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Abstract

In this work we present and analyse a mixed finite element method for the coupling of fluid flow
with porous media flow. The flows are governed by the Navier–Stokes and the Darcy–Forchheimer
equations, respectively, and the corresponding transmission conditions are given by mass conser-
vation, balance of normal forces, and the Beavers–Joseph–Saffman law. We consider the standard
mixed formulation in the Navier–Stokes domain and the dual-mixed one in the Darcy–Forchheimer
region, which yields the introduction of the trace of the porous medium pressure as a suitable
Lagrange multiplier. The well-posedness of the problem is achieved by combining a fixed-point
strategy, classical results on nonlinear monotone operators and the well-known Schauder and Ba-
nach fixed-point theorems. As for the associated Galerkin scheme we employ Bernardi–Raugel and
Raviart–Thomas elements for the velocities, and piecewise constant elements for the pressures and
the Lagrange multiplier, whereas its existence and uniqueness of solution is established similarly
to its continuous counterpart, using in this case the Brouwer and Banach fixed-point theorems, re-
spectively. We show stability, convergence, and a priori error estimates for the associated Galerkin
scheme. Finally, we report some numerical examples confirming the predicted rates of convergence,
and illustrating the performance of the method.
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1 Introduction

The modelling and numerical simulation of incompressible fluid flows in regions partially occupied by
porous media has become a very active research area during the last decades, mostly due to its relevance
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in the fields of natural sciences and engineering branches. In particular, these kind of phenomena can
be found in several applications such as in vuggy porous media appearing in petroleum extraction (see,
e.g., [4],[3]), groundwater system in karst aquifers (see, e.g., [26], [43]), reservoir wellbore (see, e.g.,
[2, 5]), internal ventilation of a motorcycle helmet (see, e.g., [14, 18]), and blood motion in tumors and
microvessels (see, e.g., [45], [51]), to name a few. One of the most popular models utilised to describe
the aforementioned interaction is the Navier–Stokes/Darcy–Forchheimer (or Navier–Stokes/Darcy,
Stokes/Darcy) model, which consists in a set of differential equations where the Navier–Stokes (or
Stokes) problem is coupled with the Darcy–Forchheimer (or Darcy) model through a set of coupling
equations acting on a common interface, which are given by mass conservation, balance of normal
forces, and the so called Beavers–Joseph–Saffman condition. In [21, 20, 16, 28, 7, 29, 30, 31, 22, 15], and
in the references therein, we can find a large list of contributions devoted to numerically approximate
the solution of this interaction problem, including primal and mixed conforming formulations, as
well as nonconforming methods. At this point we remark that the Navier–Stokes/Darcy–Forchheimer
model is considered when the fluid velocity is higher and the porosity is nonuniform, which holds
when the kinematic forces dominates over viscous forces. We refer the reader to [6, 34, 44, 47] for the
derivation and analysis of the Darcy–Forchheimer equations.

Up to the authors’ knowledge, one of the first works in analysing the coupling of Navier–Stokes and
Darcy–Forchheimer equations is [2]. In that work, the authors study the coupling of a 2D reservoir
model with a 1.5D vertical wellbore model, both written in axisymmetric form. The physical problems
are described by the Darcy–Forchheimer and the compressible Navier–Stokes equations, respectively,
together with an exhaustive energy equation. Later on, motivated by the study of the internal ven-
tilation of a motorcycle helmet, a penalization approach was introduced and analysed in [18]. In
particular, the authors consider the velocity and pressure in the whole domain as the main unknowns
of the system, and the corresponding Galerkin approximation employs piecewise quadratic elements
and piecewise linear for the velocity and pressure, respectively. Notice that this method is applied to
both 2D and 3D domains. More recently, in [52] a 3D discrete dynamical system was derived from the
generalized Navier–Stokes equations for incompressible flow with nonlinear drag forces (represented
by Forchheimer terms) in porous media via a Galerkin procedure. We observe that this method can
be employed in subgrid-scale models of synthetic-velocity form for large-eddy simulation of turbulent
flow through porous media.

Furthermore, and concerning simpler related models, we highlight that a conforming mixed method
for the Stokes–Darcy coupled problem has been introduced and analysed in [28]. In this work, the
velocity-pressure formulation in the Stokes equation and the dual-mixed approach in the Darcy region
is considered, which yields the introduction of the trace of the porous medium pressure as a suitable
Lagrange multiplier. Later on, it was shown in [29] that the use of any pair of stable Stokes and
Darcy elements guarantees the well-posedness of the corresponding Stokes–Darcy Galerkin scheme.
More recently, in [22] the authors extend the results from [28] to the Navier–Stokes/Darcy coupled
problem. Since this coupled system is nonlinear (due to the convective term in the free fluid region),
the analysis of the continuous problem begins with the linearisation of the Oseen problem in the free
fluid domain. This simplified model is then studied by means of the classical Babuška–Brezzi theory,
similarly as it was done for the Stokes–Darcy coupling in [28]. Then, a fixed-point strategy based on the
aforementioned linearisation is associate to the nonlinear coupling, which allows to establish existence
and uniqueness of solution thanks to Schauder’s and Banach’s fixed point theorems, respectively.

According to the above bibliographic discussion, in this paper we aim to extend the results obtained
in [22, 28, 29] to the Navier–Stokes/Darcy–Forchheimer coupled problem. We consider the standard
velocity-pressure formulation for the Navier–Stokes equation and unlike [22], in the porous medium
we consider the Darcy–Forchheimer equation in its dual-mixed formulation. In this way, we obtain
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the velocity and the pressure of the fluid in both media as the main unknowns of the coupled system.
Since one of the interface conditions becomes essential, we proceed similarly to [22, 28] and incorporate
the trace of the porous medium pressure as an additional unknown. The well-posedness of both the
continuous and discrete formulations is proved, employing a fixed-point argument and clasical results
on nonlinear monotone operators (see [49, 50]). In particular, for the continuous formulation, under a
smallness data assumption, we prove existence and uniqueness of solution by means of a fixed-point
strategy where the Schauder (for existence) and Banach (for uniqueness) fixed-point theorems are
employed. Using similar arguments (but applying Brower’s fixed-point theorem instead of Shauder’s
for the existence result) we prove the well-posedness of the discrete problem for a specific choice of
discrete space. More precisely, we consider Bernardi–Raugel elements for the velocity in the free
fluid region, Raviart–Thomas elements of lowest order for the filtration velocity in the porous media,
piecewise constants with null mean value for the pressures, and piecewise constant elements for the
Lagrange multiplier on the interface.

The rest of this paper is organised as follows. In Section 2 we introduce the model problem and
derive the variational formulation. Next, in Section 3, we establish that our variational formulation is
well posed. The corresponding Galerkin scheme is introduced and analysed in Section 4. In Section 5
we derive the corresponding Céa’s estimate and a sub-optimal rate of convergence. Finally, several
numerical examples illustrating the performance of the method, confirming the theoretical sub-optimal
order of convergence and suggesting an optimal rate of convergence, are reported in Section 6.

We end this section by introducing some definitions and fixing some notations. Let O ⊆ Rn,
n ∈ {2, 3}, denote a domain with Lipschitz boundary Γ. For s ≥ 0 and p ∈ [1,+∞], we denote by
Lp(O) and Ws,p(O) the usual Lebesgue and Sobolev spaces endowed with the norms ‖ · ‖Lp(O) and
‖ · ‖s,p;O, respectively. Note that W0,p(O) = Lp(O). If p = 2, we write Hs(O) in place of Ws,2(O),
and denote the corresponding Lebesgue and Sobolev norms by ‖ · ‖0,O and ‖ · ‖s,O, respectively,

and the seminorm by | · |s,O. In addition, we denote by W
1
q
,p

(Γ) the trace space of W1,p(O) and

W
− 1

q
,q

(Γ) the dual space of W
1
q
,p

(Γ) endowed with the norms ‖ · ‖ 1
q
,p;Γ and ‖ · ‖− 1

q
,q;Γ, respectively,

with p, q ∈ (1,+∞) satisfying 1/p+ 1/q = 1. By M and M we will denote the corresponding vectorial
and tensorial counterparts of the generic scalar functional space M, and ‖ · ‖, with no subscripts,
will stand for the natural norm of either an element or an operator in any product functional space.

Additionally, we recall that H(div ;O) :=
{

w ∈ L2(O) : div w ∈ L2(O)
}
, is a standard Hilbert

space in the realm of mixed problems (see, e.g., [12]). On the other hand, the following symbol for
the L2(Γ) inner product

〈ξ, λ〉Γ :=

∫
Γ
ξλ ∀ξ, λ ∈ L2(Γ),

will also be employed for their respective extension as the duality parity between W
− 1

q
,q

(Γ) and

W
1
q
,p

(Γ). Hereafter, when no confusion arises, | · | will denote the Euclidean norm in Rn or Rn×n.
Furthermore, given a non-negative integer k and a subset S of Rn, Pk(S) stands for the space of
polynomials defined on S of degree ≤ k. Finally, we employ 0 as a generic null vector, and use C and
c, with or without subscripts, bars, tildes or hats, to denote generic positive constants independent of
the discretization parameters, which may take different values at different places.

2 The continuous formulation

In this section we introduce the model problem and derive the corresponding weak formulation. For
simplicity of exposition we set the problem in R2. However, our study can be extended to the 3D case
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with few modifications, which we will be pointed out appropriately in the paper.

2.1 The model problem

In order to describe the geometry, we let ΩS and ΩD be two bounded and simply connected polygonal
domains in R2 such that ∂ΩS∩∂ΩD = Σ 6= ∅ and ΩS∩ΩD = ∅. Then, let ΓS := ∂ΩS\Σ, ΓD := ∂ΩD\Σ,
and denote by n the unit normal vector on the boundaries, which is chosen pointing outward from
Ω := ΩS ∪ Σ ∪ ΩD and ΩS (and hence inward to ΩD when seen on Σ). On Σ we also consider a unit
tangent vector t (see Figure 2.1 below). The problem we are interested in consists of the movement
of an incompressible viscous fluid occupying ΩS which flows towards and from a porous medium ΩD

through Σ, where ΩD is saturated with the same fluid. The mathematical model is defined by two
separate groups of equations and by a set of coupling terms. In the free fluid domain ΩS, the motion
of the fluid can be described by the incompressible Navier–Stokes equations:

σS = −pSI + 2µe(uS) in ΩS, −divσS + ρ(∇uS)uS = fS in ΩS,

div uS = 0 in ΩS, uS = 0 on ΓS,
(2.1)

where the unknowns are the fluid velocity uS, the pressure pS, and the Cauchy stress tensor σS. In

addition, e(uS) :=
1

2

{
∇uS + (∇uS)t

}
stands for the strain tensor of small deformations, µ is the

viscosity of the fluid, ρ is the density, and fS ∈ L2(ΩS) is a given external force.

ΩD

ΩS

ΓD

ΓS

n

t

n

n

Σ

Figure 2.1: Sketch of a 2D geometry of our Navier–Stokes/Darcy–Forchheimer model

In the porous medium ΩD we consider a nonlinear version of the Darcy problem to approximate
the velocity uD and the pressure pD, which is considered when the fluid velocity is higher and the
porosity is nonuniform. More preciselly, we consider the Darcy–Forchheimer equations [47, 44]:

µ

ρ
K−1uD +

F

ρ
|uD|uD +∇pD = fD in ΩD, div uD = gD in ΩD, uD · n = 0 on ΓD, (2.2)

where F represents the Forchheimer number of the porous medium, and K ∈ L∞(ΩD) is a symmetric
tensor in ΩD representing the intrinsic permeability κ of the porous medium divided by the viscosity
µ of the fluid. Throughout the paper we assume that there exists CK > 0 such that

w ·K−1(x)w ≥ CK|w|2, (2.3)

for almost all x ∈ ΩD, and for all w ∈ R2. In turn, as will be explained below, fD and gD are
given functions in L3/2(ΩD) and L2(ΩD), respectively. In addition, according to the compressibility
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conditions, the boundary conditions on uD and uS, and the principle of mass conservation (cf. (2.4)
below), gD must satisfy the compatibility condition:∫

ΩD

gD = 0.

Finally, the transmission conditions that couple the Navier–Stokes and the Darcy–Forchheimer models
through the interface Σ are given by

uS · n = uD · n on Σ and σSn +
αdµ√
t · κt

(uS · t) t = −pDn on Σ, (2.4)

where αd is a dimensionless positive constant which depends only on the geometrical characteristics of
the porous medium and usually assumes values between 0.8 and 1.2 (see [9, 18]). The first condition
in (2.4) is a consequence of the incompressibility of the fluid and of the conservation of mass across
Σ. The second transmission condition on Σ can be decomposed, at least formally, into its normal and
tangential components as follows:

(σSn) · n = −pD and (σSn) · t = − αdµ√
t · κt

(uS · t) on Σ. (2.5)

The first equation in (2.5) corresponds to the balance of normal forces, whereas the second one is
known as the Beavers–Joseph–Saffman condition, which establishes that the slip velocity along Σ is
proportional to the shear stress long Σ. We refer the reader to [8, Section 3.2] (see also [48, 40]) for
further details on the choice of this interface condition.

2.2 The variational formulation

In this section we proceed analogously to [28, Section 2] and derive a weak formulation of the coupled
problem given by (2.1), (2.2), and (2.4). To this end, let us first introduce further notations and
definitions. In what follows, given ? ∈ {S,D}, we set

(p, q)? :=

∫
Ω?

p q, (u,v)? :=

∫
Ω?

u · v, and (σ, τ )? :=

∫
Ω?

σ : τ ,

where, given two arbitrary tensors σ and τ , σ : τ = tr (σtτ ) =
∑2

i,j=1 σijτij . Furthermore, in the
sequel we will employ the following Banach space,

H3(div ; ΩD) :=
{

vD ∈ L3(ΩD) : div vD ∈ L2(ΩD)
}
,

endowed with the norm

‖vD‖H3(div ;ΩD) :=
(
‖vD‖3L3(ΩD) + ‖div vD‖30,ΩD

)1/3
,

and the following subspaces of H1(ΩS) and H3(div ; ΩD), respectively

H1
ΓS

(ΩS) :=
{

vS ∈ H1(ΩS) : vS = 0 on ΓS

}
,

H3
ΓD

(div ; ΩD) :=
{

vD ∈ H3(div ; ΩD) : vD · n = 0 on ΓD

}
.

Notice that H3(div ; ΩD) = H(div ; ΩD) ∩ L3(ΩD), which guarantees that vD · n is well defined for
vD ∈ H3

ΓD
(div ; ΩD).
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To begin with the derivation of our variational formulation for the Navier–Stokes/Darcy–Forchhei-
mer problem we first proceed similarly to [22, 28] and test the second equation of (2.1) by vS ∈
H1

ΓS
(ΩS), integrate by parts and utilize the second equation of (2.4) to obtain

2µ(e(uS), e(vS))S +

〈
αdµ√
t · κt

uS · t,vS · t
〉

Σ

+ ρ((∇uS)uS,vS)S

− (pS, div vS)S + 〈vS · n, λ〉Σ = (f ,vS)S ,

(2.6)

for all vS ∈ H1
ΓS

(ΩS), where λ is a further unknown representing the trace of the porous medium
pressure on Σ, that is λ = pD|Γ. The corresponding space of λ will be specified next. In turn, we
incorporate the incompressibility condition div uS = 0 in ΩS weakly as follows

(qS, div uS)S = 0 ∀ qS ∈ L2(ΩS). (2.7)

Next, we multiply the first equation of (2.2) by vD ∈ H3
ΓD

(div ; ΩD) and integrate by parts to obtain

µ

ρ
(K−1uD,vD)D +

F

ρ
(|uD|uD,vD)D − (pD, div vD)D − 〈vD · n, λ〉Σ = (fD,vD)D, (2.8)

for all vD ∈ H3
ΓD

(div ; ΩD). Observe that if uD ∈ H3(div ; ΩD) and pD ∈ L2(ΩD), then |uD|uD · vD ∈
L1(ΩD) and pD div vD ∈ L1(ΩD), and hence the second and third terms of (2.8) are well defined, which
justifies the introduction of the spaces H3(div ; ΩD) for the derivation of our weak formulation. On
the other hand, we observe that for each vD ∈ H3(div ; ΩD), the normal trace vD ·n : H3(div ; ΩD)→
W− 1

3
,3(∂ΩD) is well defined and continuous. In fact, since W1, 3

2 (ΩD) is continuously embedded into

L2(ΩD) then for each ξ ∈W
1
3
, 3
2 (∂ΩD) the quantity

〈vD · n, ξ〉∂ΩD
:=

∫
ΩD

vD · ∇γ̃−1
0 (ξ) +

∫
ΩD

γ̃−1
0 (ξ)div vD,

is well defined, where 〈·, ·〉∂ΩD
stands for the duality pairing between W− 1

3
,3(∂ΩD) and W

1
3
, 3
2 (∂ΩD), and

γ̃−1
0 is the right inverse of the well known trace operator γ0 : W1, 3

2 (ΩD)→W
1
3
, 3
2 (∂ΩD). Furthermore,

as will be explained next at the end of Section 3.1, vD ·n|Σ ∈W− 1
3
,3(Σ), which suggests to set W

1
3
, 3
2 (Σ)

as the appropriate space for the unknown λ, that is

λ = pD|Σ ∈W
1
3
, 3
2 (Σ).

Note that, in principle, the space for pD does not allow enough regularity for the trace λ to exist.
However, the solution of (2.2) has the pressure in W1, 3

2 (ΩD) ∩ L2(ΩD).

Finally, we impose the second equation of (2.2) and the first equation of (2.4) weakly as follows

(qD, div uD)D = (gD, qD)D ∀ qD ∈ L2(ΩD), (2.9)

and
〈uS · n− uD · n, ξ〉Σ = 0 ∀ ξ ∈W

1
3
, 3
2 (Σ). (2.10)

As a consequence of the above, we write Ω := ΩS ∪ Σ ∪ ΩD, and define p := pSχS + pDχD, with χ?
being the characteristic function:

χ? :=

{
1 in Ω?,

0 in Ω \ Ω?,
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for ? ∈ {S,D}, to obtain the variational problem: Find uS ∈ H1
ΓS

(ΩS), p ∈ L2(Ω), uD ∈ H3
ΓD

(div ; ΩD)

and λ ∈W
1
3
, 3
2 (Σ) such that (2.6)–(2.10) hold.

Now, let us observe that if (uS,uD, p, λ) is a solution of the resulting variational problem, then for
all c ∈ R, (uS,uD, p + c, λ + c) is also a solution. Then, we avoid the non-uniqueness of (2.6)–(2.10)
by requiring from now on that p ∈ L2

0(Ω), where

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

In this way, we group the spaces and unknowns as follows:

H := H1
ΓS

(ΩS)×H3
ΓD

(div ; ΩD), Q := L2
0(Ω)×W

1
3
, 3
2 (Σ),

u := (uS,uD) ∈ H, (p, λ) ∈ Q,

and propose the mixed variational formulation: Find (u, (p, λ)) ∈ H×Q, such that

[a(uS)(u),v] + [b(v), (p, λ)] = [f ,v] ∀v := (vS,vD) ∈ H,

[b(u), (q, ξ)] = [g, (q, ξ)] ∀(q, ξ) ∈ Q,
(2.11)

where, given wS ∈ H1
ΓS

(ΩS), the operator a(wS) : H→ H′ is defined by

[a(wS)(u),v] := [AS(uS),vS] + [BS(wS)(uS),vS] + [AD(uD),vD], (2.12)

with

[AS(uS),vS] := 2µ(e(uS), e(vS))S +

〈
αdµ√
t · κt

uS · t,vS · t
〉

Σ

,

[BS(wS)(uS),vS] := ρ((∇uS)wS,vS)S,

[AD(uD),vD] :=
µ

ρ

(
K−1uD,vD

)
D

+
F

ρ
(|uD|uD,vD)D ,

(2.13)

whereas the operator b : H→ Q′ is given by

[b(v), (q, ξ)] := −(div vS, q)S − (div vD, q)D + 〈vS · n− vD · n, ξ〉Σ . (2.14)

In turn, the functionals f and g are defined by

[f ,v] := (fS,vS)S + (fD,vD)D and [g, (q, ξ)] := −(gD, q)D. (2.15)

In all the terms above, [ ·, · ] denotes the duality pairing induced by the corresponding operators.

2.3 Stability properties

Let us now discuss the stability properties of the operators in (2.13) and (2.14). We begin by observing
that the operators AS, BS and b are continuous:∣∣∣[AS(uS),vS]

∣∣∣ ≤ CAS
‖uS‖1,ΩS

‖vS‖1,ΩS
,∣∣∣[BS(wS)(uS),vS]

∣∣∣ ≤ ρC2
S‖wS‖1,ΩS

‖uS‖1,ΩS
‖vS‖1,ΩS

,∣∣∣[b(v), (q, ξ)]
∣∣∣ ≤ Cb‖v‖H‖(q, ξ)‖Q,

(2.16)
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where CS is the continuity constant of the Sobolev embedding from H1(ΩS) into L4(ΩS). In turn, from
the definition of AD (cf. (2.13)), (2.3), and the triangle and Hölder inequalities, we obtain that there
exists LAD

> 0, depending only on µ, ρ, F,K, and ΩD, such that

‖AD(uD)−AD(vD)‖(H3(div ;ΩD))′

≤ LAD

{
‖uD − vD‖H3(div ;ΩD) + ‖uD − vD‖H3(div ;ΩD)

(
‖uD‖H3(div ;ΩD) + ‖vD‖H3(div ;ΩD)

)}
,

(2.17)

for all uD,vD ∈ H3(div ; ΩD). In addition, using the Cauchy–Schwarz and Young inequalities, it is
not difficult to see that f and g are bounded, that is, there exist constants cf , cg > 0, such that

‖f‖H′ ≤ cf
{
‖fS‖0,ΩS

+ ‖fD‖L3/2(ΩD)

}
(2.18)

and
‖g‖Q′ ≤ cg‖gD‖0,ΩD

, (2.19)

which confirm the announced smoothness of fD. On the other hand, from the well known Korn and
Poincaré inequalities (see, e.g., [27]), we easily obtain that there exist a constant αS > 0, depending
only on ΩS, such that

[AS(vS),vS] ≥ 2µαS‖vS‖21,ΩS
∀vS ∈ H1

ΓS
(ΩS). (2.20)

In turn, integrating by parts and assuming that div wS = 0 in ΩS, similarly to [22, eq. (29)], we obtain

[BS(wS)(vS),vS] =
ρ

2

∫
Σ

(wS · n)|vS|2 ∀wS,vS ∈ H1
ΓS

(ΩS). (2.21)

Finally, from the definition of AD (cf. (2.13)) and the inequality (2.3), we deduce that for a fixed
tD ∈ L3(ΩD), there holds

[AD(uD + tD)−AD(vD + tD),uD − vD]

≥ µ

ρ
CK‖uD − vD‖20,ΩD

+
F

ρ
(|uD + tD|(uD + tD)− |vD + tD|(vD + tD),uD − vD)D ,

(2.22)

for all uD,vD ∈ L3(ΩD). Then, thanks to [35, Lemma 5.1], there exist CD > 0, depending only on
ΩD, such that

(|uD + tD|(uD + tD)− |vD + tD|(vD + tD),uD − vD)D ≥ CD‖uD − vD‖3L3(ΩD),

which, together with (2.22), and neglecting the first term on the right hand side of (2.22), yields

[AD(uD + tD)−AD(vD + tD),uD − vD] ≥ αD‖uD − vD‖3L3(ΩD) ∀uD,vD ∈ L3(ΩD), (2.23)

with αD =
FCD

ρ
.

3 Analysis of the continuous formulation

In this section we analyse the well-posedness of problem (2.11) by means of a fixed-point argument
and classical results on nonlinear monotone operators. To that end we first collect some preliminaries
results and notations that will serve for the forthcoming analysis.
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3.1 Preliminaries

First we introduce some definitions that will be utilized next. To this end we let X and Y be reflexive
Banach spaces. Then, we say that a nonlinear operator T : X → Y is bounded if T (S) is bounded for
each bounded set S ⊆ X. In addition, we say that a nonlinear operator T : X → X ′ is of type M if
un ⇀ u, Tun ⇀ f and lim sup [Tun, un] ≤ f(u) imply Tu = f . In turn, we say that T is coercive if

[Tu, u]

‖u‖
→ ∞ as ‖u‖ → ∞.

Now, we establish the following abstract result taken from [49, Proposition 2.3], which has been
adapted to our context where the nonlinear operator is defined on a product space X = X1×X2, with
X1 and X2 depending on parameters p1 and p2, respectively, in place of an space X depending on a
parameter p.

Theorem 3.1 Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly
convex, set X = X1 × X2, and let X ′1, X

′
2, Y

′, and X ′ := X ′1 × X ′2, be their respective duals. Let
a : X → X ′ be a nonlinear operator and b : X → Y ′ be a linear bounded operator. In turn, we denote
by V the kernel of b, that is,

V :=
{
v ∈ X : [b(v), q] = 0 ∀q ∈ Y

}
.

Assume that

(i) a is hemi-continuous, that is, for each u, v ∈ X, the real mapping

J : R→ R, t→ J(t) = [a(u+ tv), v]

is continuous.

(ii) there exist constants γ > 0 and p1, p2 ≥ 2, such that

‖a(u)− a(v)‖X′ ≤ γ
2∑
j=1

{
‖uj − vj‖Xj + ‖uj − vj‖Xj

(
‖uj‖Xj + ‖vj‖Xj

)pj−2}
,

for all u = (u1, u2), v = (v1, v2) ∈ X.

(iii) for fixed t ∈ X \ V , the operator a( · + t) : V → V ′ is strictly monotone in the following sense:
there exist α > 0 and p1, p2 ≥ 2, such that

[a(u+ t)− a(v + t), u− v] ≥ α
{
‖u1 − v1‖p1X1

+ ‖u2 − v2‖p2X2

}
,

for all u = (u1, u2), v = (v1, v2) ∈ V .

(iv) there exists β > 0 such that

sup
v∈X
v 6=0

[b(v), q]

‖v‖X
≥ β‖q‖Y ∀q ∈ Y .
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Then, for each (f, g) ∈ X ′ × Y ′ there exists a unique (u, p) ∈ X × Y such that

[a(u), v] + [b(v), p] = [f, v] ∀v ∈ X,

[b(u), q] = [g, q] ∀q ∈ Y.
(3.1)

Moreover, there exists C > 0, depending only on α, γ, β, p1, and p2, such that

‖(u, p)‖X×Y ≤ CM(f, g), (3.2)

where

M(f, g) := max
{
N (f, g)

1
p1−1 ,N (f, g)

1
p2−1 ,N (f, g),N (f, g)

p1−1
p2−1 ,N (f, g)

p2−1
p1−1

}
,

and
N (f, g) := ‖f‖X′ + ‖g‖Y ′ + ‖g‖p1−1

Y ′ + ‖g‖p2−1
Y ′ + ‖a(0)‖X′ .

Proof. We begin by noting that hypothesis (iv) establishes, equivalently, that b is surjective. Then,
given g ∈ Y ′ there exists a unique ug ∈ X \ V such that (see [42, Lemma A.1] for details):

b(ug) = g and ‖ug‖X ≤
1

β
‖g‖Y ′ . (3.3)

Then, given this ug in X \ V satisfying (3.3), we observe that problem (3.1) with v ∈ V leads to: find
ũ ∈ V , such that

[ag(ũ), v] := [a(ũ+ ug), v] = [f, v] ∀v ∈ V, (3.4)

which suggests to define later on u as ũ + ug. In this way, since f − a(u) ∈ ◦V and hypothesis (iv)
also guarantees that the adjoint operator b′ is an isomorphism from Y into ◦V , we deduce that there
exists a unique p ∈ Y such that b′(p) = f − a(u) and

‖p‖Y ≤
1

β
‖b′(p)‖X ≤

1

β

{
‖f‖X′ + ‖a(u)‖X′

}
. (3.5)

Therefore to prove that problem (3.1) is well posed, in what follows we prove equivalently that ag( · ) =
a(· + ug) is bijective on V . We begin by observing that the injectivity of the operator ag( · ) follows
straightforwardly from hypothesis (iii). In addition, from hypotheses (i) and (iii) and [50, Chapter II,
Lemma 2.1] it can be readily seen that ag( · ) is an operator of type M. Now, given v = (v1, v2) ∈ V ,
and denoting by ugj , j = 1, 2, the components of ug, we observe that, owing to (ii), (iii) and using the
inequality (a+ b)q ≤ C(q)(aq + bq), with C(q) depending only on q, which is valid for all q ∈ [0,+∞)
and a, b ≥ 0 [3, Lemma 2.2], there hold

‖ag(v)‖X′ ≤ ‖ag(v)− ag(0)‖X′ + ‖ag(0)‖X′ = ‖a(v + ug)− a(ug)‖X′ + ‖a(ug)‖X′

≤ γ
2∑
j=1

{
‖vj‖Xj + ‖vj‖Xj

(
‖vj + ugj‖Xj + ‖ugj‖Xj

)pj−2
}

+ ‖a(ug)‖X′

≤ C
2∑
j=1

{
‖vj‖Xj + ‖vj‖

pj−1
Xj

+ ‖vj‖Xj ‖u
g
j‖
pj−2
Xj

}
+ ‖a(ug)‖X′

≤ C
(

1 + ‖v1‖p1−2
X1

+ ‖v2‖p2−2
X2

+ ‖ug1‖
p1−2
X1

+ ‖ug2‖
p2−2
X2

)
‖v‖X + ‖a(ug)‖X′ ,
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and

[ag(v), v]

‖v‖X
=

[a(v + ug)− a(0 + ug), v]

‖v‖X
+

[a(ug), v]

‖v‖X
≥ α

{
‖v1‖p1X1

+ ‖v2‖p2X2

}
‖v‖X

− ‖a(ug)‖X′

≥ C min
{
‖v‖p1−1

X , ‖v‖p2−1
X

}
− ‖a(ug)‖X′ ,

which clearly show that ag is bounded and coercive on V , respectively. In this way, by applying
[50, Chapter II, Corollary 2.2] it can be readily seen that ag is surjective on V . Having verified the
bijectivity of ag on V we deduce that problem (3.4) is well-posed, or equivalently (3.1) admits a unique
solution (u, p) = (ũ + ug, p) ∈ X × Y . Now, in order to obtain (3.2), we proceed similarly to [49,
Proposition 2.3]. In fact, taking v = ũ ∈ V in (3.4), we have

[a(ũ+ ug)− a(0 + ug), ũ] = [f, ũ]− [a(ug), ũ].

Then, combining hypothesis (ii)− (iii) and (3.3), it is clear that

α
{
‖ũ1‖p1X1

+ ‖ũ2‖p2X2

}
≤
{
‖f‖X′ + ‖a(ug)‖X′

}
‖ũ‖X

≤ c1

{
‖f‖X′ + ‖g‖Y ′ + ‖g‖p1−1

Y ′ + ‖g‖p2−1
Y ′ + ‖a(0)‖X′

}
‖ũ‖X ,

with c1 > 0 depending only on γ, β, p1, and p2, which yields

‖ũ‖X ≤ 2 max

{(
2c1

α
N (f, g)

) 1
p1−1

,

(
2c1

α
N (f, g)

) 1
p2−1

}
, (3.6)

where N (f, g) := ‖f‖X′ + ‖g‖Y ′ + ‖g‖p1−1
Y ′ + ‖g‖p2−1

Y ′ + ‖a(0)‖X′ . In this way, due to u = ũ + ug,
combining (3.3) and (3.6), we conclude that

‖u‖X ≤ ‖ũ‖X + ‖ug‖X ≤ c2 max
{
N (f, g)

1
p1−1 ,N (f, g)

1
p2−1

}
, (3.7)

with c2 > 0 depending only on α, γ, β, p1, and p2. On the other hand, from (3.5) and using again (ii),
we deduce that

‖p‖Y ≤ c3

{
‖f‖X′ + ‖u‖X + ‖u1‖p1−1

X1
+ ‖u2‖p2−1

X2
+ ‖a(0)‖X′

}
, (3.8)

with c3 > 0 depending only on γ and β. Then, (3.7) and (3.8) conclude the proof. �

We remark that when p1 = p2 = 2 and ‖a(0)‖X′ is equal to zero, the previous analysis leads to the
classical estimate

‖(u, p)‖X×Y ≤ C
{
‖f‖X′ + ‖g‖Y ′

}
,

with C > 0, depending only on α, γ, and β.

Now, we follow [24, Appendix A] (see also [31, 22]) to recall some preliminary results concerning
boundary conditions and extension operators. We start by recalling that, given vD ∈ H3

ΓD
(div ; ΩD),

the boundary condition vD · n = 0 on ΓD means

〈vD · n, E0,D(ξ)〉∂ΩD
= 0 ∀ ξ ∈W

1
3
, 3
2 (ΓD),

where E0,D : W
1
3
, 3
2 (ΓD)→W

1
3
, 3
2 (∂ΩD) is the extension operator defined by

E0,D(ξ) :=

{
ξ on ΓD

0 on Σ
∀ ξ ∈W

1
3
, 3
2 (ΓD),
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We observe that according to [37, Theorem 1.5.2.3], the operator E0,D is well defined. In turn, similarly

to [24, eq. (A.6)] we can identify the restriction of vD · n to Σ with an element of W− 1
3
,3(Σ), namely

〈vD · n, ξ〉Σ := 〈vD · n, EΣ(ξ)〉∂ΩD
∀ξ ∈W

1
3
, 3
2 (Σ), (3.9)

where EΣ : W
1
3
, 3
2 (Σ) → W

1
3
, 3
2 (∂ΩD) is any bounded extension operator. In addition, analogously to

the proof of [24, Lemma A.2] one can show that for all ψ ∈W
1
3
, 3
2 (∂ΩD), there exist unique elements

ψΣ ∈W
1
3
, 3
2 (Σ) and ψΓD

∈W
1
3
, 3
2 (ΓD) such that

ψ = EΣ(ψΣ) + E0,D(ψΓD
), (3.10)

and there exist C1, C2 > 0, such that

C1

{
‖ψΣ‖ 1

3
, 3
2

;Σ + ‖ψΓD
‖ 1

3
, 3
2

;ΓD

}
≤ ‖ψ‖ 1

3
, 3
2

;∂ΩD
≤ C2

{
‖ψΣ‖ 1

3
, 3
2

;Σ + ‖ψΓD
‖ 1

3
, 3
2

;ΓD

}
. (3.11)

In fact, although [24, Lemma A.2] is derived for W
1− 1

p
,p

(∂ΩD) with p ≥ 2, using a slight modification
of [35, Section 2] one can easily extend the analysis to the case p > 1. Finally, we observe that, since
H1/2(∂ΩS) is continuously embedded into Lp(∂ΩS) with p > 1, and the trace operator is continuous,
the following inequality holds:

‖vS‖Lp(Σ) ≤ ‖vS‖Lp(∂ΩS) ≤ Cs‖vS‖1/2,∂ΩS
≤ CsCtr‖vS‖1,ΩS

∀vS ∈ H1
ΓS

(ΩS), (3.12)

where Cs is the continuity constant of the Sobolev embedding from H1/2(∂ΩS) into Lp(∂ΩS), and Ctr

is the norm of the usual trace operator from H1(ΩS) into H1/2(∂ΩS).

3.2 A fixed-point approach

We begin the solvability analysis of (2.11) by defining the operator T : H1
ΓS

(ΩS)→ H1
ΓS

(ΩS) by

T(wS) := uS ∀wS ∈ H1
ΓS

(ΩS), (3.13)

where u := (uS,uD) ∈ H is the first component of the unique solution (to be confirmed below) of the
nonlinear problem: Find (u, (p, λ)) ∈ H×Q, such that

[a(wS)(u),v] + [b(v), (p, λ)] = [f ,v] ∀v ∈ H,

[b(u), (q, ξ)] = [g, (q, ξ)] ∀(q, ξ) ∈ Q.
(3.14)

Hence, it is not difficult to see that (u, (p, λ)) ∈ H×Q is a solution of (2.11) if and only if uS ∈ H1
ΓS

(ΩS)

satisfies: uS ∈ H1
ΓS

(ΩS) and T(uS) = uS. In this way, in what follows we focus on proving
that T possesses a unique fixed-point. However, we remark in advance that the definition of T will
make sense only in a closed ball of H1

ΓS
(ΩS). Before continuing with the solvability analysis of (2.11),

we first provide the hypotheses under which operator T is well defined.

3.3 Well-definiteness of T

Given wS ∈ H1
ΓS

(ΩS), it is clear that problem (3.14) has the same structure of the one in Theorem 3.1.
Therefore, in what follows we apply this result to establish the well-posedness of (3.14), or equiva-
lently, the well-definiteness of T. We begin by observing that, thanks to the uniform convexity and
separability of Lp(Ω) for p ∈ (1,+∞), each space defining H and Q shares the same properties, which
implies that H and Q are uniformly convex and separable as well.

We continue with the required continuity property of a(wS) for each wS ∈ H1
ΓS

(ΩS).
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Lemma 3.2 Given wS ∈ H1
ΓS

(ΩS), the operator a(wS) is hemi-continuous in H.

Proof. For fixed wS ∈ H1
ΓS

(ΩS), u = (uS,uD), and v = (vS,vD) ∈ H, we introduce the real function
J : R→ R defined by

J (t) := [a(wS)(u + tv),v] = [AS(uS + tvS),vS]

+ [BS(wS)(uS + tvS),vS] + [AD(uD + tvD),vD].

Then, the hemi-continuity of a(wS), that is the continuity of J , follows straightforwardly from the
linearity and continuity of AS and BS(wS) and from [34, Proposition 3]. We omit further details. �

We continue our analysis with the verification of hypothesis (ii) of Theorem 3.1.

Lemma 3.3 Let wS ∈ H1
ΓS

(ΩS). Then, there exists γ > 0, depending on CAS
and LAD

(cf. (2.16),
(2.17)), such that

‖a(wS)(u)− a(wS)(v)‖H′ ≤ γ
{

(1 + ‖wS‖1,ΩS
)‖uS − vS‖1,ΩS

+ ‖uD − vD‖H3(div ;ΩD)

+ ‖uD − vD‖H3(div ;ΩD)

(
‖uD‖H3(div ;ΩD) + ‖vD‖H3(div ;ΩD)

)}
,

for all u = (uS,uD),v = (vS,vD) ∈ H.

Proof. The result follows straightforwardly from the definition of a(wS) (cf. (2.12)), the triangle
inequality, and the stability properties (2.16) and (2.17). We omit further details. �

Now, let us look at the kernel of the operator b, that is

V :=
{

v ∈ H : [b(v), (q, ξ)] = 0 ∀(q, ξ) ∈ Q
}
. (3.15)

According to the definition of b (cf. (2.14)), we observe that v = (vS,vD) ∈ V if and only if

(div vS, q)S + (div vD, q)D = 0 ∀q ∈ L2
0(Ω)

and
〈vS · n− vD · n, ξ〉Σ = 0 ∀ξ ∈W

1
3
, 3
2 (Σ).

In this way, noting that L2(Ω) = L2
0(Ω)⊕ R, and taking ξ ∈ R in the latter equation, we deduce that

(div vS, q)S + (div vD, q)D = 0 ∀q ∈ L2(Ω),

which implies
div vS = 0 in ΩS and div vD = 0 in ΩD. (3.16)

In the following result we provide the assumptions under which operator a(wS) satisfies hypothesis
(iii) of Theorem 3.1.

Lemma 3.4 Let wS ∈ H1
ΓS

(ΩS) such that div wS = 0 in ΩS and

‖wS · n‖0,Σ ≤
2µαS

ρC2
trC

2
s

. (3.17)

Then, for each t ∈ H \V, the nonlinear operator a(wS)( ·+ t) is strictly monotone on V (cf. (3.15)).
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Proof. Let t := (tS, tD) ∈ H \V fixed, and let wS ∈ H1
ΓS

(ΩS) as indicated. Then, according to (2.12),
the linearity of AS and BS(wS), the identity (3.16) and the stabilities properties (2.20) and (2.23), we
find that

[a(wS)(u + t)− a(wS)(v + t),u− v] ≥ 2µαS‖uS − vS‖21,ΩS

+ αD‖uD − vD‖3H3(div ;ΩD) + [BS(wS)(uS − vS),uS − vS],

for all u,v ∈ V. In addition, similarly to [22, Lemma 2], we deduce from (2.21), applying Cauchy–
Schwarz’s inequality and (3.12) with p = 4, that∣∣∣[BS(wS)(uS − vS),uS − vS]

∣∣∣ ≤ ρC2
trC

2
s

2
‖wS · n‖0,Σ ‖uS − vS‖21,ΩS

,

which implies

[a(wS)(u + t)− a(wS)(v + t),u− v]

≥

{
2µαS −

ρC2
trC

2
s

2
‖wS · n‖0,Σ

}
‖uS − vS‖21,ΩS

+ αD‖uD − vD‖3H3(div ;ΩD).

Consequently, the hypothesis (3.17) and the foregoing inequality imply

[a(wS)(u + t)− a(wS)(v + t),u− v] ≥ α(Ω)
{
‖uS − vS‖21,ΩS

+ ‖uD − vD‖3H3(div ;ΩD)

}
,

for all u,v ∈ V, with α(Ω) := min
{
µαS, αD

}
independent of wS. �

We remark that, similarly to the strict monotonicity of a(wS)( · + t) on V with t ∈ H \V fixed,
using (2.23) with tD = 0 ∈ L3(ΩD), we deduce that

[a(wS)(u)− a(wS)(v),u− v] ≥ α(Ω)
{
‖uS − vS‖21,ΩS

+ ‖uD − vD‖3H3(div ;ΩD)

}
, (3.18)

for all u,v ∈ H with div (uD − vD) = 0 in ΩD.

We end the verification of the hypotheses of Theorem 3.1 by proving the continuous inf-sup condition
for b. To that end, we adapt the proof of [28, Lemma 2.1] to the present case, using similar results
from [31, Lemma 3.3] and [22, Lemma 1] to handle the mixed boundary conditions on ∂ΩD.

Lemma 3.5 There exists β > 0 such that

S(q, ξ) := sup
v∈H
v 6=0

[b(v), (q, ξ)]

‖v‖H
≥ β ‖(q, ξ)‖Q ∀(q, ξ) ∈ Q. (3.19)

Proof. Let (q, ξ) ∈ Q. Since q ∈ L2
0(Ω), it is well known (see, e.g., [33, Corollary 2.4]) that there exists

z ∈ H1
0(Ω) such that div z = −q in Ω and ‖z‖1,Ω ≤ c‖q‖0,Ω. Setting v̂ := (v̂S, v̂D) with v̂? = z|Ω? for

? ∈ {S,D}, we find that v̂S · n = v̂D · n on Σ, and using the continuous embedding from H1(ΩD) into
L3(ΩD), we obtain ‖v̂‖H ≤ ĉ‖z‖1,Ω ≤ c̃‖q‖0,Ω, whence

S(q, ξ) ≥

∣∣∣[b(v̂), (q, ξ)]
∣∣∣

‖v̂‖H
=
‖q‖20,Ω
‖v̂‖H

≥ c1‖q‖0,Ω. (3.20)
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On the other hand, given φ ∈W− 1
3
,3(Σ), we define η ∈W− 1

3
,3(∂ΩD) as

〈η, µ〉∂ΩD
:= 〈φ, µΣ〉Σ ∀µ ∈W

1
3
, 3
2 (∂ΩD),

where µΣ ∈W
1
3
, 3
2 (Σ) is given by the decomposition (3.10). It is not difficult to see that

〈η,E0,D(ρ)〉∂ΩD
= 0 ∀ρ ∈W

1
3
, 3
2 (ΓD), (3.21)

〈η,EΣ(ϕ)〉∂ΩD
= 〈φ, ϕ〉Σ ∀ϕ ∈W

1
3
, 3
2 (Σ), (3.22)

and
‖η‖− 1

3
,3;∂ΩD

≤ C‖φ‖− 1
3
,3;Σ. (3.23)

Next, we set ṽD := ∇z in ΩD, with z ∈ W1,3(ΩD) being the unique solution of the boundary value
problem (see [32] for details):

−∆z = − 1

|ΩD|
〈η, 1〉∂ΩD

in ΩD, ∇z · n = η on ∂ΩD, (z, 1)D = 0.

It follows that div ṽD = 1
|ΩD| 〈η, 1〉∂ΩD

∈ P0(ΩD), ṽD · n = η on ∂ΩD, and using (3.23) we find that

‖ṽD‖H3(div ;ΩD) ≤ c‖η‖− 1
3
,3;∂ΩD

≤ C‖φ‖− 1
3
,3;Σ. (3.24)

In addition, using (3.9), (3.21) and (3.22), we deduce that

〈ṽD · n, ξ〉Σ = 〈ṽD · n, EΣ(ξ)〉∂ΩD
= 〈η,EΣ(ξ)〉∂ΩD

= 〈φ, ξ〉Σ ,

and
〈ṽD · n, E0,D(ρ)〉∂ΩD

= 〈η,E0,D(ρ)〉∂ΩD
= 0 ∀ρ ∈W

1
3
, 3
2 (ΓD).

The latter means that ṽD ∈ H3
ΓD

(div ; ΩD). In this way, defining ṽ := (0, ṽD) ∈ H, we obtain, thanks
to (3.23) and (3.24), that

S(q, ξ) ≥

∣∣∣[b(ṽ), (q, ξ)]
∣∣∣

‖ṽ‖H
=

∣∣∣ 〈φ, ξ〉Σ + 1
|ΩD| 〈η, 1〉∂ΩD

(q, 1)D

∣∣∣
‖ṽD‖H3(div ;ΩD)

≥ c2

∣∣∣ 〈φ, ξ〉Σ ∣∣∣
‖φ‖− 1

3
,3;Σ

− c3‖q‖0,Ω,

which, considering that φ ∈W− 1
3
,3(Σ) is arbitrary, yields

S(q, ξ) ≥ c2‖ξ‖ 1
3
, 3
2

;Σ − c3‖q‖0,Ω. (3.25)

Then, combining (3.20) and (3.25) we easily obtain that

S(q, ξ) ≥ c1c2

c1 + c3
‖ξ‖ 1

3
, 3
2

;Σ,

which, together with (3.20), completes the proof with β depending on c1, c2 and c3. �

We are now in position of establishing the well-definiteness of T. To that end, and in order to
simplify the subsequent analysis, given wS ∈ H1

ΓS
(ΩS) we first note that ‖a(wS)(0)‖H′ = 0, and then,

by considering p1 = 2 and p2 = 3 in Theorem 3.1, we introduce the following notation

M(fS, fD, gD) := max
{
N (fS, fD, gD)1/2,N (fS, fD, gD),N (fS, fD, gD)2

}
, (3.26)
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with
N (fS, fD, gD) := ‖fS‖0,ΩS

+ ‖fD‖L3/2(ΩD) + ‖gD‖0,ΩD
+ ‖gD‖20,ΩD

.

The main result of this section is established now.

Theorem 3.6 Let wS ∈ H1
ΓS

(ΩS) such that div wS = 0 in ΩS and

‖wS · n‖0,Σ ≤
2µαS

ρC2
trC

2
s

,

and let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD). Then, (3.14) has a unique solution (u, (p, λ)) ∈
H ×Q, with u := (uS,uD), which allows to define T(wS) := uS. Moreover, there exists a constant
cT > 0, independent of the solution, such that

‖T(wS)‖1,ΩS
= ‖uS‖1,ΩS

≤ ‖(u, (p, λ))‖H×Q ≤ cTM(fS, fD, gD). (3.27)

Proof. It follows from Lemmas 3.4–3.5 and a straightforward application of Theorem 3.1. In turn,
estimate (3.27) is a direct consequence of (3.2) (cf. Theorem 3.1) and (2.18) - (2.19). �

3.4 Solvability analysis of the fixed-point equation

In this section we proceed analogously to [22, Section 2.4] (see also [13, 15]) and establish the existence
of a fixed-point of operator T (cf. (3.13)) by means of the well known Schauder fixed-point theorem
and a sufficiently small data assumption. In addition, under a more restrictive small data assumption,
the uniqueness of solution is also established by means of the Banach fixed-point theorem. We begin
by recalling the first of the aforementioned results (see, e.g., [17, Theorem 9.12-1(b)]).

Theorem 3.7 Let W be a closed and convex subset of a Banach space X, and let T : W → W be a
continuous mapping such that T (W ) is compact. Then T has at least one fixed-point.

The verification of the hypotheses of Theorem 3.7 is provided in what follows. To this aim, we start
by introducing the set

W :=
{

vS ∈ H1
ΓS

(ΩS) : div vS = 0 in ΩS and ‖vS‖1,ΩS
≤ cTM(fS, fD, gD)

}
. (3.28)

Then, assuming that (cf. (3.26)):

M(fS, fD, gD) ≤ 2µαS

cT ρC
3
trC

2
s

, (3.29)

with cT the positive constant satisfying (3.27), it is not difficult to see that T is well defined from W
to W. In fact, given wS ∈W, from (3.29) we deduce that

‖wS · n‖0,Σ ≤ Ctr‖wS‖1,ΩS
≤ 2µαS

ρC2
trC

2
s

, (3.30)

which together with Theorem 3.6 proves that T is well defined. In this way, we obtain the following
result.

Lemma 3.8 Let W be the closed ball defined by (3.28) and assume that the data satisfy (3.29). Then
there holds T(W) ⊆W.
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We continue with the following result providing an estimate needed to derive next the required
continuity and compactness properties of the operator T (cf. (3.13)).

Lemma 3.9 Let W be the closed ball defined by (3.28) and assume that the data satisfy (3.29). Then,

‖T(wS)−T(w̃S)‖1,ΩS
≤ ρCS

µαS
‖T(w̃S)‖1,ΩS

‖wS − w̃S‖L4(ΩS) ∀wS, w̃S ∈W. (3.31)

Proof. Given wS, w̃S ∈W, we let uS := T(wS) and ũS := T(w̃S). According to the definition of T,
it follows that

[a(wS)(u),v] + [b(v), (p, λ)] = [f ,v] ∀v ∈ H,

[b(u), (q, ξ)] = [g, (q, ξ)] ∀(q, ξ) ∈ Q,

and
[a(w̃S)(ũ),v] + [b(v), (p̃, λ̃)] = [f ,v] ∀v ∈ H,

[b(ũ), (q, ξ)] = [g, (q, ξ)] ∀(q, ξ) ∈ Q.

Then, recalling the definition of a(wS) (cf. (2.12)) and subtracting both problems we obtain

[a(wS)(u)− a(w̃S)(ũ),v] + [b(v), (p− p̃, λ− λ̃)] = 0

[b(u− ũ), (q, ξ)] = 0

for all (v, (q, ξ)) ∈ H × Q. In particular, taking v = u − ũ, q = p − p̃ and ξ = λ − λ̃ in the latter
system, the first equation becomes

[a(wS)(u)− a(w̃S)(ũ),u− ũ] = 0. (3.32)

Hence, adding and substracting BS(wS)(ũS) in the second term of the left-hand side of (3.32), using
the fact that u− ũ ∈ V (cf. (3.16)), and the strict monotonicity of a(wS) (cf. (3.18)), it follows that

µαS‖uS − ũS‖21,ΩS
≤ [a(wS)(u)− a(wS)(ũ),u− ũ] = [BS(w̃S −wS)(ũS),uS − ũS].

In this way, the continuity of BS (cf. (2.16)) gives from the foregoing equation

µαS‖uS − ũS‖21,ΩS
≤ ρCS‖wS − w̃S‖L4(ΩS) ‖ũS‖1,ΩS

‖uS − ũS‖1,ΩS
,

which yields the result. �

Owing to the above analysis, we establish now the announced properties of the operator T.

Lemma 3.10 Assume that the estimate (3.29) holds. Then T has at least one fixed-point in W.

Proof. The required result follows straightforwardly from estimate (3.31), the continuity of the Sobolev
embedding from H1(ΩS) into L4(ΩS), and the Schauder theorem. We omit further details and refer to
[22, Lemma 5]. �

Under a more restrictive assumption on the data, in what follows we prove that T has exactly one
fixed-point by means of the well known Banach fixed-point theorem.
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Lemma 3.11 Let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD), such that

M(fS, fD, gD) < r, (3.33)

where

r :=
µαS

cTρ
min

{
1

C2
S

,
2

C2
sC

3
tr

}
.

Then, T has a unique fixed-point.

Proof. The result follows straightforwardly from (3.31), the continuity of the compact injection from
H1(ΩS) into L4(ΩS), the fact that T(W) ⊆W, and the constraint (3.33). �

We are now in position of establishing the main result of this section.

Theorem 3.12 Let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD). Assume that (3.29) holds. Then
the problem (2.11) admits a solution (u, (p, λ)) ∈ H × Q. In addition, if it is assumed that (3.33)
holds, then the solution is unique. In any case, there exists a constant cT > 0 (cf. (3.27)), independent
of the solution, such that

‖(u, (p, λ))‖H×Q ≤ cTM(fS, fD, gD). (3.34)

Proof. The existence and uniqueness of solution of problem (2.11) follows by recalling the definition
of operator T and combining Lemmas 3.10 and 3.11. In addition, it is clear that the estimate (3.34)
is consequence of (3.27). �

4 The Galerkin scheme

In this section we introduce the Galerkin scheme of problem (2.11) and analyse its well-posedness.

4.1 Discrete setting

Let T S
h and T D

h be respective triangulations of the domains ΩS and ΩD formed by shape-regular
triangles of diameter hT and denote by hS and hD their corresponding mesh sizes. Assume that they
match on Σ so that Th := T S

h ∪T D
h is a triangulation of Ω := ΩS∪Σ∪ΩD. Hereafter h := max

{
hS, hD

}
.

For each T ∈ T D
h we consider the local Raviart–Thomas space of the lowest order [46]:

RT0(T ) := span
{

(1, 0), (0, 1), (x1, x2)
}
.

In addition, for each T ∈ T S
h we denote by BR(T ) the local Bernardi–Raugel space (see [10, 33]):

BR(T ) := [P1(T )]2 ⊕ span
{
η2η3n1, η1η3n2, η1η2n3

}
,

where
{
η1, η2, η3

}
are the baricentric coordinates of T , and

{
n1,n2,n3

}
are the unit outward normals

to the opposite sides of the corresponding vertices of T . Hence, we define the following finite element
subspaces:

Hh(ΩS) :=
{

v ∈ H1(ΩS) : v|T ∈ BR(T ), ∀T ∈ T S
h

}
,

Hh(ΩD) :=
{

v ∈ H3(div ; ΩD) : v|T ∈ RT0(T ), ∀T ∈ T D
h

}
,

Lh(Ω) :=
{
q ∈ L2(Ω) : q|T ∈ P0(T ), ∀T ∈ Th

}
.
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Then, the finite element subspaces for the velocities and pressure are, respectively,

Hh,ΓS
(ΩS) := Hh(ΩS) ∩H1

ΓS
(ΩS),

Hh,ΓD
(ΩD) := Hh(ΩD) ∩H3

ΓD
(div ; ΩD),

Lh,0(Ω) := Lh(Ω) ∩ L2
0(Ω).

Next, for introducing the finite element subspace of W
1
3
, 3
2 (Σ), we denote by Σh the partition of Σ

inherited from T D
h (or T S

h ), which is formed by edges e of length he, and set hΣ := max
{
he : e ∈ Σh

}
.

In turn, since the space
∏
e∈Σh

W
1− 1

p
,p

(e) coincides with W
1− 1

p
,p

(Σ), without extra conditions when
1 < p < 2 [37, Theorem 1.5.2.3-(a)] (see also [38, Proposition 1.4.3] and [36, Section 2] for the 3D

case), it can be readily seen that a conforming finite element subspace for W
1
3
, 3
2 (Σ) can be defined by

Λh(Σ) :=
{
ξh : Σ→ R : ξh|e ∈ P0(e) ∀ edge e ∈ Σh

}
.

Notice that this space coincides with the set of discrete normal traces on Σ of Hh(ΩD). Notice also
that since T S

h and T D
h match on Σ, there holds hΣ ≤ min

{
hS, hD

}
.

In this way, grouping the unknowns and spaces as follows:

Hh := Hh,ΓS
(ΩS)×Hh,ΓD

(ΩD), Qh := Lh,0(Ω)× Λh(Σ),

uh := (uS,h,uD,h) ∈ Hh, (ph, λh) ∈ Qh,

where ph := pS,hχS + pD,hχD, our Galerkin scheme for (2.11) reads: Find (uh, (ph, λh)) ∈ Hh ×Qh,
such that

[ah(uS,h)(uh),vh] + [b(vh), (ph, λh)] = [f ,vh] ∀vh := (vS,h,vD,h) ∈ Hh,

[b(uh), (qh, ξh)] = [g, (qh, ξh)] ∀ (qh, ξh) ∈ Qh.
(4.1)

Here, ah(wS,h) : Hh → H′h is the discrete version of a(wS) (with wS,h ∈ Hh,ΓS
(ΩS) in place of

wS ∈ H1
ΓS

(ΩS)), which is defined by

[ah(wS,h)(uh),vh] := [AS(uS,h),vS,h] + [BhS(wS,h)(uS,h),vS,h] + [AD(uD,h),vD,h], (4.2)

where BhS(wS,h) is the well-known skew-symmetric convection form [53]:

[BhS(wS,h)(uS,h),vS,h] := ρ((∇uS,h)wS,h,vS,h)S +
ρ

2
(div wS,huS,h,vS,h)S,

for all uS,h,vS,h,wS,h ∈ Hh,ΓS
(ΩS). Observe that integrating by parts, similarly to (2.21), there holds

[BhS(wS,h)(vS,h),vS,h] =
ρ

2

∫
Σ

(wS,h · n)|vS,h|2 ≥ 0 ∀wS,h,vS,h ∈ Hh,ΓS
(ΩS). (4.3)

Moreover, proceeding as for BS (cf. (2.16)), it is easy to see that for all wS,h, uS,h,vS,h ∈ Hh,ΓS
(ΩS),

there holds ∣∣∣[BhS(wS,h)(uS,h),vS,h]
∣∣∣ ≤ Csk‖wS,h‖1,ΩS

‖uS,h‖1,ΩS
‖vS,h‖1,ΩS

, (4.4)

with Csk := ρC2
S

(
1 +

√
2

2

)
.
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Now, let ΠS : H1
ΓS

(ΩS) → Hh,ΓS
(ΩS) be the Bernardi–Raugel interpolation operator [10], which

is linear and bounded with respect to the H1(ΩS)-norm. In this regard, we recall that, given v ∈
H1

ΓS
(ΩS), there holds ∫

e
ΠS(v) · n =

∫
e
v · n for each edge e of T S

h , (4.5)

and hence
(div ΠS(v), qh)S = (div v, qh)S ∀qh ∈ Lh(Ω). (4.6)

Equivalently, if PS denotes the L2(ΩS)-orthogonal projection onto the restriction of Lh(Ω) to ΩS, then
the relation (4.6) can be written as

PS(div (ΠS(v))) = PS(div v) ∀v ∈ H1
ΓS

(ΩS). (4.7)

On the other hand, let ΠD : H1(ΩD)→ Hh(ΩD) be the well-known Raviart–Thomas interpolation
operator. We recall that, given v ∈ H1(ΩD), this operator is characterized by∫

e
ΠD(v) · n =

∫
e
v · n for each edge e of T D

h , (4.8)

which implies that
(div ΠD(v), qh)D = (div v, qh)D ∀qh ∈ Lh(Ω). (4.9)

Equivalently, if PD denotes the L2(ΩD)-orthogonal projection onto the restriction of Lh(Ω) to ΩD,
then the relation (4.9) can be written as

div (ΠD(v)) = PD(div v) ∀v ∈ H1(ΩD). (4.10)

At this point we recall, according to [23, Sections 1.2.7 and 1.4.7] (see also [12, Chapter III.3.3]),

that the Raviart–Thomas operator ΠD is also well defined for all v ∈ Vdiv (ΩD) :=
{

v ∈ Lp(ΩD) :

div v ∈ Ls(ΩD)
}

, with p > 2 and s ≥ q, 1
q = 1

p + 1
n , since the local space Vdiv (T ) coincides with

W1,t(T ) when t > 2n
n+2 , for each T ∈ T D

h . In particular, considering n = 2, p = 3, and s = 2, we

deduce that ΠD can be applied to functions in H3(div ; ΩD). We will use this fact later on in the proof
of the discrete inf-sup condition of b.

4.2 Well-posedness of the discrete problem

In this section, analogously to the analysis of the continuous problem, we apply a fixed-point argument
to prove the well-posedness of the Galerkin scheme (4.1). To that end, we now let Th : Hh,ΓS

(ΩS)→
Hh,ΓS

(ΩS) be the discrete operator defined by

Th(wS,h) := uS,h ∀wS,h ∈ Hh,ΓS
(ΩS), (4.11)

where uh := (uS,h,uD,h) ∈ Hh is the first component of the unique solution (to be confirmed below)
of the discrete nonlinear problem: Find (uh, (ph, λh)) ∈ Hh ×Qh, such that

[ah(wS,h)(uh),vh] + [b(vh), (ph, λh)] = [f ,vh] ∀vh ∈ Hh,

[b(uh), (qh, ξh)] = [g, (qh, ξh)] ∀(qh, ξh) ∈ Qh.
(4.12)
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Then, similarly as for the continuous case, the Galerkin scheme (4.1) can be rewritten, equivalently,
as the fixed-point problem: Find uS,h ∈ Hh,ΓS

(ΩS) such that

Th(uS,h) = uS,h.

In this way, in what follows we focus on analysing the existence and uniqueness of such a fixed-point,
for which we require the following discrete version of Theorem 3.1.

Theorem 4.1 In addition to the spaces and operators defined in Theorem 3.1, let X1,h, X2,h and Yh be
finite dimensional subspaces of X1, X2, and Y , respectively, and set Xh = X1,h×X2,h ⊆ X := X1×X2.
In addition, let Vh be the discrete kernel of b, that is,

Vh :=
{
vh ∈ Xh : [b(vh), qh] = 0 ∀qh ∈ Yh

}
.

Assume that

(i) a is hemi-continuous from Xh to X ′h, that is, for each u, v ∈ Xh, the real mapping

J : R→ R, t→ J(t) = [a(u+ tv), v]

is continuous.

(ii) there exist constants γ̃ > 0 and p1, p2 ≥ 2, such that

‖a(uh)− a(vh)‖X′ ≤ γ̃
2∑
j=1

{
‖uj,h − vj,h‖Xj + ‖uj,h − vj,h‖Xj

(
‖uj,h‖Xj + ‖vj,h‖Xj

)pj−2}
,

for all uh = (u1,h, u2,h), vh = (v1,h, v2,h) ∈ Xh.

(iii) for fixed th ∈ V ⊥h ≡ Xh \ Vh, the operator a( ·+ th) : Vh → V ′h is strictly monotone, that is, there
exists α̃ > 0 and p1, p2 ≥ 2, such that

[a(uh + th)− a(vh + th), uh − vh] ≥ α̃
{
‖u1,h − v1,h‖p1X1

+ ‖u2,h − v2,h‖p2X2

}
,

for all uh = (u1,h, u2,h), vh = (v1,h, v2,h) ∈ Vh.

(iv) there exists β̃ > 0 such that

sup
vh∈Xh
vh 6=0

[b(vh), qh]

‖vh‖X
≥ β̃‖qh‖Y ∀qh ∈ Yh.

Then, for each (f, g) ∈ X ′ × Y ′ there exists a unique (uh, ph) ∈ Xh × Yh, such that

[a(uh), vh] + [b(vh), ph] = [f, vh] ∀vh ∈ Xh,

[b(uh), qh] = [g, qh] ∀qh ∈ Yh.

Moreover, there exists C̃ > 0, depending only on α̃, γ̃, β̃, p1, and p2, such that

‖(uh, ph)‖X×Y ≤ C̃M(f, g),

where

M(f, g) := max
{
N (f, g)

1
p1−1 ,N (f, g)

1
p2−1 ,N (f, g),N (f, g)

p1−1
p2−1 ,N (f, g)

p2−1
p1−1

}
,

and
N (f, g) := ‖f‖X′ + ‖g‖Y ′ + ‖g‖p1−1

Y ′ + ‖g‖p2−1
Y ′ + ‖a(0)‖X′ .
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Proof. It reduces to a simple application of Theorem 3.1 to the present discrete setting. �

Similarly to the analysis developed in Section 3.3, in what follows we provide suitable assumptions
under which problem (4.12) is well posed or equivalently Th is well defined. For this purpose, we must
verify that the operators defining the discrete problem (4.12) satisfy the hypotheses of Theorem 4.1.
We begin with the hemi-continuity of ah.

Lemma 4.2 Given wS,h ∈ H1
h,ΓS

(ΩS), the operator ah(wS,h) is hemi-continuous in Hh.

Proof. The proof follows analogously to the proof of Lemma 3.2, by using now the linearity and
continuity of BhS(wS,h) (in addition to those of AS). �

Now we verify that hypothesis (ii) of Theorem 4.1 holds.

Lemma 4.3 Let wS,h ∈ Hh,ΓS
(ΩS). Then, there exists γ̃ > 0, depending on CAS

and LAD
(cf. (2.16),

(2.17)), such that

‖a(wS,h)(uh)− a(wS,h)(vh)‖H′ ≤ γ̃
{

(1 + ‖wS,h‖1,ΩS
)‖uS,h − vS,h‖1,ΩS

+ ‖uD,h − vD,h‖H3(div ;ΩD)

+ ‖uD,h − vD,h‖H3(div ;ΩD)

(
‖uD,h‖H3(div ;ΩD) + ‖vD,h‖H3(div ;ΩD)

)}
,

for all uh = (uS,h,uD,h),v = (vS,h,vD,h) ∈ H.

Proof. Similarly to the continuous case, the result follows straightforwardly from the definition of
ah(wS,h) (cf. (4.2)), the triangle inequality, and the stability properties (2.16), (2.17) and (4.4). We
omit further details. �

Now, we proceed to establish the strict monotonicity of ah(wS,h) on the discrete kernel of b:

Vh :=
{

vh := (vS,h,vD,h) ∈ Hh : [b(vh), (qh, ξh)] = 0 ∀(qh, ξh) ∈ Qh

}
, (4.13)

for suitable wS,h ∈ Hh,ΓS
(ΩS). Observe that, similarly to the continuous case, vh ∈ Vh if and only if

(div vS,h, qh)S + (div vD,h, qh)D = 0 ∀qh ∈ Lh,0(Ω),

and
〈vS,h · n− vD,h · n, ξh〉Σ = 0 ∀ξh ∈ Λh(Σ),

which, in particular, imply that

(div vS,h, qh)S = 0 ∀qh ∈ Lh(ΩS) and div vD,h = 0 in ΩD, (4.14)

where Lh(ΩS) is the set of functions of Lh(Ω) restricted to ΩS. Then, the announced result is as
follows.

Lemma 4.4 Let wS,h ∈ Hh,ΓS
(ΩS) such that

‖wS,h · n‖0,Σ ≤
2µαS

ρC2
trC

2
s

. (4.15)

Then, for fixed th ∈ Hh \Vh, the nonlinear operator ah(wS,h)( ·+ th) is strictly monotone on Vh (cf.
(4.13)).
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Proof. The proof follows analogously to the proof of Lemma 3.4. Further details are omitted. �

We continue by adapting the results provided in [28, Section 4] to our domain and spaces configu-
ration to prove that b satisfies the corresponding discrete inf-sup condition. We start by establishing
the following two preliminary lemmas.

Lemma 4.5 There exists C̃1 > 0, independent of h, such that for all (qh, ξh) ∈ Qh, there holds

Sh(qh, ξh) := sup
vh∈Hh
vh 6=0

[b(vh), (qh, ξh)]

‖vh‖H
≥ C̃1‖ξh‖ 1

3
, 3
2

;Σ − ‖qh‖0,Ω. (4.16)

Proof. Let ξh ∈ Λh(Σ) ⊆W
1
3
, 3
2 (Σ), ξh 6= 0. Since

sup

φ̃∈W−
1
3 ,3(Σ)

φ̃ 6=0

〈
φ̃, ξh

〉
Σ

‖φ̃‖− 1
3
,3;Σ

= ‖ξh‖ 1
3
, 3
2

;Σ ,

we deduce that there exists φ̃ ∈W− 1
3
,3(Σ)\{0} such that〈

φ̃, ξh

〉
Σ
≥ 1

2
‖φ̃‖− 1

3
,3;Σ‖ξh‖ 1

3
, 3
2

;Σ. (4.17)

Next, exactly as we did in the proof of Lemma 3.5, we “extend” φ̃ ∈W− 1
3
,3(Σ) to η ∈W− 1

3
,3(∂ΩD) by

〈η, µ〉∂ΩD
:=
〈
φ̃, µΣ

〉
Σ
∀µ ∈W

1
3
, 3
2 (∂ΩD),

where µΣ ∈ W
1
3
, 3
2 (Σ) is given by the decomposition (3.10). Then, proceeding again as in the second

part of the proof of Lemma 3.5, we find ṽD ∈ H3
ΓD

(div ; ΩD) satisfying ṽD · n = η on ∂ΩD, and (cf.
(3.24))

‖ṽD‖H3(div ;ΩD) ≤ C‖η‖− 1
3
,3;∂ΩD

≤ C‖φ̃‖− 1
3
,3;Σ,

which, combined with (4.17), implies

〈ṽD · n, ξh〉Σ := 〈ṽD · n, EΣ(ξh)〉∂ΩD
= 〈η,EΣ(ξh)〉∂ΩD

=
〈
φ̃, ξh

〉
Σ

≥ 1

2C
‖ṽD‖H3(div ;ΩD)‖ξh‖ 1

3
, 3
2

;Σ.
(4.18)

On the other hand, given vD ∈ H3(div ; ΩD), the properties of ΠD (cf. (4.8), (4.9)) and [25, Lemma 3.2]
allow to establish that

〈vD · n, ξh〉Σ =

∫
Σ

(ΠD(vD) · n)ξh ∀ξh ∈ Λh(Σ), (4.19)

and
‖ΠD(vD)‖H3(div ;ΩD) ≤ CD‖vD‖H3(div ;ΩD). (4.20)

Thus, defining ṽD,h := ΠD(ṽD) ∈ Hh,ΓD
(ΩD), and then using (4.18), (4.19), and (4.20), we obtain∣∣∣ 〈ṽD,h · n, ξh〉Σ
∣∣∣

‖ṽD,h‖H3(div ;ΩD)
≥ 1

CD

∣∣∣ 〈ṽD · n, ξh〉Σ
∣∣∣

‖ṽD‖H3(div ;ΩD)
≥ C̃1‖ξh‖ 1

3
, 3
2

;Σ. (4.21)
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Finally, setting ṽh := (0, ṽD,h) ∈ Hh, we deduce that

Sh(qh, ξh) := sup
vh∈Hh
vh 6=0

[b(vh), (qh, ξh)]

‖vh‖H
≥

∣∣∣[b(ṽh), (qh, ξh)]
∣∣∣

‖ṽh‖H

=

∣∣∣ 〈ṽD,h · n, ξh〉Σ − (div ṽD,h, qh)D

∣∣∣
‖ṽD,h‖H3(div ;ΩD)

≥

∣∣∣ 〈ṽD,h · n, ξh〉Σ
∣∣∣

‖ṽD,h‖H3(div ;ΩD)
− ‖qh‖0,Ω ,

which, together with (4.21), imply (4.16) and complete the proof. �

Lemma 4.6 There exists C̃2 > 0, independent of h, such that for all (qh, ξh) ∈ Qh, there holds

Sh(qh, ξh) := sup
vh∈Hh
vh 6=0

[b(vh), (qh, ξh)]

‖vh‖H
≥ C̃2‖qh‖0,Ω. (4.22)

Proof. The proof follows similarly to the first part of the proof of Lemma 3.5. In fact, given (qh, ξh) ∈
Qh we recall that qh ∈ L2

0(Ω) and apply again [33, Corollary 2.4] to deduce that there exists z ∈ H1
0(Ω)

such that
div z = −qh in Ω and ‖z‖1,Ω ≤ c‖qh‖0,Ω. (4.23)

Then, we let z? := z|Ω? for ? ∈ {S,D} and observe that zS = zD on Σ, which implies that

(zS − zD) · n = 0 on Σ.

Hence, defining zh := (zS,h, zD,h), with zS,h = ΠS(zS) and zD,h = ΠD(zD), we observe from (4.5),
(4.8), and the fact that T S

h and T D
h match on Σ, that

〈(zS,h − zD,h) · n, ξh〉Σ = 〈(zS − zD) · n, ξh〉Σ = 0. (4.24)

In addition, since z = 0 on ∂Ω := ΓS ∪ ΓD, it is clear that zh ∈ Hh, and therefore, thanks to the
continuity of ΠS and the estimate (4.20), we obtain that

‖zh‖H ≤ C‖qh‖0,Ω, (4.25)

with C > 0 independent of h. Finally, from the identities (4.7) and (4.10), it can be readily seen that

div zh = −qh in Ω, (4.26)

which, together with (4.24) and (4.25), yield

sup
vh∈Hh
vh 6=0

[b(vh), (qh, ξh)]

‖vh‖H
≥ [b(zh), (qh, ξh)]

‖zh‖H
≥ 1

C
‖qh‖0,Ω,

which concludes the proof. �

Owing to Lemmas 4.5 and 4.6, now we are in position of establishing the full discrete inf-sup
condition of b.

Lemma 4.7 There exists β̃ > 0, independent of h, such that for all (qh, ξh) ∈ Qh there holds

Sh(qh, ξh) := sup
vh∈Hh
vh 6=0

[b(vh), (qh, ξh)]

‖vh‖H
≥ β̃‖(qh, ξh)‖Q. (4.27)
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Proof. It follows straightforwardly from the estimates (4.16) and (4.22). �

The following result establishes the well-definiteness of operator Th.

Theorem 4.8 Let wS,h ∈ Hh,ΓS
(ΩS) such that

‖wS,h · n‖0,Σ ≤
2µαS

ρC2
trC

2
s

, (4.28)

and assume that fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD). Then there exists a unique uS,h ∈
Hh,ΓS

(ΩS) such that Th(wS,h) = uS,h. Moreover, there exists a constant c̃T > 0, independent of the
solution, such that

‖Th(wS,h)‖1,ΩS
= ‖uS,h‖1,ΩS

≤ ‖(uh, (ph, λh))‖H×Q ≤ c̃TM(fS, fD, gD). (4.29)

Proof. Similarly to the continuous case, and noticing that the well-definiteness of Th is equivalent to
the well-posedness of problem (4.12), the result is a direct consequence of Lemmas 4.2, 4.3, 4.4 and
4.7, and Theorem 4.1. �

Having verified the well-definiteness of operator Th, now we are in position of establishing the main
result of this section, namely, the well-posedness of problem (4.1).

Theorem 4.9 Let Wh be the compact convex subset of H1
h,ΓS

(ΩS) defined by

Wh :=
{

vS,h ∈ H1
h,ΓS

(ΩS) : ‖vS,h‖1,ΩS
≤ c̃TM(fS, fD, gD)

}
. (4.30)

Assume that the data fS, fD, and gD satisfy

M(fS, fD, gD) < r̃, (4.31)

where

r̃ :=
2µαS

c̃Tρ
min

{
1

C2
S(2 +

√
2)
,

1

C2
sC

3
tr

}
,

and c̃T > 0 is the constant in (4.29). Then, there exists a unique (uh, (ph, λh)) ∈ Hh ×Qh solution
to (4.1), which satisfies uS,h ∈Wh and

‖(uh, (ph, λh))‖H×Q ≤ c̃TM(fS, fD, gD). (4.32)

Proof. We first observe thanks to (4.29), that assumption (4.31) guarantees that Th(Wh) ⊆ Wh.
Next, proceeding analogously to the proof of Lemma 3.9, the assumption (4.31) implies the estimate

µαS‖Th(wS,h)−Th(w̃S,h)‖21,ΩS
≤ [ah(wS,h)(uh)− ah(wS,h)(ũh),uh − ũh]

= [BhS(w̃S,h −wS,h)(ũS,h),uS,h − ũS,h],

which, together with the continuity of BhS (see (4.4)) leads to

‖Th(wS,h)−Th(w̃S,h)‖1,ΩS
≤
ρC2

S(2 +
√

2)

2µαS
‖Th(w̃S,h)‖1,ΩS

‖wS,h − w̃S,h‖1,ΩS
, (4.33)

thus proving the continuity of Th. Then, the existence result follows from the Brower fixed-point
theorem. Moreover, from (4.33) and the fact that Th(w̃S,h) belongs to Wh, it is easy to see that Th

is a contraction mapping if and only if (4.31) holds, which due to the Banach fixed-point theorem,
implies the uniqueness of solution. In turn, the a priori estimate (4.32) follows directly from (4.29). �
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5 A priori error analysis

Now we establish the corresponding Céa estimate and the theoretical rate of convergence of the
Galerkin scheme (4.1). To that end, we first introduce some notations and state some previous
results. We begin by defining the set

Hg
h :=

{
vh := (vS,h,vD,h) ∈ Hh : [b(vh), (qh, ξh)] = [g, (qh, ξh)] ∀(qh, ξh) ∈ Qh

}
,

which is clearly noempty, since (4.27) holds. Also, it is not difficult to see that, due to the inf-sup
condition (4.27), the following inequality holds (cf. [27, Theorem 2.6], [49, Théorème 2.1]):

inf
vh∈Hg

h

‖u− vh‖H ≤
(

1 +
Cb

β̃

)
inf

vh∈Hh

‖u− vh‖H. (5.1)

In turn, in order to simplify the subsequent analysis, we write euS = uS − uS,h, euD = uD − uD,h,
ep = p − ph, and eλ = λ − λh. As usual, for a given vh = (vS,h,vD,h) ∈ Hg

h and (qh, ξh) ∈ Qh, we
shall then decompose these errors into

euS = δuS + ηuS
, euD = δuD + ηuD

, ep = δp + ηp, eλ = δλ + ηλ, (5.2)

with
δuS = uS − vS,h, ηuS

= vS,h − uS,h, δuD = uD − vD,h, ηuD
= vD,h − uD,h,

δp = p− qh, ηp = qh − ph, δλ = λ− ξh, ηλ = ξh − λh.
(5.3)

Finally, since the exact solution uS ∈ H1
ΓS

(ΩS) satisfies div uS = 0 in ΩS, we have

[BhS(uS)(uS),vS,h] = [BS(uS)(uS),vS,h] ∀vS,h ∈ Hh,ΓS
(ΩS).

Consequently, the following Galerkin orthogonality property holds:

[AS(euS),vS,h] + [BhS(uS)(uS),vS,h]− [BhS(uS,h)(uS,h),vS,h]

+ [AD(uD)−AD(uD,h),vD,h] + [b(vh), (ep, eλ)] = 0

[b(euS , euD), (qh, ξh)] = 0

(5.4)

for all vh := (vS,h,vD,h) ∈ Hh and (qh, ξh) ∈ Qh.

We now establish the main result of this section.

Theorem 5.1 Let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD), such that

M(fS, fD, gD) <
1

2
min

{
r, r̃
}
, (5.5)

where r and r̃ are the constants defined in Lemma 3.11 and Theorem 4.9, respectively. Let (u, (p, λ)) :=
((uS,uD), (p, λ)) ∈ H × Q and (uh, (ph, λh)) := ((uS,h,uD,h), (ph, λh)) ∈ Hh × Qh be the unique
solutions of the continuous and discrete problems (2.11) and (4.1), respectively. Then there exists
C > 0, independent of h and the continuous and discrete solutions, such that

‖(u, (p, λ))− (uh, (ph, λh))‖H×Q

≤ C max
i∈{2,3}

{(
inf

vh∈Hh

(
‖u− vh‖H + ‖u− vh‖2H

)
+ inf

(qh,ξh)∈Qh

‖(p, λ)− (qh, ξh)‖Q
) 1

i−1

}
.

(5.6)
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Proof. In what follows we adapt the proof of [22, Theorem 5] to the present case. To do that, we let
vh = (vS,h,vD,h) ∈ Hg

h and (qh, ξh) ∈ Qh, and define δuS , δuD , δp, δλ,ηuS
,ηuD

, ηp, and ηλ, as in (5.3).
In addition, we recall that thanks to assumption (5.5), it follows that uS ∈ W and uS,h ∈ Wh (cf.
(3.28) and (4.30)), which implies (cf. Theorems 3.12 and 4.9):

‖uD‖H3(div ;ΩD), ‖uS‖1,ΩS
≤ cTM(fS, fD, gD),

‖uD,h‖H3(div ;ΩD), ‖uS,h‖1,ΩS
≤ c̃TM(fS, fD, gD).

(5.7)

In turn, since uh,vh ∈ Hg
h, we observe that

(ηuS
,ηuD

) := vh − uh ∈ Vh. (5.8)

According to the above, we first note that for all vS,h ∈ Hh,ΓS
(ΩS), there holds

[BhS(uS)(uS),vS,h]− [BhS(uS,h)(uS,h),vS,h] = [BhS(euS)(uS),vS,h] + [BhS(uS,h)(euS),vS,h]

= [BhS(uS,h)(ηuS
),vS,h] +R(vS,h),

(5.9)

with
R(vS,h) = [BhS(uS,h)(δuS),vS,h] + [BhS(δuS)(uS),vS,h] + [BhS(ηuS

)(uS),vS,h].

Then, adding and subtracting suitable terms in the first equation of (5.4) with vh = (ηuS
,ηuD

) ∈ Vh

(cf. (5.8)), and observing that [b(ηuS
,ηuD

), (ηp, ηλ)] = 0, we obtain

[ah(uS,h)(vh)− ah(uS,h)(uh),vh − uh]

= − [AS(δuS),ηuS
]−R(ηuS

)− [AD(uD)−AD(vD,h),ηuD
]− [b(ηuS

,ηuD
), (δp, δλ)].

Hence, proceeding analogously to the proof of Lemma 3.4, using the continuity of AS, BhS and b (cf.
(2.16) and (4.4)), and inequality (2.17), we deduce that

µαS‖ηuS
‖21,ΩS

+ αD‖ηuD
‖3H3(div ;ΩD)

≤
{
CAS

+ Csk

(
‖uS,h‖1,ΩS

+ ‖uS‖1,ΩS

)}
‖δuS‖1,ΩS

‖ηuS
‖1,ΩS

+ Csk‖uS‖1,ΩS
‖ηuS

‖21,ΩS

+ LAD

{(
1 + 2‖uD‖H3(div ;ΩD)

)
‖δuD‖H3(div ;ΩD) + ‖δuD‖2H3(div ;ΩD)

}
‖ηuD

‖H3(div ;ΩD)

+ Cb‖(ηuS
,ηuD

)‖H‖(δp, δλ)‖Q,

which, together with (5.7) and assumption (5.5), implies that there exists C > 0, depending only on
parameters, data and other constants, all of them independent of h, such that

‖(ηuS
,ηuD

)‖H ≤ C max
i∈{2,3}

{(
‖(δuS , δuD)‖H + ‖(δuS , δuD)‖2H + ‖(δp, δλ)‖Q

) 1
i−1

}
. (5.10)

In this way, from (5.2), (5.10), and the triangle inequality, we obtain

‖(euS , euD)‖H ≤ ‖(δuS , δuD)‖H + ‖(ηuS
,ηuD

)‖H

≤ C̃ max
i∈{2,3}

{(
‖(δuS , δuD)‖H + ‖(δuS , δuD)‖2H + ‖(δp, δλ)‖Q

) 1
i−1

}
.

(5.11)
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In turn, to estimate ep and eλ we observe that from the discrete inf-sup condition (4.27), the first
equation of (5.4), and the first equation of (5.9), there holds

β̃‖(ηp, ηλ)‖Q ≤ sup
vh∈Hh
vh 6=0

[b(vh), (ηp, ηλ)]

‖vh‖H
= sup

vh∈Hh
vh 6=0

[b(vh), (ep, eλ)]− [b(vh), (δp, δλ)]

‖vh‖H

= sup
vh∈Hh
vh 6=0

−

{
[AS(euS),vS,h] + [BhS(euS)(uS),vS,h] + [BhS(uS,h)(euS),vS,h]

‖vh‖H

+
[AD(uD)−AD(uD,h),vD,h] + [b(vh), (δp, δλ)]

‖vh‖H

}
.

Then, the continuity of AS, BhS , and b (cf. (2.16) and (4.4)), and the inequality (2.17), imply

β̃‖(ηp, ηλ)‖Q ≤
{
CAS

+ Csk

(
‖uS‖1,ΩS

+ ‖uS,h‖1,ΩS

)}
‖euS‖1,ΩS

+ LAD

{
1 + ‖uD‖H3(div ;ΩD) + ‖uD,h‖H3(div ;ΩD)

}
‖euD‖H3(div ;ΩD) + Cb‖(δp, δλ)‖Q,

which, together with assumption (5.5), inequalities (5.7) and (5.11), yield

‖(ηp, ηλ)‖Q ≤ c max
i∈{2,3}

{(
‖(δuS , δuD)‖H + ‖(δuS , δuD)‖2H + ‖(δp, δλ)‖Q

) 1
i−1

}
.

Thus, from (5.2), the triangle inequality, and the foregoing bound, we obtain

‖(ep, eλ)‖Q ≤ ‖(δp, δλ)‖Q + ‖(ηp, ηλ)‖Q

≤ c̃ max
i∈{2,3}

{(
‖(δuS , δuD)‖H + ‖(δuS , δuD)‖2H + ‖(δp, δλ)‖Q

) 1
i−1

}
,

(5.12)

where c̃ > 0 is independent of h. Therefore, recalling that vh ∈ Hg
h and (qh, λh) ∈ Qh are arbitrary,

(5.11) and (5.12) give

‖((euS , euD), (ep, eλ))‖H×Q

≤ C max
i∈{2,3}

{(
inf

vh∈Hg
h

(
‖u− vh‖H + ‖u− vh‖2H

)
+ inf

(qh,ξh)∈Qh

‖(p, λ)− (qh, ξh)‖Q
) 1

i−1

}
,

which, together with (5.1), concludes the proof. �

Now, in order to provide the theoretical rate of convergence of the Galerkin scheme (4.1), we recall
the approximation properties of the subspaces involved (see, e.g., [10, 23, 25, 27]). Note that each one
of them is named after the unknown to which it is applied later on.

(APuS
h ) For each vS ∈ H2(ΩS), there holds

‖vS −ΠS(vS)‖1,ΩS
≤ Ch‖vS‖2,ΩS

.

(APuD
h ) For each vD ∈W1,3(ΩD) with div vD ∈ H1(ΩD), there holds

‖vD −ΠD(vD)‖H3(div ;ΩD) ≤ Ch
{
‖vD‖1,3;ΩD

+ ‖div vD‖1,ΩD

}
.
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(APp
h) For each q ∈ H1(Ω) ∩ L2

0(Ω), there exists qh ∈ Lh,0(Ω) such that

‖q − qh‖0,Ω ≤ Ch‖q‖1,Ω.

(APλ
h) For each ξ ∈W1, 3

2 (Σ), there exists ξh ∈ Λh(Σ) such that

‖ξ − ξh‖ 1
3
, 3
2

;Σ ≤ Ch
2/3‖ξ‖1, 3

2
;Σ.

We remark that the sub-optimal approximation property (APλ
h) follows from the fact that W

1
3
, 3
2 (Σ)

is the interpolation space with index 1/3 between W1, 3
2 (Σ) and L3/2(Σ) (cf. [11, Corollary 3.2-(a)]),

and from the estimate ‖ξ−ξh‖L3/2(Σ) ≤ Ch‖ξ‖1, 3
2

;Σ, which is valid for all ξ ∈W1, 3
2 (Σ) and ξh := PΣ(ξ),

with PΣ being the L2(Σ)-orthogonal projection onto Λh(Σ) (cf. [23, Proposition 1.135]). In fact, given

ξ ∈W1, 3
2 (Σ) there exists a constant C > 0, depending on Σ, such that

‖ξ − ξh‖ 1
3
, 3
2

;Σ ≤ c‖ξ − ξh‖
1−1/3

L3/2(Σ)
‖ξ‖1/3

1, 3
2

;Σ
≤ Ch2/3‖ξ‖1, 3

2
;Σ,

where we have used the fact that ξh is piecewise constant and then ‖ξ − ξh‖1, 3
2

;Σ ≤ c‖ξ‖1, 3
2

;Σ.

The following theorem provides the theoretical sub-optimal rate of convergence of the Galerkin
scheme (4.1), under suitable regularity assumptions on the exact solution.

Theorem 5.2 Let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD), such that (5.5) holds. Let
(u, (p, λ)) := ((uS,uD), (p, λ)) ∈ H × Q and (uh, (ph, λh)) := ((uS,h,uD,h), (ph, λh)) ∈ Hh × Qh be
the unique solutions of the continuous and discrete problems (2.11) and (4.1), respectively, and as-

sume that uS ∈ H2(ΩS), uD ∈ W1,3(ΩD), div uD ∈ H1(ΩD), p ∈ H1(Ω), and λ ∈ W1, 3
2 (Σ). Then,

there exists C > 0, independent of h and the continuous and discrete solutions, such that

‖(u, (p, λ))− (uh, (ph, λh))‖H×Q ≤ Ch1/3 max
i∈{2,3}

{(
‖uS‖2,ΩS

+ ‖uD‖1,3;ΩD
+ ‖div uD‖1,ΩD

+ ‖uS‖22,ΩS
+ ‖uD‖21,3;ΩD

+ ‖div uD‖21,ΩD
+ ‖p‖1,Ω + ‖λ‖1, 3

2
;Σ

) 1
i−1

}
.

(5.13)

Proof. It suffices to apply Theorem 5.1 and the approximation properties of the discrete subspaces.
We omit further details. �

6 Numerical results

In this section we present some examples illustrating the performance of our mixed finite element
scheme (4.1) on a set of quasi-uniform triangulations of the corresponding domains. Our implemen-
tation is based on a FreeFem++ code [39], in conjunction with the direct linear solver UMFPACK
[19].

In order to solve the nonlinear problem (4.1), given wD ∈ H3
ΓD

(div ; ΩD) we introduce the Gâteaux
derivative associated to AD (cf. (2.13)), i.e.,

DAD(wD)(uD,vD) :=
µ

ρ

(
K−1uD,vD

)
D

+
F

ρ
(|wD|uD,vD)D +

F

ρ

(
wD · uD

|wD|
,wD · vD

)
D

,
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for all uD,vD ∈ H3
ΓD

(div ; ΩD). In this way, we propose the Newton-type strategy: Given u0
h =

(u0
S,h,u

0
D,h) ∈ Hh, p

0
h ∈ Lh,0(Ω) and λ0

h ∈ Λh(Σ), for m ≥ 1, find umh = (umS,h,u
m
D,h) ∈ Hh, p

m
h ∈

Lh,0(Ω) and λmh ∈ Λh(Σ), such that

[AS(umS,h),vS,h] + [BhS(um−1
S,h )(umS,h),vS,h] + [BhS(umS,h)(um−1

S,h ),vS,h] +DAD(um−1
D,h )(umD,h,vD,h)

+ [b(vh), (pmh , λ
m
h )] = [BhS(um−1

S,h )(um−1
S,h ),vS,h] +

F

ρ

(
|um−1

D,h |u
m−1
D,h ,vD,h

)
D

+ [f ,vh]

[b(umh ), (qh, ξh)] = [g, (qh, ξh)]

(6.1)

for all vh = (vS,h,vD,h) ∈ Hh and (qh, ξh) ∈ Qh.

In all the numerical experiments below, the iterations are terminated once the relative error of the
entire coefficient vectors between two consecutive iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of freedom
defining the finite element subspaces Hh and Qh, and tol is a fixed tolerance chosen as tol = 1E− 06.
For each example shown below we simply take u0

h = (0, (0.1, 0)) and (p0
h, λ

0
h) = 0 as initial guess. As

usual, the individual errors are denoted by:

e(uS) := ‖uS − uS,h‖1,ΩS
, e(uD) := ‖uD − uD,h‖H3(div ;ΩD),

e(pS) := ‖pS − pS,h‖0,ΩS
, e(pD) := ‖pD − pD,h‖0,ΩD

, e(λ) := ‖λ− λh‖L3/2(Σ).

Notice that we considered ‖λ − λh‖L3/2(Σ) in place of ‖λ − λh‖ 1
3
, 3
2

;Σ because of the last norm is not

computable. Notice also that ‖λ − λh‖L3/2(Σ) satisfice the sub-optimal rate of convergence (5.13).
Next, we define the experimental rates of convergence

r(uS) :=
log(e(uS)/e′(uS))

log(hS/h′S)
, r(uD) :=

log(e(uD)/e′(uD))

log(hD/h′D)
,

r(pS) :=
log(e(pS)/e′(pS))

log(hS/h′S)
, r(pD) :=

log(e(pD)/e′(pD))

log(hD/h′D)
, r(λ) :=

log(e(λ)/e′(λ))

log(hΣ/h′Σ)
,

where h? and h′? (? ∈ {S,D,Σ}) denote two consecutive mesh sizes with their respective errors e and
e′, respectively.

The examples to be considered in this section are described next. In all of them, for the sake of
simplicity, we choose the parameters µ = 1, ρ = 1, αd = 1, κ = I, and K = I. In addition, the
condition

∫
Ω ph = 0 is imposed via a penalization strategy.

Example 1: Tombstone-shaped domain without source in the porous media.

In our first example we consider a semi-disk-shaped fluid domain coupled with a porous unit square,

i.e., ΩS :=
{

(x1, x2) : x2
1 + (x2 − 0.5)2 < 0.52, x2 > 0.5

}
and ΩD := (−0.5, 0.5)2. We consider the

Forchheimer number F = 1 and the data fS, fD, and gD, are adjusted so that the exact solution in the
tombstone-shaped domain Ω = ΩS ∪ Σ ∪ ΩD is given by the smooth functions
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uS(x1, x2) =

(
π cos(πx1) sin(πx2)
−π sin(πx1) cos(πx2)

)
in ΩS,

uD(x1, x2) =

(
π sin(πx2) exp(x1)

cos(πx2) exp(x1)

)
in ΩD,

p?(x1, x2) = sin(πx1) sin(πx2) in Ω?, with ? ∈ {S,D}.

Notice that the source of the porous media is gD = 0. Notice also that this solution satisfies uS · n =
uD ·n on Σ. However, the Beavers–Joseph–Saffman condition (cf. (2.4)) is not satisfied, the Dirichlet
boundary condition for the Navier–Stokes velocity on ΓS and the Neumann boundary condition for
the Darcy–Forchheimer velocity on ΓD are both non-homogeneous. In this way, the right-hand side of
the resulting system must be modified accordingly.

Example 2: Rectangle domain with a Kovasznay solution.

In our second example we consider a rectangular domain Ω = ΩS ∪ Σ ∪ ΩD, with ΩS := (−0.5, 1.5)×
(0, 0.5) and ΩD := (−0.5, 1.5) × (−0.5, 0). We consider the Forchheimer number F = 1 and the data
fS, fD, and gD, are adjusted so that the exact solution in the rectangle domain Ω is given by the smooth
functions

uS(x1, x2) =

(
1− exp(ωx1) cos(2πx2)
ω

2π
exp(ωx1) sin(2πx2)

)
in ΩS,

uD(x1, x2) =

(
(x1 + 0.5)(x1 − 1.5) exp(x2)

(x2 + 2)(2x2 + 1) exp(x1)

)
in ΩD,

p?(x1, x2) = −1

2
exp(2ωx1) + p0 in Ω?, with ? ∈ {S,D},

and

ω =
−8π2

µ−1 +
√
µ−1 + 16π2

.

The constant p0 is such that
∫

Ω p = 0. Notice that (uS, pS) is the well known analytical solution for the
Navier–Stokes problem obtained by Kovasznay in [41], which presents a boundary layer at {−0.5} ×
(−0.5, 0.5). Notice also that in this example both the conservation of mass and the Beavers–Joseph–
Saffman boundary conditions (cf. (2.4)) are not satisfied and the right-hand side of the resulting
system must be modified accordingly.

Example 3: 2D Helmet-shaped domain with different Forchheimer numbers.

In our last example we focus on the performance of the iterative method (6.1) with respect to the
Forchheimer number F . To that end, and motivited by [14, Section 2], we consider a 2D Helmet-shaped
domain. More precisely, we considere the domain Ω = ΩS ∪ Σ ∪ ΩD, where ΩD := (−1, 1)× (−0.5, 0)
and ΩS := (−1,−0.75)× (0, 1.25) ∪ ΩS,1 ∪ (−0.5, 0.5)× (0, 0.25) ∪ ΩS,2 ∪ (0.75, 1)× (0, 1.25), with

ΩS,1 :=
{

(x1, x2) : (x1 + 0.5)2 + (x2 − 0.5)2 > 0.252, −0.75 < x1 < −0.5, x2 > 0
}

and
ΩS,2 :=

{
(x1, x2) : (x1 − 0.5)2 + (x2 − 0.5)2 > 0.252, 0.5 < x1 < 0.75, x2 > 0

}
.
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The data fS, fD, and gD, are chosen so that the exact solution in the 2D Helmet-shaped domain Ω is
given by the smooth functions

uS(x1, x2) =

(
− sin(2πx1) cos(2πx2)

cos(2πx1) sin(2πx2)

)
in ΩS,

uD(x1, x2) =

(
sin(2πx1) exp(x2)
sin(2πx2) exp(x1)

)
in ΩD,

p?(x1, x2) = sin(πx1) exp(x2) + p0 in Ω?, with ? ∈ {S,D}.

The constant p0 is such that
∫

Ω p = 0. Notice that, this solution satisfies uS · n = uD · n on Σ and
uD · n = 0 on ΓD. However, the Beavers–Joseph–Saffman condition (cf. (2.4)) is not satisfied and the
Dirichlet boundary condition for the Navier–Stokes velocity on ΓS is non-homogeneous and therefore
the right-hand side of the resulting system must be modified accordingly.

In Tables 6.1, 6.2 and 6.4 we summarise the convergence history for a sequence of quasi-uniform tri-
angulations, considering the finite element spaces introduced in Section 4.1, and solving the nonlinear
problem (6.1), which require around eight, six and nine Newton iterations for the Examples 1, 2 and
3, respectively. We observe that the sub-optimal rate of convergence O(h1/3) provided by Theorem 5.2
is attained in all the cases. Even more, the numerical result suggest that there exist a way to prove
optimal rate of convergence O(h). In Table 6.3 we show the behaviour of the iterative method (6.1)
as a function of the Forchheimer number F , considering different mesh sizes h := max

{
hS, hD

}
, and

a tolerance tol = 1E− 06. Here we observe that the higher the parameter F the higher the number of
iterations as it occurs also in the Newton method for the Navier–Stokes/Darcy–Forchheimer coupled
problem. Notice also that when F = 0 the Darcy–Forchheimer equations reduce to the classical linear
Darcy equations and as expected the iterative Newton method (6.1) is faster.

On the other hand, the velocity components, velocity streamlines and pressure field in the whole
domain of the approximate solutions for the three examples are displayed in Figures 6.1, 6.2, and 6.3.
All the figures were obtained with 588445, 858658, and 883963 degrees of freedom for the Examples
1, 2, and 3, respectively. In particular, we can observe in Figure 6.1 that the second components of
uS and uD coincide on Σ as expected, and hence, the continuity of the normal components of the
velocities on Σ is preserved. In turn, we can see that the velocity streamlines are higher in the Darcy–
Forchheimer domain. Moreover, it can be seen that the pressure is continuous in the whole domain
and preserves the sinusoidal behaviour. Next, in Figure 6.2 we observe that the pressure presents a
boundary layer at {−0.5} × (−0.5, 0.5) as expected. Finally, similarly to Figure 6.1, in Figure 6.3 we
can also observe the continuity of the normal components of the velocities on Σ since their second
components coincide on the interface.

References

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Second edition. Pure and Applied Mathe-
matics (Amsterdan), 140. Elsevier/Academic Press, Amsterdam, 2003. xiv+305 pp.

[2] M. Amara, D. Capatina, and L. Lizaik, Coupling of Darcy–Forchheimer and compressible
Navier–Stokes equations with heat transfer. SIAM J. Sci. Comput. 31 (2008/09), no. 2, 1470–1499.

[3] T. Arbogast and D.S. Brunson, A computational method for approximating a Darcy–Stokes
system governing a vuggy porous medium. Comput. Geosci. 11 (2007), no. 3, 207–218.

[4] T. Arbogast and H.L. Lehr, Homogenization of a Darcy–Stokes system modeling vuggy porous
media. Comput. Geosci. 10 (2006), no. 3, 291–302.

32



N hS e(uS) r(uS) e(pS) r(pS)

691 0.1915 0.4439 – 0.1588 –
2491 0.0911 0.2293 0.8896 0.0725 1.0561
9562 0.0486 0.1188 1.0441 0.0382 1.0179

37815 0.0242 0.0531 1.1558 0.0175 1.1214
149693 0.0134 0.0288 1.0380 0.0094 1.0474
588445 0.0078 0.0147 1.2290 0.0048 1.2231

N hD e(uD) r(uD) e(pD) r(pD)

691 0.1901 0.3481 – 0.0643 –
2491 0.0978 0.1678 1.0974 0.0305 1.1202
9562 0.0535 0.0856 1.1169 0.0151 1.1629

37815 0.0249 0.0427 0.9122 0.0075 0.9206
149693 0.0145 0.0214 1.2713 0.0037 1.2840
588445 0.0068 0.0107 0.9140 0.0019 0.9087

N hΣ e(λ) r(λ) iter

691 0.1250 0.0718 – 7
2491 0.0625 0.0352 1.0308 7
9562 0.0313 0.0175 1.0084 8

37815 0.0156 0.0087 1.0060 8
149693 0.0078 0.0043 1.0012 8
588445 0.0039 0.0022 1.0004 8

Table 6.1: Example 1, Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the approximation of the Navier–Stokes/Darcy–Forchheimer problem with F = 1.

[5] M.M. Arzanfudi, S. Saeid, R. Al-Khoury, and L.J. Sluys, Multidomain-staggered coupling
technique for Darcy–Navier Stokes multiphase flow: An application to CO2 geosequestration.
Finite Elem. Anal. Des. 121 (2016), 52–63.

[6] K. Aziz and A. Settari, Petroleum reservoir simulation. Applied Science Publishers LTD,
London, 1979.

[7] L. Badea, M. Discacciati, and A. Quarteroni, Numerical analysis of the Navier–
Stokes/Darcy coupling. Numer. Math. 115 (2010), no. 2, 195–227.

[8] A. Bagchi and F.A. Kulacki, Natural Convection in Superposed Fluid-Porous Layers. Springer
Briefs in Applied Sciences and Technology. Springer New York, 2014.

[9] G.S. Beavers and D.D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid
Mech. 30 (1967), 197–207.

[10] C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math.
Comp. 44 (1985), no. 169, 71–79.

[11] H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional
Sobolev spaces. J. Evol. Equ. 1 (2001), no. 4, 387–404.

33



N hS e(uS) r(uS) e(pS) r(pS)

989 0.2001 10.3170 – 8.2614 –
3880 0.0966 4.5495 1.1249 3.9855 1.0015

13888 0.0492 2.2051 1.0713 1.8753 1.1151
55727 0.0270 1.1168 1.1342 0.9489 1.1357

213833 0.0161 0.5456 1.3877 0.4746 1.3423
858658 0.0078 0.2769 0.9419 0.2404 0.9444

N hD e(uD) r(uD) e(pD) r(pD)

989 0.2001 0.4678 – 7.2964 –
3880 0.0950 0.2249 0.9835 3.3197 1.0578

13888 0.0500 0.1145 1.0518 1.7322 1.0135
55727 0.0254 0.0569 1.0326 0.9133 0.9457

213833 0.0160 0.0278 1.5453 0.4353 1.5956
858658 0.0066 0.0141 0.7674 0.2295 0.7283

N hΣ e(λ) r(λ) iter

989 0.1250 8.9940 – 6
3880 0.0625 4.6538 0.9505 6

13888 0.0313 2.3459 0.9883 6
55727 0.0156 1.1788 0.9928 6

213833 0.0078 0.5962 0.9835 6
858658 0.0039 0.3078 0.9539 6

Table 6.2: Example 2, Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the approximation of the Navier–Stokes/Darcy–Forchheimer problem with F = 1.

[12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Com-
putational Mathematics, 15. Springer-Verlag, New York, 1991. x+350 pp.
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