ≤ i ≤ n. Then, given 0 ≤ s ≤ n, the s-th derivative of Ph(w) := ph(z + wh) can
be written as

P
(s)
h (w) =

n−s∑
j=0

Ls,ja (f0,h, . . . , fn,h)wj , a := (a0, . . . , an),

with Ls,ja : Rn+1 → R a linear function, which does not depend on h. Furthermore,

Ls,ja (f0,h, . . . , fn,h) =
(s+ j)!

j!
L0,s+j
a (f0,h, . . . , fn,h). (A.1)

Moreover, if fi,h = f(xi,h), for some f ∈ Cn+1, then

Ls,ja (f0,h, . . . , fn,h) = hs+j
1

j!
f (s+j)(z) +O(hn+1). (A.2)

Proof. The polynomial ph can be written in Lagrange form as

ph(x) =

n∑
i=0

pi,h(x)fi,h, pi,h(x) =

n∏
j=0,j 6=i

x− xj,h
xi,h − xj,h

. (A.3)

Setting Pi,h(w) := pi,h(z + wh) and using xi,h = z + aih, we easily verify that

Pi,h(w) = pi,h(z + wh) =

n∏
j=0,j 6=i

w − aj
ai − aj

.

Therefore, Pi,h(w) = Pi(w) is a polynomial in Πn which does not depend on h,
which in turn can be written as

Pi(z + wh) =

n∑
j=0

Fi,j(a)wj .

Now, replacing x = z + wh in (A.3) and differentiating s times yields

P
(s)
h (w) = hs

n∑
i=0

P
(s)
i (w)fi,h,

and thus

P
(s)
h (w) =

n∑
i=0

P
(s)
i (w)fi,h =

n∑
i=0

(
n−s∑
j=0

F si,j(a)wj

)
fi,h =

n−s∑
j=0

(
n∑
i=0

F si,j(a)fi,h

)
wj ,

with

F si,j(a0, . . . , an) =
(j + s)!

j!
Fi,j(a0, . . . , an). (A.4)

Therefore, the first statement of Lemma A.3 is proven by taking

Ls,ja (f0,h, . . . , fn,h) :=

n∑
i=0

F si,j(a)fi,h,

which is a linear map.
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Equation (A.1) is a direct consequence of (A.4). As for Equation (A.2), taking
into consideration that p

(s)
h (z) = f (s)(z) +O(hn−s+1), then, differentiating s times

both sides of the equality Ph(w) = p
(s)
h (z + wh) and evaluating at w = 0, we have

P
(s)
h (0) = hsp

(s)
h (z) = hs(f (s)(z) +O(hn+1−s)) = hsf (s)(z) +O(hs+1). (A.5)

On the other hand, by definition, P
(s)
h (0) = Ls,0a (f0,h, . . . , fn,h). Combining this

with (A.5), we have

Ls,0a (f0,h, . . . , fn,h) = hsf (s)(z) +O(hn+1),

and thus (A.2) holds using conveniently (A.1). �

Proposition A.1. Let n ≥ 3, f ∈ C(A), with A = (−∞, z) ∪ (z,+∞) with a
discontinuity at z, that is, such that limx→z− f(x) =: fL 6= fR := limx→z+ f(x)
and f(z) = fL or f(z) = fR. Let xi,h = z + aih, 0 ≤ i ≤ n, a stencil such that
ai < aj if i < j, with a0 < 0 and an > 0, and ph the interpolating polynomial
of degree at most n such that ph(xi,h) = f(xi,h). Then exists h0 > 0 such that

for all h, 0 < h ≤ h0, the parabola P
(n−2)
h (w), with Ph(w) := ph(z + wh) has two

simple roots for 0 < h < h0, λ1,h, λ2,h, which moreover satisfy λ1 6= λ2, with
λi := limh→0+ λi,h, 1 ≤ i ≤ 2.

In particular, given the expression of the parabola P
(n−2)
h as P

(n−2)
h (w) = Ahw

2+
Bhw + Ch, there holds

B2
h − 4AhCh = Ō(1).

Proof. Let

i0 :=

{
min{0 ≤ i ≤ n | ai ≤ 0 ∧ ai+1 > 0} if f(z) = fL

min{0 ≤ i ≤ n | ai < 0 ∧ ai+1 ≥ 0} if f(z) = fR

We now define p the interpolating polynomial in Π̄n satisfying p(ai) = fL =: fi if
i ≤ i0 and p(ai) = fR =: fi if i > i0, 0 ≤ i ≤ n. Then, by Lemma A.2, P (n−2),
with P (w) := p(z + wh) has two simple roots.

Since by Lemma A.3 we can write

P (n−2)(w) =

2∑
j=0

Lja(f0, . . . , fn)wj

for some linear maps Lja(f0, . . . , fn), 0 ≤ j ≤ 2 we deduce that

L1
a(f0, . . . , fn)2 − 4L0

a(f0, . . . , fn)L2
a(f0, . . . , fn) > 0, (A.6)

since the left-hand side of (A.6) is the discriminant of the equation P (n−2)(w) = 0,
which has two simple roots, λ1, λ2.

Now, using again Lemma A.3 on P
(n−2)
h , one has

P
(n−2)
h (w) =

2∑
j=0

Lja(f(x0,h), . . . , f(xn,h))wj . (A.7)

By the countinuity of f outside z, ∃h1 > 0 : ∀0 < h < h1 there holds f(xi,h) =
fi +O(h). Therefore, using the linearity of the maps Lja, (A.7) reads

P
(n−2)
h (w) =

2∑
j=0

Lja(f0 +O(h), . . . , fn +O(h))wj
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=

2∑
j=0

[
Lja(f0, . . . , fn) + CjO(h)

]
wj ,

for some Cj ∈ R, 0 ≤ j ≤ 2.
Finally, defining

Lja[h](f0, . . . , fn) := Lja(f(x0,h), . . . , f(xn,h)) = Lja(f0, . . . , fn) + CjO(h)

and taking into account that

lim
h→0+

Lja[h](f0, . . . , fn) = Lja(f0, . . . , fn),

by continuity arguments and (A.6) one can deduce that exists h0, 0 < h0 < h1 such
that for 0 < h < h0

L1
a[h](f0, . . . , fn)2 − 4L0

a[h](f0, . . . , fn)L2
a[h](f0, . . . , fn) > 0,

and thus the equation P
(n−2)
h (w) = 0 has two simple roots, λ1,h, λ2,h, which more-

over clearly satisfy limh→0+ λi,h = λi, 1 ≤ i ≤ 2, due to the continuity of the
formula for the quadratic equations. �

Proposition A.2. Let n ≥ 3 f ∈ C(n+1) and z ∈ R such that f (s)(z) = 0 for
n − 2 ≤ s ≤ n − 1 and f (n)(z) 6= 0. Let zh ∈ R, such that zh − z = O(h), the
stencil xi,h = zh + aih, 0 ≤ i ≤ n, ai < aj if i < j, and consider the interpolating
polynomial in Πn satisfying ph(xi,h) = f(xi,h) =: fi,h. Then, exists h0 > 0 such

that for all h, 0 < h < h0, the roots λ1,h, λ2,h ∈ C of the parabola P
(n−2)
h , with Ph

given by Ph(w) := ph(y + hw), satisfy (λ2,h − λ1,h)2 = O(h).

In particular, given the expression of the parabola P
(n−2)
h as P

(n−2)
h (w) = Ahw

2+
Bhw + Ch, there holds

B2
h − 4AhCh = O(h2n+1).

Proof. By Lemma A.3, there holds

P
(n−2)
h (w) =

2∑
j=0

Lja(f(x0,h), . . . , f(xn,h))wj , (A.8)

with

Lja(f0,h, . . . , fn,h) =
1

j!
hn−2+jf (n−2+j)(zh) +O(hn+1), 0 ≤ j ≤ 2.

Now, denoting Ah = L2
a(f0,h, . . . , fn,h), Bh = L1

a(f0,h, . . . , fn,h) and Ch
= L0

a(f0,h, . . . , fn,h), using Taylor expansion centered at z and taking into account

that f (n−2)(z) = 0 and f (n−1)(z) = 0, we have, defining δh := zh − z = O(h):

Ah =
1

2
hnf (n)(zh) +O(hn+1) =

1

2
hn(f (n)(z) +O(h)) +O(hn+1)

=
1

2
hnf (n)(z) +O(hn+1),

Bh = hn−1f (n−1)(zh) = hn−1(f (n−1)(z) + δhf
(n)(z) +O(h2)) +O(hn+1)

= hn−1(δhf
(n)(z) +O(h2)) +O(hn+1) = δhh

n−1f (n)(z) +O(hn+1),

Ch = hn−2f (n−2)(zh) +O(hn+1)

= hn−2

(
f (n−2)(z) + δhf

(n−1)(z) +
δ2
h

2
f (n)(z) +O(h3)

)
+O(hn+1)
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= hn−2

(
δ2
h

2
f (n)(z) +O(h3)

)
+O(hn+1) =

1

2
δ2
hh

n−2f (n)(z) +O(hn+1).

Therefore, the discriminant of the quadratic equation reads

B2
h − 4AhCh =

(
δhh

n−1f (n)(z) +O(hn+1)
)2

− 4

(
1

2
δ2
hh

n−2f (n)(z) +O(hn+1)

)(
1

2
hnf (n)(z) +O(hn+1)

)
.

Multiplying all factors and gathering equal powers of h we can verify in a straigt-
forward manner, taking into consideration that δh = O(h), that

B2
h − 4AhCh = O(h2n+1).

Now, since f (n)(z) 6= 0, by continuity arguments ∃h0 > 0 such that ∀h, 0 < h <
h0 there holds Ah 6= 0. In this case, assuming 0 < h < h0 and substracting the

roots of P
(n−2)
h by applying the quadratic formula yields

λ2,h − λ1,h =
Bh +

√
B2
h − 4AhCh

2Ah
−
Bh −

√
B2
h − 4AhCh

2Ah
=

√
B2
h − 4AhCh
Ah

.

Therefore,

(λ2,h − λ1,h)2 =
B2
h − 4AhCh

A2
h

=
O(h2n+1)

Ō(hn)2
=
O(h2n+1)

Ō(h2n)
= O(h).

�

Theorem A.1. Let n ≥ 3, h > 0, z ∈ R, zh such that zh − z = O(h), xi,h =
zh + aih, 0 ≤ i ≤ n, ai < aj, i < j, a stencil, fi,h := f(xi,h) for some function f ,
ph the interpolating polynomial of the stencil {xi,h}ni=0 and Ph(w) := ph(zh + hw).

Let P
(n−2)
h (w) = Ahw

2 +Bhw + Ch be the (n− 2)-th derivative of Ph. Then there
holds:

B2
h − 4AhCh =


Ō(1) if ∃h0 > 0 : ∀0 < h < h0, x0,h < z < xn,h

and f has a discontinuity at z,

O(h2n+1) if f ∈ Cn+1, with f (l)(z) = 0, 0 ≤ l ≤ n− 1,

and f (n)(z) 6= 0.

Proof. The result is a direct consequence of applying Propositions A.1 and A.2,
respectively. �

Remark A.1. The consideration about analyzing the accuracy of B2
h − 4AhCh at

a point zh close to but not necessarily equal to z is very important. Indeed, in the
context of ODEs, PDEs, and in particular for hyperbolic conservation laws, it is
interesting to analyze whether a scheme looses accuracy or not when a single stencil
converges exactly at a critical point, but also within the neighbourhood of that point.

Remark A.2. Although we have presented only the results for reconstructions from
point values, analogous results can be proven for the case of reconstructions from
cell averages. The main difference between them dwells in Lemma A.3, in which the
expression is more complicated for a general grid. In [1, Proposition 2], the authors
provide an expression for uniform grids, whose procedure can be readily generalized
to arbitrary grids, with a more complicated expression.
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