UNIVERSIDAD DE CONCEPCIÓN

Centro de Investigación en Ingeniería Matemática (CI^2MA)

Analysis of an adaptive HDG method for the Brinkman problem

Rodolfo Araya, Manuel Solano, Patrick Vega

PREPRINT 2017-28

SERIE DE PRE-PUBLICACIONES

Analysis of an adaptive HDG method for the Brinkman problem

RODOLFO ARAYA^{*}, MANUEL SOLANO[†]AND PATRICK VEGA[‡] CI²MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile

November 21, 2017

Abstract

We introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the gradient-velocity-pressure formulation of the Brinkman problem. We present an *a priori* error analysis of the method, showing optimal order of convergence of the error. We also introduce an *a posteriori* error estimator, of the residual type, which helps us to improve the quality of the numerical solution. We establish reliability and local efficiency of our estimator for the L^2 -error of the velocity gradient and the pressure and the H^1 -error of the velocity, with constants which are independent of the physical parameters and the size of the mesh. In particular, our results are also valid for the Stokes problem. Finally, we provide numerical experiments showing the quality of our adaptive scheme.

Keywords: Brinkman equations; Stokes equations; hybridizable discontinuous Galerkin method; a priori error analysis; a posteriori error analysis.

1 Introduction

The main goal of this work is to introduce and analyze a hybridizable discontinuous Galerkin (HDG) method applied to the Stokes/Brinkman equations of an incompressible flow through porous media. The problem can be formulated as follows

$$\mathbf{L} - \nabla \boldsymbol{u} = 0 \qquad \text{in } \Omega, \tag{1a}$$

$$-\nabla \cdot (\nu \mathbf{L}) + \nabla p + \alpha \boldsymbol{u} = \boldsymbol{f} \quad \text{in } \Omega, \tag{1b}$$

$$\nabla \cdot \boldsymbol{u} = 0 \qquad \text{in } \Omega, \tag{1c}$$

$$\boldsymbol{u} = \boldsymbol{u}_D \quad \text{on } \boldsymbol{\Gamma}, \tag{1d}$$

$$\int_{\Omega} p = 0, \tag{1e}$$

where $\Omega \subset \mathbb{R}^d$ (d = 2, 3) is a polygonal/polyhedral domain with Lipschitz boundary Γ , \boldsymbol{u} is the velocity, p is the pressure, $\nu > 0$ is the effective viscosity of the fluid, $\alpha \geq 0$ is the quotient between the dynamic viscosity and the permeability of the media, $\boldsymbol{f} \in L^2(\Omega)^d$ is the external body force and $\boldsymbol{u}_D \in H^{1/2}(\Gamma)^d$ is the Dirichlet boundary data, assumed to satisfy $\int_{\Gamma} \boldsymbol{u}_D \cdot \boldsymbol{n} = 0$ for compatibility.

^{*}Email: rodolfo.araya@udec.cl

[†]Email: msolano@ing-mat.udec.cl

[‡]Corresponding author. Email: pvega@ing-mat.udec.cl

The Brinkman equation constitutes a generalization of the Darcy's equation $\boldsymbol{u} = -\alpha^{-1}\nabla p$ that describes the flow of a fluid through a porous mass with low particle density, i.e. a medium with high permeability ([1]). It was motivated by the calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, where the model includes the viscous effect to state the equilibrium between the forces acting of a volume of fluid, i.e. the pressure gradient and the damping force, $\alpha \boldsymbol{u}$, caused by the porous mass. Applications of the Brinkman equation arise, for instance, from groundwater and oil reservoir modeling, composite manufacturing ([25]), heat pipes ([27]) and computational fuel cell dynamics ([30]).

Let us briefly describe the historic perspective of the development of HDG methods. The main criticism of Discontinuous Galerkin (DG) methods is due to the fact that they have too many globally coupled degrees of freedom. In order to overcome this drawback, [8] introduced a unifying framework for hybridization of DG methods for diffusion problems, where the only globally coupled degrees of freedom are those of the numerical traces on the inter-element boundaries. The reminder unknowns are then obtained by solving local problems on each element. A particular type of HDG methods, the LDG-hybridizable (LDG-H), approximates these local problems using a local Discontinuous Galerkin (LDG) method ([8]). Using a special projection, [6] proved optimal order of convergence of a type of LDG-H method where the stabilization parameter is set to be zero in all but one face of each element. In addition, they also provided an element-by-element postprocessing of the approximate solution having superconvergence properties. A larger class of LDG-H methods where analyzed in [11] by also using special projections. Later, [10] simplified the analysis of these methods by using a technique based on a suitable designed projection inspired by the form of the numerical traces.

In addition to diffusion equations, in the context of fluid mechanics, HDG method have been developed for a wide variety of problems such as convection-diffusion equation ([31, 32, 19]), Stokes flow ([33, 9, 12, 7]), quasi-Newtonian Stokes flow ([20, 21]), Stokes-Darcy coupling ([22]), Brinkman problem ([18, 23]), Oseen and Navier–Stokes equations ([2, 34, 3]), just to name few. Among them, we focus on those that are closely related to our work. To be more precise, [7] derived a class of HDG method for the Stokes problem considering a vorticity-velocity-pressure formulation. They showed that the method can be hybridized in four different ways including tangential velocity/pressure and velocity/average pressure hybridizations. The approach based on the velocity/average pressure hybridization was considered in [33] to devise an HDG method for the velocity gradient-velocity-pressure formulation which was later analyzed by [9] by employing the projection-based error analysis developed by [10].

On the other hand, the first HDG method for the Brinkman problem was proposed by [18] for a velocity gradient-velocity-pressure formulation. Recently, [23] introduced and analyzed an HDG method for the Brinkman problem in pseudostress-velocity formulation.

Few contributions on the development of a posteriori error estimators for HDG methods can be found in the literature. Certainly, a posteriori error analyses of DG methods have been extensively studied and a complete discussion can be found in [13, 14] and the references therein. The first a posteriori error analysis for HDG methods was carried out in [13] for an LDG-H method applied to a diffusion problem. There, the authors proposed an efficient and reliable residual-based estimator that controls the error in q, the gradient of the scalar variable u, which only depends on the data oscillation and on the difference between the trace of the approximation of u and its corresponding numerical trace. The construction of this estimator relies in two key ingredients. The first one is the use of an element-by-element postprocessing of the scalar variable u having superconvergence properties. The second ingredient is the Oswald interpolation operator ([26, 17]) that provides a continuous approximation of a discontinuous piecewise polynomial function. Based on this technique, [14], presented a unified a posteriori error analysis for diffusion problems, where general

conditions on the approximation of the flux q are provided in order to obtain efficient and reliable error estimators for a wide class of method. In the context of the convection-dominated diffusion equation, [4] proposed a reliable and locally efficient residual-based error estimator for the HDG method presented in [19] that controls the error measured in an energy norm. This estimator is robust in the sense of that the bounds of error are uniform with respect to the diffusion coefficient. The authors also employed the Oswald interpolant and considered a weighted test function technique to control the L^2 -norm of the scalar solution. However, they do not use the postprocessing technique mentioned above since there is no superconvergence result for the HDG methods when the diffusion parameter is too small. An alternative approach is to use the global inf-sup condition associated to the continuous variational formulation which allows to directly bound the error in terms of the residuals. This needs to be done carefully if applied to HDG methods since the spaces are not necessarily conforming. In this direction, [21] proposed an error estimator for an augmented HDG method applied to a class of quasi-Newtonian Stokes equations in velocity gradient-pseudostressvelocity formulation. There, in order to be able to use the global inf-sup condition of the continuous problem, the numerical trace of the velocity is eliminated from the scheme by expressing it in terms of the intra-element unknowns, obtaining an equivalent discrete formulation. Moreover, the discontinuous approximation is postprocessed to construct an $H(div, \Omega)$ -conforming approximation of the pseudostress that allows to obtain an efficient and reliable residual-based error estimator. In addition, [23] employed similar techniques to propose a error estimator for an HDG method applied to the Brinkman problem in pseudostress-velocity formulation.

The main contributions of our work are the introduction of an HDG method for Brinkman equation, where the unknowns are de velocity, pressure and the gradient of the velocity, and its a priori and a posteriori analysis. Even if the Stokes case ($\alpha = 0$) has been introduced and analyzed, without an a posteriori analysis, in [9], this is the first time that the analysis is extended for Brinkman ($\alpha \neq 0$) in the natural variables. In the a posteriori error analysis we propose a reliable and locally efficient residual-based a posteriori error estimator for both Brinkman and Stokes problems, using the Oswald interpolation operator and a postprocessing technique. As we will see in Section 4, we propose a new postprocessed approximation of the velocity suited to the Brinkman problem and show it superconverges with optimal order. In addition, all the constants in the estimates are written explicitly in terms of the physical parameters α and ν .

The paper is organized as follows. In Section 2, we introduce the HDG method, notation and basic definitions. In Section 3 we present an *a priori* error analysis for the HDG method. In Section 4, we introduce our *a posteriori* error estimator and state the main results concerning it. Finally, in Section 5 we show numerical evidence, in dimension two, that validates our theoretical result concerning the behavior of our scheme.

2 The method

2.1 Notation

Let $\{\mathcal{T}_h\}_{h>0}$ be a family of conforming triangulations, made of simplexes K, of the domain Ω that verifies the shape-regularity condition, i.e. there exists a positive constant σ such that $h_K/\rho_K \leq \sigma$ for all $K \in \mathcal{T}_h$ and for all h > 0, where h_K and ρ_K denote the diameter of K and the diameter of the largest ball inside K, respectively. Let h_e be the diameter of a face/edge e. From now on, we will use the word "face" even in the context of dimension two. We denote by \mathcal{E}_h^i the set of interior faces and by \mathcal{E}_h^∂ the set of boundary faces. We set $\mathcal{E}_h := \mathcal{E}_h^i \cup \mathcal{E}_h^\partial$, $\partial \mathcal{T}_h := \{\partial K : K \in \mathcal{T}_h\}$, $\omega_e := \{K \in \mathcal{T}_h : e \subset \partial K\}$. We will use bold and Roman letters to denote vector- and tensor-valued variables, respectively. For a tensor-valued function G and a vector-valued function \boldsymbol{v} , we define

$$\llbracket \mathbf{G} \rrbracket = \begin{cases} \mathbf{G}^{-} \boldsymbol{n}^{-} + \mathbf{G}^{+} \boldsymbol{n}^{+}, & e \in \mathcal{E}_{h} \setminus \mathcal{E}_{h}^{\partial} \\ \mathbf{0}, & e \in \mathcal{E}_{h}^{\partial} \end{cases} \quad \text{and} \quad \llbracket \boldsymbol{v} \rrbracket = \begin{cases} \boldsymbol{v}^{+} - \boldsymbol{v}^{-}, & e \in \mathcal{E}_{h} \setminus \mathcal{E}_{h}^{\partial} \\ \boldsymbol{v} - \boldsymbol{u}_{D}, & e \in \mathcal{E}_{h}^{\partial} \end{cases} \quad ,$$

where \boldsymbol{n} denotes the outward unit normal vector to ∂K . We use the notation $(\cdot, \cdot)_D$ and $\langle \cdot, \cdot \rangle_D$ for the L^2 -inner product on $D \in \mathcal{T}_h$ and $D \in \mathcal{E}_h$, respectively. Let us also define

$$||\!| v |\!|\!|_{1,D} := \left(\alpha |\!| v |\!|_{0,D}^2 + \nu |\!| \nabla v |\!|_{0,D}^2 \right)^{1/2}$$

Finally, $\mathbb{P}_k(S)$ will denote the space of polynomials of total degree no greater than $k \in \mathbb{N} \cup \{0\}$, with S a simplex or a face as appropriate.

To simplify the notation, in what follows, we will use $a \leq b$ to denote $a \leq Cb$, where C is a generic constant depending only on the shape regularity constant σ , the domain Ω and the polynomial degree k, but independent of h and the physical parameters of the equation.

2.2 An HDG method for the Brinkman problem

Let us consider the approximation spaces:

(

$$\mathbf{G}_h := \{ \mathbf{G} \in [L^2(\mathcal{T}_h)]^{d \times d} : \mathbf{G}|_K \in [\mathbb{P}_k(K)]^{d \times d} \quad \forall K \in \mathcal{T}_h \},$$
(2a)

$$\boldsymbol{V}_h := \{ \boldsymbol{v} \in [L^2(\mathcal{T}_h)]^d : \boldsymbol{v}|_K \in [\mathbb{P}_k(K)]^d \quad \forall K \in \mathcal{T}_h \},$$
(2b)

$$P_h := \{ w \in L^2(\mathcal{T}_h) : w |_T \in \mathbb{P}_k(K) \quad \forall K \in \mathcal{T}_h \},$$
(2c)

$$\boldsymbol{M}_h := \{ \boldsymbol{\mu} \in [L^2(\mathcal{E}_h)]^d : \boldsymbol{\mu}|_e \in [\mathbb{P}_k(e)]^d \quad \forall e \in \mathcal{E}_h \}.$$
(2d)

Then, based on the method developed in [33] for the Stokes flow, we introduce an HDG formulation for Brinkman problem (1) that approximates the exact solution $(\mathbf{L}, \boldsymbol{u}, p, \boldsymbol{u}|_{\mathcal{E}_h})$ by the only solution of the following scheme: Find $(\mathbf{L}_h, \boldsymbol{u}_h, p_h, \hat{\boldsymbol{u}}_h) \in \mathbf{G}_h \times \boldsymbol{V}_h \times P_h \times \boldsymbol{M}_h$ such that

$$(\mathbf{L}_h, \mathbf{G})_{\mathcal{T}_h} + (\boldsymbol{u}_h, \nabla \cdot \mathbf{G})_{\mathcal{T}_h} - \langle \widehat{\boldsymbol{u}}_h, \mathbf{G}\boldsymbol{n} \rangle_{\partial \mathcal{T}_h} = 0,$$
(3a)

$$\nu \mathbf{L}_{h}, \nabla \boldsymbol{v})_{\mathcal{T}_{h}} - (p_{h}, \nabla \cdot \boldsymbol{v})_{\mathcal{T}_{h}} + (\alpha \boldsymbol{u}_{h}, \boldsymbol{v})_{\mathcal{T}_{h}} - \langle \nu \widehat{\mathbf{L}}_{h} \boldsymbol{n} - \widehat{p}_{h} \boldsymbol{n}, \boldsymbol{v} \rangle_{\partial \mathcal{T}_{h}} = (\boldsymbol{f}, \boldsymbol{v})_{\mathcal{T}_{h}}, \quad (3b)$$

$$-(\boldsymbol{u}_h, \nabla q)_{\mathcal{T}_h} + \langle \widehat{\boldsymbol{u}}_h \cdot \boldsymbol{n}, q \rangle_{\partial \mathcal{T}_h} = 0, \qquad (3c)$$

$$\langle \widehat{\boldsymbol{u}}_h, \boldsymbol{\mu} \rangle_{\Gamma} = \langle \boldsymbol{u}_D, \boldsymbol{\mu} \rangle_{\Gamma},$$
 (3d)

$$\langle \nu \widehat{\mathbf{L}}_h \boldsymbol{n} - \widehat{p}_h \boldsymbol{n}, \boldsymbol{\mu} \rangle_{\partial \mathcal{T}_h \setminus \Gamma} = 0,$$
 (3e)

$$(p_h, 1)_{\Omega} = 0, \tag{3f}$$

for all $(G, \boldsymbol{v}, q, \boldsymbol{\mu}) \in G_h \times \boldsymbol{V}_h \times P_h \times \boldsymbol{M}_h$. Here, $\nu \widehat{L}_h \boldsymbol{n} - \widehat{p}_h \boldsymbol{n} := \nu L_h \boldsymbol{n} - p_h \boldsymbol{n} - \nu \tau (\boldsymbol{u}_h - \widehat{\boldsymbol{u}}_h)$ on $\partial \mathcal{T}_h$ and τ is a positive stabilization function on $\partial \mathcal{T}_h$ that we assume, without loss of generality, to be of order one. For other choices of τ we refer to [9].

2.3 Local postprocessing of the vector solution

One of the features of HDG method is the construction of a local element-by-element postprocessing \boldsymbol{u}_h^* of \boldsymbol{u}_h that approximates \boldsymbol{u} with enhanced accuracy. In our case, we propose to construct \boldsymbol{u}_h^* suited for the Brinkman problem as follows. We seek $\boldsymbol{u}_h^* \in \boldsymbol{V}_h^* := \{\boldsymbol{w} \in [L^2(\Omega)]^d : \boldsymbol{w}|_K \in [\mathbb{P}_{k+1}(K)]^d \ \forall K \in \mathcal{T}_h\}$ such that, for all $K \in \mathcal{T}_h$, it satisfies

$$\nu(\nabla \boldsymbol{u}_{h}^{*}, \nabla \boldsymbol{w})_{K} + \alpha(\boldsymbol{u}_{h}^{*}, \boldsymbol{w})_{K} = \nu(\mathbf{L}_{h}, \nabla \boldsymbol{w})_{K} + \alpha(\boldsymbol{u}_{h}, \boldsymbol{w})_{K} \quad \forall \boldsymbol{w} \in [\mathbb{P}_{k+1}(K)]^{d}$$
(4a)

and, if $\alpha = 0$, also satisfies the following equation

$$(\boldsymbol{u}_h^*, \boldsymbol{w})_K = (\boldsymbol{u}_h, \boldsymbol{w})_K \quad \forall \boldsymbol{w} \in [\mathbb{P}_0(K)]^d.$$
 (4b)

It's straightforward to see that u_h^* is well defined. Moreover, this new approximations will play a crucial role in the *a posteriori* error analysis as we will see in Section 4.

3 A priori error analysis

The *a priori* error estimates are carried out by using the projection-based analysis in [9], which consists of introducing a suitable projection Π_h that helps us to write the error as the sum of an approximation error and a projection of the error. To be more precise, let $(\mathbf{L}, \boldsymbol{u}, p) \in [H^1(\mathcal{T}_h)]^{d \times d} \times$ $[H^1(\mathcal{T}_h)]^d \times H^1(\mathcal{T}_h)$. Then, $\Pi_h(\mathbf{L}, \boldsymbol{u}, p) := (\Pi_{\mathrm{G}}\mathbf{L}, \Pi_{\boldsymbol{V}}\boldsymbol{u}, \Pi_{P}p) \in \mathbf{G}_h \times \boldsymbol{V}_h \times P_h$ is defined as the only solution of

$$(\Pi_{\mathbf{G}}\mathbf{L},\mathbf{G})_{K} = (\mathbf{L},\mathbf{G})_{K} \qquad \forall \mathbf{G} \in [\mathbb{P}_{k-1}(K)]^{d \times d}, \tag{5a}$$

$$(\Pi_{\boldsymbol{V}}\boldsymbol{u},\boldsymbol{v})_K = (\boldsymbol{u},\boldsymbol{v})_K \qquad \forall \boldsymbol{v} \in [\mathbb{P}_{k-1}(K)]^d, \tag{5b}$$

$$(\Pi_P p, q)_K = (p, q)_K \qquad \forall q \in \mathbb{P}_{k-1}(K), \tag{5c}$$

$$(\mathrm{tr} \,\Pi_{\mathrm{G}}\mathrm{L}, q)_{K} = (\mathrm{tr} \,\mathrm{L}, q)_{K} \qquad \forall q \in \mathbb{P}_{k}(K), \tag{5d}$$

$$\langle \nu \Pi_{\mathcal{G}} \mathcal{L} \boldsymbol{n} - \Pi_{P} p \boldsymbol{n} - \nu \Pi_{V} \boldsymbol{u}, \boldsymbol{\mu} \rangle_{e} = \langle \nu \mathcal{L} \boldsymbol{n} - p \boldsymbol{n} - \nu \boldsymbol{u}, \boldsymbol{\mu} \rangle_{e} \qquad \forall \boldsymbol{\mu} \in [\mathbb{P}_{k}(e)]^{d}, \tag{5e}$$

for all $K \in \mathcal{T}_h$ and $e \subset \partial K$. This projection has the following approximation properties.

Lemma 3.1. Let $\ell_{\boldsymbol{u}}, \ell_{\sigma}, \ell_{\mathrm{L}}, \ell_{p} \in [0, k]$. On each $K \in \mathcal{T}_{h}$ it holds

$$\begin{split} \|\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}\|_{0,K} &\preceq h_{K}^{\ell_{\boldsymbol{u}}+1} |\boldsymbol{u}|_{\ell_{\boldsymbol{u}}+1,K} + h_{K}^{\ell_{\sigma}+1} \nu^{-1} |\nabla \cdot (\nu \mathbf{L} - \mathbf{P}\mathbf{I})|_{\ell_{\sigma},K}, \\ \|\Pi_{\mathbf{G}}\mathbf{L} - \mathbf{L}\|_{0,K} &\preceq h_{K}^{\ell_{\mathbf{L}}+1} |\mathbf{L}|_{\ell_{\mathbf{L}}+1,K} + \|\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}\|_{0,K} + h_{K}^{\ell_{\boldsymbol{u}}+1} |\boldsymbol{u}|_{\ell_{\boldsymbol{u}}+1,K}, \\ \|\Pi_{P}p - p\|_{0,K} &\preceq h_{K}^{\ell_{p}+1} |p|_{\ell_{p}+1,K} + \nu \|\Pi_{\mathbf{G}}\mathbf{L} - \mathbf{L}\|_{0,K} + h_{K}^{\ell_{\mathbf{L}}+1} \nu |\mathbf{L}|_{\ell_{\mathbf{L}}+1,K}. \end{split}$$

Proof. See Theorems 2.1 and 2.3 in [9].

Now, let $\mathsf{P}_M \boldsymbol{u}$ be the L^2 -projection of \boldsymbol{u} into \boldsymbol{M}_h . Then, the projection of the errors $\Pi_{\mathrm{GL}} - \mathrm{L}_h$, $\Pi_{\boldsymbol{V}} \boldsymbol{u} - \boldsymbol{u}_h$, $\mathsf{P}_M \boldsymbol{u} - \hat{\boldsymbol{u}}_h$ and $\Pi_P p - p_h$ satisfy the the following equations

Lemma 3.2. For all $(G, v, q, \mu) \in G_h \times V_h \times P_h \times M_h$ it holds

$$\begin{split} (\Pi_{G}L - L_{h}, G)_{\mathcal{T}_{h}} + (\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_{h}, \nabla \cdot G)_{\mathcal{T}_{h}} - \langle \mathsf{P}_{M}\boldsymbol{u} - \widehat{\boldsymbol{u}}_{h}, G\boldsymbol{n} \rangle_{\partial\mathcal{T}_{h}} &= (\Pi_{G}L - L, G)_{\mathcal{T}_{h}}, \\ -(\nabla \cdot (\nu(\Pi_{G}L - L_{h})), \boldsymbol{v})_{\mathcal{T}_{h}} + \alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_{h}, \boldsymbol{v})_{\mathcal{T}_{h}} + (\nabla(\Pi_{P}p - p_{h}), \boldsymbol{v})_{\mathcal{T}_{h}} \\ &+ \nu \langle \Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_{h} - \mathsf{P}_{M}\boldsymbol{u} + \widehat{\boldsymbol{u}}_{h}, \boldsymbol{v} \rangle_{\partial\mathcal{T}_{h}} = 0, \\ -(\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_{h}, \nabla q)_{\mathcal{T}_{h}} + \langle \mathsf{P}_{M}\boldsymbol{u} - \widehat{\boldsymbol{u}}_{h}, q\boldsymbol{n} \rangle_{\partial\mathcal{T}_{h}} = 0, \\ \langle \mathsf{P}_{M}\boldsymbol{u} - \widehat{\boldsymbol{u}}_{h}, \boldsymbol{\mu} \rangle_{\Gamma} = 0, \\ \langle \nu(\Pi_{G}L - L_{h})\boldsymbol{n} - (\Pi_{P}p - p_{h})\boldsymbol{n} - (\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_{h} - \mathsf{P}_{M}\boldsymbol{u} + \widehat{\boldsymbol{u}}_{h}), \boldsymbol{\mu} \rangle_{\partial\mathcal{T}_{h} \setminus \Gamma} = 0, \\ (\Pi_{P}p - p_{h}, 1)_{\Omega} = (\Pi_{P}p - p, 1)_{\Omega}. \end{split}$$

Proof. The result is an extension of Lemma 3.1 in [9] to our HDG method.

Lemma 3.3. We have

$$\nu \|\Pi_{\mathrm{G}}\mathrm{L}-\mathrm{L}_{h}\|_{0,\mathcal{T}_{h}}^{2}+\alpha \|\Pi_{V}\boldsymbol{u}-\boldsymbol{u}_{h}\|_{0,\mathcal{T}_{h}}^{2}+\nu \|\Pi_{V}\boldsymbol{u}-\boldsymbol{u}_{h}-(\mathsf{P}_{M}\boldsymbol{u}-\widehat{\boldsymbol{u}}_{h})\|_{0,\partial\mathcal{T}_{h}}^{2}=\nu (\Pi_{\mathrm{G}}\mathrm{L}-\mathrm{L},\Pi_{\mathrm{G}}\mathrm{L}-\mathrm{L}_{h})_{\mathcal{T}_{h}}.$$

Proof. It follows by taking $G = \nu(\Pi_G L - L_h)$, $\boldsymbol{v} = \Pi_V \boldsymbol{u} - \boldsymbol{u}_h$, $q = \Pi_P p - p_h$ and $\boldsymbol{\mu} = \mathsf{P}_M \boldsymbol{u} - \hat{\boldsymbol{u}}_h$ in the first five equations of Lemma 3.2 and adding them up.

Let us emphasize that, if $\alpha \neq 0$, Lemma 3.3 provides a bound for all the projection of the errors in terms of the approximation error $\|\Pi_{\rm GL} - {\rm L}_h\|_{0,\mathcal{T}_h}$. As a consequence, if the solution is smooth enough, this lemma guaranties that the L^2 -norm of the projection of the error of all the variables is of order h^{k+1} . On the other hand, by a duality argument, it is possible to show that actually $\|\Pi_{\mathbf{V}} \boldsymbol{u} - \boldsymbol{u}_h\|_{0,\mathcal{T}_h}$ is of order h^{k+2} under regularity assumptions. More precisely, given $\boldsymbol{\theta} \in [L^2(\Omega)]^d$, let (Φ, ϕ, ϕ) be the solution of:

$$\Phi + \nabla \phi = 0 \quad \text{in } \Omega, \tag{6a}$$

$$\nabla \cdot (\nu \Phi) - \nabla \phi + \alpha \phi = \theta \quad \text{in } \Omega, \tag{6b}$$

$$-\nabla \cdot \boldsymbol{\phi} = 0 \quad \text{in } \Omega, \tag{6c}$$

$$\boldsymbol{\phi} = \mathbf{0} \quad \text{on } \partial\Omega. \tag{6d}$$

Since $\theta - \alpha \phi \in [L^2(\Omega)]^d$, (6) has the same regularity as the Stokes problem. Hence, we assume $\Phi \in H^2(\Omega)^{d \times d}$, $\phi \in H^2(\Omega)^d$ and $\phi \in H^1(\Omega)$. This assumption holds, for instance, if Ω is convex ([28, 16]). In addition, we assume

$$\nu \|\Phi\|_{1,\Omega} + \alpha \|\phi\|_{2,\Omega} + \|\phi\|_{1,\Omega} \le \|\theta\|_{0,\Omega}.$$
(7)

Lemma 3.4. If the elliptic regularity estimate (7) holds, we have

$$\|\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_h\|_{0,\mathcal{T}_h} \leq \left(h^{\min\{k,1\}}+\alpha^{1/2}h\right)\|\Pi_{\mathrm{G}}\mathrm{L}-\mathrm{L}\|_{0,\mathcal{T}_h}.$$

Proof. We follow the ideas on [9]. Let $\boldsymbol{\theta} \in [L^2(\Omega)]^d$. Using (5), (6) and Lemma 3.2 we obtain

$$(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\theta})_{\mathcal{T}_{h}}=\nu(\Pi_{\mathrm{G}}\mathrm{L}-\mathrm{L},\Phi-\mathsf{P}_{k-1}\Phi)_{\mathcal{T}_{h}}+\nu(\mathrm{L}_{h}-\mathrm{L},\Pi_{\mathrm{G}}\Phi-\Phi)_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{\phi}-\Pi_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u})_{\mathcal{T}_{h}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u})_{\mathcal{T}_{h}}+\alpha(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}$$

where $\mathsf{P}_{\mathsf{k}} u$ the L^2 -projection of u into $[\mathbb{P}_k(K)]^d$.

We notice that $\nu \| \Phi - \mathsf{P}_{k-1} \Phi \|_{0,\mathcal{T}_h} \preceq \nu h^{\min\{k,1\}} \| \Phi \|_{\min\{k,1\},\Omega} \preceq h^{\min\{k,1\}} \| \theta \|_{0,\Omega}$. Moreover, applying the first two estimates of Lemma 3.1 to the solution of (6) (with $\ell_{\sigma} = 0$ and $\ell_{\boldsymbol{u}} = \min\{k,1\}$) and (7), we have that $\nu \| \Phi - \Pi_{\mathrm{G}\Phi} \|_{0,K} \preceq h_K^{\min\{k,1\}} \| \theta \|_{0,K}$. From Lemma 3.3 we get $\alpha^{1/2} \| \Pi_{\boldsymbol{V}} \boldsymbol{u} - \boldsymbol{u}_h \|_{0,\mathcal{T}_h} \leq \nu^{1/2} \| \Pi_{\mathrm{G}} \mathrm{L} - \mathrm{L} \|_{0,\mathcal{T}_h}$ and, thanks to the first estimate of Lemma 3.1 applied to $\boldsymbol{\phi}$ and by (7), we obtain that $\alpha^{1/2} \| \boldsymbol{\phi} - \Pi_{\boldsymbol{V}} \boldsymbol{\phi} \|_{0,\mathcal{T}_h} \preceq \alpha^{1/2} h \| \boldsymbol{\theta} \|_{0,\Omega}$. The result follows by applying Cauchy-Schwarz inequality to the above identity and taking $\boldsymbol{\theta} = \Pi_{\boldsymbol{V}} \boldsymbol{u} - \boldsymbol{u}_h$.

Lemma 3.5. We have $\|\Pi_P p - p_h - \overline{\Pi_P p - p_h}\|_{0,\mathcal{T}_h} \leq \nu \|\Pi_G L - L\|_{0,\mathcal{T}_h}$, where \overline{q} is the average of q over Ω .

Proof. The result follows using Lemma 3.2 and Propositions 3.4 and 3.9 in [9].

In the next results, we summarize the *a priori* error estimates of our numerical scheme.

Theorem 3.1. Let (L, u, p) and $(L_h, u_h, p_h, \hat{u}_h)$ the solution of (1) and (3), respectively. Then

$$\|\mathbf{L} - \mathbf{L}_h\|_{0,\mathcal{T}_h} \leq \|\mathbf{\Pi}_{\mathbf{G}}\mathbf{L} - \mathbf{L}_h\|_{0,\mathcal{T}_h},\tag{8a}$$

$$\|p - p_h\|_{0,\mathcal{T}_h} \leq \|\Pi_P p - p\|_{0,\mathcal{T}_h} + \nu \|\Pi_G \mathbf{L} - \mathbf{L}\|_{0,\mathcal{T}_h},$$
(8b)

$$\alpha^{1/2} \| \boldsymbol{u} - \boldsymbol{u}_h \|_{0, \mathcal{T}_h} \leq \nu^{1/2} \| \Pi_{\mathcal{G}} \mathcal{L} - \mathcal{L}_h \|_{0, \mathcal{T}_h} + \alpha^{1/2} \| \Pi_{\boldsymbol{V}} \boldsymbol{u} - \boldsymbol{u} \|_{0, \mathcal{T}_h}.$$
(8c)

Moreover, if (7) holds, then

$$\|\boldsymbol{u} - \boldsymbol{u}_h\|_{0,\mathcal{T}_h} \le \|\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}\|_{0,\mathcal{T}_h} + \left(h^{\min\{k,1\}} + (\alpha/\nu)^{1/2}h\right)\|\Pi_{\mathrm{G}}\mathrm{L} - \mathrm{L}\|_{0,\mathcal{T}_h},\tag{8d}$$

Proof. It is consequence of Lemma 3.4, Lemma 3.5 and equation (3.3), considering that $\|\overline{\Pi_P p - p_h}\|_{0,\mathcal{T}_h} \leq \|\Pi_P p - p_h\|_{0,\Omega}$.

Theorem 3.2. Let u_h^* the approximation defined in (4) and assume that (7) holds, then

$$\|\boldsymbol{u} - \boldsymbol{u}_{h}^{*}\|_{0,\mathcal{T}_{h}} \leq \left(1 + (\alpha/\nu)^{1/2}h\right)h^{l_{\boldsymbol{u}}+2}|\boldsymbol{u}|_{l_{\boldsymbol{u}}+2,\mathcal{T}_{h}} + \|\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_{h}\|_{0,\mathcal{T}_{h}} + h\|\mathbf{L} - \mathbf{L}_{h}\|_{0,\mathcal{T}_{h}} + (\alpha/\nu)^{1/2}h(\|\boldsymbol{u} - \boldsymbol{u}_{h}\|_{0,\mathcal{T}_{h}} + \|\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_{h}\|_{0,\mathcal{T}_{h}}),$$
(9a)

$$\nu^{1/2} |\boldsymbol{u} - \boldsymbol{u}_{h}^{*}|_{1,\mathcal{T}_{h}} \leq (\nu^{1/2} + \alpha^{1/2}h)h^{l_{\boldsymbol{u}}+1} |\boldsymbol{u}|_{l_{\boldsymbol{u}}+2,\mathcal{T}_{h}} + \nu^{1/2} \|\mathbf{L} - \mathbf{L}_{h}\|_{0,\mathcal{T}_{h}} + \alpha^{1/2} (\|\boldsymbol{u} - \boldsymbol{u}_{h}\|_{0,\mathcal{T}_{h}} + \|\mathbf{\Pi}_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_{h}\|_{0,\mathcal{T}_{h}}),$$
(9b)

$$\sum_{e \in \mathcal{E}_h} h_e^{1/2} \| \llbracket \boldsymbol{u}_h^* \rrbracket \|_{0,e} \leq \| \boldsymbol{u} - \boldsymbol{u}_h^* \|_{0,\mathcal{T}_h}^{1/2} \left(\| \boldsymbol{u} - \boldsymbol{u}_h^* \|_{0,\mathcal{T}_h}^2 + h^2 | \boldsymbol{u} - \boldsymbol{u}_h^* |_{1,\mathcal{T}_h}^2 \right)^{1/4}.$$
(9c)

Proof. Let $\mathsf{P}_{\mathsf{V}^*} u$ be the L^2 -projection of u into V_h^* and decompose

$$\boldsymbol{u} - \boldsymbol{u}_h^* = (\boldsymbol{u} - \mathsf{P}_{\mathsf{V}^*}\boldsymbol{u}) + \boldsymbol{w} + \mathsf{P}_0(\mathsf{P}_{\mathsf{V}^*}\boldsymbol{u} - \boldsymbol{u}_h^*), \tag{10}$$

where $\boldsymbol{w} := (I - P_0)(P_{V^*}\boldsymbol{u} - \boldsymbol{u}_h^*)$. Let us first point out two key ingredients in this proof. We observe that the definition of \boldsymbol{u}_h^* implies

$$\mathsf{P}_0 \boldsymbol{u}_h = \mathsf{P}_0 \boldsymbol{u}_h^*. \tag{11}$$

This is clearly true if $\alpha = 0$ because of (4b). If $\alpha \neq 0$, this identity is obtained by taking $\boldsymbol{w} = (1,0)$ and $\boldsymbol{w} = (0,1)$ in (4a). In addition, for each $K \in \mathcal{T}_h$ we notice that

$$\|\mathsf{P}_{0}(\mathsf{P}_{\mathsf{V}^{*}}\boldsymbol{u}-\boldsymbol{u}_{h})\|_{0,K} = \|\mathsf{P}_{0}(\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h})\|_{0,K} \le \|\Pi_{\boldsymbol{V}}\boldsymbol{u}-\boldsymbol{u}_{h}\|_{0,K}.$$
(12)

Now, let $K \in \mathcal{T}_h$. Combining (10)-(12), the approximation properties of the L^2 -projection $\mathsf{P}_{\mathsf{V}^*}$ and the fact that $\|\boldsymbol{w}\|_{0,K} \leq h_K |\boldsymbol{w}|_{1,K}$ ([35]), we get

$$\|\boldsymbol{u} - \boldsymbol{u}_{h}^{*}\|_{0,K} \leq h_{K}^{l_{u}+2} |\boldsymbol{u}|_{l_{u}+2,K} + \|\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_{h}\|_{0,K} + h_{K} |\boldsymbol{w}|_{1,K}.$$
(13a)

Moreover

$$\nu^{1/2} | \boldsymbol{u} - \boldsymbol{u}_h^* |_{1,K} \preceq \nu^{1/2} h_K^{l_{\boldsymbol{u}}+1} | \boldsymbol{u} |_{l_{\boldsymbol{u}}+2,K} + \nu^{1/2} | \boldsymbol{w} |_{1,K}.$$
(13b)

On the other hand, adding and subtracting $\alpha(\boldsymbol{u}, \boldsymbol{w})_K$ to the right hand side of (4a), and considering that $\mathbf{L} = \nabla \boldsymbol{u}$, we obtain

$$\nu(\nabla \boldsymbol{u}_h^*, \nabla \boldsymbol{w})_K + \alpha(\boldsymbol{u}_h^*, \boldsymbol{w})_K = \nu(\mathbf{L}_h - \mathbf{L}, \nabla \boldsymbol{w})_K + \alpha(\boldsymbol{u}_h - \boldsymbol{u}, \boldsymbol{w})_K + \nu(\nabla \boldsymbol{u}, \nabla \boldsymbol{w})_K + \alpha(\boldsymbol{u}, \boldsymbol{w})_K.$$

This identity, together with (11), implies

$$\nu \|\boldsymbol{w}\|_{1,K}^2 + \alpha \|\boldsymbol{w}\|_{0,K}^2 = \nu (\mathbf{L} - \mathbf{L}_h, \nabla \boldsymbol{w})_K + \alpha (\boldsymbol{u} - \boldsymbol{u}_h, \boldsymbol{w})_K + \nu (\nabla (\mathsf{P}_{\mathsf{V}^*} \boldsymbol{u} - \boldsymbol{u}), \nabla \boldsymbol{w})_K + \alpha (\mathsf{P}_{\mathsf{V}^*} \boldsymbol{u} - \boldsymbol{u}, \boldsymbol{w})_K - \alpha (\mathsf{P}_0(\mathsf{P}_{\mathsf{V}^*} \boldsymbol{u} - \boldsymbol{u}_h), \boldsymbol{w})_K.$$

Then, thanks to Cauchy-Schwarz inequality, (12) and the approximation properties P_{V^*} , we get

$$\nu^{1/2} \|\boldsymbol{w}\|_{1,K} + \alpha^{1/2} \|\boldsymbol{w}\|_{0,K} \leq \nu^{1/2} \|\mathbf{L} - \mathbf{L}_h\|_{0,K} + \alpha^{1/2} \|\boldsymbol{u} - \boldsymbol{u}_h\|_{0,K} \\ + \nu^{1/2} h_K^{l_{\boldsymbol{u}}+1} \|\boldsymbol{u}\|_{l_{\boldsymbol{u}}+2,K} + \alpha^{1/2} h_K^{l_{\boldsymbol{u}}+2} \|\boldsymbol{u}\|_{l_{\boldsymbol{u}}+2,K} + \alpha^{1/2} \|\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_h\|_{0,K}.$$

This inequality allows us to bound $|w|_{1,K}$ in (13a) and (13b), obtaining (9b) and

$$\begin{aligned} \|\boldsymbol{u} - \boldsymbol{u}_{h}^{*}\|_{0,K} & \leq h_{K}^{l_{u}+2} \|\boldsymbol{u}\|_{l_{u}+2,K} + \|\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_{h}\|_{0,K} + h_{K}\|\mathbf{L} - \mathbf{L}_{h}\|_{0,K} \\ &+ (\alpha/\nu)^{1/2} h_{K} \bigg(\|\boldsymbol{u} - \boldsymbol{u}_{h}\|_{0,K} + \|\Pi_{\boldsymbol{V}}\boldsymbol{u} - \boldsymbol{u}_{h}\|_{0,K} + h_{K}^{l_{u}+2} \|\boldsymbol{u}\|_{l_{u}+2,K} \bigg), \end{aligned}$$

which implies (9a).

Finally, by trace inequality, we have $h_e \|\boldsymbol{v}\|_{0,e}^2 \leq \|\boldsymbol{v}\|_{0,K} \left(\|\boldsymbol{v}\|_{0,K}^2 + h_K^2 |\boldsymbol{v}|_{1,K}^2\right)^{1/2} \forall \boldsymbol{v} \in [H^1(K)]^d$. This implies

$$\begin{split} \sum_{e \in \mathcal{E}_h} h_e \| \llbracket \boldsymbol{u}_h^* \rrbracket \|_{0,e}^2 & \preceq \sum_{e \in \mathcal{E}_h} \sum_{K' \in \omega_e} h_e \| \boldsymbol{u} - \boldsymbol{u}_h^* |_{K'} \|_{0,e}^2 \\ & \preceq \sum_{e \in \mathcal{E}_h} \sum_{K' \in \omega_e} \| \boldsymbol{u} - \boldsymbol{u}_h^* \|_{0,K'} \left(\| \boldsymbol{u} - \boldsymbol{u}_h^* \|_{0,K'}^2 + h_{K'}^2 | \boldsymbol{u} - \boldsymbol{u}_h^* |_{1,K'}^2 \right)^{1/2} \end{split}$$

and (9c) follows.

4 A posteriori error analysis

4.1 Preliminaries

We start by introducing estimates needed to prove our main results. First, in the next lemma, we state the approximation properties of the Clément interpolation operator $C_h : L^1(\Omega) \to V_h^{1,c} \cap H_0^1(\Omega)$, introduced in [5], as

$$\mathcal{C}_h w := \sum_{z \in \mathcal{N}_h^i} \left(\frac{1}{|\Omega_z|} \int_{\Omega_z} w \, \mathrm{d}x \right) \phi_z,$$

where ϕ_z is the \mathbb{P}_1 nodal basis functions associated to the interior vertex z, $\Omega_z := \text{supp } \phi_z$, and $V_h^{1,c} := \{ w \in \mathcal{C}(\Omega) : w |_K \in \mathbb{P}_1(K), K \in \mathcal{T}_h \}.$

Lemma 4.1. For any $K \in \mathcal{T}_h$, $e \in \mathcal{E}_h^i$ and $0 \leq m \leq 1$, the following estimates hold for any $w \in H_0^1(\Omega)$:

$$\|\mathcal{C}_{h}w\|_{m,\Omega} \leq \|w\|_{m,\Omega}, \quad \|w - \mathcal{C}_{h}w\|_{0,K} \leq \theta_{K} \|w\|_{1,\Delta_{K}}, \quad \|w - \mathcal{C}_{h}w\|_{0,e} \leq \nu^{-1/4} \theta_{e}^{1/2} \|w\|_{1,\Delta_{e}},$$

where $\theta_S := \min\{h_S \nu^{-1/2}, \alpha^{-1/2}\}$, with S an element $K \in \mathcal{T}_h$ or a face $e \in \mathcal{E}_h$, $\Delta_K := \{K' \in \mathcal{T}_h : \overline{K'} \cap \overline{K} \neq \emptyset\}$ and $\Delta_e := \{K' \in \mathcal{T}_h : \overline{K'} \cap \overline{e} \neq \emptyset\}$.

Proof. See Lemma 3.2 in [36].

The next result shows that an element w of V_h^* can be approximated by a continuous function $\widetilde{w} \in V_h^*$, its Oswald interpolation, and that the approximation error can be controlled by the size of the inter-element jumps of \boldsymbol{w} .

Lemma 4.2. Let D^{γ} the row-wise gradient or identity operator (for $|\gamma| = 1$ or $|\gamma| = 0$, respectively). For any $\boldsymbol{w}_h \in \boldsymbol{V}_h^*$ and any multi-index γ with $|\gamma| = 0, 1$ the following approximation result holds: Let \boldsymbol{g} be the restriction to Γ of a function in $\boldsymbol{V}_h^* \cap [H^1(\Omega)]^d$. Then there exists a function $\widetilde{\boldsymbol{w}}_h \in$ $\boldsymbol{V}_{h}^{*} \cap [H^{1}(\Omega)]^{d}$ satisfying $\widetilde{\boldsymbol{w}}_{h}|_{\Gamma} = \boldsymbol{g}$ and

$$\sum_{K\in\mathcal{T}_h} \|D^{\gamma}(\boldsymbol{w}_h-\widetilde{\boldsymbol{w}}_h)\|_{0,K}^2 \preceq \sum_{e\in\mathcal{E}_h^i} h_e^{1-2|\gamma|} \|[\![\boldsymbol{w}_h]\!]\|_{0,e}^2 + \sum_{e\in\mathcal{E}_h^\partial} h_e^{1-2|\gamma|} \|\boldsymbol{g}-\boldsymbol{w}_h\|_{0,e}^2.$$

Proof. Apply Theorem 2.2 in [26] to each component.

To avoid nonessential technical difficulties, we make the following assumption

Assumption H: We assume that the Dirichlet boundary data u_D is the trace of a continuous function in V_h^* and f a piecewise polynomial function. Otherwise, high order terms associated to oscillations involving u_D and f will appear.

Finally, in order to prove the local efficiency of the error estimator, we need to construct suitable local cut-off functions which will allow us to localize the error analysis. More precisely, let $B_K :=$ $\Pi_{i=1}^{d+1}\lambda_i$ be the element-bubble function associated to $K \in \mathcal{T}_h$, where $\{\lambda_i\}_{i=1}^{d+1}$ are the barycentric coordinates of K, and $B_e := \prod_{\substack{i=1 \ i\neq j}}^{d+1}\lambda_i$ be the face-bubble function associated to $e \subset \partial K$, where λ_j

vanishes on e.

Lemma 4.3. The following estimates hold for all $\boldsymbol{v} \in [\mathbb{P}_k(K)]^d$, $K \in \mathcal{T}_h$, $\boldsymbol{\mu} \in [\mathbb{P}_k(e)]^d$, and $e \in \mathcal{E}_h$:

$$\begin{aligned} \|\boldsymbol{v}\|_{0,K}^{2} \leq (\boldsymbol{v}, B_{K}\boldsymbol{v})_{K}, & \|B_{K}\boldsymbol{v}\|_{0,K} \leq \|\boldsymbol{v}\|_{0,K}, & \|B_{K}\boldsymbol{v}\|_{1,K} \leq \theta_{K}^{-1}\|\boldsymbol{v}\|_{0,K}, \\ \|\boldsymbol{\mu}\|_{0,e}^{2} \leq (\boldsymbol{\mu}, B_{e}\boldsymbol{\mu})_{e}, & \|B_{e}\boldsymbol{\mu}\|_{0,\omega_{e}} \leq \nu^{1/4}\theta_{e}^{1/2}\|\boldsymbol{\mu}\|_{0,e}, & \|B_{e}\boldsymbol{\mu}\|_{1,\omega_{e}} \leq \nu^{1/4}\theta_{e}^{-1/2}\|\boldsymbol{\mu}\|_{0,e}. \end{aligned}$$

Proof. The proof is an extension of Lemma 3.3 in [36].

4.2A posteriori error estimator

For each $K \in \mathcal{T}_h$, we propose the following local error estimator

$$\eta_{K}^{2} := \theta_{K}^{2} \| \boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_{h}) - \nabla p_{h} - \alpha \boldsymbol{u}_{h}^{*} \|_{0,K}^{2} + \nu \| \mathbf{L}_{h} - \nabla \boldsymbol{u}_{h}^{*} \|_{0,K}^{2} + \nu \| \nabla \cdot \boldsymbol{u}_{h}^{*} \|_{0,K}^{2}$$

$$+ \frac{1}{2} \sum_{e \in \mathcal{E}_{h}^{i} \cap \partial K} \left(\nu^{-1/2} \theta_{e} \| \left[\nu \mathbf{L}_{h} - p_{h} \mathbf{I} \right] \|_{0,e}^{2} + \nu h_{e}^{-1} \| \left[\boldsymbol{u}_{h}^{*} \right] \|_{0,e}^{2} \right) + \sum_{e \in \mathcal{E}_{h}^{i} \cap \partial K} \nu h_{e}^{-1} \| \boldsymbol{u}_{D} - \boldsymbol{u}_{h}^{*} \|_{0,e}^{2}$$

$$(14)$$

and its global version $\eta_h := \left(\sum_{K \in \mathcal{T}_h} \eta_K^2\right)^{1/2}$. Here we recall θ_K and θ_e were defined in Lemma 4.1 and \boldsymbol{u}_h^* is the postprocessed solution constructed in (4).

Note that the three volumetric terms are the residuals associated to the equilibrium equation, the constitutive equation and the incompressibility condition, respectively. At the same time, the jumps across the faces allude to the continuity of the trace of u and the normal trace of $\nu L - pI$, in case of enough regularity of the continuous solution. We will see that our estimator converges to zero with order of min $\{\ell_{\boldsymbol{u}}, \ell_{\boldsymbol{L}}, \ell_{\sigma}\} + 1$ and, if L, \boldsymbol{u} and p have enough regularity, with order k+1.

Now, we present intermediate results that will allow us to prove our main theorems. We proceed adapting and extending the techniques introduced in [9], [13] and [14] to the Brinkman problem. We emphasize that we keep track the dependence on ν and α .

We start by showing two lemmas that will allow us to prove the reliability of our estimator.

Lemma 4.4. Let (L, u, p) the solution of (1) and $(L_h, u_h, p_h, \hat{u}_h)$ the solution of (3). Then

$$\nu^{-1/2} \|p - p_h\|_{0,\mathcal{T}_h} \leq C_{\alpha,\nu} \left\{ \nu^{1/2} \|\mathbf{L} - \mathbf{L}_h\|_{0,\mathcal{T}_h} + \alpha^{1/2} \|\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*\|_{0,\mathcal{T}_h} + \alpha^{1/2} \|\boldsymbol{u}_h^* - \widetilde{\boldsymbol{u}}_h^*\|_{0,\mathcal{T}_h} + \nu^{1/2} \|\mathbf{L}_h - \nabla \boldsymbol{u}_h^*\|_{0,\mathcal{T}_h} + \sum_{K \in \mathcal{T}_h} \left(\theta_K \|\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^*\|_{0,K} + \frac{1}{2} \sum_{e \in \mathcal{E}_h^i \cap \partial K} \nu^{-1/4} \theta_e^{1/2} \| [\![\nu \mathbf{L}_h - p_h \mathbf{I}]\!]\|_{0,e} \right) \right\},$$

where $\widetilde{\boldsymbol{u}}_{h}^{*}$ is the Oswald interpolation of the postprocessed velocity \boldsymbol{u}_{h}^{*} and $C_{\alpha,\nu} := \max\{1, (\alpha/\nu)^{1/2}\}$. Proof. Note that, for $q \in L_{0}^{2}(\Omega)$, we have ([24], Chapter 1, Corollary 2.4)

$$\nu^{-1/2} \|q\|_{0,\mathcal{T}_h} \preceq \sup_{\boldsymbol{w} \in H_0^1(\Omega)^d \setminus \{\boldsymbol{0}\}} \frac{(q, \nabla \cdot \boldsymbol{w})_{\mathcal{T}_h}}{\nu^{1/2} \|\nabla \boldsymbol{w}\|_{0,\mathcal{T}_h}}$$

We take $q = p - p_h$ which is in $L_0^2(\Omega)$ because of (1e) and (3f). Then, we use the above inf-sup condition estimate $\nu^{-1/2} \|p - p_h\|_{0,\tau_h}$. More precisely, for $\boldsymbol{w} \in H_0^1(\Omega)^d$ we get

$$(p - p_h, \nabla \cdot \boldsymbol{w})_{\mathcal{T}_h} = -\nu (\nabla \cdot (\mathbf{L} - \mathbf{L}_h), \boldsymbol{w})_{\mathcal{T}_h} + \alpha (\boldsymbol{u} - \boldsymbol{u}_h^*, \boldsymbol{w})_{\mathcal{T}_h} - (\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^*, \boldsymbol{w})_{\mathcal{T}_h} + \langle (p - p_h) \boldsymbol{n}, \boldsymbol{w} \rangle_{\partial \mathcal{T}_h}$$

after integrating by parts, by using (4a) and rearranging the expression. Then,

$$(p - p_h, \nabla \cdot \boldsymbol{w})_{\mathcal{T}_h} = \nu (\mathbf{L} - \mathbf{L}_h, \nabla \boldsymbol{w})_{\mathcal{T}_h} + \alpha (\boldsymbol{u} - \boldsymbol{u}_h^*, \boldsymbol{w})_{\mathcal{T}_h} - (\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^*, (\mathsf{Id} - \mathcal{C}_h) \boldsymbol{w})_{\mathcal{T}_h} + \langle [\![\nu \mathbf{L}_h - p_h \mathbf{I}]\!], (\mathsf{Id} - \mathcal{C}_h) \boldsymbol{w} \rangle_{\mathcal{E}_h^i} + R,$$

where $R := -(\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^*, \mathcal{C}_h \boldsymbol{w})_{\mathcal{T}_h} + \langle \nu \mathbf{L}_h \boldsymbol{n} - p_h \boldsymbol{n}, \mathcal{C}_h \boldsymbol{w} \rangle_{\partial \mathcal{T}_h}.$ On the other hand, after integrating by parts and using (4a), (3b) reads

$$(\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^*, \boldsymbol{v})_{\mathcal{T}_h} + \nu (\mathbf{L}_h - \nabla \boldsymbol{u}_h^*, \nabla \boldsymbol{v})_{\mathcal{T}_h} = \langle \nu \mathbf{L}_h \boldsymbol{n} - p_h \boldsymbol{n}, \boldsymbol{v} \rangle_{\partial \mathcal{T}_h} - \langle \nu \widehat{\mathbf{L}}_h \boldsymbol{n} - \widehat{p}_h \boldsymbol{n}, \boldsymbol{v} \rangle_{\partial \mathcal{T}_h}$$

for all $\boldsymbol{u} \in \boldsymbol{V}^{1,c} := \{\boldsymbol{u} \in \boldsymbol{H}^1(\Omega)^d : \boldsymbol{v} \mid \boldsymbol{u} \in \boldsymbol{\Gamma}^m(\boldsymbol{K})^{1,d} \quad \forall \boldsymbol{K} \in \boldsymbol{\mathcal{T}}\}$. Then since $\boldsymbol{v} \mid \boldsymbol{c} \in \boldsymbol{\Gamma}^m(\boldsymbol{c})^{1,d}$ for all

for all $\boldsymbol{v} \in \boldsymbol{V}_h^{1,c} := \{ \boldsymbol{v} \in H_0^1(\Omega)^d : \boldsymbol{v}|_K \in [\mathbb{P}_1(K)]^d \quad \forall K \in \mathcal{T}_h \}$. Then, since $\boldsymbol{v}|_e \in [\mathbb{P}_k(e)]^d$ for all $e \in \mathcal{E}_h$ and using (3e), we get

$$(\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^*, \boldsymbol{v})_{\mathcal{T}_h} + \nu (\mathbf{L}_h - \nabla \boldsymbol{u}_h^*, \nabla \boldsymbol{v})_{\mathcal{T}_h} = \langle \nu \mathbf{L}_h \boldsymbol{n} - p_h \boldsymbol{n}, \boldsymbol{v} \rangle_{\partial \mathcal{T}_h \setminus \Gamma} \quad \forall \boldsymbol{v} \in \boldsymbol{V}_h^{1,c}.$$
(15)

Now, taking $\boldsymbol{v} := \mathcal{C}_h \boldsymbol{w} \in \boldsymbol{V}_h^{1,c} \subset [\mathbb{P}_{k+1}(\mathcal{T}_h)]^d$ and using (15), we see that $R = \nu (L_h - \nabla \boldsymbol{u}_h^*, \nabla \mathcal{C}_h \boldsymbol{w})_{\mathcal{T}_h}$. Thus,

$$\begin{aligned} &(p - p_h, \nabla \cdot \boldsymbol{w})_{\mathcal{T}_h} \leq \nu \|\mathbf{L} - \mathbf{L}_h\|_{0,\mathcal{T}_h} \|\nabla \boldsymbol{w}\|_{0,\mathcal{T}_h} + \alpha \|\boldsymbol{u} - \boldsymbol{u}_h^*\|_{0,\mathcal{T}_h} \|\boldsymbol{w}\|_{0,\mathcal{T}_h} + \nu \|\mathbf{L}_h - \nabla \boldsymbol{u}_h^*\|_{0,\mathcal{T}_h} \|\nabla \mathcal{C}_h \boldsymbol{w}\|_{0,\mathcal{T}_h} \\ &+ \|\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^*\|_{0,\mathcal{T}_h} \|(\mathbf{Id} - \mathcal{C}_h) \boldsymbol{w}\|_{0,\mathcal{T}_h} + \|[\nu \mathbf{L}_h - p_h \mathbf{I}]]\|_{0,\mathcal{E}_h^i} \|(\mathbf{Id} - \mathcal{C}_h) \boldsymbol{w}\|_{0,\mathcal{E}_h^i} \\ &\leq C_{\alpha,\nu} \left\{ \nu^{1/2} \|\mathbf{L} - \mathbf{L}_h\|_{0,\mathcal{T}_h} + \alpha^{1/2} \|\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*\|_{0,\mathcal{T}_h} + \alpha^{1/2} \|\boldsymbol{u}_h^* - \widetilde{\boldsymbol{u}}_h^*\|_{0,\mathcal{T}_h} + \nu^{1/2} \|\mathbf{L}_h - \nabla \boldsymbol{u}_h^*\|_{0,\mathcal{T}_h} \\ &+ \sum_{K \in \mathcal{T}_h} \left(\theta_K \|\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^*\|_{0,K} + \frac{1}{2} \sum_{e \in \mathcal{E}_h^i \cap \partial K} \nu^{-1/4} \theta_e^{1/2} \|[\nu \mathbf{L}_h - p_h \mathbf{I}]]_{0,e} \right) \right\} \nu^{1/2} \|\nabla \boldsymbol{w}\|_{0,\Omega}, \end{aligned}$$

where we used the stability property of the Clément interpolator, Poincaré inequality, Lemma 4.1 and the regularity of the mesh. The result follows from dividing the above inequality by $\nu^{1/2} \|\nabla \boldsymbol{w}\|_{0,\Omega}$.

Lemma 4.5. Let (L, u, p) the solution of (1) and $(L_h, u_h, p_h, \hat{u}_h)$ the solution of (3). Then

$$\nu \|\mathbf{L} - \mathbf{L}_h\|_{0,\mathcal{T}_h}^2 + \alpha \|\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*\|_{0,\mathcal{T}_h}^2 \leq C_{\alpha,\nu} \left(\eta_h^2 + \nu \|\nabla(\boldsymbol{u}_h^* - \widetilde{\boldsymbol{u}}_h^*)\|_{0,\mathcal{T}_h}^2\right) + \alpha \|\boldsymbol{u}_h^* - \widetilde{\boldsymbol{u}}_h^*\|_{0,\mathcal{T}_h}^2.$$

Proof. Let $\tilde{u}_h^* \in [H^1(\Omega)]^d$ the Oswald interpolation of u_h^* . Using equations (1) and integrating by parts, we obtain

$$\nu \|\mathbf{L} - \mathbf{L}_{h}\|_{0,\mathcal{T}_{h}}^{2} + \alpha \|\boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*}\|_{0,\mathcal{T}_{h}}^{2} = \nu (\mathbf{L} - \mathbf{L}_{h}, \mathbf{L} - \mathbf{L}_{h})_{\mathcal{T}_{h}} + (\alpha (\boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*}), \boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*})_{\mathcal{T}_{h}} = \nu (\mathbf{L} - \mathbf{L}_{h}, \mathbf{L} - \mathbf{L}_{h})_{\mathcal{T}_{h}} + (\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_{h}) - \nabla p_{h} - \alpha \boldsymbol{u}_{h}^{*}, \boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*})_{\mathcal{T}_{h}} + (\nabla \cdot \nu (\mathbf{L} - \mathbf{L}_{h}), \boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*})_{\mathcal{T}_{h}} - (\nabla (p - p_{h}), \boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*})_{\mathcal{T}_{h}}$$

Thus, we write $\nu \|\mathbf{L} - \mathbf{L}_h\|_{0,\mathcal{T}_h}^2 + \alpha \|\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*\|_{0,\mathcal{T}_h}^2 = \sum_{K \in \mathcal{T}_h} T_{1,K} + T_{2,K} + T_{3,K}$, where

$$T_{1,K} := (\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^*, \boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*)_K + \langle \nu (\mathbf{L} - \mathbf{L}_h) \boldsymbol{n}, \boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^* \rangle_{\partial K \setminus \Gamma} - \langle (p - p_h) \boldsymbol{n}, \boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^* \rangle_{\partial K \setminus \Gamma},$$

$$T_{2,K} := (p - p_h, \nabla \cdot (\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*))_K \quad \text{and} \quad T_{3,K} := -\nu (\mathbf{L} - \mathbf{L}_h, \mathbf{L}_h - \nabla \widetilde{\boldsymbol{u}}_h^*)_K.$$

Since $\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^* \in H_0^1(\Omega)^d$ (Lemma 4.2 with $\boldsymbol{g} = \boldsymbol{u}_D$), and $\nu \mathbf{L} - p\mathbf{I} \in H(\operatorname{div}, \Omega)^d$, we get

$$\sum_{K\in\mathcal{T}_h} T_{1,K} = (\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^*, (\mathsf{Id} - \mathcal{C}_h)(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*))_{\mathcal{T}_h} - \langle \nu \mathbf{L}_h \boldsymbol{n} - p_h \boldsymbol{n}, (\mathsf{Id} - \mathcal{C}_h)(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*) \rangle_{\partial \mathcal{T}_h \setminus \Gamma} + T,$$

where
$$T := (\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^*, \mathcal{C}_h(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*))_{\mathcal{T}_h} - \langle \mathbf{L}_h \boldsymbol{n} - p_h \boldsymbol{n}, \mathcal{C}_h(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*) \rangle_{\partial \mathcal{T}_h \setminus \Gamma}$$

Now, taking $w = \mathcal{C}_h(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*)$ in (15), we get $T = -\nu(\mathbf{L}_h - \nabla \boldsymbol{u}_h^*, \nabla \mathcal{C}_h(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*))_{\mathcal{T}_h}$. Thus,

$$\begin{split} &\sum_{K\in\mathcal{T}_{h}}T_{1,K} = (\boldsymbol{f} + \nabla \cdot (\nu\mathbf{L}_{h}) - \nabla p_{h} - \alpha \boldsymbol{u}_{h}^{*}, (\mathsf{Id} - \mathcal{C}_{h})(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*}))_{\mathcal{T}_{h}} + \langle \llbracket \nu\mathbf{L}_{h} - p_{h}\mathbf{I} \rrbracket, (\mathsf{Id} - \mathcal{C}_{h})(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*}) \rangle_{\mathcal{E}_{h}^{i}} + T \\ \leq &\sum_{K\in\mathcal{T}_{h}}\theta_{K}^{2} \lVert \boldsymbol{f} + \nabla \cdot (\nu\mathbf{L}_{h}) - \nabla p_{h} - \alpha \boldsymbol{u}_{h}^{*} \rVert_{0,K}^{2} + \sum_{e\in\mathcal{E}_{h}^{i}} \nu^{-1/2}\theta_{e} \lVert \llbracket \nu\mathbf{L}_{h} - p_{h}\mathbf{I} \rrbracket \rVert_{0,e}^{2} + \nu \lVert \mathbf{L}_{h} - \nabla \boldsymbol{u}_{h}^{*} \rVert_{0,\mathcal{T}_{h}}^{2} \\ &+ \frac{1}{24} \left(\sum_{K\in\mathcal{T}_{h}}\theta_{K}^{-2} \lVert (\mathsf{Id} - \mathcal{C}_{h})(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*}) \rVert_{0,K}^{2} + \sum_{e\in\mathcal{E}_{h}^{i}} \nu^{1/2}\theta_{e}^{-1} \lVert (\mathsf{Id} - \mathcal{C}_{h})(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*}) \rVert_{0,e}^{2} + \nu \lVert \nabla \mathcal{C}_{h}(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*}) \rVert_{0,\mathcal{T}_{h}}^{2} \right), \end{split}$$

thanks to Cauchy-Schwarz and Young inequalities. Finally, using Lemma 4.1 and the regularity of the mesh, we get

$$\sum_{K\in\mathcal{T}_{h}}T_{1,K} \leq \sum_{K\in\mathcal{T}_{h}} \left(\theta_{K}^{2} \| \boldsymbol{f} + \nabla \cdot (\boldsymbol{\nu}\mathbf{L}_{h}) - \nabla p_{h} - \alpha \boldsymbol{u}_{h}^{*} \|_{0,K}^{2} + \frac{1}{2} \sum_{e\in\mathcal{E}_{h}^{i}\cap\partial K} \boldsymbol{\nu}^{-1/2} \theta_{e} \| [\![\boldsymbol{\nu}\mathbf{L}_{h} - p_{h}\mathbf{I}]\!] \|_{0,e}^{2} + \boldsymbol{\nu} \|\mathbf{L}_{h} - \nabla \boldsymbol{u}_{h}^{*} \|_{0,K}^{2} \right) + \frac{1}{8} \| \boldsymbol{u} - \widetilde{\boldsymbol{u}}_{h}^{*} \|_{1,\mathcal{T}_{h}}^{2}.$$

$$(16)$$

On the other hand, since u is divergence-free, we obtain

$$\sum_{K\in\mathcal{T}_{h}} T_{2,K} = -(p - p_{h}, \nabla \cdot \widetilde{\boldsymbol{u}}_{h}^{*})_{\mathcal{T}_{h}} \leq \frac{1}{12} C_{\alpha,\nu}^{-2} \nu^{-1} \|p - p_{h}\|_{0,\mathcal{T}_{h}}^{2} + C_{\alpha,\nu}^{2} \nu \|\nabla \cdot \widetilde{\boldsymbol{u}}_{h}^{*}\|_{0,\mathcal{T}_{h}}^{2}$$
$$\leq \frac{1}{12} C_{\alpha,\nu}^{-2} \nu^{-1} \|p - p_{h}\|_{0,\mathcal{T}_{h}}^{2} + C_{\alpha,\nu}^{2} \nu \|\nabla (\boldsymbol{u}_{h}^{*} - \widetilde{\boldsymbol{u}}_{h}^{*})\|_{0,\mathcal{T}_{h}}^{2} + C_{\alpha,\nu}^{2} \nu \|\nabla \cdot \boldsymbol{u}_{h}^{*}\|_{0,\mathcal{T}_{h}}^{2}.$$
(17)

For the third term we have

$$\sum_{K \in \mathcal{T}_{h}} T_{3,K} \leq \frac{1}{12} \nu \| \mathbf{L} - \mathbf{L}_{h} \|_{0,\mathcal{T}_{h}}^{2} + \nu \| \mathbf{L}_{h} - \nabla \boldsymbol{u}_{h}^{*} \|_{0,\mathcal{T}_{h}}^{2} + \nu \| \nabla (\boldsymbol{u}_{h}^{*} - \widetilde{\boldsymbol{u}}_{h}^{*}) \|_{0,\mathcal{T}_{h}}^{2}.$$
(18)

Finally, using estimates (16)-(18), Lemma 4.4, the definitions of $\| \cdot \|_{1,\mathcal{T}_h}$ and η_h , we get $\nu \| \mathbf{L} - \mathbf{L}_h \|_{0,\mathcal{T}_h}^2 + \alpha \| \boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^* \|_{0,\mathcal{T}_h}^2$ $\leq C_{\alpha,\nu}^2 \left(\eta_h^2 + \nu \| \nabla (\boldsymbol{u}_h^* - \widetilde{\boldsymbol{u}}_h^*) \|_{0,\mathcal{T}_h}^2 \right) + \alpha \| \boldsymbol{u}_h^* - \widetilde{\boldsymbol{u}}_h^* \|_{0,\mathcal{T}_h}^2 + \frac{1}{2} \left(\nu \| \mathbf{L} - \mathbf{L}_h \|_{0,\mathcal{T}_h}^2 + \alpha \| \boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^* \|_{0,\mathcal{T}_h}^2 \right)$

and the result follows.

The next four lemmas provide us the tools to prove local efficiency of our estimator.

Lemma 4.6. Let $e \in \mathcal{E}_h^i$, then

$$\nu^{-1/2}\theta_{e}\|[\![\nu\mathbf{L}_{h}-p_{h}\mathbf{I}]\!]\|_{0,e}^{2} \leq \sum_{K\in\omega_{e}} (\nu\|\mathbf{L}-\mathbf{L}_{h}\|_{0,K}^{2}+\nu^{-1}\|p-p_{h}\|_{0,K}^{2}+\theta_{K}^{2}\|\mathbf{f}+\nabla\cdot(\nu\mathbf{L}_{h})-\nabla p_{h}-\alpha \boldsymbol{u}_{h}^{*}\|_{0,K}^{2}).$$

Proof. For any $\boldsymbol{v} \in H^1_0(\omega_e)^d$ we have

$$\begin{split} \langle \llbracket \boldsymbol{\nu} \mathbf{L}_{h} - p_{h} \mathbf{I} \rrbracket, \boldsymbol{v} \rangle_{e} &= \sum_{K \in \omega_{e}} \left(\langle \boldsymbol{\nu} (\mathbf{L}_{h} - \mathbf{L}) \boldsymbol{n}, \boldsymbol{v} \rangle_{\partial K} + \langle (p - p_{h}) \boldsymbol{n}, \boldsymbol{v} \rangle_{\partial K} \right) \\ &= \sum_{K \in \omega_{e}} \left((\boldsymbol{\nu} (\mathbf{L}_{h} - \mathbf{L}), \nabla \boldsymbol{v})_{K} + (\boldsymbol{\nu} \nabla \cdot (\mathbf{L}_{h} - \mathbf{L}), \boldsymbol{v})_{K} + (\nabla (p - p_{h}), \boldsymbol{v})_{K} + (p - p_{h}, \nabla \cdot \boldsymbol{v})_{K} \right) \\ &= \sum_{K \in \omega_{e}} \left((\boldsymbol{\nu} (\mathbf{L}_{h} - \mathbf{L}), \nabla \boldsymbol{v})_{K} + (p - p_{h}, \nabla \cdot \boldsymbol{v})_{K} + (\alpha (\boldsymbol{u} - \boldsymbol{u}_{h}^{*}), \boldsymbol{v})_{K} + (\boldsymbol{f} + \nabla \cdot (\boldsymbol{\nu} \mathbf{L}_{h}) - \nabla p_{h} - \alpha \boldsymbol{u}_{h}^{*}, \boldsymbol{v})_{K} \right) \\ &\leq \sum_{K \in \omega_{e}} \left(\boldsymbol{\nu}^{1/2} \| \mathbf{L} - \mathbf{L}_{h} \|_{0,K} + \boldsymbol{\nu}^{-1/2} \| \boldsymbol{p} - p_{h} \|_{0,K} + \alpha^{1/2} \| \boldsymbol{u} - \boldsymbol{u}_{h}^{*} \|_{0,K} + \theta_{K} \| \boldsymbol{f} + \nabla \cdot (\boldsymbol{\nu} \mathbf{L}_{h}) - \nabla p_{h} - \alpha \boldsymbol{u}_{h}^{*} \|_{0,K} \right) T_{\boldsymbol{v}}, \end{split}$$

where $T_{\boldsymbol{v}} := \nu^{1/2} \|\nabla \boldsymbol{v}\|_{0,K} + \nu^{1/2} \|\nabla \cdot \boldsymbol{v}\|_{0,K} + \alpha^{1/2} \|\boldsymbol{v}\|_{0,K} + \theta_K^{-1} \|\boldsymbol{v}\|_{0,K}.$

On the other hand, taking $\boldsymbol{v} := B_e \llbracket \nu \mathcal{L}_h - p_h \mathbf{I} \rrbracket$ and applying Lemma 4.3, we get

$$T_{\boldsymbol{v}} \preceq \| \boldsymbol{v} \|_{1,K} + \theta_e^{-1} \| \boldsymbol{v} \|_{0,K} \preceq \nu^{1/4} \theta_e^{-1/2} \| [\![\nu \mathbf{L}_h - p_h \mathbf{I}]\!] \|_{0,e}.$$

Thus, the result follows from Lemma 4.3 and the shape-regularity assumption.

Lemma 4.7. For any element $K \in \mathcal{T}_h$ we have

$$\begin{aligned} \theta_K \| \boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^* \|_{0,K} &\preceq \| \nu^{1/2} (\mathbf{L} - \mathbf{L}_h) \|_{0,K} + \| \alpha^{1/2} (\boldsymbol{u} - \boldsymbol{u}_h^*) \|_{0,K} + \| \nu^{-1/2} (p - p_h) \|_{0,K} \\ \text{Proof. Let } \boldsymbol{v} &= \boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^* \text{ then} \end{aligned}$$

$$\begin{aligned} (\boldsymbol{v}, B_K \boldsymbol{v})_K &= -\nu (\nabla \cdot (\mathbf{L} - \mathbf{L}_h), B_K \boldsymbol{v})_K + (\nabla (p - p_h), B_K \boldsymbol{v})_K + \alpha (\boldsymbol{u} - \boldsymbol{u}_h^*, B_K \boldsymbol{v})_K \\ &= \nu (\mathbf{L} - \mathbf{L}_h, \nabla B_K \boldsymbol{v})_K - (p - p_h, \nabla \cdot B_K \boldsymbol{v})_K + \alpha (\boldsymbol{u} - \boldsymbol{u}_h^*, B_K \boldsymbol{v})_K \\ &\preceq (\nu^{1/2} \|\mathbf{L} - \mathbf{L}_h\|_{0,K} + \nu^{-1/2} \|p - p_h\|_{0,K} + \alpha^{1/2} \|\boldsymbol{u} - \boldsymbol{u}_h^*\|_{0,K}) \|B_K \boldsymbol{v}\|_{1,K}. \end{aligned}$$

Thus, the result follows from Lemma 4.3.

Now, note that to prove an upper bounds for the jump of the postprocessed velocity we will use the decomposition of $\nu h_e^{-1} \| [\![\boldsymbol{u}_h^*]\!] \|_{0,e}^2$ into $\nu h_e^{-1} \| \mathsf{P}_{\mathsf{M}_0} [\![\boldsymbol{u}_h^*]\!] \|_{0,e}^2$ and $\nu h_e^{-1} \| (\mathsf{Id} - \mathsf{P}_{\mathsf{M}_0}) [\![\boldsymbol{u}_h^*]\!] \|_{0,e}^2$, where, $\mathsf{P}_{\mathsf{M}_0}$ is the L^2 -orthogonal projection into

$$\mathsf{M}_{0,h} := \{ \boldsymbol{\mu} \in [L^2(\mathcal{E}_h)]^d : \boldsymbol{\mu}|_e \in [\mathbb{P}_0(e)]^d \quad \forall e \in \mathcal{E}_h \}$$

Lemma 4.8. For each face $e \in \mathcal{E}_h$ we have that $h_e^{-1} \| \mathsf{P}_{\mathsf{M}_0} \llbracket \boldsymbol{u}_h^* \rrbracket \|_{0,e}^2 \preceq \| \mathsf{L}_h - \nabla \boldsymbol{u}_h^* \|_{0,\omega_e}^2$.

Proof. Let G a tensor-valued function with rows in $RT_0(K)$ and set $\boldsymbol{w} := \nabla \cdot \mathbf{G} \in [\mathbb{P}_0(K)]^d$. Then, from (4a) (or (4b) if $\alpha = 0$) we get that (3a) can be written as

$$(\mathbf{L}_h, \mathbf{G})_K + (\boldsymbol{u}_h^*, \nabla \cdot \mathbf{G})_K = \langle \widehat{\boldsymbol{u}}_h, \mathbf{G}\boldsymbol{n} \rangle_{\partial K}.$$

Thus, integrating by parts, we arrive at $(L_h - \nabla u_h^*, G)_K = \langle \hat{u}_h - u_h^*, Gn \rangle_{\partial K}$. For the rest of the proof we refer to Lemma 3.4 in [15], adapted to vector-valued functions.

Now, for the remaining term in the decomposition of $\nu h_e^{-1} \| [\![\boldsymbol{u}_h^*]\!] \|_{0,e}^2$, we have the following estimate.

Lemma 4.9. For each face $e \in \mathcal{E}_h$, $h_e^{-1} \| (\mathsf{Id} - \mathsf{P}_{\mathsf{M}_0}) [\![\boldsymbol{u}_h^*]\!] \|_{0,e}^2 \preceq \| \nabla (\boldsymbol{u} - \boldsymbol{u}_h^*) \|_{0,\omega_e}^2$. *Proof.* See Lemma 3.5 in [15].

4.3 The main results

For each $K \in \mathcal{T}_h$ we define the local error

$$\mathbf{e}_{K}^{2} := \nu \|\mathbf{L} - \mathbf{L}_{h}\|_{0,K}^{2} + \alpha \|\boldsymbol{u} - \boldsymbol{u}_{h}^{*}\|_{0,K}^{2} + \nu \|\nabla(\boldsymbol{u} - \boldsymbol{u}_{h}^{*})\|_{0,K}^{2} + \nu^{-1} \|\boldsymbol{p} - \boldsymbol{p}_{h}\|_{0,K}^{2},$$
(19)

and its global version given by $\mathbf{e}_h := \left(\sum_{K \in \mathcal{T}_h} \mathbf{e}_K^2\right)^{1/2}$.

Now, we can state and prove the reliability and efficiency results for our *a posteriori* error estimator.

Theorem 4.1 (Reliability).

$$\mathbf{e}_{h} \preceq C_{\alpha,\nu} \left(\eta_{h} + \sum_{e \in \mathcal{E}_{h}} \nu^{1/2} h_{e}^{1/2} \| \llbracket \boldsymbol{u}_{h}^{*} \rrbracket \|_{0,e} \right).$$

Proof. Thanks to Lemmas 4.4, 4.5 and the fact that, for each $K \in \mathcal{T}_h$, $\nu^{1/2} \|\nabla(\boldsymbol{u} - \boldsymbol{u}_h^*)\|_{0,K} \preceq \nu^{1/2} \|\mathbf{L} - \mathbf{L}_h\|_{0,K} + \eta_K$, we get

$$\nu \|\mathbf{L} - \mathbf{L}_h\|_{0,\mathcal{T}_h}^2 + \|\| \boldsymbol{u} - \boldsymbol{u}_h^* \|\|_{1,\mathcal{T}_h}^2 + \nu^{-1} \|p - p_h\|_{0,\mathcal{T}_h}^2 \leq \eta_h^2 + \nu \|\nabla(\boldsymbol{u}_h^* - \widetilde{\boldsymbol{u}}_h^*)\|_{0,\mathcal{T}_h}^2 + \alpha \|(\boldsymbol{u}_h^* - \widetilde{\boldsymbol{u}}_h^*)\|_{0,\mathcal{T}_h}^2.$$

The result follows from Lemma 4.2, taking $\boldsymbol{w}_h = \boldsymbol{u}_h^*$ to bound the second and third terms on the right-hand side and the definition of $C_{\alpha,\nu}$.

Remark 4.1. Note that if $\alpha = 0$ (Stokes problem), then $C_{\alpha,\nu} = 1$. Thus, to obtain an estimate for the L^2 norm of the error of the velocity, we proceed as follows

$$\begin{split} \nu^{1/2} \| \boldsymbol{u} - \boldsymbol{u}_h^* \|_{0,\mathcal{T}_h} &\leq \nu^{1/2} \| \boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^* \|_{0,\mathcal{T}_h} + \nu^{1/2} \| \boldsymbol{u}_h^* - \widetilde{\boldsymbol{u}}_h^* \|_{0,\mathcal{T}_h} \\ & \leq \nu^{1/2} \| \nabla (\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*) \|_{0,\mathcal{T}_h} + \sum_{e \in \mathcal{E}_h} \nu^{1/2} h_e^{1/2} \| \llbracket \boldsymbol{u}_h^* \rrbracket \|_{0,e} \leq \eta_h + \sum_{e \in \mathcal{E}_h} \nu^{1/2} h_e^{1/2} \| \llbracket \boldsymbol{u}_h^* \rrbracket \|_{0,e} \end{split}$$

thanks to Poincaré inequality, Lemma 4.2 and the bound for $\nu^{1/2} \|\nabla(\boldsymbol{u} - \widetilde{\boldsymbol{u}}_h^*)\|_{0,\mathcal{T}_h}$ from Theorem 4.1.

Theorem 4.2 (Efficiency). Let $K \in \mathcal{T}_h$ and $\omega_K := \{K' \in \mathcal{T}_h : K' \in \omega_e \text{ and } e \in \mathcal{E}_h \cap \partial K\}$, then

$$\eta_K \preceq \mathsf{e}_{\omega_K}.$$

Proof. By definition of η_K , Lemmas 4.6-4.9, and the inequalities $\|\mathbf{L}_h - \nabla \boldsymbol{u}_h^*\|_{0,K} \leq \|\mathbf{L} - \mathbf{L}_h\|_{0,K} + \|\nabla(\boldsymbol{u} - \boldsymbol{u}_h^*)\|_{0,K}$ and $\|\nabla \cdot \boldsymbol{u}_h^*\|_{0,K} = \|\nabla \cdot (\boldsymbol{u} - \boldsymbol{u}_h^*)\|_{0,K} \leq \|\nabla(\boldsymbol{u} - \boldsymbol{u}_h^*)\|_{0,K}$, we have that

$$\begin{aligned} \eta_{K}^{2} &\leq \nu \|\mathbf{L} - \mathbf{L}_{h}\|_{0,K}^{2} + \alpha \|\boldsymbol{u} - \boldsymbol{u}_{h}^{*}\|_{0,K}^{2} + \nu^{-1} \|\boldsymbol{p} - p_{h}\|_{0,K}^{2} + \nu \|\mathbf{L}_{h} - \nabla \boldsymbol{u}_{h}^{*}\|_{0,K}^{2} + \nu \|\nabla \cdot \boldsymbol{u}_{h}^{*}\|_{0,K}^{2} + \nu \|\mathbf{L} - \mathbf{L}_{h}\|_{0,\omega_{K}}^{2} \\ &+ \nu^{-1} \|\boldsymbol{p} - p_{h}\|_{0,\omega_{K}}^{2} + \sum_{K' \in \omega_{K}} \theta_{K'}^{2} \|\boldsymbol{f} + \nabla \cdot (\nu \mathbf{L}_{h}) - \nabla p_{h} - \alpha \boldsymbol{u}_{h}^{*}\|_{0,K'}^{2} + \nu \|\nabla (\boldsymbol{u} - \boldsymbol{u}_{h}^{*})\|_{0,\omega_{K}}^{2} + \nu \|\mathbf{L}_{h} - \nabla \boldsymbol{u}_{h}^{*}\|_{0,\omega_{K}}^{2} \\ &\leq \nu \|\mathbf{L} - \mathbf{L}_{h}\|_{0,\omega_{K}}^{2} + \|\|\boldsymbol{u} - \boldsymbol{u}_{h}^{*}\|_{1,\omega_{K}}^{2} + \nu^{-1} \|\boldsymbol{p} - p_{h}\|_{0,\omega_{K}}^{2}, \end{aligned}$$

and the result follows.

Remark 4.2. Using (9c), and assuming enough regularity on L, \boldsymbol{u} and p, we can see that the term $\sum_{e \in \mathcal{E}_h} \nu^{1/2} h_e^{1/2} \| [\boldsymbol{u}_h^*] \|_{0,e}$ is a high order term. Its order of convergence is $\min\{\ell_{\boldsymbol{u}}, \ell_{\mathrm{L}}, \ell_{\sigma}\} + 2$ while the one associated to the estimator and the error is $\min\{\ell_{\boldsymbol{u}}, \ell_{\mathrm{L}}, \ell_{\sigma}\} + 1$.

5 Numerical experiments

In this section, we provide numerical simulations, for d = 2, illustrating the performance of the scheme and validating our main results in Theorems 4.1 and 4.2. In all the examples we consider different values of the polynomial degree (k = 1, 2 and 3), and set the stabilization parameter τ to be 1 on each edge. The values of the physical parameters α and ν will be specified on each example.

Let us define the errors $\mathbf{e}_{\mathrm{L}} := \nu^{1/2} \|\mathbf{L} - \mathbf{L}_h\|_{0,\mathcal{T}_h}$, $\mathbf{e}_{\boldsymbol{u}} := \|\|\boldsymbol{u} - \boldsymbol{u}_h^*\|_{1,\mathcal{T}_h}$, $\mathbf{e}_p := \nu^{-1/2} \|p - p_h\|_{0,\mathcal{T}_h}$, the estimator terms η_i (i = 1, ..., 5)

$$\eta_1^2 := \sum_{K \in \mathcal{T}_h} \theta_K^2 \| \boldsymbol{f} + \nabla \cdot (\nu \mathcal{L}_h) - \nabla p_h - \alpha \boldsymbol{u}_h^* \|_{0,K}^2, \qquad \eta_2^2 := \nu \| \mathcal{L}_h - \nabla \boldsymbol{u}_h^* \|_{0,\mathcal{T}_h}^2, \qquad \eta_3^2 := \nu \| \nabla \cdot \boldsymbol{u}_h^* \|_{0,\mathcal{T}_h}^2,$$
$$\eta_4^2 := \nu^{-1/2} \sum_{e \in \mathcal{E}_h} \theta_e \| \llbracket \nu \mathcal{L}_h - p_h \mathcal{I} \rrbracket \|_{0,e}^2 \qquad \text{and} \qquad \eta_5^2 := \nu \sum_{e \in \mathcal{E}_h} h_e^{-1} \| \llbracket \boldsymbol{u}_h^* \rrbracket \|_{0,e}^2,$$

and the effectivity index eff := η_h/\mathbf{e}_h . In some tables, we include a column *h.o.t.*, showing that the term defined in Remark 4.2 is in fact a high order term, and thus it is not necessary to include it in the definition of our error estimator. The orders of convergence will be computed in terms of the number of elements N and we will use the fact that $h \simeq N^{-1/2}$.

For the tests that include adaptivity, we use the strategy given by:

(i) Start with a coarse mesh \mathcal{T}_h .

- (ii) Solve the discrete problem on the current mesh \mathcal{T}_h .
- (iii) Compute η_K for each $K \in \mathcal{T}_h$.
- (iv) Use *red-blue-green* procedure to refine each $K' \in \mathcal{T}_h$ such that $\eta_{K'} \geq \theta \max_{K \in \mathcal{T}_h} \eta_K$, with $\theta \in [0, 1]$.
- (v) Consider this new mesh as \mathcal{T}_h and, unless a prescribed stopping criteria is satisfied, go to (ii).

5.1 A polynomial solution

For this test case, we choose $\alpha = 1$ and $\Omega =]0, 1[\times]0, 1[$. The source term \boldsymbol{f} and the boundary data \boldsymbol{u}_D are chosen such that the exact solution of the problem is given by $\boldsymbol{u} := (u_1, u_2)$, where $u_1(x_1, x_2) := x_1(1-x_1)x_2(1-x_2)$ and $u_2(x_1, x_2) := (2x_1-1)x_2^2(\frac{1}{2}-\frac{x_2}{3})$, and $p(x_1, x_2) := x_1^2x_2^2 - \frac{1}{9}$. We note that \boldsymbol{f} and \boldsymbol{u}_D are such that this numerical test satisfies Assumption H when $k \geq 3$.

k	N	eL	order	e _u	order	e_p	order
	16	9.13e-03	_	1.09e-02	-	7.29e-03	_
	64	2.41e-03	1.92	2.84e-03	1.94	1.75e-03	2.05
1	256	6.22e-04	1.96	7.29e-04	1.96	4.19e-04	2.06
	1024	1.58e-04	1.98	1.85e-04	1.98	1.02e-04	2.04
	4096	3.99e-05	1.99	4.66e-05	1.99	2.52e-05	2.02
	16384	1.00e-05	1.99	1.17e-05	1.99	6.27e-06	2.01
	16	9.40e-04	—	9.80e-04	-	5.10e-04	_
	64	1.14e-04	3.04	1.19e-04	3.04	6.09e-05	3.06
2	256	1.40e-05	3.02	1.46e-05	3.02	7.46e-06	3.03
	1024	1.74e-06	3.01	1.81e-06	3.01	9.21e-07	3.02
	4096	2.17e-07	3.01	2.26e-07	3.01	1.14e-07	3.01
	16384	2.70e-08	3.00	2.81e-08	3.00	1.42e-08	3.00
	16	1.63e-05	_	1.61e-05	-	1.69e-05	_
	64	1.05e-06	3.95	1.03e-06	3.97	1.03e-06	4.04
3	256	6.65e-08	3.98	6.50e-08	3.99	6.33e-08	4.02
	1024	4.18e-09	3.99	4.08e-09	3.99	3.93e-09	4.01
	4096	2.62e-10	4.00	2.55e-10	4.00	2.45e-10	4.00
	16384	1.64e-11	4.00	1.60e-11	4.00	1.53e-11	4.00

Table 1: History of convergence of the error terms for the Example 5.1 ($\nu = 1$).

k	N	η_1	order	η_2	order	η_3	order	η_4	order	η_5	order	h.o.t.	order	eff
1	16	1.49e-01	_	8.82e-03	_	6.16e-03	_	4.17e-02	_	7.26e-03	_	3.06e-03	_	9.734
	64	3.66e-02	2.03	2.30e-03	1.94	1.58e-03	1.96	1.06e-02	1.97	1.93e-03	1.92	4.14e-04	2.88	9.293
	256	9.11e-03	2.01	5.76e-04	2.00	3.95e-04	2.00	2.73e-03	1.96	5.03e-04	1.94	5.51e-05	2.91	9.128
	1024	2.27e-03	2.00	1.43e-04	2.01	9.80e-05	2.01	6.96e-04	1.97	1.29e-04	1.96	7.13e-06	2.95	9.048
	4096	5.68e-04	2.00	3.56e-05	2.01	2.44e-05	2.01	1.76e-04	1.98	3.27e-05	1.98	9.08e-07	2.97	9.007
	16384	1.42e-04	2.00	8.88e-06	2.00	6.08e-06	2.00	4.42e-05	1.99	8.23e-06	1.99	1.15e-07	2.99	8.986
	16	1.86e-02	-	8.61e-04	-	6.78e-04	-	4.31e-03	-	3.97e-04	-	1.77e-04	-	13.214
	64	2.32e-03	3.01	1.08e-04	3.00	8.65e-05	2.97	5.76e-04	2.91	5.26e-05	2.91	1.18e-05	3.91	13.612
2	256	2.89e-04	3.00	1.34e-05	3.00	1.09e-05	2.99	7.44e-05	2.95	6.76e-06	2.96	7.58e-07	3.96	13.847
	1024	3.61e-05	3.00	1.68e-06	3.00	1.36e-06	3.00	9.47e-06	2.98	8.55e-07	2.98	4.80e-08	3.98	13.977
	4096	4.51e-06	3.00	2.10e-07	3.00	1.71e-07	3.00	1.19e-06	2.99	1.08e-07	2.99	3.02e-09	3.99	14.046
	16384	5.64e-07	3.00	2.62e-08	3.00	2.14e-08	3.00	1.50e-07	2.99	1.35e-08	3.00	1.89e-10	4.00	14.081
	16	6.54e-04	—	1.41e-05	—	7.02e-06	—	1.27e-04	—	2.97e-06	—	1.24e-06	—	23.429
	64	4.11e-05	3.99	8.80e-07	4.00	4.36e-07	4.01	8.51e-06	3.90	1.85e-07	4.01	3.80e-08	5.03	23.437
3	256	2.58e-06	4.00	5.51e-08	4.00	2.72e-08	4.00	5.49e-07	3.96	1.15e-08	4.01	1.17e-09	5.02	23.458
	1024	1.62e-07	4.00	3.45e-09	4.00	1.70e-09	4.00	3.48e-08	3.98	7.18e-10	4.00	3.62e-11	5.01	23.473
	4096	1.01e-08	4.00	2.16e-10	4.00	1.07e-10	4.00	2.19e-09	3.99	4.48e-11	4.00	1.12e-12	5.01	23.482
	16384	6.32e-10	4.00	1.35e-11	4.00	6.68e-12	4.00	1.37e-10	3.99	2.80e-12	4.00	3.50e-14	5.01	23.466

Table 2: History of convergence of the terms composing the error estimator for the Example 5.1 $(\nu = 1)$.

Table 1 shows the history of convergence of the error of each variable when the number of elements N quadruplicates, i.e., the mesh size h decreases by a factor two. We see that all the error terms converge with optimal order of k+1, exactly as the error estimates in Section 3 predicted. In addition, we see in Table 2 that each term of the error estimator converges with the optimal order k+1 and the high order term with order k+2.

We repeat the experiment considering now $\nu = 10^{-2}$. As Tables 3-4 show, similar conclusions can be drawn regarding the optimal order of convergence of the error and the estimator. The last column of Tables 2 and 4 displays the effectivity index. It remains bounded for each polynomial degree k, however it increases with k. This is natural to expect since some of the constants on the estimates depend on k.

On the other hand, we observe in all the cases that the first term of the estimator (η_1) is larger than the other terms. This behavior, together with the fact that the effectivity index is larger than one, might suggest that the estimator is locating regions where the divergence of $\nu(\mathbf{L}-\mathbf{L}_h)+(p-p_h)\mathbf{I}$ is large. Motivated by this issue, if we assume that the solution of the Brinkman problem is such that $\mathbf{L} \in H(\operatorname{div}, \Omega)^d$ and $p \in H^1(\Omega)$, we can add the term $\theta_K \|\nabla \cdot (\nu \mathbf{L} - p\mathbf{I}) - \nabla \cdot (\nu \mathbf{L}_h - p_h\mathbf{I})\|_{0,K}$ to error \mathbf{e}_K defined (19). Table 5 shows the behavior of the global estimator and the global error that includes the aforementioned term. In this case, we observe that effectivity index is close to 1.

In summary, this example shows that, even though $u_D \notin V_h^*$, as in the case of k = 1 and 2, Tables 1-5 verify that our error estimate is reliable and locally efficient as stated in Theorems 4.1 and 4.2. Moreover, the estimator is robust in the sense that the upper and lower bounds of error are uniformly bounded with respect to the physical parameters α and ν .

k	N	e_{L}	order	$e_{oldsymbol{u}}$	order	e_p	order
	16	2.89e-02	_	9.35e-02	_	6.55e-02	_
	64	1.09e-02	1.41	2.43e-02	1.94	1.47e-02	2.16
1	256	3.09e-03	1.82	5.12e-03	2.25	3.35e-03	2.13
	1024	8.22e-04	1.91	1.05e-03	2.29	7.43e-04	2.17
	4096	2.14e-04	1.94	2.32e-04	2.17	1.68e-04	2.15
	16384	5.51e-05	1.96	5.56e-05	2.06	3.93e-05	2.09
	16	2.06e-03	_	4.70e-03	_	5.73e-03	_
	64	3.16e-04	2.71	4.96e-04	3.25	6.46e-04	3.15
2	256	4.07e-05	2.96	4.89e-05	3.34	6.95e-05	3.22
	1024	5.01e-06	3.02	5.12e-06	3.26	7.61e-06	3.19
	4096	6.21e-07	3.01	5.86e-07	3.13	8.66e-07	3.14
	16384	7.76e-08	3.00	7.10e-08	3.05	1.02e-07	3.08
	16	7.83e-05	—	1.06e-04	-	1.83e-04	_
	64	5.14e-06	3.93	5.64e-06	4.23	9.97e-06	4.19
3	256	3.22e-07	4.00	3.01e-07	4.23	5.60e-07	4.16
	1024	2.03e-08	3.99	1.70e-08	4.14	3.25e-08	4.11
	4096	1.29e-09	3.98	1.01e-09	4.07	1.94e-09	4.07
	16384	8.12e-11	3.99	6.22e-11	4.03	1.18e-10	4.04

Table 3: History of convergence of the error terms for the Example 5.1 ($\nu = 10^{-2}$).

\underline{k}	N	η_1	order	η_2	order	η_3	order	η_4	order	η_5	order	h.o.t.	order	eff
1	16	1.29e-01	_	7.20e-02	-	5.26e-02	-	3.96e-02	-	5.90e-02	-	2.47e-02	-	1.463
	64	8.55e-02	0.60	2.26e-02	1.67	1.67e-02	1.65	2.22e-02	0.84	1.78e-02	1.73	3.61e-03	2.77	3.106
	256	4.64e-02	0.88	4.96e-03	2.19	3.72e-03	2.17	1.01e-02	1.14	3.68e-03	2.28	3.68e-04	3.29	7.011
	1024	1.48e-02	1.65	9.76e-04	2.35	7.22e-04	2.37	3.28e-03	1.62	6.95e-04	2.40	3.56e-05	3.37	9.971
	4096	3.70e-03	2.00	2.05e-04	2.25	1.42e-04	2.35	9.30e-04	1.82	1.47e-04	2.25	3.87e-06	3.20	10.706
	16384	9.26e-04	2.00	4.77e-05	2.10	3.03e-05	2.23	2.50e-04	1.90	3.50e-05	2.07	4.69e-07	3.05	10.971
	16	1.74e-02	-	5.02e-03	-	3.31e-03	-	4.02e-03	-	2.62e-03	-	1.13e-03	-	2.471
	64	4.70e-03	1.89	5.89e-04	3.09	3.91e-04	3.08	9.63e-04	2.06	3.02e-04	3.12	6.42e-05	4.13	5.567
2	256	1.20e-03	1.97	6.30e-05	3.22	4.20e-05	3.22	1.99e-04	2.28	2.95e-05	3.35	3.13e-06	4.36	12.947
	1024	1.89e-04	2.67	7.07e-06	3.16	4.54e-06	3.21	2.94e-05	2.76	2.95e-06	3.32	1.56e-07	4.33	18.355
	4096	2.38e-05	2.99	8.49e-07	3.06	5.16e-07	3.14	4.00e-06	2.88	3.28e-07	3.17	8.63e-09	4.17	19.841
	16384	2.98e-06	3.00	1.06e-07	3.01	6.12e-08	3.08	5.23e-07	2.93	3.95e-08	3.06	5.17e-10	4.06	20.642
	16	7.99e-04	_	1.34e-04	_	7.70e-05	-	1.41e-04	-	4.40e-05	-	1.87e-05	_	3.673
	64	1.04e-04	2.95	7.49e-06	4.16	3.55e-06	4.44	1.63e-05	3.11	2.25e-06	4.29	4.70e-07	5.31	8.375
3	256	1.32e-05	2.97	4.31e-07	4.12	1.46e-07	4.60	1.66e-06	3.30	1.14e-07	4.30	1.13e-08	5.37	18.684
	1024	1.05e-06	3.66	2.64e-08	4.03	6.26e-09	4.54	1.21e-07	3.77	6.25e-09	4.19	2.95e-10	5.27	25.119
	4096	6.59e-08	3.99	1.66e-09	3.99	3.31e-10	4.24	8.09e-09	3.90	3.71e-10	4.08	8.47e-12	5.12	26.171
	16384	4.14e-09	3.99	1.05e-10	3.98	2.04e-11	4.02	5.24e-10	3.95	2.28e-11	4.02	2.58e-13	5.04	26.719

Table 4: History of convergence of the terms composing the error estimator for the Example 5.1 $(\nu = 10^{-2})$.

k	N	e _h	order	η_h	order	eff	k	N	e _h	order	η_h	order	eff
	16	1.60e-02	-	1.56e-01	-	1.036		16	1.18e-01	-	3.01e-01	-	0.759
	64	4.12e-03	1.96	3.83e-02	2.02	1.039		64	3.04e-02	1.96	1.01e-01	1.57	0.944
1	256	1.05e-03	1.98	9.55e-03	2.00	1.041	1	256	6.85e-03	2.15	4.82e-02	1.07	1.003
	1024	2.64e-04	1.99	2.39e-03	2.00	1.043		1024	1.52e-03	2.17	1.52e-02	1.67	1.020
	4096	6.63e-05	1.99	5.97e-04	2.00	1.044		4096	3.57e-04	2.09	3.83e-03	1.99	1.029
	16384	1.66e-05	2.00	1.49e-04	2.00	1.044		16384	8.76e-05	2.03	9.61e-04	1.99	1.034
	16	1.45e-03	-	1.92e-02	_	1.026		16	7.70e-03	-	2.21e-02	-	0.913
	64	1.76e-04	3.05	2.39e-03	3.00	1.030		64	8.73e-04	3.14	4.90e-03	2.17	0.996
2	256	2.16e-05	3.02	2.99e-04	3.00	1.032	2	256	9.42e-05	3.21	1.22e-03	2.01	1.009
	1024	2.68e-06	3.01	3.74e-05	3.00	1.033		1024	1.04e-05	3.17	1.92e-04	2.67	1.011
	4096	3.33e-07	3.01	4.68e-06	3.00	1.034		4096	1.22e-06	3.10	2.41e-05	2.99	1.014
	16384	4.15e-08	3.00	5.85e-07	3.00	1.034		16384	1.47e-07	3.05	3.03e-06	2.99	1.015
	16	2.84e-05	-	6.66e-04	-	1.018		16	2.25e-04	-	8.48e-04	-	0.971
	64	1.79e-06	3.99	4.20e-05	3.99	1.021		64	1.26e-05	4.16	1.05e-04	3.01	1.004
3	256	1.12e-07	3.99	2.64e-06	3.99	1.022	3	256	7.12e-07	4.14	1.33e-05	2.98	1.006
	1024	7.04e-09	4.00	1.65e-07	4.00	1.022		1024	4.19e-08	4.09	1.05e-06	3.66	1.006
	4096	4.40e-10	4.00	1.03e-08	4.00	1.023		4096	2.54e-09	4.05	6.64e-08	3.99	1.007
	16384	2.76e-11	4.00	6.47e-10	4.00	1.023		16384	1.56e-10	4.02	4.17e-09	3.99	1.008

Table 5: History of convergence of the modified global error and estimator for the Example 5.1 with $\nu = 1$ (left) and $\nu = 10^{-2}$ (right).

5.2 The Kovasznay flow

We set $\Omega =]0, 2[\times] - 0.5, 1.5[$ and consider the Stokes problem ($\alpha = 0$) whose exact solution coincides with the analytical solution of the two-dimensional incompressible Navier-Stokes equations presented in [29]: $\boldsymbol{u} := (u_1, u_2)$, where $u_1(x_1, x_2) = 1 - \exp(\lambda x_1) \cos(2\pi x_2)$ and $u_2(x_1, x_2) = \frac{\lambda}{2\pi} \exp(\lambda x_1) \sin(2\pi x_2)$, and $p(x_1, x_2) = \frac{1}{2} \exp(2\lambda x_1) - \frac{\exp(4\lambda)-1}{8\lambda}$. Here $\lambda = \frac{\text{Re}}{2} - \sqrt{\frac{\text{Re}^2}{4}} + 4\pi^2$ and $\text{Re} = \frac{1}{\nu}$. This is also a solution of our problem with $\boldsymbol{f} = -(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}$ and $\boldsymbol{u}_D = \boldsymbol{u}|_{\Gamma}$.

Figure 1: History of convergence (k = 1, 2, 3) for e_h with uniform and adaptive $(\theta = 0.25)$ refinements, for the Kovasznay flow.

Figure 1 depicts the error \mathbf{e}_h (defined in (19)) versus the number of elements N, using uniform and adaptive ($\theta = 0.25$) refinements. Since the solution is smooth, we can see that the curves associated to uniform and adaptive refinements display the same order of convergence predicted by the theory, i.e, order $N^{-(k+1)/2}$. In addition, we observe that the adaptive strategy is able to provide errors with the same magnitude as the uniform refinement, but with fewer elements.

5.3 A singularly perturbed problem

We set $\nu = 0.01$ and $\alpha = 1$. The domain is the unit square $\Omega =]0, 1[\times]0, 1[$, and f, u_D are such that the exact solution is $u := (u_1, u_2)$, where $u_1(x_1, x_2) = x_2 - \frac{1 - \exp(x_2/\nu)}{1 - \exp(1/\nu)}$ and $u_2(x_1, x_2) = x_1 - \frac{1 - \exp(x_1/\nu)}{1 - \exp(1/\nu)}$, and $p(x_1, x_2) = x_1 - x_2$. This solution has boundary layers at $x_1 = 1$ and $x_2 = 1$. In Figure 2, we present the orders of convergence for \mathbf{e}_h using uniform and adaptive refinements, for k = 1, 2, 3. We recover the predicted rates of convergence, up to an expected loss of convergence on very coarse meshes due to the unresolved boundary layers. Figure 3 shows the initial mesh and the final mesh obtained with the adaptive scheme. We observe here how the estimator is properly localizing the boundary layers.

Figure 2: History of convergence for e_h with uniform and adaptive ($\theta = 0.25$) refinement (k = 1, 2, 3), singularly perturbed problem.

Figure 3: Initial (left, 16 elements) and final adapted (right, 2920 elements) meshes for the the singularly perturbed problem (k = 1).

5.4 The lid-driven cavity problem

For this test, we use the same domain as in the previous experiment. We set $\nu = 1$, $\alpha = 0$, f = 0and $u_D = (1,0)$, on $x_2 = 1$, and **0** on the rest of the boundary of Ω . Note that two singularities arise at the top corners of the domain, due to the discontinuities on the boundary condition. This fact is captured by our estimator by refining mainly in those corners as can be seen in Figure 4, where the initial and adapted ($\theta = 0.1$) meshes are displayed.

Figure 4: Initial (left, 16 elements) and adapted (right, 936 elements) meshes for the cavity problem (k = 1).

Funding

RA was partially supported by CONICYT-Chile through grant FONDECYT-1150174 and BASAL project CMM, Universidad de Chile; and Centro de Investigación en Ingeniería Matemática (CI²MA). MS was partially supported by CONICYT-Chile through grant FONDECYT-1160320 and BASAL project CMM, Universidad de Chile; and Centro de Investigación en Ingeniería Matemática (CI²MA). PV was partially supported by Scholarship Program of CONICYT-Chile.

References

- [1] BRINKMAN, H. C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. *App. Sci. Res. A* 1 (1947), 27–34.
- [2] CESMELIOGLU, A., COCKBURN, B., NGUYEN, N. C., AND PERAIRE, J. Analysis of HDG methods for Oseen equations. J. Sci. Comput. 55, 2 (May 2013), 392–431.
- [3] CESMELIOGLU, A., COCKBURN, B., AND QIU, W. Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. *Math. Comp.* 86, 306 (2017), 1643–1670.
- [4] CHEN, H., LI, J., AND QIU, W. Robust a posteriori error estimates for HDG method for convection-diffusion equations. *IMA J. Numer. Anal.* 36 (2016), 437–462.
- [5] CLÉMENT, P. Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9, R-2 (1975), 77–84.
- [6] COCKBURN, B., DONG, B., AND GUZMÁN, J. A superconvergent LDG-hybridizable galerkin method for second-order elliptic problems. *Math. Comp.* 77 (2008), 1887–1916.
- [7] COCKBURN, B., AND GOPALAKRISHNAN, J. The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. *SIAM J. Numer. Anal.* 47 (2009), 1092–1125.
- [8] COCKBURN, B., GOPALAKRISHNAN, J., AND LAZAROV, R. D. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. *SIAM J. Numer. Anal.* 47 (2009), 1319–1365.

- [9] COCKBURN, B., GOPALAKRISHNAN, J., NGUYEN, N. C., PERAIRE, J., AND SAYAS, F.-J. Analysis of HDG methods for Stokes flow. *Math. Comp.* 80 (2011), 723–760.
- [10] COCKBURN, B., GOPALAKRISHNAN, J., AND SAYAS, F.-J. A projection-based error analysis of HDG methods. *Math. Comp.* 79 (2010), 1351–1367.
- [11] COCKBURN, B., GUZMÁN, J., AND WANG, H. Superconvergent discontinuous Galerkin methods for second-order elliptic problems. *Math. Comp.* 78 (2009), 1–24.
- [12] COCKBURN, B., AND SAYAS, F.-J. Divergence-conforming HDG methods for Stokes flows. Math. Comp. 83 (2014), 1571–1598.
- [13] COCKBURN, B., AND ZHANG, W. A posteriori error estimates for HDG methods. J. Sci. Comput. 51 (2012), 582–607.
- [14] COCKBURN, B., AND ZHANG, W. A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51 (2013), 676– 693.
- [15] COCKBURN, B., AND ZHANG, W. An a posteriori error estimate for the variable-degree Raviart-Thomas method. *Math. Comp.* 83 (2014), 1063–1082.
- [16] DAUGE, M. Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. Part I. Linearized equations. SIAM J. Math. Anal. 20 (1989), 74–97.
- [17] DI PIETRO, D. A., AND ERN, A. Mathematical aspects of discontinuous Galerkin methods, vol. 69 of Mathématiques & Applications. Springer-Verlag, Berlin-Heilderber, 2012.
- [18] FU, G., JIN, Y., AND QIU, W. Parameter-free superconvergent H(div)-conforming HDG methods for the Brinkman equations. arXiv:1607.07662 [math.NA] (July 2016).
- [19] FU, G., QIU, W., AND ZHANG, W. An analysis of HDG methods for convection-dominated diffusion problems. ESAIM: M2AN 49, 1 (2015), 225–256.
- [20] GATICA, G. N., AND SEQUEIRA, F. A. Analysis of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 65, 3 (Dec 2015), 1270–1308.
- [21] GATICA, G. N., AND SEQUEIRA, F. A. A priori and a posteriori error analyses of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 69 (2016), 1192– 1250.
- [22] GATICA, G. N., AND SEQUEIRA, F. A. Analysis of the HDG method for the Stokes-Darcy coupling. Numer. Methods Partial Differential Equations 33, 3 (2017), 885–917.
- [23] GATICA, L. F., AND SEQUEIRA, F. A. A priori and a posteriori error analyses of an HDG method for the Brinkman problem. Preprint 2017-04, Centro de Investigación en Ingeniería Matemática (CI²MA), Universidad de Concepción, Chile (2017).
- [24] GIRAULT, V., AND RAVIART, P.-A. Finite element methods for Navier-Stokes equations. Theory and algorithms, vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986.
- [25] GRIEBEL, M., AND KLITZ, M. Homogenization and numerical simulation of flow in geometries with textile microstructures. *Multiscale Model. Simul.* 8 (2010), 1439–1460.

- [26] KARAKASHIAN, O. A., AND PASCAL, F. A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. *SIAM J. Numer. Anal.* 41 (2003), 2374–2399.
- [27] KAYA, T., AND GOLDAK, J. Three-dimensional numerical analysis of heat and mass transfer in heat pipes. *Heat Mass Transfer* 43 (2007), 775–785.
- [28] KELLOGG, R. B., AND OSBORN, J. E. A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21, 4 (1976), 397–431.
- [29] KOVASZNAY, L. I. G. Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44 (1948), 58–62.
- [30] LI, X. Principles of fuel cells. Taylor & Francis, New York, 2005.
- [31] NGUYEN, N. C., PERAIRE, J., AND COCKBURN, B. An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228, 9 (2009), 3232–3254.
- [32] NGUYEN, N. C., PERAIRE, J., AND COCKBURN, B. An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. J. Comput. Phys. 228, 23 (2009), 8841–8855.
- [33] NGUYEN, N. C., PERAIRE, J., AND COCKBURN, B. A hybridizable discontinuous Galerkin method for Stokes flow. *Comput. Methods Appl. Mech. Engrg. 199* (2010), 582–597.
- [34] NGUYEN, N. C., PERAIRE, J., AND COCKBURN, B. An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230, 4 (2011), 1147–1170.
- [35] PAYNE, L. E., AND WEINBERGER, H. F. An optimal Poincaré inequality for convex domains. Arch. Rat. Mech. Anal. 25 (1960), 286–292.
- [36] VERFÜRTH, R. A posteriori error estimators for convection-diffusion equations. Numer. Math. 80 (1998), 641–663.

Centro de Investigación en Ingeniería Matemática (CI²MA)

PRE-PUBLICACIONES 2017

- 2017-17 ELIGIO COLMENARES, GABRIEL N. GATICA, RICARDO OYARZÚA: A posteriori error analysis of an augmented fully-mixed formulation for the stationary Boussinesq model
- 2017-18 JAVIER A. ALMONACID, GABRIEL N. GATICA, RICARDO OYARZÚA: A mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity
- 2017-19 RAIMUND BÜRGER, ILJA KRÖKER: Computational uncertainty quantification for some strongly degenerate parabolic convection-diffusion equations
- 2017-20 GABRIEL N. GATICA, BRYAN GOMEZ-VARGAS, RICARDO RUIZ-BAIER: Mixedprimal finite element methods for stress-assisted diffusion problems
- 2017-21 SERGIO CAUCAO, GABRIEL N. GATICA, RICARDO OYARZÚA: Analysis of an augmented fully-mixed formulation for the non-isothermal Oldroyd-Stokes problem
- 2017-22 ROLANDO BISCAY, JOAQUIN FERNÁNDEZ, CARLOS M. MORA: Numerical solution of stochastic master equations using stochastic interacting wave functions
- 2017-23 GABRIEL N. GATICA, MAURICIO MUNAR, FILANDER A. SEQUEIRA: A mixed virtual element method for the Navier-Stokes equations
- 2017-24 NICOLAS BARNAFI, GABRIEL N. GATICA, DANIEL E. HURTADO: Primal and mixed finite element methods for deformable image registration problems
- 2017-25 SERGIO CAUCAO, GABRIEL N. GATICA, RICARDO OYARZÚA: A posteriori error analysis of an augmented fully-mixed formulation for the non-isothermal Oldroyd-Stokes problem
- 2017-26 RAIMUND BÜRGER, STEFAN DIEHL, MARÍA CARMEN MARTÍ: A conservation law with multiply discontinuous flux modelling a flotation column
- 2017-27 ANTONIO BAEZA, RAIMUND BÜRGER, PEP MULET, DAVID ZORÍO: Central WENO schemes through a global average weight
- 2017-28 RODOLFO ARAYA, MANUEL SOLANO, PATRICK VEGA: Analysis of an adaptive HDG method for the Brinkman problem

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: DIRECTOR, CENTRO DE INVESTIGACIÓN EN INGENIERÍA MATEMÁTICA, UNIVERSIDAD DE CONCEPCIÓN, CASILLA 160-C, CONCEPCIÓN, CHILE, TEL.: 41-2661324, o bien, visitar la página web del centro: http://www.ci2ma.udec.cl

Centro de Investigación en Ingeniería Matemática (CI²MA) **Universidad de Concepción**

Casilla 160-C, Concepción, Chile Tel.: 56-41-2661324/2661554/2661316http://www.ci2ma.udec.cl

