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Abstract

We introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the
gradient-velocity-pressure formulation of the Brinkman problem. We present an a priori error
analysis of the method, showing optimal order of convergence of the error. We also introduce an
a posteriori error estimator, of the residual type, which helps us to improve the quality of the
numerical solution. We establish reliability and local efficiency of our estimator for the L2-error
of the velocity gradient and the pressure and the H1-error of the velocity, with constants which
are independent of the physical parameters and the size of the mesh. In particular, our results
are also valid for the Stokes problem. Finally, we provide numerical experiments showing the
quality of our adaptive scheme.

Keywords: Brinkman equations; Stokes equations; hybridizable discontinuous Galerkin method;
a priori error analysis; a posteriori error analysis.

1 Introduction

The main goal of this work is to introduce and analyze a hybridizable discontinuous Galerkin (HDG)
method applied to the Stokes/Brinkman equations of an incompressible flow through porous media.
The problem can be formulated as follows

L−∇u = 0 in Ω, (1a)

−∇ · (νL) +∇p+ αu = f in Ω, (1b)

∇ · u = 0 in Ω, (1c)

u = uD on Γ, (1d)∫
Ω
p = 0, (1e)

where Ω ⊂ Rd (d = 2, 3) is a polygonal/polyhedral domain with Lipschitz boundary Γ, u is the
velocity, p is the pressure, ν > 0 is the effective viscosity of the fluid, α ≥ 0 is the quotient between
the dynamic viscosity and the permeability of the media, f ∈ L2(Ω)d is the external body force and
uD ∈ H1/2(Γ)d is the Dirichlet boundary data, assumed to satisfy

∫
Γ uD · n = 0 for compatibility.
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The Brinkman equation constitutes a generalization of the Darcy’s equation u = −α−1∇p that
describes the flow of a fluid through a porous mass with low particle density, i.e. a medium with
high permeability ([1]). It was motivated by the calculation of the viscous force exerted by a
flowing fluid on a dense swarm of particles, where the model includes the viscous effect to state
the equilibrium between the forces acting of a volume of fluid, i.e. the pressure gradient and the
damping force, αu, caused by the porous mass. Applications of the Brinkman equation arise, for
instance, from groundwater and oil reservoir modeling, composite manufacturing ([25]), heat pipes
([27]) and computational fuel cell dynamics ([30]).

Let us briefly describe the historic perspective of the development of HDG methods. The main
criticism of Discontinuous Galerkin (DG) methods is due to the fact that they have too many
globally coupled degrees of freedom. In order to overcome this drawback, [8] introduced a unifying
framework for hybridization of DG methods for diffusion problems, where the only globally coupled
degrees of freedom are those of the numerical traces on the inter-element boundaries. The reminder
unknowns are then obtained by solving local problems on each element. A particular type of
HDG methods, the LDG-hybridizable (LDG-H), approximates these local problems using a local
Discontinuous Galerkin (LDG) method ([8]). Using a special projection, [6] proved optimal order
of convergence of a type of LDG-H method where the stabilization parameter is set to be zero in all
but one face of each element. In addition, they also provided an element-by-element postprocessing
of the approximate solution having superconvergence properties. A larger class of LDG-H methods
where analyzed in [11] by also using special projections. Later, [10] simplified the analysis of these
methods by using a technique based on a suitable designed projection inspired by the form of the
numerical traces.

In addition to diffusion equations, in the context of fluid mechanics, HDG method have been
developed for a wide variety of problems such as convection-diffusion equation ([31, 32, 19]), Stokes
flow ([33, 9, 12, 7]), quasi-Newtonian Stokes flow ([20, 21]), Stokes-Darcy coupling ([22]), Brinkman
problem ([18, 23]), Oseen and Navier–Stokes equations ([2, 34, 3]), just to name few. Among
them, we focus on those that are closely related to our work. To be more precise, [7] derived
a class of HDG method for the Stokes problem considering a vorticity-velocity-pressure formula-
tion. They showed that the method can be hybridized in four different ways including tangential
velocity/pressure and velocity/average pressure hybridizations. The approach based on the veloc-
ity/average pressure hybridization was considered in [33] to devise an HDG method for the velocity
gradient-velocity-pressure formulation which was later analyzed by [9] by employing the projection-
based error analysis developed by [10].

On the other hand, the first HDG method for the Brinkman problem was proposed by [18] for
a velocity gradient-velocity-pressure formulation. Recently, [23] introduced and analyzed an HDG
method for the Brinkman problem in pseudostress-velocity formulation.

Few contributions on the development of a posteriori error estimators for HDG methods can be
found in the literature. Certainly, a posteriori error analyses of DG methods have been extensively
studied and a complete discussion can be found in [13, 14] and the references therein. The first a
posteriori error analysis for HDG methods was carried out in [13] for an LDG-H method applied to
a diffusion problem. There, the authors proposed an efficient and reliable residual-based estimator
that controls the error in q, the gradient of the scalar variable u, which only depends on the data
oscillation and on the difference between the trace of the approximation of u and its corresponding
numerical trace. The construction of this estimator relies in two key ingredients. The first one is
the use of an element-by-element postprocessing of the scalar variable u having superconvergence
properties. The second ingredient is the Oswald interpolation operator ([26, 17]) that provides a
continuous approximation of a discontinuous piecewise polynomial function. Based on this tech-
nique, [14], presented a unified a posteriori error analysis for diffusion problems, where general
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conditions on the approximation of the flux q are provided in order to obtain efficient and reliable
error estimators for a wide class of method. In the context of the convection-dominated diffusion
equation, [4] proposed a reliable and locally efficient residual-based error estimator for the HDG
method presented in [19] that controls the error measured in an energy norm. This estimator is ro-
bust in the sense of that the bounds of error are uniform with respect to the diffusion coefficient. The
authors also employed the Oswald interpolant and considered a weighted test function technique to
control the L2-norm of the scalar solution. However, they do not use the postprocessing technique
mentioned above since there is no superconvergence result for the HDG methods when the diffusion
parameter is too small. An alternative approach is to use the global inf-sup condition associated
to the continuous variational formulation which allows to directly bound the error in terms of the
residuals. This needs to be done carefully if applied to HDG methods since the spaces are not
necessarily conforming. In this direction, [21] proposed an error estimator for an augmented HDG
method applied to a class of quasi-Newtonian Stokes equations in velocity gradient-pseudostress-
velocity formulation. There, in order to be able to use the global inf-sup condition of the continuous
problem, the numerical trace of the velocity is eliminated from the scheme by expressing it in terms
of the intra-element unknowns, obtaining an equivalent discrete formulation. Moreover, the dis-
continuous approximation is postprocessed to construct an H(div,Ω)-conforming approximation of
the pseudostress that allows to obtain an efficient and reliable residual-based error estimator. In
addition, [23] employed similar techniques to propose a error estimator for an HDG method applied
to the Brinkman problem in pseudostress-velocity formulation.

The main contributions of our work are the introduction of an HDG method for Brinkman
equation, where the unknowns are de velocity, pressure and the gradient of the velocity, and its
a priori and a posteriori analysis. Even if the Stokes case (α = 0) has been introduced and
analyzed, without an a posteriori analysis, in [9], this is the first time that the analysis is extended
for Brinkman (α 6= 0) in the natural variables. In the a posteriori error analysis we propose a
reliable and locally efficient residual-based a posteriori error estimator for both Brinkman and
Stokes problems, using the Oswald interpolation operator and a postprocessing technique. As we
will see in Section 4, we propose a new postprocessed approximation of the velocity suited to the
Brinkman problem and show it superconverges with optimal order. In addition, all the constants
in the estimates are written explicitly in terms of the physical parameters α and ν.

The paper is organized as follows. In Section 2, we introduce the HDG method, notation and
basic definitions. In Section 3 we present an a priori error analysis for the HDG method. In Section
4, we introduce our a posteriori error estimator and state the main results concerning it. Finally,
in Section 5 we show numerical evidence, in dimension two, that validates our theoretical result
concerning the behavior of our scheme.

2 The method

2.1 Notation

Let {Th}h>0 be a family of conforming triangulations, made of simplexes K, of the domain Ω that
verifies the shape-regularity condition, i.e. there exists a positive constant σ such that hK/ρK ≤ σ
for all K ∈ Th and for all h > 0, where hK and ρK denote the diameter of K and the diameter
of the largest ball inside K, respectively. Let he be the diameter of a face/edge e. From now on,
we will use the word “face” even in the context of dimension two. We denote by E ih the set of
interior faces and by E∂h the set of boundary faces. We set Eh := E ih ∪ E∂h , ∂Th := {∂K : K ∈ Th},
ωe := {K ∈ Th : e ⊂ ∂K}. We will use bold and Roman letters to denote vector- and tensor-valued
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variables, respectively. For a tensor-valued function G and a vector-valued function v, we define

JGK =

{
G−n− + G+n+, e ∈ Eh \ E∂h

0, e ∈ E∂h
and JvK =

{
v+ − v−, e ∈ Eh \ E∂h
v − uD, e ∈ E∂h

,

where n denotes the outward unit normal vector to ∂K. We use the notation (·, ·)D and 〈·, ·〉D for
the L2-inner product on D ∈ Th and D ∈ Eh, respectively. Let us also define

|||v |||1,D :=
(
α‖v‖20,D + ν‖∇v‖20,D

)1/2
.

Finally, Pk(S) will denote the space of polynomials of total degree no greater than k ∈ N∪ {0},
with S a simplex or a face as appropriate.

To simplify the notation, in what follows, we will use a � b to denote a ≤ Cb, where C
is a generic constant depending only on the shape regularity constant σ, the domain Ω and the
polynomial degree k, but independent of h and the physical parameters of the equation.

2.2 An HDG method for the Brinkman problem

Let us consider the approximation spaces:

Gh := {G ∈ [L2(Th)]d×d : G|K ∈ [Pk(K)]d×d ∀K ∈ Th}, (2a)

V h := {v ∈ [L2(Th)]d : v|K ∈ [Pk(K)]d ∀K ∈ Th}, (2b)

Ph := {w ∈ L2(Th) : w|T ∈ Pk(K) ∀K ∈ Th}, (2c)

Mh := {µ ∈ [L2(Eh)]d : µ|e ∈ [Pk(e)]d ∀e ∈ Eh}. (2d)

Then, based on the method developed in [33] for the Stokes flow, we introduce an HDG formu-
lation for Brinkman problem (1) that approximates the exact solution (L,u, p,u|Eh) by the only
solution of the following scheme: Find (Lh,uh, ph, ûh) ∈ Gh × V h × Ph ×Mh such that

(Lh,G)Th + (uh,∇ ·G)Th − 〈ûh,Gn〉∂Th = 0, (3a)

(νLh,∇v)Th − (ph,∇ · v)Th + (αuh,v)Th − 〈νL̂hn− p̂hn,v〉∂Th = (f ,v)Th , (3b)

−(uh,∇q)Th + 〈ûh · n, q〉∂Th = 0, (3c)

〈ûh,µ〉Γ = 〈uD,µ〉Γ, (3d)

〈νL̂hn− p̂hn,µ〉∂Th\Γ = 0, (3e)

(ph, 1)Ω = 0, (3f)

for all (G,v, q,µ) ∈ Gh×V h×Ph×Mh. Here, νL̂hn− p̂hn := νLhn− phn− ντ(uh− ûh) on ∂Th
and τ is a positive stabilization function on ∂Th that we assume, without loss of generality, to be
of order one. For other choices of τ we refer to [9].

2.3 Local postprocessing of the vector solution

One of the features of HDG method is the construction of a local element-by-element postprocessing
u∗h of uh that approximates u with enhanced accuracy. In our case, we propose to construct u∗h
suited for the Brinkman problem as follows. We seek u∗h ∈ V ∗h := {w ∈ [L2(Ω)]d : w|K ∈
[Pk+1(K)]d ∀K ∈ Th} such that, for all K ∈ Th, it satisfies

ν(∇u∗h,∇w)K + α(u∗h,w)K = ν(Lh,∇w)K + α(uh,w)K ∀w ∈ [Pk+1(K)]d (4a)
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and, if α = 0, also satisfies the following equation

(u∗h,w)K = (uh,w)K ∀w ∈ [P0(K)]d. (4b)

It’s straightforward to see that u∗h is well defined. Moreover, this new approximations will play a
crucial role in the a posteriori error analysis as we will see in Section 4.

3 A priori error analysis

The a priori error estimates are carried out by using the projection-based analysis in [9], which
consists of introducing a suitable projection Πh that helps us to write the error as the sum of an
approximation error and a projection of the error. To be more precise, let (L,u, p) ∈ [H1(Th)]d×d×
[H1(Th)]d ×H1(Th). Then, Πh(L,u, p) := (ΠGL,ΠV u,ΠP p) ∈ Gh ×V h ×Ph is defined as the only
solution of

(ΠGL,G)K = (L,G)K ∀G ∈ [Pk−1(K)]d×d, (5a)

(ΠV u,v)K = (u,v)K ∀v ∈ [Pk−1(K)]d, (5b)

(ΠP p, q)K = (p, q)K ∀q ∈ Pk−1(K), (5c)

(tr ΠGL, q)K = (tr L, q)K ∀q ∈ Pk(K), (5d)

〈νΠGLn−ΠP pn− νΠV u,µ〉e = 〈νLn− pn− νu,µ〉e ∀µ ∈ [Pk(e)]d, (5e)

for all K ∈ Th and e ⊂ ∂K. This projection has the following approximation properties.

Lemma 3.1. Let `u, `σ, `L, `p ∈ [0, k]. On each K ∈ Th it holds

‖ΠV u− u‖0,K � h`u+1
K |u|`u+1,K + h`σ+1

K ν−1|∇ · (νL− pI)|`σ ,K ,

‖ΠGL− L‖0,K � h`L+1
K |L|`L+1,K + ‖ΠV u− u‖0,K + h`u+1

K |u|`u+1,K ,

‖ΠP p− p‖0,K � h
`p+1
K |p|`p+1,K + ν‖ΠGL− L‖0,K + h`L+1

K ν|L|`L+1,K .

Proof. See Theorems 2.1 and 2.3 in [9].

Now, let PMu be the L2-projection of u into Mh. Then, the projection of the errors ΠGL−Lh,
ΠV u− uh, PMu− ûh and ΠP p− ph satisfy the the following equations

Lemma 3.2. For all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh it holds

(ΠGL− Lh,G)Th + (ΠV u− uh,∇ ·G)Th − 〈PMu− ûh,Gn〉∂Th = (ΠGL− L,G)Th ,

−(∇ · (ν(ΠGL− Lh)),v)Th + α(ΠV u− uh,v)Th + (∇(ΠP p− ph),v)Th
+ν〈ΠV u− uh − PMu+ ûh,v〉∂Th = 0,

−(ΠV u− uh,∇q)Th + 〈PMu− ûh, qn〉∂Th = 0,

〈PMu− ûh,µ〉Γ = 0,

〈ν(ΠGL− Lh)n− (ΠP p− ph)n− (ΠV u− uh − PMu+ ûh),µ〉∂Th\Γ = 0,

(ΠP p− ph, 1)Ω = (ΠP p− p, 1)Ω.

Proof. The result is an extension of Lemma 3.1 in [9] to our HDG method.
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Lemma 3.3. We have

ν‖ΠGL− Lh‖20,Th+α‖ΠV u− uh‖20,Th+ν‖ΠV u− uh − (PMu− ûh)‖20,∂Th =ν(ΠGL− L,ΠGL− Lh)Th .

Proof. It follows by taking G = ν(ΠGL−Lh), v = ΠV u−uh, q = ΠP p− ph and µ = PMu− ûh in
the first five equations of Lemma 3.2 and adding them up.

Let us emphasize that, if α 6= 0, Lemma 3.3 provides a bound for all the projection of the errors
in terms of the approximation error ‖ΠGL − Lh‖0,Th . As a consequence, if the solution is smooth
enough, this lemma guaranties that the L2-norm of the projection of the error of all the variables
is of order hk+1. On the other hand, by a duality argument, it is possible to show that actually
‖ΠV u−uh‖0,Th is of order hk+2 under regularity assumptions. More precisely, given θ ∈ [L2(Ω)]d,
let (Φ,φ, φ) be the solution of:

Φ +∇φ = 0 in Ω, (6a)

∇ · (νΦ)−∇φ+ αφ = θ in Ω, (6b)

−∇ · φ = 0 in Ω, (6c)

φ = 0 on ∂Ω. (6d)

Since θ − αφ ∈ [L2(Ω)]d, (6) has the same regularity as the Stokes problem. Hence, we assume
Φ ∈ H2(Ω)d×d, φ ∈ H2(Ω)d and φ ∈ H1(Ω). This assumption holds, for instance, if Ω is convex
([28, 16]). In addition, we assume

ν‖Φ‖1,Ω + α‖φ‖2,Ω + ‖φ‖1,Ω � ‖θ‖0,Ω. (7)

Lemma 3.4. If the elliptic regularity estimate (7) holds, we have

‖ΠV u− uh‖0,Th �
(
hmin{k,1} + α1/2h

)
‖ΠGL− L‖0,Th .

Proof. We follow the ideas on [9]. Let θ ∈ [L2(Ω)]d. Using (5), (6) and Lemma 3.2 we obtain

(ΠV u− uh,θ)Th = ν(ΠGL− L,Φ− Pk−1Φ)Th +ν(Lh − L,ΠGΦ− Φ)Th + α(ΠV u− uh,φ−ΠV φ)Th ,

where Pku the L2-projection of u into [Pk(K)]d.
We notice that ν‖Φ−Pk−1Φ‖0,Th � νhmin{k,1}‖Φ‖min{k,1},Ω � hmin{k,1}‖θ‖0,Ω. Moreover, apply-

ing the first two estimates of Lemma 3.1 to the solution of (6) (with `σ = 0 and `u = min{k, 1}) and

(7), we have that ν‖Φ−ΠGΦ‖0,K � hmin{k,1}
K ‖θ‖0,K . From Lemma 3.3 we get α1/2‖ΠV u−uh‖0,Th ≤

ν1/2‖ΠGL−L‖0,Th and, thanks to the first estimate of Lemma 3.1 applied to φ and by (7), we obtain
that α1/2‖φ−ΠV φ‖0,Th � α1/2h‖θ‖0,Ω. The result follows by applying Cauchy-Schwarz inequality
to the above identity and taking θ = ΠV u− uh.

Lemma 3.5. We have ‖ΠP p− ph − ΠP p− ph‖0,Th � ν‖ΠGL− L‖0,Th, where q is the average of q
over Ω.

Proof. The result follows using Lemma 3.2 and Propositions 3.4 and 3.9 in [9].

In the next results, we summarize the a priori error estimates of our numerical scheme.
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Theorem 3.1. Let (L,u, p) and (Lh,uh, ph, ûh) the solution of (1) and (3), respectively. Then

‖L− Lh‖0,Th � ‖ΠGL− Lh‖0,Th , (8a)

‖p− ph‖0,Th � ‖ΠP p− p‖0,Th + ν‖ΠGL− L‖0,Th , (8b)

α1/2‖u− uh‖0,Th � ν
1/2‖ΠGL− Lh‖0,Th + α1/2‖ΠV u− u‖0,Th . (8c)

Moreover, if (7) holds, then

‖u− uh‖0,Th ≤ ‖ΠV u− u‖0,Th +
(
hmin{k,1} + (α/ν)1/2h

)
‖ΠGL− L‖0,Th , (8d)

Proof. It is consequence of Lemma 3.4, Lemma 3.5 and equation (3.3), considering that ‖ΠP p− ph‖0,Th
≤ ‖ΠP p− ph‖0,Ω.

Theorem 3.2. Let u∗h the approximation defined in (4) and assume that (7) holds, then

‖u− u∗h‖0,Th �
(

1 + (α/ν)1/2h
)
hlu+2|u|lu+2,Th + ‖ΠV u− uh‖0,Th + h‖L− Lh‖0,Th

+ (α/ν)1/2h(‖u− uh‖0,Th + ‖ΠV u− uh‖0,Th), (9a)

ν1/2|u− u∗h|1,Th � (ν1/2 + α1/2h)hlu+1|u|lu+2,Th + ν1/2‖L− Lh‖0,Th
+ α1/2(‖u− uh‖0,Th + ‖ΠV u− uh‖0,Th), (9b)∑

e∈Eh

h1/2
e ‖Ju∗hK‖0,e � ‖u− u∗h‖

1/2
0,Th

(
‖u− u∗h‖20,Th + h2|u− u∗h|21,Th

)1/4
. (9c)

Proof. Let PV∗u be the L2-projection of u into V ∗h and decompose

u− u∗h = (u− PV∗u) +w + P0(PV∗u− u∗h), (10)

where w := (I− P0)(PV∗u−u∗h). Let us first point out two key ingredients in this proof. We observe
that the definition of u∗h implies

P0uh = P0u
∗
h. (11)

This is clearly true if α = 0 because of (4b). If α 6= 0, this identity is obtained by taking w = (1, 0)
and w = (0, 1) in (4a). In addition, for each K ∈ Th we notice that

‖P0(PV∗u− uh)‖0,K = ‖P0(ΠV u− uh)‖0,K ≤ ‖ΠV u− uh‖0,K . (12)

Now, let K ∈ Th. Combining (10)-(12), the approximation properties of the L2-projection PV∗

and the fact that ‖w‖0,K � hK |w|1,K ([35]), we get

‖u− u∗h‖0,K � h
lu+2
K |u|lu+2,K + ‖ΠV u− uh‖0,K + hK |w|1,K . (13a)

Moreover

ν1/2|u− u∗h|1,K � ν1/2hlu+1
K |u|lu+2,K + ν1/2|w|1,K . (13b)

On the other hand, adding and subtracting α(u,w)K to the right hand side of (4a), and considering
that L = ∇u, we obtain

ν(∇u∗h,∇w)K + α(u∗h,w)K = ν(Lh − L,∇w)K + α(uh − u,w)K + ν(∇u,∇w)K + α(u,w)K .
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This identity, together with (11), implies

ν|w|21,K + α‖w‖20,K = ν(L− Lh,∇w)K + α(u− uh,w)K + ν(∇(PV∗u− u),∇w)K + α(PV∗u− u,w)K

− α(P0(PV∗u− uh),w)K .

Then, thanks to Cauchy-Schwarz inequality, (12) and the approximation properties PV∗ , we get

ν1/2|w|1,K + α1/2‖w‖0,K � ν1/2‖L− Lh‖0,K + α1/2‖u− uh‖0,K
+ ν1/2hlu+1

K |u|lu+2,K + α1/2hlu+2
K |u|lu+2,K + α1/2‖ΠV u− uh‖0,K .

This inequality allows us to bound |w|1,K in (13a) and (13b), obtaining (9b) and

‖u− u∗h‖0,K � h
lu+2
K |u|lu+2,K + ‖ΠV u− uh‖0,K + hK‖L− Lh‖0,K

+ (α/ν)1/2hK

(
‖u− uh‖0,K + ‖ΠV u− uh‖0,K + hlu+2

K |u|lu+2,K

)
,

which implies (9a).

Finally, by trace inequality, we have he‖v‖20,e � ‖v‖0,K
(
‖v‖20,K + h2

K |v|21,K
)1/2

∀v ∈ [H1(K)]d.

This implies∑
e∈Eh

he‖Ju∗hK‖20,e �
∑
e∈Eh

∑
K′∈ωe

he‖u− u∗h|K′‖20,e

�
∑
e∈Eh

∑
K′∈ωe

‖u− u∗h‖0,K′
(
‖u− u∗h‖20,K′ + h2

K′ |u− u∗h|21,K′
)1/2

and (9c) follows.

4 A posteriori error analysis

4.1 Preliminaries

We start by introducing estimates needed to prove our main results. First, in the next lemma, we
state the approximation properties of the Clément interpolation operator Ch : L1(Ω)→ V 1,c

h ∩H
1
0 (Ω),

introduced in [5], as

Chw :=
∑
z∈N ih

(
1

|Ωz|

∫
Ωz

w dx

)
φz,

where φz is the P1 nodal basis functions associated to the interior vertex z, Ωz := supp φz, and
V 1,c
h := {w ∈ C(Ω) : w|K ∈ P1(K), K ∈ Th}.

Lemma 4.1. For any K ∈ Th, e ∈ E ih and 0 ≤ m ≤ 1, the following estimates hold for any
w ∈ H1

0 (Ω):

‖Chw‖m,Ω � ‖w‖m,Ω, ‖w − Chw‖0,K � θK |||w |||1,∆K
, ‖w − Chw‖0,e � ν−1/4θ1/2

e |||w |||1,∆e ,

where θS := min{hSν−1/2, α−1/2}, with S an element K ∈ Th or a face e ∈ Eh, ∆K := {K ′ ∈ Th :
K ′ ∩K 6= ∅} and ∆e := {K ′ ∈ Th : K ′ ∩ e 6= ∅}.

Proof. See Lemma 3.2 in [36].
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The next result shows that an element w of V ∗h can be approximated by a continuous function
w̃ ∈ V ∗h, its Oswald interpolation, and that the approximation error can be controlled by the size
of the inter-element jumps of w.

Lemma 4.2. Let Dγ the row-wise gradient or identity operator (for |γ| = 1 or |γ| = 0, respectively).
For any wh ∈ V ∗h and any multi-index γ with |γ| = 0, 1 the following approximation result holds:
Let g be the restriction to Γ of a function in V ∗h ∩ [H1(Ω)]d. Then there exists a function w̃h ∈
V ∗h ∩ [H1(Ω)]d satisfying w̃h|Γ = g and∑

K∈Th

‖Dγ(wh − w̃h)‖20,K �
∑
e∈Eih

h1−2|γ|
e ‖JwhK‖20,e +

∑
e∈E∂h

h1−2|γ|
e ‖g −wh‖20,e.

Proof. Apply Theorem 2.2 in [26] to each component.

To avoid nonessential technical difficulties, we make the following assumption
Assumption H: We assume that the Dirichlet boundary data uD is the trace of a continuous

function in V ∗h and f a piecewise polynomial function. Otherwise, high order terms associated to
oscillations involving uD and f will appear.

Finally, in order to prove the local efficiency of the error estimator, we need to construct suitable
local cut-off functions which will allow us to localize the error analysis. More precisely, let BK :=
Πd+1
i=1 λi be the element-bubble function associated to K ∈ Th, where {λi}d+1

i=1 are the barycentric
coordinates of K, and Be := Πd+1

i=1
i 6=j

λi be the face-bubble function associated to e ⊂ ∂K, where λj

vanishes on e.

Lemma 4.3. The following estimates hold for all v ∈ [Pk(K)]d, K ∈ Th, µ ∈ [Pk(e)]d, and e ∈ Eh:

‖v‖20,K � (v, BKv)K , ‖BKv‖0,K � ‖v‖0,K , |||BKv |||1,K � θ−1
K ‖v‖0,K ,

‖µ‖20,e � (µ, Beµ)e, ‖Beµ‖0,ωe � ν1/4θ1/2
e ‖µ‖0,e, |||Beµ |||1,ωe � ν1/4θ−1/2

e ‖µ‖0,e.

Proof. The proof is an extension of Lemma 3.3 in [36].

4.2 A posteriori error estimator

For each K ∈ Th, we propose the following local error estimator

η2
K := θ2

K‖f +∇ · (νLh)−∇ph − αu∗h‖20,K + ν‖Lh −∇u∗h‖20,K + ν‖∇ · u∗h‖20,K (14)

+
1

2

∑
e∈Eih∩∂K

(
ν−1/2θe‖JνLh − phIK‖20,e + νh−1

e ‖Ju∗hK‖20,e
)

+
∑

e∈E∂h∩∂K

νh−1
e ‖uD − u∗h‖20,e

and its global version ηh :=
(∑

K∈Th η
2
K

)1/2
. Here we recall θK and θe were defined in Lemma 4.1

and u∗h is the postprocessed solution constructed in (4).
Note that the three volumetric terms are the residuals associated to the equilibrium equation,

the constitutive equation and the incompressibility condition, respectively. At the same time, the
jumps across the faces allude to the continuity of the trace of u and the normal trace of νL − pI,
in case of enough regularity of the continuous solution. We will see that our estimator converges to
zero with order of min{`u, `L, `σ}+ 1 and, if L, u and p have enough regularity, with order k + 1.

Now, we present intermediate results that will allow us to prove our main theorems. We proceed
adapting and extending the techniques introduced in [9], [13] and [14] to the Brinkman problem.
We emphasize that we keep track the dependence on ν and α.

We start by showing two lemmas that will allow us to prove the reliability of our estimator.
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Lemma 4.4. Let (L,u, p) the solution of (1) and (Lh,uh, ph, ûh) the solution of (3). Then

ν−1/2‖p − ph‖0,Th � Cα,ν

{
ν1/2‖L− Lh‖0,Th+ α1/2‖u− ũ∗h‖0,Th+ α1/2‖u∗h − ũ

∗
h‖0,Th

+ ν1/2‖Lh−∇u∗h‖0,Th+
∑
K∈Th

(
θK‖f+∇ · (νLh)−∇ph−αu∗h‖0,K+

1

2

∑
e∈Eih∩∂K

ν−1/4θ1/2
e ‖JνLh−phIK‖0,e

)}
,

where ũ∗h is the Oswald interpolation of the postprocessed velocity u∗h and Cα,ν := max{1, (α/ν)1/2}.

Proof. Note that, for q ∈ L2
0(Ω), we have ([24], Chapter 1, Corollary 2.4)

ν−1/2‖q‖0,Th � sup
w∈H1

0 (Ω)d\{0}

(q,∇ ·w)Th
ν1/2‖∇w‖0,Th

.

We take q = p− ph which is in L2
0(Ω) because of (1e) and (3f). Then, we use the above inf-sup

condition estimate ν−1/2‖p− ph‖0,Th . More precisely, for w ∈ H1
0 (Ω)d we get

(p− ph,∇ ·w)Th = −ν(∇ · (L− Lh),w)Th + α(u− u∗h,w)Th − (f +∇ · (νLh)−∇ph − αu∗h,w)Th
+ 〈(p− ph)n,w〉∂Th

after integrating by parts, by using (4a) and rearranging the expression. Then,

(p− ph,∇ ·w)Th = ν(L− Lh,∇w)Th + α(u− u∗h,w)Th − (f +∇ · (νLh)−∇ph − αu∗h, (Id− Ch)w)Th
+ 〈JνLh − phIK, (Id− Ch)w〉Eih +R,

where R := −(f +∇ · (νLh)−∇ph − αu∗h, Chw)Th + 〈νLhn− phn, Chw〉∂Th .
On the other hand, after integrating by parts and using (4a), (3b) reads

(f +∇ · (νLh)−∇ph − αu∗h,v)Th + ν(Lh −∇u∗h,∇v)Th = 〈νLhn− phn,v〉∂Th − 〈νL̂hn− p̂hn,v〉∂Th

for all v ∈ V 1,c
h := {v ∈ H1

0 (Ω)d : v|K ∈ [P1(K)]d ∀K ∈ Th}. Then, since v|e ∈ [Pk(e)]d for all
e ∈ Eh and using (3e), we get

(f +∇ · (νLh)−∇ph − αu∗h,v)Th + ν(Lh −∇u∗h,∇v)Th = 〈νLhn− phn,v〉∂Th\Γ ∀v ∈ V 1,c
h .

(15)

Now, taking v := Chw ∈ V 1,c
h ⊂ [Pk+1(Th)]d and using (15), we see that R = ν (Lh −∇u∗h,∇Chw)Th .

Thus,

(p − ph,∇ ·w)Th ≤ ν‖L− Lh‖0,Th‖∇w‖0,Th + α‖u− u∗h‖0,Th‖w‖0,Th + ν‖Lh −∇u∗h‖0,Th‖∇Chw‖0,Th
+ ‖f +∇ · (νLh)−∇ph − αu∗h‖0,Th‖(Id− Ch)w‖0,Th + ‖JνLh − phIK‖0,Eih‖(Id− Ch)w‖0,Eih

� Cα,ν

{
ν1/2‖L− Lh‖0,Th + α1/2‖u− ũ∗h‖0,Th + α1/2‖u∗h − ũ

∗
h‖0,Th+ν1/2‖Lh −∇u∗h‖0,Th

+
∑
K∈Th

(
θK‖f +∇ · (νLh)−∇ph − αu∗h‖0,K +

1

2

∑
e∈Eih∩∂K

ν−1/4θ1/2
e ‖JνLh − phIK0,e

)}
ν1/2‖∇w‖0,Ω,

where we used the stability property of the Clément interpolator, Poincaré inequality, Lemma
4.1 and the regularity of the mesh. The result follows from dividing the above inequality by
ν1/2‖∇w‖0,Ω.
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Lemma 4.5. Let (L,u, p) the solution of (1) and (Lh,uh, ph, ûh) the solution of (3). Then

ν‖L− Lh‖20,Th + α‖u− ũ∗h‖20,Th � Cα,ν
(
η2
h + ν‖∇(u∗h − ũ

∗
h)‖20,Th

)
+ α‖u∗h − ũ

∗
h‖20,Th .

Proof. Let ũ∗h ∈ [H1(Ω)]d the Oswald interpolation of u∗h. Using equations (1) and integrating by
parts, we obtain

ν‖L− Lh‖20,Th + α‖u− ũ∗h‖20,Th = ν(L− Lh,L− Lh)Th + (α(u− ũ∗h),u− ũ∗h)Th = ν(L− Lh,L− Lh)Th

+ (f +∇ · (νLh)−∇ph − αu∗h,u− ũ
∗
h)Th + (∇ · ν(L− Lh),u− ũ∗h)Th − (∇(p− ph),u− ũ∗h)Th .

Thus, we write ν‖L− Lh‖20,Th + α‖u− ũ∗h‖20,Th =
∑

K∈Th T1,K + T2,K + T3,K , where

T1,K := (f +∇ · (νLh)−∇ph − αu∗h,u− ũ
∗
h)K + 〈ν(L− Lh)n,u− ũ∗h〉∂K\Γ − 〈(p− ph)n,u− ũ∗h〉∂K\Γ,

T2,K := (p− ph,∇ · (u− ũ∗h))K and T3,K := −ν(L− Lh,Lh −∇ũ∗h)K .

Since u− ũ∗h ∈ H1
0 (Ω)d (Lemma 4.2 with g = uD), and νL− pI ∈ H(div,Ω)d, we get∑

K∈Th

T1,K = (f+∇ · (νLh)−∇ph−αu∗h, (Id−Ch)(u− ũ∗h))Th−〈νLhn− phn, (Id−Ch)(u− ũ∗h)〉∂Th\Γ+T,

where T := (f +∇ · (νLh)−∇ph − αu∗h, Ch(u− ũ∗h))Th − 〈Lhn− phn, Ch(u− ũ∗h)〉∂Th\Γ.

Now, taking w = Ch(u− ũ∗h) in (15), we get T = −ν(Lh −∇u∗h,∇Ch(u− ũ∗h))Th . Thus,∑
K∈Th

T1,K = (f +∇ · (νLh)−∇ph − αu∗h, (Id− Ch)(u− ũ∗h))Th +〈JνLh−phIK, (Id− Ch)(u− ũ∗h)〉Eih+T

�
∑
K∈Th

θ2
K‖f +∇ · (νLh)−∇ph − αu∗h‖20,K +

∑
e∈Eih

ν−1/2θe‖JνLh − phIK‖20,e + ν‖Lh −∇u∗h‖20,Th

+
1

24

∑
K∈Th

θ−2
K ‖(Id− Ch)(u− ũ∗h)‖20,K +

∑
e∈Eih

ν1/2θ−1
e ‖(Id−Ch)(u− ũ∗h)‖20,e+ν‖∇Ch(u− ũ∗h)‖20,Th

,
thanks to Cauchy-Schwarz and Young inequalities. Finally, using Lemma 4.1 and the regularity of
the mesh, we get

∑
K∈Th

T1,K �
∑
K∈Th

(
θ2
K‖f +∇ · (νLh)−∇ph − αu∗h‖20,K +

1

2

∑
e∈Eih∩∂K

ν−1/2θe‖JνLh − phIK‖20,e

+ ν‖Lh −∇u∗h‖20,K

)
+

1

8
|||u− ũ∗h |||21,Th . (16)

On the other hand, since u is divergence-free, we obtain∑
K∈Th

T2,K = −(p− ph,∇ · ũ∗h)Th ≤
1

12
C−2
α,νν

−1‖p− ph‖20,Th + C2
α,νν‖∇ · ũ

∗
h‖20,Th

� 1

12
C−2
α,νν

−1‖p− ph‖20,Th + C2
α,νν‖∇(u∗h − ũ

∗
h)‖20,Th + C2

α,νν‖∇ · u∗h‖20,Th . (17)
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For the third term we have∑
K∈Th

T3,K ≤
1

12
ν‖L− Lh‖20,Th + ν‖Lh −∇u∗h‖20,Th + ν‖∇(u∗h − ũ

∗
h)‖20,Th . (18)

Finally, using estimates (16)-(18), Lemma 4.4, the definitions of ||| · |||1,Th and ηh, we get

ν‖L− Lh‖20,Th + α‖u− ũ∗h‖20,Th
� C2

α,ν

(
η2
h + ν‖∇(u∗h − ũ

∗
h)‖20,Th

)
+ α‖u∗h − ũ

∗
h‖20,Th +

1

2

(
ν‖L− Lh‖20,Th + α‖u− ũ∗h‖20,Th

)
and the result follows.

The next four lemmas provide us the tools to prove local efficiency of our estimator.

Lemma 4.6. Let e ∈ E ih, then

ν−1/2θe‖JνLh − phIK‖20,e�
∑
K∈ωe

(
ν‖L−Lh‖20,K+ν−1‖p−ph‖20,K+θ2

K‖f +∇ · (νLh)−∇ph − αu∗h‖20,K
)
.

Proof. For any v ∈ H1
0 (ωe)

d we have

〈JνLh − phIK,v〉e =
∑
K∈ωe

(〈ν(Lh − L)n,v〉∂K + 〈(p− ph)n,v〉∂K)

=
∑
K∈ωe

((ν(Lh − L),∇v)K + (ν∇ · (Lh − L),v)K + (∇(p− ph),v)K + (p− ph,∇ · v)K)

=
∑
K∈ωe

((ν(Lh − L),∇v)K + (p− ph,∇ · v)K + (α(u− u∗h),v)K + (f +∇ · (νLh)−∇ph − αu∗h,v)K)

≤
∑
K∈ωe

(
ν1/2‖L−Lh‖0,K+ν−1/2‖p−ph‖0,K+α1/2‖u−u∗h‖0,K+θK‖f+∇ · (νLh)−∇ph−αu∗h‖0,K

)
Tv,

where Tv := ν1/2‖∇v‖0,K + ν1/2‖∇ · v‖0,K + α1/2‖v‖0,K + θ−1
K ‖v‖0,K .

On the other hand, taking v := BeJνLh − phIK and applying Lemma 4.3, we get

Tv � |||v |||1,K + θ−1
e ‖v‖0,K � ν1/4θ−1/2

e ‖JνLh − phIK‖0,e.

Thus, the result follows from Lemma 4.3 and the shape-regularity assumption.

Lemma 4.7. For any element K ∈ Th we have

θK‖f +∇ · (νLh)−∇ph − αu∗h‖0,K � ‖ν1/2(L− Lh)‖0,K + ‖α1/2(u− u∗h)‖0,K + ‖ν−1/2(p− ph)‖0,K .

Proof. Let v = f +∇ · (νLh)−∇ph − αu∗h then

(v, BKv)K = −ν(∇ · (L− Lh), BKv)K + (∇(p− ph), BKv)K + α(u− u∗h, BKv)K

= ν(L− Lh,∇BKv)K − (p− ph,∇ ·BKv)K + α(u− u∗h, BKv)K

� (ν1/2‖L− Lh‖0,K+ν−1/2‖p− ph‖0,K+α1/2‖u− u∗h‖0,K) |||BKv|||1,K .

Thus, the result follows from Lemma 4.3.
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Now, note that to prove an upper bounds for the jump of the postprocessed velocity we will use
the decomposition of νh−1

e ‖Ju∗hK‖20,e into νh−1
e ‖PM0Ju

∗
hK‖20,e and νh−1

e ‖(Id− PM0)Ju
∗
hK‖20,e, where,

PM0 is the L2-orthogonal projection into

M0,h := {µ ∈ [L2(Eh)]d : µ|e ∈ [P0(e)]d ∀e ∈ Eh}.

Lemma 4.8. For each face e ∈ Eh we have that h−1
e ‖PM0Ju

∗
hK‖20,e � ‖Lh −∇u∗h‖20,ωe.

Proof. Let G a tensor-valued function with rows in RT0(K) and set w := ∇ ·G ∈ [P0(K)]d. Then,
from (4a) (or (4b) if α = 0) we get that (3a) can be written as

(Lh,G)K + (u∗h,∇ ·G)K = 〈ûh,Gn〉∂K .

Thus, integrating by parts, we arrive at (Lh − ∇u∗h,G)K = 〈ûh − u∗h,Gn〉∂K . For the rest of the
proof we refer to Lemma 3.4 in [15], adapted to vector-valued functions.

Now, for the remaining term in the decomposition of νh−1
e ‖Ju∗hK‖20,e, we have the following

estimate.

Lemma 4.9. For each face e ∈ Eh, h−1
e ‖(Id− PM0)Ju

∗
hK‖20,e � ‖∇(u− u∗h)‖20,ωe.

Proof. See Lemma 3.5 in [15].

4.3 The main results

For each K ∈ Th we define the local error

e2
K := ν‖L− Lh‖20,K + α‖u− u∗h‖20,K + ν‖∇(u− u∗h)‖20,K + ν−1‖p− ph‖20,K , (19)

and its global version given by eh :=
(∑

K∈Th e2
K

)1/2
.

Now, we can state and prove the reliability and efficiency results for our a posteriori error
estimator.

Theorem 4.1 (Reliability).

eh � Cα,ν

ηh +
∑
e∈Eh

ν1/2h1/2
e ‖Ju∗hK‖0,e

 .

Proof. Thanks to Lemmas 4.4, 4.5 and the fact that, for each K ∈ Th, ν1/2‖∇(u − u∗h)‖0,K �
ν1/2‖L− Lh‖0,K + ηK , we get

ν‖L− Lh‖20,Th + |||u− u∗h |||21,Th + ν−1‖p− ph‖20,Th � η
2
h + ν‖∇(u∗h − ũ

∗
h)‖20,Th + α‖(u∗h − ũ

∗
h)‖20,Th .

The result follows from Lemma 4.2, taking wh = u∗h to bound the second and third terms on the
right-hand side and the definition of Cα,ν .

13



Remark 4.1. Note that if α = 0 (Stokes problem), then Cα,ν = 1. Thus, to obtain an estimate for
the L2 norm of the error of the velocity, we proceed as follows

ν1/2‖u− u∗h‖0,Th ≤ ν
1/2‖u− ũ∗h‖0,Th + ν1/2‖u∗h − ũ

∗
h‖0,Th

� ν1/2‖∇(u− ũ∗h)‖0,Th +
∑
e∈Eh

ν1/2h1/2
e ‖Ju∗hK‖0,e � ηh +

∑
e∈Eh

ν1/2h1/2
e ‖Ju∗hK‖0,e,

thanks to Poincaré inequality, Lemma 4.2 and the bound for ν1/2‖∇(u − ũ∗h)‖0,Th from Theorem
4.1.

Theorem 4.2 (Efficiency). Let K ∈ Th and ωK := {K ′ ∈ Th : K ′ ∈ ωe and e ∈ Eh ∩ ∂K}, then

ηK � eωK .

Proof. By definition of ηK , Lemmas 4.6-4.9, and the inequalities ‖Lh −∇u∗h‖0,K ≤ ‖L− Lh‖0,K +
‖∇(u− u∗h)‖0,K and ‖∇ · u∗h‖0,K = ‖∇ · (u− u∗h)‖0,K � ‖∇(u− u∗h)‖0,K , we have that

η2
K � ν‖L− Lh‖20,K+α‖u− u∗h‖20,K+ν−1‖p−ph‖20,K+ν‖Lh−∇u∗h‖20,K + ν‖∇ · u∗h‖20,K+ν‖L− Lh‖20,ωK
+ ν−1‖p− ph‖20,ωK +

∑
K′∈ωK

θ2
K′‖f +∇ · (νLh)−∇ph − αu∗h‖20,K′ + ν‖∇(u− u∗h)‖20,ωK +ν‖Lh −∇u∗h‖20,ωK

� ν‖L− Lh‖20,ωK + |||u− u∗h |||21,ωK + ν−1‖p− ph‖20,ωK ,

and the result follows.

Remark 4.2. Using (9c), and assuming enough regularity on L, u and p, we can see that the term∑
e∈Eh ν

1/2h
1/2
e ‖Ju∗hK‖0,e is a high order term. Its order of convergence is min{`u, `L, `σ}+ 2 while

the one associated to the estimator and the error is min{`u, `L, `σ}+ 1.

5 Numerical experiments

In this section, we provide numerical simulations, for d = 2, illustrating the performance of the
scheme and validating our main results in Theorems 4.1 and 4.2. In all the examples we consider
different values of the polynomial degree (k = 1, 2 and 3), and set the stabilization parameter τ to
be 1 on each edge. The values of the physical parameters α and ν will be specified on each example.

Let us define the errors eL := ν1/2‖L − Lh‖0,Th , eu := |||u − u∗h |||1,Th , ep := ν−1/2‖p − ph‖0,Th ,
the estimator terms ηi (i = 1, . . . , 5)

η2
1 :=

∑
K∈Th

θ2
K‖f +∇ · (νLh)−∇ph − αu∗h‖20,K , η2

2 := ν‖Lh −∇u∗h‖20,Th , η2
3 := ν‖∇ · u∗h‖20,Th

η2
4 := ν−1/2

∑
e∈Eh

θe‖JνLh − phIK‖20,e and η2
5 := ν

∑
e∈Eh

h−1
e ‖Ju∗hK‖20,e,

and the effectivity index eff := ηh/eh. In some tables, we include a column h.o.t., showing that the
term defined in Remark 4.2 is in fact a high order term, and thus it is not necessary to include it
in the definition of our error estimator. The orders of convergence will be computed in terms of the
number of elements N and we will use the fact that h ' N−1/2.

For the tests that include adaptivity, we use the strategy given by:

(i) Start with a coarse mesh Th.
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(ii) Solve the discrete problem on the current mesh Th.

(iii) Compute ηK for each K ∈ Th.

(iv) Use red-blue-green procedure to refine each K ′ ∈ Th such that ηK′ ≥ θmaxK∈Th ηK , with
θ ∈ [0, 1].

(v) Consider this new mesh as Th and, unless a prescribed stopping criteria is satisfied, go to (ii).

5.1 A polynomial solution

For this test case, we choose α = 1 and Ω =]0, 1[×]0, 1[. The source term f and the boundary
data uD are chosen such that the exact solution of the problem is given by u := (u1, u2), where
u1(x1, x2) := x1(1−x1)x2(1−x2) and u2(x1, x2) := (2x1−1)x2

2

(
1
2 −

x2
3

)
, and p(x1, x2) := x2

1x
2
2− 1

9 .
We note that f and uD are such that this numerical test satisfies Assumption H when k ≥ 3.

k N eL order eu order ep order

16 9.13e-03 − 1.09e-02 − 7.29e-03 −
64 2.41e-03 1.92 2.84e-03 1.94 1.75e-03 2.05

1 256 6.22e-04 1.96 7.29e-04 1.96 4.19e-04 2.06
1024 1.58e-04 1.98 1.85e-04 1.98 1.02e-04 2.04
4096 3.99e-05 1.99 4.66e-05 1.99 2.52e-05 2.02

16384 1.00e-05 1.99 1.17e-05 1.99 6.27e-06 2.01
16 9.40e-04 − 9.80e-04 − 5.10e-04 −
64 1.14e-04 3.04 1.19e-04 3.04 6.09e-05 3.06

2 256 1.40e-05 3.02 1.46e-05 3.02 7.46e-06 3.03
1024 1.74e-06 3.01 1.81e-06 3.01 9.21e-07 3.02
4096 2.17e-07 3.01 2.26e-07 3.01 1.14e-07 3.01

16384 2.70e-08 3.00 2.81e-08 3.00 1.42e-08 3.00
16 1.63e-05 − 1.61e-05 − 1.69e-05 −
64 1.05e-06 3.95 1.03e-06 3.97 1.03e-06 4.04

3 256 6.65e-08 3.98 6.50e-08 3.99 6.33e-08 4.02
1024 4.18e-09 3.99 4.08e-09 3.99 3.93e-09 4.01
4096 2.62e-10 4.00 2.55e-10 4.00 2.45e-10 4.00

16384 1.64e-11 4.00 1.60e-11 4.00 1.53e-11 4.00

Table 1: History of convergence of the error terms for the Example 5.1 (ν = 1).
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k N η1 order η2 order η3 order η4 order η5 order h.o.t. order eff

16 1.49e-01 − 8.82e-03 − 6.16e-03 − 4.17e-02 − 7.26e-03 − 3.06e-03 − 9.734
64 3.66e-02 2.03 2.30e-03 1.94 1.58e-03 1.96 1.06e-02 1.97 1.93e-03 1.92 4.14e-04 2.88 9.293

1 256 9.11e-03 2.01 5.76e-04 2.00 3.95e-04 2.00 2.73e-03 1.96 5.03e-04 1.94 5.51e-05 2.91 9.128
1024 2.27e-03 2.00 1.43e-04 2.01 9.80e-05 2.01 6.96e-04 1.97 1.29e-04 1.96 7.13e-06 2.95 9.048
4096 5.68e-04 2.00 3.56e-05 2.01 2.44e-05 2.01 1.76e-04 1.98 3.27e-05 1.98 9.08e-07 2.97 9.007

16384 1.42e-04 2.00 8.88e-06 2.00 6.08e-06 2.00 4.42e-05 1.99 8.23e-06 1.99 1.15e-07 2.99 8.986
16 1.86e-02 − 8.61e-04 − 6.78e-04 − 4.31e-03 − 3.97e-04 − 1.77e-04 − 13.214
64 2.32e-03 3.01 1.08e-04 3.00 8.65e-05 2.97 5.76e-04 2.91 5.26e-05 2.91 1.18e-05 3.91 13.612

2 256 2.89e-04 3.00 1.34e-05 3.00 1.09e-05 2.99 7.44e-05 2.95 6.76e-06 2.96 7.58e-07 3.96 13.847
1024 3.61e-05 3.00 1.68e-06 3.00 1.36e-06 3.00 9.47e-06 2.98 8.55e-07 2.98 4.80e-08 3.98 13.977
4096 4.51e-06 3.00 2.10e-07 3.00 1.71e-07 3.00 1.19e-06 2.99 1.08e-07 2.99 3.02e-09 3.99 14.046

16384 5.64e-07 3.00 2.62e-08 3.00 2.14e-08 3.00 1.50e-07 2.99 1.35e-08 3.00 1.89e-10 4.00 14.081
16 6.54e-04 − 1.41e-05 − 7.02e-06 − 1.27e-04 − 2.97e-06 − 1.24e-06 − 23.429
64 4.11e-05 3.99 8.80e-07 4.00 4.36e-07 4.01 8.51e-06 3.90 1.85e-07 4.01 3.80e-08 5.03 23.437

3 256 2.58e-06 4.00 5.51e-08 4.00 2.72e-08 4.00 5.49e-07 3.96 1.15e-08 4.01 1.17e-09 5.02 23.458
1024 1.62e-07 4.00 3.45e-09 4.00 1.70e-09 4.00 3.48e-08 3.98 7.18e-10 4.00 3.62e-11 5.01 23.473
4096 1.01e-08 4.00 2.16e-10 4.00 1.07e-10 4.00 2.19e-09 3.99 4.48e-11 4.00 1.12e-12 5.01 23.482

16384 6.32e-10 4.00 1.35e-11 4.00 6.68e-12 4.00 1.37e-10 3.99 2.80e-12 4.00 3.50e-14 5.01 23.466

Table 2: History of convergence of the terms composing the error estimator for the Example 5.1
(ν = 1).

Table 1 shows the history of convergence of the error of each variable when the number of
elements N quadruplicates, i.e., the mesh size h decreases by a factor two. We see that all the error
terms converge with optimal order of k+ 1, exactly as the error estimates in Section 3 predicted. In
addition, we see in Table 2 that each term of the error estimator converges with the optimal order
k + 1 and the high order term with order k + 2.

We repeat the experiment considering now ν = 10−2. As Tables 3-4 show, similar conclusions
can be drawn regarding the optimal order of convergence of the error and the estimator. The last
column of Tables 2 and 4 displays the effectivity index. It remains bounded for each polynomial
degree k, however it increases with k. This is natural to expect since some of the constants on the
estimates depend on k.

On the other hand, we observe in all the cases that the first term of the estimator (η1) is larger
than the other terms. This behavior, together with the fact that the effectivity index is larger than
one, might suggest that the estimator is locating regions where the divergence of ν(L−Lh)+(p−ph)I
is large. Motivated by this issue, if we assume that the solution of the Brinkman problem is such
that L ∈ H(div,Ω)d and p ∈ H1(Ω), we can add the term θK‖∇ · (νL− pI)−∇ · (νLh− phI)‖0,K to
error eK defined (19). Table 5 shows the behavior of the global estimator and the global error that
includes the aforementioned term. In this case, we observe that effectivity index is close to 1.

In summary, this example shows that, even though uD /∈ V ∗h , as in the case of k = 1 and 2,
Tables 1-5 verify that our error estimate is reliable and locally efficient as stated in Theorems 4.1
and 4.2. Moreover, the estimator is robust in the sense that the upper and lower bounds of error
are uniformly bounded with respect to the physical parameters α and ν.
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k N eL order eu order ep order

16 2.89e-02 − 9.35e-02 − 6.55e-02 −
64 1.09e-02 1.41 2.43e-02 1.94 1.47e-02 2.16

1 256 3.09e-03 1.82 5.12e-03 2.25 3.35e-03 2.13
1024 8.22e-04 1.91 1.05e-03 2.29 7.43e-04 2.17
4096 2.14e-04 1.94 2.32e-04 2.17 1.68e-04 2.15

16384 5.51e-05 1.96 5.56e-05 2.06 3.93e-05 2.09
16 2.06e-03 − 4.70e-03 − 5.73e-03 −
64 3.16e-04 2.71 4.96e-04 3.25 6.46e-04 3.15

2 256 4.07e-05 2.96 4.89e-05 3.34 6.95e-05 3.22
1024 5.01e-06 3.02 5.12e-06 3.26 7.61e-06 3.19
4096 6.21e-07 3.01 5.86e-07 3.13 8.66e-07 3.14

16384 7.76e-08 3.00 7.10e-08 3.05 1.02e-07 3.08
16 7.83e-05 − 1.06e-04 − 1.83e-04 −
64 5.14e-06 3.93 5.64e-06 4.23 9.97e-06 4.19

3 256 3.22e-07 4.00 3.01e-07 4.23 5.60e-07 4.16
1024 2.03e-08 3.99 1.70e-08 4.14 3.25e-08 4.11
4096 1.29e-09 3.98 1.01e-09 4.07 1.94e-09 4.07

16384 8.12e-11 3.99 6.22e-11 4.03 1.18e-10 4.04

Table 3: History of convergence of the error terms for the Example 5.1 (ν = 10−2).

k N η1 order η2 order η3 order η4 order η5 order h.o.t. order eff

16 1.29e-01 − 7.20e-02 − 5.26e-02 − 3.96e-02 − 5.90e-02 − 2.47e-02 − 1.463
64 8.55e-02 0.60 2.26e-02 1.67 1.67e-02 1.65 2.22e-02 0.84 1.78e-02 1.73 3.61e-03 2.77 3.106

1 256 4.64e-02 0.88 4.96e-03 2.19 3.72e-03 2.17 1.01e-02 1.14 3.68e-03 2.28 3.68e-04 3.29 7.011
1024 1.48e-02 1.65 9.76e-04 2.35 7.22e-04 2.37 3.28e-03 1.62 6.95e-04 2.40 3.56e-05 3.37 9.971
4096 3.70e-03 2.00 2.05e-04 2.25 1.42e-04 2.35 9.30e-04 1.82 1.47e-04 2.25 3.87e-06 3.20 10.706

16384 9.26e-04 2.00 4.77e-05 2.10 3.03e-05 2.23 2.50e-04 1.90 3.50e-05 2.07 4.69e-07 3.05 10.971
16 1.74e-02 − 5.02e-03 − 3.31e-03 − 4.02e-03 − 2.62e-03 − 1.13e-03 − 2.471
64 4.70e-03 1.89 5.89e-04 3.09 3.91e-04 3.08 9.63e-04 2.06 3.02e-04 3.12 6.42e-05 4.13 5.567

2 256 1.20e-03 1.97 6.30e-05 3.22 4.20e-05 3.22 1.99e-04 2.28 2.95e-05 3.35 3.13e-06 4.36 12.947
1024 1.89e-04 2.67 7.07e-06 3.16 4.54e-06 3.21 2.94e-05 2.76 2.95e-06 3.32 1.56e-07 4.33 18.355
4096 2.38e-05 2.99 8.49e-07 3.06 5.16e-07 3.14 4.00e-06 2.88 3.28e-07 3.17 8.63e-09 4.17 19.841

16384 2.98e-06 3.00 1.06e-07 3.01 6.12e-08 3.08 5.23e-07 2.93 3.95e-08 3.06 5.17e-10 4.06 20.642
16 7.99e-04 − 1.34e-04 − 7.70e-05 − 1.41e-04 − 4.40e-05 − 1.87e-05 − 3.673
64 1.04e-04 2.95 7.49e-06 4.16 3.55e-06 4.44 1.63e-05 3.11 2.25e-06 4.29 4.70e-07 5.31 8.375

3 256 1.32e-05 2.97 4.31e-07 4.12 1.46e-07 4.60 1.66e-06 3.30 1.14e-07 4.30 1.13e-08 5.37 18.684
1024 1.05e-06 3.66 2.64e-08 4.03 6.26e-09 4.54 1.21e-07 3.77 6.25e-09 4.19 2.95e-10 5.27 25.119
4096 6.59e-08 3.99 1.66e-09 3.99 3.31e-10 4.24 8.09e-09 3.90 3.71e-10 4.08 8.47e-12 5.12 26.171

16384 4.14e-09 3.99 1.05e-10 3.98 2.04e-11 4.02 5.24e-10 3.95 2.28e-11 4.02 2.58e-13 5.04 26.719

Table 4: History of convergence of the terms composing the error estimator for the Example 5.1
(ν = 10−2).
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k N eh order ηh order eff

16 1.60e-02 − 1.56e-01 − 1.036
64 4.12e-03 1.96 3.83e-02 2.02 1.039

1 256 1.05e-03 1.98 9.55e-03 2.00 1.041
1024 2.64e-04 1.99 2.39e-03 2.00 1.043
4096 6.63e-05 1.99 5.97e-04 2.00 1.044

16384 1.66e-05 2.00 1.49e-04 2.00 1.044
16 1.45e-03 − 1.92e-02 − 1.026
64 1.76e-04 3.05 2.39e-03 3.00 1.030

2 256 2.16e-05 3.02 2.99e-04 3.00 1.032
1024 2.68e-06 3.01 3.74e-05 3.00 1.033
4096 3.33e-07 3.01 4.68e-06 3.00 1.034

16384 4.15e-08 3.00 5.85e-07 3.00 1.034
16 2.84e-05 − 6.66e-04 − 1.018
64 1.79e-06 3.99 4.20e-05 3.99 1.021

3 256 1.12e-07 3.99 2.64e-06 3.99 1.022
1024 7.04e-09 4.00 1.65e-07 4.00 1.022
4096 4.40e-10 4.00 1.03e-08 4.00 1.023

16384 2.76e-11 4.00 6.47e-10 4.00 1.023

k N eh order ηh order eff

16 1.18e-01 − 3.01e-01 − 0.759
64 3.04e-02 1.96 1.01e-01 1.57 0.944

1 256 6.85e-03 2.15 4.82e-02 1.07 1.003
1024 1.52e-03 2.17 1.52e-02 1.67 1.020
4096 3.57e-04 2.09 3.83e-03 1.99 1.029

16384 8.76e-05 2.03 9.61e-04 1.99 1.034
16 7.70e-03 − 2.21e-02 − 0.913
64 8.73e-04 3.14 4.90e-03 2.17 0.996

2 256 9.42e-05 3.21 1.22e-03 2.01 1.009
1024 1.04e-05 3.17 1.92e-04 2.67 1.011
4096 1.22e-06 3.10 2.41e-05 2.99 1.014

16384 1.47e-07 3.05 3.03e-06 2.99 1.015
16 2.25e-04 − 8.48e-04 − 0.971
64 1.26e-05 4.16 1.05e-04 3.01 1.004

3 256 7.12e-07 4.14 1.33e-05 2.98 1.006
1024 4.19e-08 4.09 1.05e-06 3.66 1.006
4096 2.54e-09 4.05 6.64e-08 3.99 1.007

16384 1.56e-10 4.02 4.17e-09 3.99 1.008

Table 5: History of convergence of the modified global error and estimator for the Example 5.1 with
ν = 1 (left) and ν = 10−2 (right).

5.2 The Kovasznay flow

We set Ω = ]0, 2[ × ]− 0.5, 1.5[ and consider the Stokes problem (α = 0) whose exact solution
coincides with the analytical solution of the two-dimensional incompressible Navier-Stokes equa-
tions presented in [29]: u := (u1, u2), where u1(x1, x2) = 1−exp(λx1) cos(2πx2) and u2(x1, x2) =

λ
2π exp(λx1) sin(2πx2), and p(x1, x2) = 1

2 exp(2λx1) − exp(4λ)−1
8λ . Here λ = Re

2 −
√

Re2

4 + 4π2 and

Re = 1
ν . This is also a solution of our problem with f=− (u · ∇)u and uD = u|Γ.

Figure 1: History of convergence (k = 1, 2, 3) for eh with uniform and adaptive (θ = 0.25) refine-
ments, for the Kovasznay flow.

Figure 1 depicts the error eh (defined in (19)) versus the number of elements N , using uniform
and adaptive (θ = 0.25) refinements. Since the solution is smooth, we can see that the curves
associated to uniform and adaptive refinements display the same order of convergence predicted
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by the theory, i.e, order N−(k+1)/2. In addition, we observe that the adaptive strategy is able to
provide errors with the same magnitude as the uniform refinement, but with fewer elements.

5.3 A singularly perturbed problem

We set ν = 0.01 and α = 1. The domain is the unit square Ω =]0, 1[×]0, 1[, and f , uD are

such that the exact solution is u := (u1, u2), where u1(x1, x2) = x2 − 1−exp(x2/ν)
1−exp(1/ν) and u2(x1, x2) =

x1 − 1−exp(x1/ν)
1−exp(1/ν) , and p(x1, x2) = x1 − x2. This solution has boundary layers at x1 = 1 and x2 = 1.

In Figure 2, we present the orders of convergence for eh using uniform and adaptive refinements,
for k = 1, 2, 3. We recover the predicted rates of convergence, up to an expected loss of convergence
on very coarse meshes due to the unresolved boundary layers. Figure 3 shows the initial mesh and
the final mesh obtained with the adaptive scheme. We observe here how the estimator is properly
localizing the boundary layers.

Figure 2: History of convergence for eh with uniform and adaptive (θ = 0.25) refinement (k = 1, 2, 3),
singularly perturbed problem.

Figure 3: Initial (left, 16 elements) and final adapted (right, 2920 elements) meshes for the the
singularly perturbed problem (k = 1).

5.4 The lid-driven cavity problem

For this test, we use the same domain as in the previous experiment. We set ν = 1, α = 0, f = 0
and uD = (1, 0), on x2 = 1, and 0 on the rest of the boundary of Ω. Note that two singularities
arise at the top corners of the domain, due to the discontinuities on the boundary condition. This
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fact is captured by our estimator by refining mainly in those corners as can be seen in Figure 4,
where the initial and adapted (θ = 0.1) meshes are displayed.

Figure 4: Initial (left, 16 elements) and adapted (right, 936 elements) meshes for the cavity problem
(k = 1).
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2

MA)

PRE-PUBLICACIONES 2017

2017-17 Eligio Colmenares, Gabriel N. Gatica, Ricardo Oyarzúa: A posteriori error
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