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Abstract

In this paper we consider an augmented fully-mixed variational formulation that has been recently
proposed for the non-isothermal Oldroyd–Stokes problem, and develop an a posteriori error analysis
for the 2D and 3D versions of the associated mixed finite element scheme. More precisely, we derive
two reliable and efficient residual-based a posteriori error estimators for this problem on arbitrary
(convex or non-convex) polygonal and polyhedral regions. The reliability of the proposed estimators
draws mainly upon the uniform ellipticity of the bilinear forms of the continuous formulation,
suitable assumptions on the domain and the data, stable Helmholtz decompositions, and the local
approximation properties of the Clément and Raviart–Thomas operators. On the other hand,
inverse inequalities, the localisation technique based on bubble functions, and known results from
previous works, are the main tools yielding the efficiency estimate. Finally, several numerical results
confirming the properties of the a posteriori error estimators and illustrating the performance of
the associated adaptive algorithms are reported.
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1 Introduction

We have recently introduced an augmented-mixed finite element method to numerically approximate
the flow patterns of a non-isothermal incompressible viscoelastic fluid described by the non-isothermal
Oldroyd–Stokes equations [6]. The underlying model consists of the Stokes-type equation for Oldroyd
viscoelasticity, coupled with the heat equation through a convective term and the viscosity of the fluid.
The original unknowns are the polymeric part of the extra-stress tensor, the velocity, the pressure, and
the temperature of the fluid. In turn, for convenience of the analysis, the strain tensor, the vorticity,
and the stress tensor are introduced as further unknowns. This allows to join the polymeric and solvent
viscosities in an adimensional viscosity, and to eliminate the polymeric part of the extra-stress tensor
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and the pressure from the system, which, together with the solvent part of the extra-stress tensor, can
anyway be approximated later on by postprocessed. In this way, a fully mixed approach is applied, in
which the heat flux vector is incorporated as an additional unknown as well. Since the convective term
in the heat equation forces both the velocity and the temperature to live in H1 instead of L2 as usual,
we proceed as for the Boussinesq model in [8, 9, 10] and augment the variational formulation with
suitable Galerkin type expressions arising from the constitutive and equilibrium equations, the relation
defining the strain and vorticity tensors, and the Dirichlet boundary condition on the temperature.
The resulting augmented scheme is then written equivalently as a fixed-point equation, so that the
well-known Schauder and Banach theorems, combined with the Lax–Milgram theorem and certain
regularity assumptions, are applied to prove the unique solvability of the continuous system. As for
the associated Galerkin scheme, whose solvability is established similarly to the continuous case by
using the Brouwer fixed-point and Lax-Milgram theorems, we employ Raviart–Thomas approximations
of order k for the stress tensor and the heat flux vector, continuous piecewise polynomials of order
≤ k + 1 for velocity and temperature, and piecewise polynomials of order ≤ k for the strain tensor
and the vorticity. Optimal a priori error estimates were also derived.

Now, it is well known that under the eventual presence of singularities or high gradients of the
solution, most of the standard Galerkin procedures such as finite element and mixed finite element
methods inevitably lose accuracy, and hence one usually tries to recover it by applying an adaptive
algorithm based on a posteriori error estimates. For example, residual-based a posteriori error analyses
for the aforementioned Boussinesq model have been developed in [11] and [12] for the associated mixed-
primal and fully-mixed formulations, respectively. In fact, standard arguments relying on duality
techniques, suitable decompositions and classical approximation properties, are combined there with
corresponding small data assumptions to derive the reliability of the estimators. In turn, inverse
inequalities and the usual localisation technique based on bubble functions are employed in both
works to prove the corresponding efficiency estimates. On the other hand, and concerning isothermal
viscoelastic flows, not much has been done and we just refer to [17, 29, 30] for the steady-state case
and [19, 20] for the time dependent case, where different contributions addressing this interesting
issue can be found. In particular, a fully local a posteriori error estimator for a simplified Oldroyd-
B model without convective terms in a convex polygonal domain was obtained in [30]. The main
unknowns are given by the velocity, the extra-stress and the pressure of the fluid, whereas continuous
piecewise linear finite elements together with a Galerkin Least Square (GLS) approach are used for
the associated discrete scheme. In turn, a fully local residual-based a posteriori error estimator for
the velocity-pressure-stress formulation of a more general model, namely the Giesekus and Oldroyd-B
type differential constitutive laws in 2D and 3D, was derived in [17] . In this case, the discrete spaces
employed are the Hood –Taylor pair for the velocity and the pressure, and continuous piecewise linear
elements for the viscoelastic stress component. Furthermore, and up to the authors’ knowledge, the
first work dealing with high gradients of the solution for the non-isothermal Oldroyd–Stokes problem
is [14]. An optimal control technique is proposed and analised there for a four-to-one contraction
domain, where a vortex is generated near the corner region of the contraction. However, we remark
that this work does not consider an adaptive algorithm.

According to the above discussion, and in order to complement the study started in [6] for the
non-isothermal Oldroyd–Stokes problem, in this paper we proceed similarly to [1, 11, 12, 25], and
develop two reliable and efficient residual-based a posteriori error estimators for the augmented-mixed
finite element method studied in [6]. This means that our analysis begins by applying the uniform
ellipticity of the bilinear form defining the continuous formulation. Next, we apply suitable Helmholtz
decompositions, local approximation properties of the Clément and Raviart–Thomas interpolants,
and known estimates from [23, 24], to prove the reliability of a residual-based estimator. In turn, the
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efficiency estimate is consequence of standard arguments such as inverse inequalities, the localization
technique based on bubble functions, and other known results to be specified later on in Section 3.4.
Alternative, a second reliable and efficient residual-based a posteriori error estimator not making use
of any Helmholtz decomposition is also proposed.

The rest of this work is organised as follows. The remainder of this section introduces some standard
notations and functional spaces. In Section 2 we recall from [6, Section 2] the model problem and its
continuous and discrete augmented fully-mixed variational formulations. Next, in Section 3 we consider
the 2D case, introduce two a posteriori error indicators, and assuming small data and certain regularity
assumptions, we derive the corresponding theoretical bounds yielding reliability and efficiency of each
estimator. The analysis and results from Section 3 are then extended to the 3D case in Section 4.
Finally, some numerical results illustrating the good performance and good effectivity indexes of both
error estimators under diverse scenarios in 2D and 3D, and confirming the satisfactory behaviour of
the corresponding adaptive refinement strategies, are presented in Section 5.

Preliminary notations

Let Ω ⊆ Rn, n ∈ {2, 3}, denote a bounded domain with Lipschitz boundary Γ = ΓD ∪ ΓN, with
ΓD ∩ΓN = ∅ and |ΓD|, |ΓN| > 0, and denote by n the outward unit normal vector on Γ. For s ≥ 0 and
p ∈ [1,+∞], we define by Lp(Ω) and Ws,p(Ω) the usual Lebesgue and Sobolev spaces endowed with
the norms ‖·‖Lp(Ω) and ‖·‖Ws,p(Ω), respectively. Note that W0,p(Ω) = Lp(Ω). If p = 2, we write Hs(Ω)
in place of Ws,2(Ω), and denote the corresponding Lebesgue and Sobolev norms by ‖ · ‖0,Ω and ‖ · ‖s,Ω,
respectively, and the seminorm by | · |s,Ω. By M and M we will denote the corresponding vectorial
and tensorial counterparts of the generic scalar functional space M, and ‖ · ‖, with no subscripts, will
stand for the natural norm of either an element or an operator in any product functional space. In
turn, for any vector field v = (vi)i=1,n, we set the gradient, and divergence operator, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

and div v :=

n∑
j=1

∂vj
∂xj

.

Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr (τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr (τ )I,

where I is the identity matrix in Rn×n. Additionally, we define the following tensorial and vectorial
functional spaces (see [6, Section 2.2] for details):

H0(div ; Ω) :=

{
τ ∈ H(div ; Ω) :

∫
Ω

tr τ = 0

}
,

L2
tr (Ω) :=

{
r ∈ L2(Ω) : rt = r and tr r = 0

}
,

L2
skew(Ω) :=

{
η ∈ L2(Ω) : ηt = −η

}
,

(1.1)

and
HΓN

(div ; Ω) :=
{

q ∈ H(div ; Ω) : q · n = 0 on ΓN

}
, (1.2)
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respectively. Furthermore, given an integer k ≥ 0 and a set S ⊆ Rn, Pk(S) denotes the space of
polynomial functions on S of degree ≤ k. In addition, and coherently with previous notations, we
set Pk(S) := [Pk(S)]n and Pk(S) := [Pk(S)]n×n. Finally, we end this section by mentioning that,
throughout the rest of the paper, we employ 0 to denote a generic null vector (or tensor), and use C
and c, with or without subscripts, bars, tildes or hats, to denote generic constants independent of the
discretization parameters, which may take different values at different places.

2 The non-isothermal Oldroyd–Stokes problem

In this section we recall from [6] the non-isothermal Oldroyd–Stokes model, its fully-mixed variational
formulation, the associated Galerkin scheme, and the main results concerning the corresponding solv-
ability analysis.

2.1 The model problem

The non-isothermal Oldroyd–Stokes problem consists of a system of equations where the Stokes equa-
tion for the Oldroyd viscoelastic model introduced in [2], is coupled with the heat equation through a
convective term and the viscosity of the fluid (cf. [13, 18]). More precisely, given a body force f , and
a heat source g, the aforementioned system of equations is given by

σP − 2µP(θ)e(u) = 0 in Ω, −div (σP + 2εµN(θ)e(u)) +∇p = f in Ω,

div u = 0 in Ω, −div (κ∇θ) + u · ∇θ = g in Ω,

u = 0 on Γ, θ = θD on ΓD, κ∇θ · n = 0 on ΓN and

∫
Ω
p = 0,

(2.1)

where the unknowns are the polymeric part of the extra-stress tensor σP, the velocity u, the pressure

p, and the temperature θ of a fluid occupying the region Ω. In addition, e(u) :=
1

2

{
∇u + (∇u)t

}
stands for the strain tensor of small deformations, κ is the thermal conductivity coefficient, µP and µN

are the polymeric and solvent (or newtonian) viscosities, respectively, which are given by the following
Arrhenius relationship:

µP(θ) = a1 exp

(
b1
θ

)
, µN(θ) = a2 exp

(
b2
θ

)
, (2.2)

where the coefficients a1, b1, a2, and b2 are defined so that

0 < µP(s) ≤ 1, 0 < µN(s) ≤ 1 ∀s ≥ 0. (2.3)

Furthermore, we assume that both the polymeric and solvent viscosities are Lipschitz continuous and
bounded from above and from below, that is,

|µP(s)− µP(t)| ≤ LµP |s− t|, |µN(s)− µN(t)| ≤ LµN |s− t| ∀s, t ≥ 0, (2.4)

and
µ1,P ≤ µP(s) ≤ µ2,P, µ1,N ≤ µN(s) ≤ µ2,N ∀s ≥ 0. (2.5)

Note that a small real parameter ε > 0 on the second equation of (2.1) is introduced to make the
effect of the solvent viscosity much smaller than that of the polymeric part.
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Now, in order to derive our mixed approach (see [6, Section 2.1] for details), we begin by introducing
the strain tensor as an additional unknown t := e(u), whence the polymeric and solvent parts of the
extra-stress tensor can be written, respectively, as

σP = 2µP(θ)t and σN = 2εµN(θ)t in Ω . (2.6)

Next, defining the dimensionless effective viscosity as in [18], that is

µ(θ) := 2µP(θ) + 2εµN(θ) , (2.7)

and adopting the approach from [24] and [18] (see also [5, 8, 10]), we include as auxiliary variables the
vorticity tensor ρ, the stress tensor σ, and the heat-flux vector p, respectively, by

ρ := ∇u− e(u), σ := µ(θ)t− pI, and p := κ∇θ − θu in Ω.

In this way, utilising the incompressibility condition div u = tr (e(u)) = 0 in Ω and the homogeneous
Dirichlet boundary condition u = 0 on Γ, the equations in (2.1) can be rewritten, equivalently, as

t + ρ = ∇u in Ω, σd = µ(θ)t in Ω, −divσ = f in Ω,

p = − 1

n
trσ in Ω, κ−1p + κ−1θ u = ∇θ in Ω, −div p = g in Ω,

u = 0 on Γ, θ = θD on ΓD, p · n = 0 on ΓN and

∫
Ω

trσ = 0.

(2.8)

Note that the fourth equation in (2.8) allows us to eliminate the pressure p from the system and
compute it as a simple post-process of σ. In addition, it easy to see from (2.4) and (2.5) that the fluid
viscosity µ (cf. (2.7)) is Lipschitz continuous and bounded from above and from below, that is, there
exist constants Lµ > 0 and µ1, µ2 > 0, such that

|µ(s)− µ(t)| ≤ Lµ|s− t| ∀s, t ≥ 0, (2.9)

and
µ1 ≤ µ(s) ≤ µ2 ∀s ≥ 0. (2.10)

We end this section emphasizing from (2.6) that we can recover the polymeric and solvent parts of
the extra-stress tensor as a simple post-process of θ and t, whereas from the fourth equation of (2.8)
we can compute the pressure in terms of σ conserving the same rate of convergence of the solution as
we show theoretical and numerically in [6, Lemma 4.14 and Section 5], respectively. However, for the
sake of simplicity and physical interest, in Section 5 we will focus only on the formulae suggested for
the polymeric part of the extra-stress tensor and the pressure.

2.2 The fully-mixed variational formulation

In this section we recall from [6, Section 2.2] the weak formulation of the coupled problem given by
(2.8). To this end, let us first group appropriately some of the unknowns and spaces as follows:

t := (t,σ,ρ) ∈ H := L2
tr (Ω)×H0(div ; Ω)× L2

skew(Ω),

where H is endowed with the norm

‖r‖2H := ‖r‖20,Ω + ‖τ‖2div ;Ω + ‖η‖20,Ω ∀r := (r, τ ,η) ∈ H.
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Hence, the augmented fully-mixed variational formulation for the non-isothermal Oldroyd–Stokes
problem reads: Find (t,u,p, θ) ∈ H×H1

0(Ω)×HΓN
(div ; Ω)×H1(Ω) such that

Aθ((t,u), (r,v)) = F(r,v) ∀(r,v) ∈ H×H1
0(Ω),

Ã((p, θ), (q, ψ)) + B̃u((p, θ), (q, ψ)) = F̃(q, ψ) ∀(q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω),

(2.11)

where, given (φ,w) ∈ H1(Ω)×H1
0(Ω), Aφ, Ã, and B̃w are the bilinear forms defined, respectively, as

Aφ((t,u), (r,v)) :=

∫
Ω
µ(φ)t :

{
r− κ1τ

d
}

+

∫
Ω
σd :

{
κ1τ

d − r
}

+

∫
Ω

t : τ d

+

∫
Ω

{
u + κ2divσ

}
· div τ −

∫
Ω

v · divσ +

∫
Ω
ρ : τ −

∫
Ω
σ : η

+ κ3

∫
Ω

{
e(u)− t

}
: e(v) + κ4

∫
Ω

(
ρ−

{
∇u− e(u)

})
: η,

(2.12)

Ã((p, θ), (q, ψ)) := κ−1

∫
Ω

p ·
{

q− κ5∇ψ
}

+

∫
Ω

{
θ + κ6div p

}
div q−

∫
Ω
ψ div p

+ κ5

∫
Ω
∇θ · ∇ψ + κ7

∫
ΓD

θ ψ,
(2.13)

and

B̃w((p, θ), (q, ψ)) := κ−1

∫
Ω
θw ·

{
q− κ5∇ψ

}
, (2.14)

for all (t,u), (r,v) ∈ H ×H1
0(Ω) and for all (p, θ), (q, ψ) ∈ HΓN

(div ; Ω) × H1(Ω). In turn, F and F̃
are the bounded linear functionals given by

F(r,v) :=

∫
Ω

f ·
{

v − κ2div τ
}
, (2.15)

for all (r,v) ∈ H×H1
0(Ω) and

F̃(q, ψ) := 〈q · n, θD〉ΓD
+

∫
Ω
g
{
ψ − κ6div q

}
+ κ7

∫
ΓD

θDψ, (2.16)

for all (q, ψ) ∈ HΓN
(div ; Ω) × H1(Ω). Notice that κi, i ∈ {1, . . . , 7}, are positive parameters to be

specified next in Theorem 2.1. Indeed, the following result taken from [6] establishes the well-posedness
of (2.11).

Theorem 2.1 Assume that

κ1 ∈
(

0,
2δ1µ1

µ2

)
, κ3 ∈

(
0, 2δ2

(
µ1 −

κ1µ2

2δ1

))
, κ4 ∈

(
0, 2δ3κ3

(
1− δ2

2

))
, κ5 ∈ (0, 2δ̃),

and κ2, κ6, κ7 > 0, with δ1 ∈
(

0,
2

µ2

)
, δ2, δ3 ∈ (0, 2), and δ̃ ∈ (0, 2κ). Let

W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ cS̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
,

and assume that the datum f satisfy

cS‖f‖0,Ω ≤
α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, (2.17)
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where c(Ω) is the constant in [6, eq. (2.15)], α̃(Ω) is the ellipticity constant of the bilinear form Ã
(cf. [6, eq. (3.17)]), and cS and c

S̃
are the positive constants, independent of the data, provided by [6,

Lemmas 3.1 and 3.2], respectively. Then the augmented fully-mixed problem (2.11) has at least one
solution (t,u,p, θ) ∈ H×H1

0(Ω)×HΓN
(div ; Ω)×H1(Ω) with θ ∈ W, and there holds

‖(t,u)‖ ≤ cS‖f‖0,Ω and ‖(p, θ)‖ ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
. (2.18)

Moreover, if the data f , g and θD are sufficiently small so that, with the constants CS, C
S̃

and ĈS from

[6, Lemmas 3.4 and 3.5, and eq. (3.22)], respectively, and denoting by C̃δ the boundedness constant of
the continuous injection of H1(Ω) into Ln/δ(Ω), with δ ∈ (0, 1) (when n = 2) or δ ∈ (1/2, 1) (when
n = 3), there holds

C̃δĈSCSCS̃
c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
‖f‖δ,Ω < 1. (2.19)

Then the solution θ is unique in W.

Proof. See [6, Theorem 3.8] for details. �

2.3 The fully-mixed finite element method

Let Th be a regular triangulation of Ω made up of triangles T (when n = 2) or tetrahedra T (when
n = 3) of diameter hT , and define the meshsize h := max

{
hT : T ∈ Th

}
. Then, given an integer

k ≥ 0, we set for each T ∈ Th the local Raviart–Thomas space of order k as

RTk(T ) := Pk(T )⊕ Pk(T )x,

where x := (x1, . . . , xn)t is a generic vector of Rn. Then, we introduce the finite element subspaces
approximating the unknowns t,σ,ρ,u,p and θ as follows

Ht
h :=

{
rh ∈ L2

tr (Ω) : rh|T ∈ Pk(T ) ∀T ∈ Th
}
,

Hσ
h :=

{
τ h ∈ H0(div ; Ω) : ctτ h|T ∈ RTk(T ) ∀c ∈ Rn ∀T ∈ Th

}
,

Hρ
h :=

{
ηh ∈ L2

skew(Ω) : ηh|T ∈ Pk(T ) ∀T ∈ Th
}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|T ∈ Pk+1(T ) ∀T ∈ Th, vh = 0 on Γ

}
,

Hp
h :=

{
qh ∈ HΓN

(div ; Ω) : qh|T ∈ RTk(T ) ∀T ∈ Th
}
,

Hθ
h :=

{
ψh ∈ C(Ω) : ψh|T ∈ Pk+1(T ) ∀T ∈ Th

}
.

(2.20)

In this way, by defining th := (th,σh,ρh), rh := (rh, τ h,ηh) ∈ Hh := Ht
h × Hσ

h × Hρ
h, the Galerkin

scheme of (2.11) reads: Find (th,uh,ph, θh) ∈ Hh ×Hu
h ×Hp

h ×Hθ
h such that

Aθh((th,uh), (rh,vh)) = F(rh,vh) ∀(rh,vh) ∈ Hh ×Hu
h ,

Ã((ph, θh), (qh, ψh)) + B̃uh((ph, θh), (qh, ψh)) = F̃(qh, ψh) ∀(qh, ψh) ∈ Hp
h ×Hθ

h.
(2.21)

The following theorem, also taken from [6], provides the well-posedness of (2.21), the associated
Céa estimate, and the corresponding theoretical rate of convergence.
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Theorem 2.2 Assume that the conditions on κi, i ∈ {1, . . . , 7}, required by Theorem 2.1, hold. Let

Wh :=
{
φh ∈ Hθ

h : ‖φh‖1,Ω ≤ cS̃
{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
,

and assume that the datum f satisfy (2.17). Then the Galerkin scheme (2.21) has at least one solution
(th,uh,ph, θh) ∈ Hh ×Hu

h ×Hp
h ×Hθ

h with θh ∈ Wh, and there holds

‖(th,uh)‖ ≤ cS‖f‖0,Ω and ‖(ph, θh)‖ ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
. (2.22)

In addition, there exists C1 > 0, independent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C1

{
dist

(
(t,u),Hh ×Hu

h

)
+ dist

(
(p, θ),Hp

h ×Hθ
h

)}
.

Assume further that there exists s > 0 such that t ∈ Hs(Ω), σ ∈ Hs(Ω), divσ ∈ Hs(Ω), ρ ∈ Hs(Ω),
u ∈ Hs+1(Ω), p ∈ Hs(Ω), div p ∈ Hs(Ω), and θ ∈ Hs+1(Ω), and that the finite element subspaces are
defined by (2.20). Then, there exist C2 > 0, independent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C2h
min{s,k+1}

{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω + ‖ρ‖s,Ω

+ ‖u‖s+1,Ω + ‖p‖s,Ω + ‖div p‖s,Ω + ‖θ‖s+1,Ω

}
.

Proof. We refer the reader to [6, Theorems 4.7, 4.11, and 4.13] for details. �

3 A posteriori error analysis: the 2D-case

In this section we proceed analogously to [25, Section 3] and derive two reliable and efficient residual
based a posteriori error estimators for the two-dimensional version of (2.21). The corresponding a
posteriori error analysis for the 3D case, which follows from minor modifications of the one to be
presented next, will be addressed in Section 4.

3.1 Preliminaries

We start by introducing a few useful notations for describing local information on elements and edges.
Let Eh be the set of all edges of Th, and E(T ) denotes the set of edges of a given T ∈ Th. Then
Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN), where Eh(Ω) :=

{
e ∈ Eh : e ⊆ Ω

}
, Eh(ΓD) :=

{
e ∈ Eh : e ⊆ ΓD

}
, and

Eh(ΓN) :=
{
e ∈ Eh : e ⊆ ΓN

}
. Moreover, he stands for the length of a given edge e. Also for each

edge e ∈ Eh we fix a unit normal vector ne := (n1, n2)t, and let se := (−n2, n1)t be the corresponding
fixed unit tangential vector along e. However, when no confusion arises, we simply write n and s
instead of ne and se, respectively. Now, let v ∈ L2(Ω) such that v|T ∈ C(T ) on each T ∈ Th. Then,
given T ∈ Th and e ∈ E(T ) ∩ Eh(Ω), we denote by Jv · sK the tangential jump of v across e, that
is, Jv · sK := (v|T − v|T ′)|e · s, where T and T ′ are the triangles of Th having e as a common edge.
Similar definitions hold for the tangential jumps of scalar and tensor fields φ ∈ L2(Ω) and τ ∈ L2(Ω),
respectively, such that φ|T ∈ C(T ) and τ |T ∈ C(T ) on each T ∈ Th. In addition, given scalar, vector
and matrix valued fields φ, v = (v1, v2)t and τ = (τi,j)1≤i,j≤2, respectively, we set

curl (φ) :=

(
∂φ
∂x2

− ∂φ
∂x1

)
, curl (v) :=

(
curl (v1)t

curl (v2)t

)
,

rot (v) =
∂v2

∂x1
− ∂v1

∂x2
, and rot (τ ) =

(
∂τ12

∂x1
− ∂τ11

∂x2
,
∂τ22

∂x1
− ∂τ21

∂x2

)t

,
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where the derivatives involved are taken in the distributional sense.

Let us now Πh : H1(Ω) → Hp
h (cf. (2.20)) be the Raviart–Thomas interpolation operator, which,

according to its characterisation properties (see, e.g., [21, Section 3.4.1]), verifies

div (Πhv) = Ph(div v) ∀v ∈ H1(Ω), (3.1)

where Ph is the L2(Ω)-orthogonal projector onto the picewise polynomials of degree ≤ k. A tensor
version of Πh, say Πh : H1(Ω) → Hσ

h , which is defined row-wise by Πh, and a vector version of Ph,
say Ph, which is the L2(Ω)-orthogonal projector onto the picewise polynomial vectors of degree ≤ k,
might also be required. The local approximation properties of Πh (and hence of Πh) are established
in what follows. For the corresponding proof we refer to [21, Lemmas 3.16 and 3.18] (see also [4]).

Lemma 3.1 There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there
hold

‖v −Πhv‖0,T ≤ c1hT ‖v‖1,T ∀T ∈ Th,

and
‖v · n−Πhv · n‖0,e ≤ c2h

1/2
e ‖v‖1,Te ∀ e ∈ Eh,

where Te is a triangle of Th containing the edge e on its boundary.

In turn, let Ih : H1(Ω)→ H1
h(Ω) be the Clément interpolation operator, where

H1
h(Ω) :=

{
v ∈ C(Ω) : v|T ∈ P1(T ) ∀T ∈ Th

}
.

The local approximation properties of this operator are established in the following lemma (see [7]).

Lemma 3.2 There exist constants c3, c4 > 0, independent of h, such that for all v ∈ H1(Ω) there
holds

‖v − Ihv‖0,T ≤ c3hT ‖v‖1,∆(T ) ∀T ∈ Th,

and
‖v − Ihv‖0,e ≤ c4h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh,

where
∆(T ) := ∪

{
T ′ ∈ Th : T ′ ∩ T 6= ∅

}
and ∆(e) := ∪

{
T ′ ∈ Th : T ′ ∩ e 6= ∅

}
.

In what follows, a vector version of Ih, say Ih : H1(Ω) → H1
h(Ω), which is defined component-

wise by Ih, will be needed as well. For the forthcoming analysis we will also utilise a couple of results
providing stable Helmholtz decompositions for H0(div ; Ω) and HΓN

(div ; Ω). In this regard, we remark
in advance that the decomposition for HΓN

(div ; Ω) will require the boundary ΓN to lie in a “convex
part” of Ω, which means that there exists a convex domain containing Ω, and whose boundary contains
ΓN. More precisely, we have the following lemma (cf. (1.1), (1.2)).

Lemma 3.3

(a) For each τ ∈ H0(div ; Ω) there exist z ∈ H2(Ω) and ϕ ∈ H1(Ω) such that

τ = ∇z + curlϕ in Ω and ‖z‖2,Ω + ‖ϕ‖1,Ω ≤ C‖τ‖div ;Ω, (3.2)

where C is a positive constant independent of all the foregoing variables.
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(b) Assume that there exists a convex domain Ξ such that Ω ⊆ Ξ and ΓN ⊆ ∂Ξ. Then, for each
q ∈ HΓN

(div ; Ω) there exist ζ ∈ H1(Ω) and χ ∈ H1
ΓN

(Ω) such that

q = ζ + curlχ in Ω and ‖ζ‖1,Ω + ‖χ‖1,Ω ≤ C‖q‖div ;Ω, (3.3)

where C is a positive constant independent of all the foregoing variables, and

H1
ΓN

(Ω) :=
{
η ∈ H1(Ω) : η = 0 on ΓN

}
.

Proof. For the proof of (a) we refer to [25, Lemma 3.7], whereas (b) follows from [1, Lemma 3.9]. We
omit further details. �

3.2 The main result

In what follows we assume that the hypotheses of Theorems 2.1 and 2.2, hold and let (t,u,p, θ) ∈
H×H1

0(Ω)×HΓN
(div ; Ω)×H1(Ω) and (th,uh,ph, θh) ∈ Hh×Hu

h ×Hp
h ×Hθ

h be the unique solutions
of problems (2.11) and (2.21), respectively. Then, we define for each T ∈ Th the local a posteriori
error indicators

Θ̃2
1,T :=

∥∥∥σd
h − µ(θh)th

∥∥∥2

0,T
+ ‖f + divσh‖20,T +

∥∥σh − σt
h

∥∥2

0,T

+ ‖th − e(uh)‖20,T + ‖ρh − (∇uh − e(uh))‖20,T + ‖g + div ph‖20,T

+
∥∥∇θh − (κ−1ph + κ−1θhuh)

∥∥2

0,T
+

∑
e∈E(T )∩Eh(ΓD)

‖θD − θh‖20,e ,

(3.4)

Θ2
1,T := Θ̃2

1,T + ‖∇uh − (th + ρh)‖20,T , (3.5)

and
Θ2

2,T := Θ̃2
1,T + ‖f −Ph(f)‖20,T + ‖g − Ph(g)‖20,T + h2

T ‖∇uh − (th + ρh)‖20,T

+ h2
T ‖rot (th + ρh)‖20,T + h2

T

∥∥rot (κ−1ph + κ−1θhuh)
∥∥2

0,T

+
∑

e∈E(T )

he ‖J(th + ρh)sK‖20,e +
∑

e∈E(T )∩Eh(Ω)

he
∥∥J(κ−1ph + κ−1θhuh) · sK

∥∥2

0,e

+
∑

e∈E(T )∩Eh(ΓD)

he

∥∥∥∥dθD

ds
− (κ−1ph + κ−1θhuh) · s

∥∥∥∥2

0,e

,

(3.6)

so that the global a posteriori error estimators are given, respectively, by

Θ1 :=

∑
T∈Th

Θ2
1,T + ‖θD − θh‖21/2,ΓD


1/2

and Θ2 :=

∑
T∈Th

Θ2
2,T


1/2

. (3.7)

Note that the last term defining Θ2
2,T (cf. (3.6)) requires that dθD

ds

∣∣∣
e
∈ L2(e) for each e ∈ Eh(ΓD). This

is ensured below by assuming that θD ∈ H1(ΓD).

The main goal of the present Section 3 is to establish, under suitable assumptions, the existence
of positive constants Crel, Ceff , C̃rel, and C̃eff , independent of the meshsizes and the continuous and
discrete solutions, such that

CeffΘ1 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ CrelΘ1, (3.8)
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and
C̃effΘ2 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C̃relΘ2. (3.9)

The upper and lower bounds in (3.8) and (3.9), which are known as the reliability and efficiency of the
estimators Θ1 and Θ2, are derived below in Section 3.4 and 3.5, respectively, under the assumption
that θD is piecewise polynomials on the induced triangulation on ΓD. Otherwise, higher order terms
arising from polynomial approximations of these functions would appear in (3.8) and (3.9).

At this point we remark that for the derivation of the first a posteriori error estimator we will use the
fact that u ∈ H1

0(Ω) and θ ∈ H1(Ω), so that we can integrate some terms by parts in the whole domain
Ω. In turn, for the second estimator we exploit the properties of the Helmholtz decompositions (cf.
Lemma 3.3) jointly with the Clément and Raviart–Thomas operators, whence new terms capturing
the jumps across the sides/edges of the triangulation appear.

3.3 A general a posteriori error estimate

In order to establish the reliability estimates of the a posteriori error estimators Θ1 and Θ2, that is
the upper bounds in (3.8) and (3.9), we first bound the unknowns related to the fluid and the heat
by applying the uniform ellipticity of the bilinear forms of the continuous formulation, and then we
conclude a preliminary upper bound for the total error by assuming that the data are small enough.
More precisely, we begin with the following auxiliary result.

Lemma 3.4 There exists C > 0, independent of h, such that

‖(t,u)− (th,uh)‖ ≤ C
{∥∥∥σd

h − µ(θh)th

∥∥∥
0,Ω

+ ‖f + divσh‖0,Ω +
∥∥σh − σt

h

∥∥
0,Ω

+ ‖th − e(uh)‖0,Ω + ‖ρh − (∇uh − e(uh))‖0,Ω + ‖Rf‖H0(div ;Ω)′

}
+

2

α(Ω)
Lµ(1 + κ2

1)1/2ĈSCδC̃δ‖f‖δ,Ω‖θ − θh‖1,Ω,

(3.10)

where Rf : H0(div ; Ω)→ R is the functional defined by

Rf(τ ) := −κ1

∫
Ω

{
σd
h − µ(θh)th

}
: τ d − κ2

∫
Ω

{
f + divσh

}
· div τ

−
∫

Ω
(th + ρh) : τ d −

∫
Ω

uh · div τ ,

(3.11)

which satisfies
Rf(τ h) = 0 ∀τ h ∈ Hσ

h . (3.12)

Proof. According to [6, Lemma 3.1], we have that the bilinear form Aθ is uniformly elliptic on
H×H1

0(Ω) with a positive constant α(Ω). This implies that

α(Ω)‖(t,u)− (th,uh)‖ ≤ sup
(r,v)∈H×H1

0(Ω)
(r,v)6=0

Aθ((t,u)− (th,uh), (r,v))

‖(r,v)‖
. (3.13)

In turn, in order to estimate the right-hand side in (3.13), we first add and subtract suitable terms to
write

Aθ((t,u)− (th,uh), (r,v))

= F(r,v)−Aθh((th,uh), (r,v))− (Aθ −Aθh) ((th,uh), (r,v)) ,
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and then proceed similarly to [1, eq. (3.15)]. Indeed, from the definitions of Aθ and F (cf. (2.12)
and (2.15), respectively), and employing the Cauchy–Schwarz inequality, the estimate given by [6, eq.
(3.24)] for |(Aθ −Aθh) ( · , (r,v))|, and the regularity assumption [6, eq. (3.22)], we deduce that∣∣∣Aθ((t,u)− (th,uh), (r,v))

∣∣∣
‖(r,v)‖

≤ C
{∥∥∥σd

h − µ(θh)th

∥∥∥
0,Ω

+ ‖f + divσh‖0,Ω

+
∥∥σh − σt

h

∥∥
0,Ω

+ ‖th − e(uh)‖0,Ω + ‖ρh − (∇uh − e(uh))‖0,Ω + ‖Rf‖H0(div ;Ω)′

}
+ 2Lµ(1 + κ2

1)1/2ĈSCδC̃δ ‖f‖δ,Ω‖θ − θh‖1,Ω ,

(3.14)

where ĈS, Cδ, and C̃δ are the constants provided by [6, eqs. (3.22), (3.25), and (3.32)], respectively.
In this way, replacing the inequality (3.14) into (3.13), we get (3.10). Moreover, using the fact that

F(rh,vh)−Aθh((th,uh), (rh,vh)) = 0 ∀(rh,vh) ∈ Hh ×Hu
h ,

and taking in particular rh = (0, τ h,0) and vh = 0, we get (3.12), which completes the proof. �

Next, we derive an analogous preliminary bound for the error associated to the heat variables.

Lemma 3.5 There exists C > 0, independent of h, such that

‖(p, θ)− (ph, θh)‖ ≤ C
{
‖g + div ph‖0,Ω +

∥∥∇θh − (κ−1ph + κ−1θhuh)
∥∥

0,Ω

+ ‖θD − θh‖0,ΓD
+ ‖Rh‖HΓN

(div ;Ω)′

}
+

2

α̃(Ω)
κ−1(1 + κ2

5)1/2c(Ω) ‖θh‖1,Ω ‖u− uh‖1,Ω,
(3.15)

where Rh : HΓN
(div ; Ω)→ R is the functional defined by

Rh(q) := −κ6

∫
Ω

{
g+ div ph

}
div q−

∫
Ω

{
κ−1ph +κ−1θhuh

}
·q−

∫
Ω
θhdiv q + 〈q · n, θD〉ΓD

, (3.16)

which satisfies
Rh(qh) = 0 ∀qh ∈ Hp

h . (3.17)

Proof. According to [6, Lemma 3.2] and using the fact that ‖u‖1,Ω ≤ cS‖f‖0,Ω (cf. (2.18)), we have

that the bilinear form Ã + B̃u is uniformly elliptic on HΓN
(div ; Ω)× H1(Ω) with a positive constant

α̃(Ω)/2. This implies that

α̃(Ω)

2
‖(p, θ)− (ph, θh)‖ ≤ sup

(q,ψ)∈HΓN
(div ;Ω)×H1(Ω)

(q,ψ)6=0

(Ã + B̃u)((p, θ)− (ph, θh), (q, ψ))

‖(q, ψ)‖
. (3.18)

In turn, in order to estimate the right-hand side in (3.18), we add and subtract suitable terms to write

(Ã + B̃u)((p, θ)− (ph, θh), (q, ψ))

= F̃(q, ψ)− (Ã + B̃uh)((ph, θh), (q, ψ))− B̃u−uh((ph, θh), (q, ψ)),

whence, using the definitions of Ã, B̃w, and F̃ (cf. (2.13), (2.14), and (2.16), respectively), the
continuity of B̃u−uh (see [6, eq. (3.16)]), and the Cauchy–Schwarz inequality, we find that∣∣∣(Ã + B̃u)((p, θ)− (ph, θh), (q, ψ))

∣∣∣
‖(q, ψ)‖

≤ C
{
‖g + div ph‖0,Ω +

∥∥∇θh − (κ−1ph + κ−1θhuh)
∥∥

0,Ω

+ ‖θD − θh‖0,ΓD
+ ‖Rh‖HΓN

(div ;Ω)′

}
+ κ−1(1 + κ2

5)1/2c(Ω)‖θh‖1,Ω‖u− uh‖1,Ω,
(3.19)
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where c(Ω) is the constant in [6, eq. (2.15)]. Then, replacing the inequality (3.19) into (3.18), we
obtain (3.15). Finally, using the fact that

F̃(qh, ψh)− (Ã + B̃uh)((ph, θh), (qh, ψh)) = 0 ∀ (qh, ψh) ∈ Hp
h ×Hθ

h ,

and taking in particular ψh = 0, we arrive at (3.17), which completes the proof. �

We now combine the inequalities provided by Lemmas 3.4 and 3.5 to derive a preliminary upper
bound for the total error ‖(t,u,p, θ) − (th,uh,ph, θh)‖. Indeed, by gathering together the estimates
(3.10) and (3.15), and noting the fact that θh ∈ Wh, it follows that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C(f , g, θD)‖(t,u,p, θ)− (th,uh,ph, θh)‖

+ C
{∥∥∥σd

h − µ(θh)th

∥∥∥
0,Ω

+ ‖f + divσh‖0,Ω +
∥∥σh − σt

h

∥∥
0,Ω

+ ‖th − e(uh)‖0,Ω

+ ‖ρh − (∇uh − e(uh))‖0,Ω + ‖g + div ph‖0,Ω +
∥∥∇θh − (κ−1ph + κ−1θhuh)

∥∥
0,Ω

+ ‖θD − θh‖0,ΓD
+ ‖Rf‖H0(div ;Ω)′ + ‖Rh‖HΓN

(div ;Ω)′

}
,

(3.20)

where
C(f , g, θD) := max

{
C1(f , g, θD),C2(f , g, θD)

}
,

with

C1(f , g, θD) :=
2

α̃(Ω)
κ−1(1 + κ2

5)1/2c(Ω)c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
and

C2(f , g, θD) :=
2

α(Ω)
Lµ(1 + κ2

1)1/2ĈSCδC̃δ‖f‖δ,Ω.

Consequently, we can establish the following preliminary upper bound for the total error.

Lemma 3.6 Assume that the data f , g and θD satisfy:

Ci(f , g, θD) ≤ 1

2
∀i ∈ {1, 2}. (3.21)

Then, there exists C > 0, depending only on parameters, data and other constants, all of them inde-
pendent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C
{∥∥∥σd

h − µ(θh)th

∥∥∥
0,Ω

+ ‖f + divσh‖0,Ω

+
∥∥σh − σt

h

∥∥
0,Ω

+ ‖th − e(uh)‖0,Ω + ‖ρh − (∇uh − e(uh))‖0,Ω + ‖g + div ph‖0,Ω

+
∥∥∇θh − (κ−1ph + κ−1θhuh)

∥∥
0,Ω

+ ‖θD − θh‖0,ΓD
+ ‖Rf‖H0(div ;Ω)′ + ‖Rh‖HΓN

(div ;Ω)′

}
.

(3.22)

Proof. It follows from a direct application of the assumption (3.21) in the inequality (3.20). �

We end this section with equivalent definitions of the functionals Rf and Rh. In fact, noting that
th : I = tr th = 0 and ρh : I = 0, we first observe that∫

Ω
(th + ρh) : τ d =

∫
Ω

(th + ρh)d : τ =

∫
Ω

(th + ρh) : τ .
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In this way, given τ ∈ H0(div ; Ω), we integrate by parts the expression
∫

Ω uh · div τ and use the
homogeneous Dirichlet boundary condition on Γ of uh ∈ Hu

h (cf. (2.20)), to find that

Rf(τ ) = −κ1

∫
Ω

{
σd
h−µ(θh)th

}
: τ −κ2

∫
Ω

{
f + divσh

}
·div τ +

∫
Ω

{
∇uh− (th +ρh)

}
: τ . (3.23)

Analogously, given q ∈ HΓN
(div ; Ω), we integrate by parts the expression

∫
Ω θh div q and use now the

homogeneous Neumann boundary condition of q on ΓN, to arrive at

Rh(q) = −κ6

∫
Ω

{
g+ div ph

}
div q +

∫
Ω

{
∇θh− (κ−1ph +κ−1θhuh)

}
·q + 〈q · n, θD − θh〉ΓD

. (3.24)

3.4 Reliability of the a posteriori error estimators

We now proceed to bound the norms of the functionals Rf and Rh appearing on the right-hand side
of (3.22), by conveniently considering either their original definitions or the new expressions (3.23)
and (3.24), respectively. This task is actually performed in two different ways, which leads to the
reliability of the a posteriori error estimators Θ1 and Θ2. We begin with Θ1.

Theorem 3.7 Assume that the data f , g and θD satisfy (3.21). Then there exist Crel > 0, independent
of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ CrelΘ1. (3.25)

Proof. We first observe that, employing Cauchy–Schwarz inequality and recalling that 〈·, ·〉ΓD
stands

for the duality pairing between H−1/2(ΓD) and H1/2(ΓD), we deduce from (3.23) and (3.24) that

‖Rf‖H0(div ;Ω)′ ≤ c1

{∥∥∥σd
h − µ(θh)th

∥∥∥
0,Ω

+ ‖f + divσh‖0,Ω + ‖∇uh − (th + ρh)‖0,Ω
}

(3.26)

and

‖Rh‖HΓN
(div ;Ω)′ ≤ c2

{
‖g + div ph‖0,Ω +

∥∥∇θh − (κ−1ph + κ−1θhuh)
∥∥

0,Ω
+ ‖θD − θh‖1/2,ΓD

}
, (3.27)

respectively. In this way, the proof follows straightforwardly from the definition of Θ1 (cf. (3.5)),
Lemma 3.6, and inequalities (3.26) and (3.27). �

Having proved Theorem 3.7, we now aim to establish the reliability of Θ2 (cf. (3.6)), which is accom-
plished by applying the Helmholtz decompositions provided by Lemma 3.3 to bound ‖Rf‖H0(div ;Ω)′

and ‖Rh‖HΓN
(div ;Ω)′ . Actually, in what follows we provide the details only for Rf since those for Rh

follow analogously. In fact, given τ ∈ H0(div ; Ω), and thanks to part (a) of Lemma 3.3, we first let
z ∈ H2(Ω) and ϕ ∈ H1(Ω) be such that τ = ∇z + curlϕ in Ω, and

‖z‖2,Ω + ‖ϕ‖1,Ω ≤ C‖τ‖div ;Ω , (3.28)

and then define τ h := Πh(∇z) + curl (Ihϕ) + cI, where c ∈ R is chosen so that τ h belongs to Hσ
h

(cf. Section 3.1). Hence, employing from (3.12) that Rf(τ h) = 0, it readily follows from the foregoing
expressions that Rf(τ ) can be decomposed as

Rf(τ ) = Rf(τ − τ h) = Rf(∇z−Πh(∇z)) +Rf(curl (ϕ− Ihϕ)) . (3.29)

Consequently, we now require to bound the terms on the right-hand side of (3.29), which is done
in the following two lemmas.
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Lemma 3.8 There exists C > 0, independent of h, such that for each z ∈ H2(Ω) there holds

∣∣∣Rf(∇z−Πh(∇z))
∣∣∣ ≤ C

∑
T∈Th

Θ̃2
f,T


1/2

‖z‖2,Ω,

where

Θ̃2
f,T = h2

T

∥∥∥σd
h − µ(θh)th

∥∥∥2

0,T
+ ‖f −Ph(f)‖20,T + h2

T ‖∇uh − (th + ρh)‖20,T . (3.30)

Proof. Using the alternative definition of the functional Rf (cf. (3.23)), the proof follows from a slight
modification of that of [25, Lemma 3.10]. We omit further details. �

Lemma 3.9 There exists C > 0, independent of h, such that for each ϕ ∈ H1(Ω) there holds

∣∣∣Rf(curl (ϕ− Ihϕ))
∣∣∣ ≤ C

∑
T∈Th

Θ̂2
f,T


1/2

‖ϕ‖1,Ω,

where

Θ̂2
f,T =

∥∥∥σd
h − µ(θh)th

∥∥∥2

0,T
+ h2

T ‖rot (th + ρh)‖20,T +
∑

e∈E(T )

he ‖J(th + ρh)sK‖20,e . (3.31)

Proof. Given ϕ ∈ H1(Ω), we first notice from the original definition (3.11) of Rf that there holds

Rf(curl (ϕ−Ihϕ)) = −κ1

∫
Ω

{
σd
h−µ(θh)th

}
: curl (ϕ−Ihϕ)−

∫
Ω

(th+ρh) : curl (ϕ−Ihϕ) . (3.32)

Then, for estimating the first term on the right-hand side of (3.32) we proceed as in the proof of [25,
Lemma 3.9] and apply the boundedness of Ih : H1(Ω)→ H1(Ω) ([16, Lemma 1.127, pag. 69]), as well
as the Cauchy–Schwarz and triangle inequalities, to obtain∣∣∣∣κ1

∫
Ω

{
σd
h − µ(θh)th

}
: curl (ϕ− Ihϕ)

∣∣∣∣ ≤ C
∑
T∈Th

∥∥∥σd
h − µ(θh)th

∥∥∥2

0,T


1/2

‖ϕ‖1,Ω. (3.33)

Next, analogously to the proof of [25, Lemma 3.9], we decompose the second term on the right-hand
side of (3.32) according to the triangulation Th, and integrate by parts on each T ∈ Th to obtain∫

Ω
(th + ρh) : curl (ϕ− Ihϕ) =

∑
T∈Th

∫
T

rot (th + ρh) · (ϕ− Ihϕ)−
∑
e∈Eh

∫
e
J(th + ρh)sK · (ϕ− Ihϕ).

In this way, applying the Cauchy–Schwarz inequality, the approximation properties of the Clément
interpolator Ih (cf. Lemma 3.2), and the fact that the number of triangles of the macro-elements ∆(T )
and ∆(e) are uniformly bounded, we deduce that∣∣∣∣∫

Ω
(th + ρh) : curl (ϕ− Ihϕ)

∣∣∣∣
≤ C

∑
T∈Th

h2
T ‖rot (th + ρh)‖20,T +

∑
e∈E(T )

he ‖J(th + ρh)sK‖20,e


1/2

‖ϕ‖1,Ω.
(3.34)

Finally, by replacing the inequalities (3.33) and (3.34) into (3.32) we conclude the proof. �

As a direct consequence of Lemmas 3.8 and 3.9, and the stability estimate (3.28) for the Helmholtz
decomposition, we obtain the following upper bound for ‖Rf‖H0(div ;Ω)′ .
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Lemma 3.10 There exists C > 0, independent of h, such that

‖Rf‖H0(div ;Ω)′ ≤ C

∑
T∈Th

Θ2
f,T


1/2

,

where

Θ2
f,T :=

∥∥∥σd
h − µ(θh)th

∥∥∥2

0,T
+ ‖f −Ph(f)‖20,T + h2

T ‖∇uh − (th + ρh)‖20,T

+ h2
T ‖rot (th + ρh)‖20,T +

∑
e∈E(T )

he ‖J(th + ρh)sK‖20,e .
(3.35)

Proof. It suffices to see that the first term defining Θ̃2
f,T (cf. (3.30) in Lemma 3.8) is dominated by

the first term of Θ̂2
f,T (cf. (3.31) in Lemma 3.9), which explains the subtraction of the former in the

original definition of Θ2
f,T . �

Finally, the corresponding estimate for Rh is given by the following lemma.

Lemma 3.11 Assume that there exists a convex domain Ξ such that Ω ⊆ Ξ and ΓN ⊆ ∂Ξ. Assume
further that θD ∈ H1(ΓD). Then there exists C > 0, independent of h, such that

‖Rh‖HΓN
(div ;Ω)′ ≤ C

∑
T∈Th

Θ2
h,T

 ,

where

Θ2
h,T := ‖g − Ph(g)‖20,T + h2

T

∥∥∇θh − (κ−1ph + κ−1θhuh)
∥∥2

0,T

+ h2
T

∥∥rot (κ−1ph + κ−1θhuh)
∥∥2

0,T
+

∑
e∈E(T )∩Eh(Ω)

he
∥∥q(κ−1ph + κ−1θhuh) · s

y∥∥2

0,e

+
∑

e∈E(T )∩Eh(ΓD)

he

{∥∥∥∥dθD

ds
− (κ−1ph + κ−1θhuh) · s

∥∥∥∥2

0,e

+ ‖θD − θh‖20,e

}
.

(3.36)

Proof. The result follows analogously to the proof of Lemma 3.10 (see also [12, Lemma 3.8]), taking
into account now the Helmholtz decomposition provided by part (b) of Lemma 3.3 and the fact that
Rh(qh) = 0 ∀qh ∈ Hp

h (cf (3.17)). In particular, using the alternative definition of Rh (cf. (3.24))
and proceeding similarly to Lemma 3.8, we find the first, second and last term of the local estimator
(3.36). On the other hand, considering the original definition (3.16) of Rh, noting that dθD

ds ∈ L2(ΓD),
applying the integration by parts formula on ΓD given by (cf. [15, Lemma 3.5, eq. (3.34)])

〈curlχ · n, θD〉ΓD
= −

〈
dθD

ds
, χ

〉
ΓD

∀χ ∈ H1(Ω) , (3.37)

and proceeding analogously to Lemma 3.9 (see also [12, Lemma 3.7]), we obtain the remaining terms
of (3.36). Further details are omitted. �

The reliability estimate for Θ2 is stated now.

Theorem 3.12 Assume that the data f , g and θD satisfy (3.21). Assume further that θD ∈ H1(ΓD).
Then there exist C̃rel > 0, independent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C̃relΘ2. (3.38)
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Proof. It is a straightforward consequence of the definition of Θ2 (cf. (3.6)), Lemmas 3.6, 3.10, and
3.11, and the fact that the terms h2

T ‖∇θh−(κ−1ph+κ−1θhuh)‖20,T and he‖θD−θh‖20,e, which form part

of Θ2
h,T (cf. (3.36)), are dominated by ‖∇θh − (κ−1ph + κ−1θhuh)‖20,T and ‖θD − θh‖20,e, respectively.

�

3.5 Efficiency of the a posteriori error estimators

We now aim to establish the lower bounds in (3.8) and (3.9). For this purpose, we will make extensive
use of the original system of equations given by (2.8), which is recovered from the augmented-mixed
continuous formulation (2.11) by choosing suitable test functions and then integrating by parts back-
wardly the corresponding equations.

We begin with the efficiency estimate for Θ1.

Theorem 3.13 There exists Ceff > 0, independent of h, such that

CeffΘ1 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖. (3.39)

Proof. We first introduce the identity σd − µ(θ)t = 0 (cf. (2.8)), that is,

σd
h − µ(θh)th =

(
σd
h − σd

)
+ µ(θh) (t− th) + (µ(θ)− µ(θh)) t,

which, proceding as in [6, Lemma 3.4], and noting that ‖τ d‖0,Ω ≤ ‖τ‖0,Ω for each τ ∈ L2(Ω), yields∥∥∥σd
h − µ(θh)th

∥∥∥2

0,Ω
≤ 3
{
µ2

2‖t− th‖20,Ω + ‖σ − σh‖20,Ω + L2
µ‖t‖2δ,Ω‖θ − θh‖2Ln/δ(Ω)

}
.

Recall here from [6] that δ ∈ (0, 1) (when n = 2) or δ ∈ (1/2, 1) (when n = 3) stands for the extra
regularity that we need to assume for the solution of (2.11). In turn, employing the estimate [6,
eq. (3.22)] to bound ‖t‖δ,Ω, and the continuous injection of H1(Ω) into Ln/δ(Ω), whose boundedness

constant is C̃δ (cf. Theorem 2.1), it is not difficult to see that there exist a positive constant c1,
depending only on data and other constants, all of them independent of h, such that∥∥∥σd

h − µ(θh)th

∥∥∥2

0,Ω
≤ c1

{
‖t− th‖20,Ω + ‖σ − σh‖20,Ω + ‖θ − θh‖21,Ω

}
. (3.40)

Analogously, by considering the identity ∇θ − (κ−1p + κ−1θu) = 0 (cf. (2.8)), we have

∇θh − (κ−1ph + κ−1θhuh) = ∇(θh − θ) + κ−1(p− ph) + κ−1 (θu− θhuh) ,

where the last term of the right-hand side can be rewritten as θu − θhuh = θ(u − uh) + (θ − θh)uh,
and then it can be bounded by

‖θu− θhuh‖0,Ω ≤ ‖θ‖L4(Ω)‖u− uh‖L4(Ω) + ‖uh‖L4(Ω)‖θ − θh‖L4(Ω).

Therefore, using the fact that H1(Ω) is continuously embedded into L4(Ω), θ lives in the ball W, and
the estimate ‖uh‖1,Ω ≤ cS‖f‖0,Ω holds (cf. (2.22)), we obtain

‖∇θh − (κ−1ph + κ−1θhuh)‖20,Ω ≤ c2‖(u,p, θ)− (uh,ph, θh)‖2, (3.41)

with c2 a positive constant independent of h. On the other hand, it is readily seen from (2.8) that
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‖f + divσh‖20,Ω ≤ ‖div (σ − σh)‖20,Ω ,

‖g + div ph‖20,Ω ≤ ‖div (p− ph)‖20,Ω,

‖σh − σt
h‖20,Ω ≤ 4‖σ − σh‖20,Ω,

‖th − e(uh)‖20,Ω ≤ 2
{
‖t− th‖20,Ω + ‖u− uh‖21,Ω

}
,

‖ρh − (∇uh − e(uh)) ‖20,Ω ≤ 2
{
‖ρ− ρh‖20,Ω + ‖u− uh‖21,Ω

}
,

‖∇uh − (th + ρh)‖20,Ω ≤ 3
{
‖t− th‖20,Ω + ‖ρ− ρh‖20,Ω + ‖u− uh‖21,Ω

}
,

‖θD − θh‖20,ΓD
≤ c3‖θ − θh‖21,Ω,

(3.42)

and
‖θD − θh‖21/2,ΓD

≤ c4‖θ − θh‖21,Ω, (3.43)

where the last two inequalities make use of the trace inequalities in L2(ΓD) and H1/2(ΓD), respectively.
In this way, the required efficiency estimate (3.39) follows straightforwardly from the definition of Θ1

(cf. (3.5)) and the inequalities (3.40)–(3.43). �

Next, we continue with the derivation of the efficiency estimate of Θ2.

Lemma 3.14 There hold

(a) ‖f −Ph(f)‖0,T ≤ 2‖div (σ − σh)‖0,T ∀T ∈ Th,

(b) ‖g − Ph(g)‖0,T ≤ 2‖div (p− ph)‖0,T ∀T ∈ Th,

and there exist c1, c2 > 0, independent of h, such that

(c) h2
T ‖rot (th + ρh)‖20,T ≤ c1

{
‖t− th‖20,T + ‖ρ− ρh‖20,T

}
∀T ∈ Th,

(d) he‖J(th + ρh)sK‖20,e ≤ c2

{
‖t− th‖20,ωe + ‖ρ− ρh‖20,ωe

}
∀ e ∈ Eh,

where the set ωe is given by ωe := ∪
{
T ′ ∈ Th : e ∈ E(T ′)

}
.

Proof. For (a) and (b) we refer to [25, Lemma 3.18]. In turn, since rot (t + ρ) = rot (∇u) = 0, we
find that the proof of (c) and (d) follows after a straightforward application of [3, Lemmas 4.3 and
4.4], respectively. �

The corresponding bounds for the remaining terms defining Θ2 are given next.

Lemma 3.15 There exist c1, c2 > 0, independent of h, such that

(a)
∑
T∈Th

h2
T ‖rot (κ−1ph + κ−1θhuh)‖20,T ≤ c1 ‖(u,p, θ)− (uh,ph, θh)‖2,

(b)
∑

e∈Eh(Ω)

he‖J(κ−1ph + κ−1θhuh) · sK‖20,e ≤ c2 ‖(u,p, θ)− (uh,ph, θh)‖2.

In addition, under the assumption that θD ∈ H1(ΓD), there exists c3 > 0, independent of h, such that
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(c)
∑

e∈Eh(ΓD)

he

∥∥∥∥dθD

ds
− (κ−1ph + κ−1θhuh) · s

∥∥∥∥2

0,e

≤ c3‖(u,p, θ)− (uh,ph, θh)‖2.

Proof. It follows almost straightforwardly from a slight modification of the proof of [12, Lemma 3.11].
We omit further details. �

As a consequence of Theorem 3.13 and Lemmas 3.14 and 3.15, we are now in position to state the
efficiency of Θ2.

Theorem 3.16 Assume that θD ∈ H1(ΓD). Then, there exists C̃eff > 0, independent of h, such that

C̃effΘ2 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖. (3.44)

4 A posteriori error analysis: the 3D-case

In this section we extend the results from Section 3 to the three-dimensional version of (2.21). Similarly
as in the previous section, given a tetrahedron T ∈ Th, we let E(T ) be the set of its faces, and let Eh
be the set of all faces of the triangulation Th. Then, we write Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN), where
Eh(Ω) := {e ∈ Eh : e ⊆ Ω}, Eh(ΓD) := {e ∈ Eh : e ⊆ ΓD}, and Eh(ΓN) := {e ∈ Eh : e ⊆ ΓN}. Also,
for each face e ∈ Eh we fix a unit normal ne to e, so that given τ ∈ L2(Ω) such that τ |T ∈ C(T ) on
each T ∈ Th, and given e ∈ Eh(Ω), we let Jτ × neK be the corresponding jump of the tangential traces
across e, that is Jτ × neK := (τ |T − τ |T ′)|e × ne, where T and T ′ are the elements of Th having e as a
common face. In what follows, when no confusion arises, we simple write n instead of ne.

Now, we recall that the curl of a 3D vector v := (v1, v2, v3) is the 3D vector

curl (v) = ∇× v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
,

and that, given a tensor function τ := (τij)3×3, the operator curl (τ ) is the 3 × 3 tensor whose rows
are given by

curl (τ ) :=

 curl (τ11, τ12, τ13)
curl (τ21, τ22, τ23)
curl (τ31, τ32, τ33)

 .

In addition, τ × n stands for the 3× 3 tensor whose rows are given by the tangential components of
each row of τ , that is,

τ × n :=

 (τ11, τ12, τ13)× n
(τ21, τ22, τ23)× n
(τ31, τ32, τ33)× n

 .

Having introduced these notations, we now set for each T ∈ Th the local a posteriori error indicators
Θ̃2

1,T and Θ2
1,T (exactly as in (3.4) and (3.5), respectively), and define

Θ2
2,T := Θ̃2

1,T + ‖f −Ph(f)‖20,T + ‖g − Ph(g)‖20,T + h2
T ‖∇uh − (th + ρh)‖20,T

+ h2
T ‖curl (th + ρh)‖20,T + h2

T

∥∥curl (κ−1ph + κ−1θhuh)
∥∥2

0,T

+
∑

e∈E(T )

he ‖J(th + ρh)× nK‖20,e +
∑

e∈E(T )∩Eh(Ω)

he
∥∥J(κ−1ph + κ−1θhuh)× nK

∥∥2

0,e

+
∑

e∈E(T )∩Eh(ΓD)

he
∥∥∇θD × n− (κ−1ph + κ−1θhuh)× n

∥∥2

0,e
.

(4.1)
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In this way, the corresponding global a posteriori error estimators are defined as in (3.7), that is

Θ1 :=

∑
T∈Th

Θ2
1,T + ‖θD − θh‖21/2,ΓD


1/2

and Θ2 :=

∑
T∈Th

Θ2
2,T


1/2

,

and the main estimates, which are the analogue of Theorems 3.7 and 3.12, are as follows.

Theorem 4.1 Assume that the data f , g and θD satisfy (3.21). Assume further that θD ∈ H1(ΓD).
Then, there exist positive constants Crel, Ceff , C̃rel, and C̃eff , independent of h, such that

CeffΘ1 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ CrelΘ1

and
C̃effΘ2 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C̃relΘ2.

The proof of Theorem 4.1 follows very closely the analysis of Section 3, except a few issues to be
described throughtout the following discussion. Indeed, we first observe that the general a posteriori
error estimate given by Lemma 3.6 is also valid in 3D, and that the corresponding upper bounds of
‖Rf‖H0(div ;Ω)′ and ‖Rh‖HΓN

(div ;Ω)′ yielding the reliability of Θ1 are the same as those given in (3.26)

and (3.27), respectively.

Now, for the reliability of Θ2, we need to use a 3D version of the stable Helmholtz decompositions
provided by Lemma 3.3. These required results were established recently for arbitrary polyhedral
domains in [22, Theorems 3.1 and 3.2]. Next, the associated discrete Helmholtz decompositions
and the functionals Rf and Rh are set and rewritten exactly as in (3.23) and (3.24), respectively.
Furthermore, in order to derive the new upper bound of ‖Rf‖H0(div ;Ω)′ and ‖Rh‖HΓN

(div ;Ω)′ , we now

need the 3D analogue of the integration by parts formula on the boundary given by (3.37). In fact,
by applying the identities from [26, Chapter I, eq. (2.17) and Theorem 2.11], we deduce that in this
case there holds

〈curlχ · n, θD〉ΓD
= −〈∇θD × n,χ〉ΓD

∀χ ∈ H1(Ω).

In addition, the integration by parts formula on each tetrahedron T ∈ Th, which is employed in the
proof of the 3D analogue of Lemma 3.9, becomes (cf. [26, Chapter I, Theorem 2.11])∫

T
curl q · χ−

∫
T

q · curlχ = 〈q× n,χ〉∂T ∀q ∈ H(curl ; Ω), ∀χ ∈ H1(Ω),

where 〈·, ·〉∂T is the duality pairing between H−1/2(∂T ) and H1/2(∂T ), and, as usual, H(curl ; Ω) is the
space of vectors in L2(Ω) whose curl lie also in L2(Ω). Note that the foregoing identities explain the
appearing of the expressions (th+ρh)×n, (κ−1ph+κ−1θhuh)×n, and∇θD×n−(κ−1ph+κ−1θhuh)×n
in the 3D definitions of Θ2

2,T (cf. (4.1)). The rest of the proof of the reliability of Θ2 and the entire
analysis yielding the efficiency of both Θ1 and Θ2 proceed as in Sections 3.4 and 3.5, respectively,
taking into account that the proof of the 3D version of the Lemma 3.15 follows almost straightforwardly
from a slight modification of the proof of [12, Lemma 4.2].

5 Numerical results

This section serves to illustrate the performance and accuracy of the proposed augmented finite element
scheme along with the properties of the a posteriori error estimators Θ1 and Θ2, in 2D and 3D domains,
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derived in Sections 3 and 4, respectively. In this regard, we remark that for purposes of adaptivity,
which requires to have locally computable indicators, we use that

‖θD − θh‖21/2,ΓD
≤ cD‖θD − θh‖21,ΓD

= cD

∑
e∈Eh(ΓD)

‖θD − θh‖21,e,

and redefine Θ1 as

Θ1 :=

∑
T∈Th

Θ2
1,T


1/2

,

where

Θ2
1,T :=

∥∥∥σd
h − µ(θh)th

∥∥∥2

0,T
+ ‖f + divσh‖20,T +

∥∥σh − σt
h

∥∥2

0,T
+ ‖th − e(uh)‖20,T

+ ‖ρh − (∇uh − e(uh))‖20,T + ‖∇uh − (th + ρh)‖20,T + ‖g + div ph‖20,T

+
∥∥∇θh − (κ−1ph + κ−1θhuh)

∥∥2

0,T
+

∑
e∈E(T )∩Eh(ΓD)

‖θD − θh‖21,e .

Under this redefinition Θ1 is certainly still reliable, but efficient only up to all its terms, except for the
last one, associated to the boundary ΓD. Nevertheless, the numerical results to be displayed below
allow us to conjecture that this modified Θ1 actually verifies both properties.

Our implementation is based on the public domain finite element software FreeFem++ [27] which
provides for both 2D and 3D domains the automatic adaptation procedure tools adaptmesh and msh-
met, respectively. A Picard algorithm with a fixed tolerance tol = 1E − 6 has been used for the
corresponding fixed-point problem (2.21) and the iterations are terminated once the relative error of
the entire coefficient vectors between two consecutive iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN, with N denoting the total number of degrees of freedom
defining the finite element subspaces Ht

h,Hσ
h ,H

ρ
h,H

u
h ,H

p
h , and Hθ

h. As usual, the individual errors are
denoted by:

e(t) := ‖t− th‖0,Ω, e(σ) := ‖σ − σh‖div ;Ω, e(ρ) := ‖ρ− ρh‖0,Ω,

e(u) := ‖u− uh‖1,Ω, e(p) := ‖p− ph‖div ;Ω, e(θ) := ‖θ − θh‖1,Ω,

e(σP) := ‖σP − σP,h‖0,Ω, e(p) := ‖p− ph‖0,Ω,

where σP,h and ph, are the postprocessed polymeric part of the extra-stress tensor and the pressure,
respectively, given by

σP,h := 2µP(θh)th and ph := − 1

n
trσh in Ω.

In turn, the global error is computed as

e :=
{

e(t)2 + e(σ)2 + e(ρ)2 + e(u)2 + e(p)2 + e(θ)2
}1/2

,
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whereas the effectivity index with respect to Θi, i ∈ {1, 2} is given by

eff(Θi) :=
e

Θi
.

In addition, we define the experimental rates of convergence

r(�) :=
log(e(�)/e′(�))

log(h/h′)
for each � ∈

{
t,σ,ρ,u,p, θ,σP, p

}
,

where e and e′ denote errors computed on two consecutive meshes of sizes h and h′, respectively. How-
ever, when the adaptive algorithm is applied, the expression log(h/h′) appearing in the computation
of the above rates is replaced by − 1

n log(N/N′) with n = 2 (in 2D domains) or n = 3 (in 3D domains),
where N and N′ denote the corresponding degrees of freedom of each triangulation.

The examples to be considered in this section are described next. In all of them, as in [13, Section 2],
we choose the coefficients of the polymer and solvent viscosity a1, b1, a2 and b2 (cf. (2.2)) as follow:

b1 = b2 =
∆E

R
, a2 = exp

(
−∆E

RθR

)
, and a1 = (1− ε)a2,

where ∆E is the activation energy, R is the ideal gas constant, and θR is a reference temperature of
the fluid. Note that the constraint (2.3) will be satisfied as long as the temperature of the system
stays above θR. In turn, we consider κ = 1, ε = 0.01, and according to [6, eq. (3.20)], the stabilization
parameters are taken as κ1 = µ1/µ

2
2, κ2 = κ1, κ3 = µ1/2, κ4 = µ1/4, κ5 = κ, κ6 = κ−1/2, and

κ7 = κ/2. In addition, the condition
∫

Ω trσh = 0 is imposed via a penalization strategy.

Example 1. In our first example we concentrate on the accuracy of the augmented method. We
consider the square domain Ω := (0, 1)2, the boundary Γ = ΓD ∪ ΓN, with ΓD := {0} × (0, 1) and
ΓN := Γ \ ΓD. The following viscosity parameters correspond to polystyrene [28, Section 4.2]:

∆E

R
= 14500, θR = 538.

The data f , g, and θD are chosen so that a manufactured solution of (2.8) is given by the smooth
functions

u(x) :=

(
2πx2

1(x1 − 1)2 cos(πx2) sin(πx2)

−2x1(x1 − 1)(2x1 − 1) sin(πx2)2

)
,

p(x) := cos(πx1) cos(πx2),

θ(x) := 10(x1 − 1)2 sin(πx2)2 + 540 ∀x := (x1, x2) ∈ Ω.

The results reported in Tables 5.1 and 5.2 are in accordance with the theoretical bounds established in
Theorem 2.2. In addition, we also compute the global a posteriori error indicators Θ1,Θ2 and measure
their reliability and efficiency with the effectivity index. For the two orders tested, these estimators
remain always bounded.

Example 2. Our second example is aimed at testing the features of adaptive mesh refinement
after the a posteriori error estimators Θ1 and Θ2. We consider a four-to-one contraction domain
Ω := (0, 2) × (0, 1) \ (1, 2) × (0.25, 1), the boundary Γ = ΓD ∪ ΓN, with ΓD := {0} × (0, 1) and
ΓN := Γ \ ΓD. The following viscosity parameters correspond to Nylon-6,6 [28, Section 4.2]:

∆E

R
= 6600, θR = 563.
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The data f , g, and θD are chosen so that the exact solution is given by

u(x) :=

(
x2(x2 − 1)(x2 − 0.25)(3x2

2 − 2.5x2 + 0.25) sin(πx1)2

−πx2
2(x2 − 1)2(x2 − 0.25)2 cos(πx1) sin(πx1)

)
,

p(x) :=
10(x2 − 0.25)

(x1 − 1.02)2 + (x2 − 0.27)2
+ p0,

θ(x) :=
4(x1 − 1)(x2 − 0.25)

(x1 − 1.02)2 + (x2 − 0.27)2
+ 570 ∀x := (x1, x2) ∈ Ω.

The constant p0 is such that
∫

Ω p = 0. Notice that both the pressure and the temperature exhibit
high gradients near the vertex (1, 0.25). Notice also that the only difference with respect to (2.8) is
a non-homogeneous heat flux p · n = fN imposed on ΓN, where fN is manufactured according to the
above solution. Therefore, the local estimators Θ1,T and Θ2,T have to be modified by adding the term∑

e∈E(T )∩Eh(ΓN)

he‖fN − ph · n‖20,e,

whose estimation from below and above follows in a straightforward manner.

Tables 5.3, 5.4, and 5.5 along with Figure 5.1, summarizes the convergence history of the method ap-
plied to a sequence of quasi-uniformly and adaptively refined triangulation of the domain. Sub-optimal
rates are observed in the first case, whereas adaptive refinement according to either a posteriori error
indicator yield optimal convergence and stable effectivity indexes. On the other hand, approximate
solutions builded using the augmented P0 − RT0 − P0 −P1 −RT0 − P1 scheme with 562743 degrees
of freedom (via the indicator Θ1) are shown in Figure 5.2. In particular, we observe in both the
velocity and heat flux streamlines a vortex near the corner region of the four-to-one domain whereas
both the pressure and temperature exhibit high gradients in the same region. In turn, examples of
some adapted meshes generated using Θ1 and Θ2 are collected in Figure 5.3. We can observe a clear
clustering of elements near the corner region of the contraction as we expected. Notice that the meshes
obtained via the indicator Θ2 are lightly more refined in the interior of the contraction domain than
the meshes obtained via the indicator Θ1. This fact is justified by the terms that capture the jumps
between triangles obtained in the Helmoltz decomposition.

Example 3. To conclude, we replicate the Example 2 in a three-dimensional setting. In fact, we
consider the four-to-one domain Ω := (0, 2) × (0, 1)2 \ (1, 2) × (0.25, 1)2, the boundary Γ = ΓD ∪ ΓN,
with ΓD := {0} × (0, 1)2 and ΓN := Γ \ ΓD. The viscosity parameters are the same as in the second
example. However, this time the manufactured exact solutions adopt the form

u(x) :=

 −x3(x3 − 1)(x3 − 0.25)(3x2
3 − 2.5x3 − π cos(πx2) + 0.25) sin(πx1)2 sin(πx2)

x3(x3 − 1)(x3 − 0.25)(3x2
3 − 2.5x3 − π cos(πx1) + 0.25) sin(πx1) sin(πx2)2

−πx2
3(x3 − 1)2(x3 − 0.25)2 sin(πx1) sin(πx2)(cos(πx2)− cos(πx1))

 ,

p(x) :=
10(x3 − 0.25)

(x1 − 1.05)2 + (x3 − 0.3)2
+ p0,

θ(x) :=
4(x1 − 1)(x3 − 0.25)

(x1 − 1.05)2 + (x3 − 0.3)2
+ 570 ∀x := (x1, x2, x3) ∈ Ω.

Similarly, Tables 5.6 and 5.7 along with the Figure 5.4 confirm a disturbed convergence under quasi-
uniform refinement and an optimal convergence rates when using adaptive refinement guided by the a
posteriori error estimator Θ1. In turn, some approximated solutions after four mesh refinement steps
showing an analogous behaviour to its 2D counterpart are collected in Figure 5.5, whereas snapshots
of the last three meshes via Θ1 are shown in Figure 5.6.
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N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1467 0.196 0.155 – 1.246 – 0.268 – 0.264 – 0.148 –
5631 0.097 0.075 1.025 0.633 0.960 0.146 0.859 0.127 1.040 0.063 1.214

22131 0.048 0.038 0.979 0.310 1.009 0.080 0.858 0.062 1.018 0.031 0.995
87837 0.025 0.019 1.032 0.157 1.018 0.040 1.045 0.031 1.027 0.015 1.105

353853 0.013 0.009 1.093 0.077 1.085 0.020 1.089 0.015 1.072 0.007 1.111

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) eff(Θ2) iter

18.678 – 3.265 – 0.349 – 19.007 – 0.931 0.183 4
9.628 0.940 1.419 1.181 0.171 1.017 9.755 0.992 0.942 0.180 4
4.738 1.002 0.654 1.094 0.082 1.027 4.794 1.038 0.947 0.178 3
2.405 1.014 0.331 1.019 0.041 1.035 2.434 0.984 0.950 0.176 3
1.187 1.082 0.163 1.087 0.020 1.117 1.201 1.013 0.950 0.176 3

Table 5.1: Example 1, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with quasi-uniform refinement.

N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

3666 0.196 0.026 – 0.151 – 0.023 – 0.037 – 0.016 –
14076 0.097 0.006 2.036 0.037 2.002 0.006 1.986 0.009 2.071 0.004 1.894
55326 0.048 0.001 2.044 0.009 2.019 0.001 2.048 0.002 2.065 0.001 1.998

219591 0.025 0.000 1.989 0.002 2.040 0.000 1.998 0.001 1.986 0.000 2.032
884631 0.013 0.000 2.186 0.000 2.153 0.000 2.196 0.000 2.195 0.000 2.167

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) eff(Θ2) iter

2.435 – 0.296 – 0.045 – 2.458 – 0.951 0.114 3
0.584 2.024 0.069 2.060 0.011 2.048 0.590 2.122 0.953 0.116 3
0.138 2.041 0.015 2.120 0.003 2.039 0.139 2.111 0.951 0.115 3
0.036 2.023 0.004 2.047 0.001 2.006 0.036 1.961 0.956 0.115 3
0.009 2.148 0.001 2.133 0.000 2.185 0.009 2.011 0.957 0.115 3

Table 5.2: Example 1, P1 − RT1 − P1 −P2 −RT1 − P2 scheme with quasi-uniform refinement.

N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1803 0.190 1.651 – 485.735 – 2.078 – 2.717 – 11.050 –
6987 0.103 0.692 1.285 540.574 – 1.742 0.260 3.783 – 11.448 –

27345 0.049 1.409 – 384.144 0.501 1.410 0.310 1.625 1.238 6.920 0.738
107985 0.026 1.135 0.315 231.471 0.738 0.932 0.603 0.673 1.285 2.842 1.296
430221 0.013 0.646 0.817 123.634 0.907 0.558 0.742 0.208 1.698 1.205 1.242

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) eff(Θ2) iter

260.136 – 82.410 – 5.521 – 557.149 – 1.010 0.701 8
453.925 – 105.853 – 6.172 – 713.786 – 1.013 0.712 6
338.485 0.430 31.700 1.767 4.031 0.624 512.982 0.484 1.002 0.708 5
221.602 0.617 10.676 1.585 1.674 1.280 320.629 0.684 1.001 0.707 4
125.639 0.821 2.834 1.919 0.970 0.789 176.293 0.865 1.000 0.707 3

Table 5.3: Example 2, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with quasi-uniform refinement.
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N e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1803 1.651 – 485.735 – 2.078 – 2.717 – 11.050 –
2793 1.152 1.645 477.153 0.042 0.887 3.893 2.440 0.491 5.918 2.854
3969 1.353 – 233.594 3.936 0.604 2.188 0.715 6.984 3.017 3.834
6465 1.108 0.818 95.506 3.515 0.503 0.751 0.524 1.274 2.464 0.829

12177 0.985 0.372 52.350 2.003 0.435 0.460 0.425 0.665 2.127 0.466
24309 0.789 0.641 35.354 1.156 0.358 0.558 0.286 1.139 1.696 0.655
42405 0.612 0.913 26.435 1.043 0.284 0.830 0.173 1.822 1.213 1.204
78363 0.507 0.615 19.354 1.030 0.238 0.581 0.126 1.033 0.957 0.772

148599 0.337 1.276 14.094 1.012 0.173 1.004 0.067 1.976 0.668 1.123
286053 0.268 0.702 10.136 0.989 0.138 0.682 0.047 1.045 0.513 0.807
562743 0.172 1.313 7.245 1.008 0.089 1.287 0.025 1.904 0.324 1.358

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) iter

260.136 – 82.410 – 5.521 – 557.149 – 1.010 8
410.800 – 57.315 1.659 3.435 2.169 632.238 – 1.005 5
218.748 3.587 20.780 5.775 2.067 2.891 320.704 3.863 1.003 5
86.491 3.804 19.236 0.317 1.540 1.207 130.284 3.693 1.014 5
42.241 2.264 17.562 0.288 1.316 0.496 69.531 1.984 1.042 5
28.680 1.120 13.182 0.830 1.069 0.601 47.403 1.108 1.052 4
21.095 1.104 10.129 0.947 0.789 1.093 35.311 1.058 1.053 3
15.621 0.978 8.060 0.744 0.642 0.670 26.151 0.978 1.061 3
11.037 1.086 3.787 2.361 0.440 1.184 18.302 1.116 1.025 3
8.051 0.963 2.458 1.320 0.352 0.680 13.179 1.003 1.020 3
5.615 1.065 0.981 2.716 0.228 1.289 9.221 1.056 1.007 3

Table 5.4: Example 2, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with adaptive refinement via Θ1.
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Figure 5.1: Example 2, e vs. N for quasi-uniform/adaptive schemes.
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N e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1803 1.651 – 485.735 – 2.078 – 2.717 – 11.050 –
3177 1.161 1.242 479.666 0.044 0.910 2.914 2.499 0.295 8.074 1.108
4395 1.358 – 233.586 4.434 0.720 1.447 0.688 7.946 2.966 6.170
6987 1.041 1.147 92.836 3.981 0.438 2.147 0.453 1.804 2.021 1.655

12759 0.953 0.230 51.210 1.976 0.374 0.518 0.404 0.384 1.785 0.413
24789 0.715 0.864 34.828 1.161 0.347 0.224 0.227 1.732 1.333 0.878
42729 0.576 0.793 26.799 0.963 0.258 1.091 0.152 1.481 1.070 0.807
81009 0.435 0.879 18.989 1.077 0.218 0.526 0.095 1.469 0.865 0.666

151581 0.319 0.993 14.100 0.950 0.157 1.055 0.055 1.719 0.607 1.131
297489 0.233 0.924 9.898 1.050 0.121 0.757 0.037 1.191 0.444 0.924
577731 0.162 1.093 7.223 0.949 0.078 1.342 0.020 1.901 0.304 1.140

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ2) iter

260.136 – 82.410 – 5.521 – 557.149 – 0.701 8
408.119 – 57.796 1.253 3.587 1.523 632.447 – 0.709 5
214.041 3.977 19.688 6.637 2.312 2.707 317.437 4.248 0.708 5
84.584 4.005 17.847 0.424 1.442 2.038 126.858 3.957 0.712 5
41.294 2.381 17.352 0.093 1.301 0.342 68.044 2.069 0.723 4
28.423 1.125 12.086 1.089 0.955 0.930 46.558 1.143 0.720 4
20.719 1.161 7.255 1.874 0.751 0.885 34.649 1.085 0.715 3
15.350 0.938 4.951 1.195 0.565 0.889 24.919 1.031 0.709 3
10.830 1.113 2.240 2.532 0.422 0.930 17.923 1.052 0.704 3
7.893 0.938 1.568 1.060 0.313 0.883 12.760 1.008 0.699 3
5.517 1.079 0.641 2.697 0.214 1.150 9.113 1.014 0.699 3

Table 5.5: Example 2, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with adaptive refinement via Θ2.

N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

8884 0.354 2.808 – 202.828 – 3.755 – 2.133 – 13.714 –
67396 0.177 2.070 0.451 196.015 0.051 3.701 0.021 2.435 – 8.711 0.672

525316 0.088 1.703 0.285 134.581 0.549 2.871 0.371 1.288 0.930 4.323 1.024
4148740 0.044 1.168 0.548 79.625 0.762 1.811 0.669 0.524 1.307 2.078 1.063

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) iter

160.643 – 74.310 – 5.237 – 269.247 – 1.040 7
180.583 – 68.476 0.121 3.958 0.415 275.218 – 1.037 6
121.390 0.580 33.893 1.027 3.120 0.347 184.416 0.585 1.020 5
73.642 0.726 12.062 1.500 1.933 0.695 109.150 0.761 1.007 4

Table 5.6: Example 3, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with quasi-uniform refinement.
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N e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

8884 2.808 – 202.828 – 3.755 – 2.133 – 13.714 –
16760 2.912 – 195.934 0.163 3.105 0.898 1.136 2.978 10.403 1.306

121932 1.913 0.635 135.452 0.558 1.815 0.812 1.051 0.118 5.117 1.073
782480 1.197 0.757 72.896 1.000 1.078 0.841 0.390 1.598 2.536 1.133

4282528 0.649 1.081 36.213 1.235 0.601 1.031 0.161 1.561 1.246 1.255

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) iter

160.643 – 74.310 – 5.237 – 269.247 – 1.040 7
163.159 – 32.320 3.935 3.794 1.524 257.051 0.219 1.007 6
120.935 0.453 27.820 0.227 2.455 0.658 183.724 0.508 1.009 5
66.899 0.955 9.073 1.808 1.422 0.881 99.370 0.992 1.004 5
33.902 1.200 3.302 1.784 0.741 1.151 49.724 1.222 1.006 4

Table 5.7: Example 3, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with adaptive refinement via Θ1.
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Figure 5.2: Example 2, approximated spectral norm of the stress tensor component, velocity stream-
lines, and pressure field (top panels), heat flux streamlines, temperature field, and polymeric part of
the extra-stress tensor component (bottom panels).
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Figure 5.3: Example 2, three snapshots of adapted meshes according to the indicators Θ1 and Θ2 (top
and bottom panels, respectively).
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Figure 5.6: Example 3, three snapshots of adapted meshes according to the indicators Θ1.
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[8] E. Colmenares, G.N. Gatica and R. Oyarzúa, Fixed point strategies for mixed variational
formulations of the stationary Boussinesq problem. C. R. Math. Acad. Sci. Paris 354 (2016), no.
1, 57–62.

[9] E. Colmenares, G.N. Gatica and R. Oyarzúa, Analysis of an augmented mixed-primal
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