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Abstract

A mixed virtual element method (mixed-VEM) for a pseudostress-velocity formulation of the two-
dimensional Navier-Stokes equations with Dirichlet boundary conditions is proposed and analyzed
in this work. More precisely, we employ a dual-mixed approach based on the introduction of a non-
linear pseudostress linking the usual linear one for the Stokes equations and the convective term. In
this way, the aforementioned new tensor together with the velocity constitute the only unknowns
of the problem, whereas the pressure is computed via a postprocessing formula. In addition, the
resulting continuous scheme is augmented with Galerkin type terms arising from the constitutive
and equilibrium equations, and the Dirichlet boundary condition, all them multiplied by suitable
stabilization parameters, so that the Banach fixed-point and Lax-Milgram theorems are applied
to conclude the well-posedness of the continuous and discrete formulations. Next, we describe the
main VEM ingredients that are required for our discrete analysis, which, besides projectors com-
monly utilized for related models, include, as the main novelty, the simultaneous use of virtual
element subspaces for H1 and H(div) in order to approximate the velocity and the pseudostress,
respectively. Then, the discrete bilinear and trilinear forms involved, their main properties and the
associated mixed virtual scheme are defined, and the corresponding solvability analysis is performed
using again appropriate fixed-point arguments. Moreover, Strang-type estimates are applied to de-
rive the a priori error estimates for the two components of the virtual element solution as well as
for the fully computable projections of them and the postprocessed pressure. As a consequence,
the corresponding rates of convergence are also established. Finally, we follow the same approach
employed in previous works by some of the authors and introduce an element-by-element post-
processing formula for the fully computable pseudostress, thus yielding an optimally convergent
approximation of this unknown with respect to the broken H(div)-norm.

Key words: Navier-Stokes problem, pseudostress-based formulation, augmented formulation, mixed
virtual element method, high-order approximations

1 Introduction

The utilization of virtual element methods (VEM) in fluid mechanics has become a very active research
subject in recent years. Indeed, regarding the Stokes equations, we begin by referring to [3], [8], and
[19], where stream function-based, divergence free, and non-conforming virtual element methods,
respectively, have been developed for the classical velocity-pressure formulation of this problem. In
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particular, a new family of virtual elements for the Stokes problem on polygonal meshes, in which
the discrete velocity is pointwise divergence-free, is provided in [8]. Moreover, the associated virtual
scheme is shown to be equivalent to a problem with less degrees of freedom, thus yielding a more
efficient method. In turn, the virtual element method proposed in [19] approximates the pressure
using discontinuous piecewise polynomials, whereas the components of the velocity are approximated
using a globally nonconforming virtual element space. In fact, the virtual element functions are
locally defined as the solution of Poisson problems with polynomial Neumann boundary conditions.
More recently, a family of virtual element methods for the two-dimensional Navier-Stokes equations is
introduced and analyzed in [9], which constitutes, up to our knowledge, the first paper applying the
VEM technique to that nonlinear model. As in [8], pointwise divergence-free discrete velocities are
also obtained in [9], and hence the virtual element scheme suggested there can be seen as a natural
extension of the approach provided in [8].

Furthermore, other contributions in the aforementioned direction have concentrated on the com-
bined use of pseudostress-based dual-mixed variational formulations and virtual element methods,
thus yielding the first mixed-VEM schemes known so far for the Stokes and related models in fluid
mechanics (see [13], [14], and [15]). Before describing the main aspects of these works in what follows,
we notice that the name dual-mixed refers here to those formulations in which the main unknown of
the resulting saddle point problem lives in either a vectorial H(div) or a tensorial H(div) space, which
is precisely the case when the stress or the pseudostress is employed. Having said the above, we now
recall that a mixed-VEM for the pseudostress-velocity formulation of the Stokes problem, in which
the pressure is computed via a postprocessing formula, was introduced and analized in [13]. In par-
ticular, in order to derive the explicitly computable discrete bilinear form, a new local projector onto
a suitable polynomial space, which takes into account the main features of the continuous solution
and allows the explicit integration of terms involving deviatoric tensors, is proposed there. Then, the
analysis in [13] is extended in [14] to derive two mixed virtual element methods for the two-dimensional
Brinkman problem. Proceeding as in [27], the equilibrium equation and the incompressibility condition
are utilized in [14] to eliminate the velocity and the pressure, respectively, whence the pseudostress
becomes the only unknown of the resulting dual-mixed formulation. In this way, the aforementioned
two schemes arise from the use of one from two different projectors, the ad-hoc one introduced in
[13] and the L2-orthogonal one analyzed in [7] (see also [5]). Another virtual element method for the
Brinkman equations, not employing the aforementioned dual-mixed approach, is proposed in [33]. We
end this paragraph by remarking that the analysis and results from [13] and [14] were extended in [15]
to the case of quasi-Newtonian Stokes flows, for which the nonlinear model studied in [28] (see also
[29]) was considered.

In addition to the above, it is important to highlight that the incorporation of the pseudostress as
one of the main unknowns of a dual-mixed variational formulation in continuum mechanics, is mainly
motivated by the need of finding new ways of circumventing the symmetry requirement of the usual
stress-based methods. In particular, and since in this paper we are interested in developing a VEM
scheme for a dual-mixed formulation of the Navier-Stokes equations, we begin the corresponding
bibliographic discussion with [30], where a new mixed finite element method for that model was
introduced and analyzed. More precisely, the main unknowns of the approach in [30] are given by
the velocity, its gradient, and a modified nonlinear pseudostress tensor linking the usual stress and
the convective term. A fixed-point argument and the Babuška-Brezzi theory are applied there to
derive the well-posedness of the resulting continuous formulation. Then, the procedure from [30] is
modified in [18] through the introduction of a new nonlinear tensor linking now the pseudostress
(instead of the stress) and the convective term, which, together with the velocity, constitute the only
unknowns. Suitable Galerkin type terms arising from the constitutive and equilibrium equations, and
the boundary condition, are then incorporated into the formulation of [18], so that the Lax-Milgram
and Banach fixed-point theorems are employed to prove the well-posedness of both the continuous and
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discrete schemes. In turn, the approach from [18] has been further extended to other boundary value
problems, including the development of new dual-mixed formulations for the stationary Boussinesq
problem (see [21], [22], [23], [24]), and for the Navier-Stokes equations with constant density and
variable viscosity (see [16], [17]). Besides the methods and tools utilized in [18], the foregoing extensions
also make use of the Brouwer fixed-point theorem and the Babuška-Brezzi theory.

According to the above discussion, and in order to additionally contribute in the direction drawn
by [15] and [9], we now aim to continue extending the applicability of the VEM technique to nonlinear
problems in fluid mechanics. More precisely, we consider the same variational formulation from [18]
(see also [16], [17]), and develop, up to our knowledge, the first dual-mixed virtual element method
for the Navier Stokes equations. The rest of this work is organized as follows. At the end of the
present section we provide some useful notations. In Section 2 we describe our nonlinear model, recall
from [18] the derivation of the augmented pseudostress-velocity formulation to be employed, and
state the corresponding well-posedness result. Then, in Section 3 we introduce the virtual element
subspaces approximating the velocity and the pseudostress in H1 and H(div), respectively, state their
approximation properties, and define the projectors and remaining ingredients that are needed for the
discrete analysis. In turn, computable discrete versions of the bilinear and trilinear forms involved, and
of the corresponding functional on the right-hand side of the formulation, are locally and then globally
defined in Section 4. In addition, the main mapping properties connecting them with their continuous
versions are also proved in this section. Next, in Section 5 we define the associated mixed virtual
element scheme, perform the solvability analysis by using suitable fixed-point arguments (as done in
[18] and its further extensions), and apply Strang-type estimates to derive the a priori error estimates
for both the virtual element solution and the fully computable projections of its components. The
corresponding rates of convergence are then readily established by using the approximation properties
given in Section 3. Finally, following previous works by some of the authors, an element-by-element
postprocessing formula for the fully computable pseudostress is suggested at the last part of Section
5, which leads to an optimally convergent approximation of this unknown with respect to the broken
H(div)-norm.

Notations

We end the present section by providing some notations to be used along the paper, including those
already employed above. Firstly, for any vector fields v = (vi)i=1,2 and w = (wi)i=1,2 we set the
gradient, divergence and tensor product operators as

∇v :=

(
∂vi
∂xj

)
i,j=1,2

, div(v) :=
2∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,2 ,

respectively. In addition, denoting by I the identity matrix of R2×2, and given τ := (τij), ζ := (ζij) ∈
R2×2, we write as usual

τ t := (τji) , tr(τ ) :=

2∑
i=1

τii, τd := τ − 1

2
tr(τ ) I , and τ : ζ :=

2∑
i,j=1

τijζij ,

which corresponds, respectively, to the transpose, the trace, and the deviator tensor of τ , and to the
tensorial product between τ and ζ. Next, given a bounded domain O ⊆ R2, with boundary ∂O, we
let n be the outward unit normal vector on ∂O. Also, given r ≥ 0 and p > 1, we let Wr,p(O) be the
standard Sobolev space with norm ‖ · ‖r,p,O and seminorm | · |r,p,O. In particular, for r = 0 we let
Lp(O) := W0,p(O) be the usual Lebesgue space, and for p = 2 we let Hs(O) := Wr,2(O) be the classical
Hilbertian Sobolev space with norm ‖ · ‖s,O and seminorm | · |s,O. Furthermore, given a generic scalar
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functional space M, we let M and M be its vector and tensorial counterparts, respectively, whose
norms and seminorms are denoted exactly as those of M. On the other hand, letting div (resp. rot)
be the usual divergence operator div (resp. rotational operator rot) acting along the rows of a given
tensor, we recall that the spaces

H(div;O) :=
{
τ ∈ L2(O) : div(τ) ∈ L2(O)

}
,

H(div;O) :=
{
τ ∈ L2(O) : div(τ ) ∈ L2(O)

}
,

H(rot;O) :=
{
τ ∈ L2(O) : rot(τ) ∈ L2(O)

}
,

and
H(rot;O) :=

{
τ ∈ L2(O) : rot(τ ) ∈ L2(O)

}
,

equipped with the usual norms

‖τ‖2div;O := ‖τ‖20,O + ‖div(τ)‖20,O ∀ τ ∈ H(div;O) ,

‖τ‖2div;O := ‖τ‖20,O + ‖div(τ )‖20,O ∀ τ ∈ H(div;O) ,

‖τ‖2rot;O := ‖τ‖20,O + ‖rot(τ)‖20,O ∀ τ ∈ H(rot;O) ,

and
‖τ‖2rot;O := ‖τ‖20,O + ‖rot(τ )‖20,O ∀ τ ∈ H(rot;O) ,

are Hilbert spaces. Finally, in what follows we employ 0 to denote a generic null vector, null tensor
or null operator, and use C to denote generic constants independent of the discretization parameters,
which may take different values at different places.

2 The Navier-Stokes equations

2.1 The model problem

Let Ω be a bounded polygonal domain in R2 with boundary Γ. In what follows we consider the
stationary Navier-Stokes equations with constant viscosity µ > 0. In other words, given a volume
force f ∈ L2(Ω) and a Dirichlet datum g ∈ H1/2(Γ), we seek the velocity u and the pressure p of a
fluid occupying the region Ω, such that

−µ∆u + (∇u) u + ∇p = f in Ω , div(u) = 0 in Ω ,

u = g on Γ , and

∫
Ω
p = 0 ,

(2.1)

where the last equation in (2.1) is imposed to guarantee the uniqueness of the pressure solution. Notice
here that, due to the incompressibility condition given by the second equation of (2.1), g must satisfy
the compatibility condition ∫

Γ
g · n = 0 . (2.2)

Then, following [18] (see also [17, 22]), we introduce a pseudostress tensor defined by

σ := µ∇u − u⊗ u − p I in Ω , (2.3)
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which establishes that the first equation in (2.1) can be written as the equilibrium equation

−div(σ) = f in Ω .

Next, it is not difficult to see that (2.3) and the incompressibility condition div(u) = 0 in Ω, are
equivalent to the pair of equations given by

σd = µ∇u − (u⊗ u)d in Ω and p = −1

2
tr(σ + u⊗ u) in Ω , (2.4)

whence (2.1) can be rewritten as: Find the pseudostress σ and the velocity u such that

σd = µ∇u − (u⊗ u)d in Ω , −div(σ) = f in Ω ,

u = g on Γ , and

∫
Ω

tr(σ + u⊗ u) = 0 .
(2.5)

We stress here that we have eliminated the pressure from the original model (2.1). However, using
the second equation in (2.4) we can recover p by a postprocessing formula in terms of σ and u.

2.2 The augmented mixed formulation

In what follows we derive a weak formulation of (2.5). To this end, and proceeding as in [18, 17], we
multiply the first equation in (2.5) by τ ∈ H(div; Ω), integrate by parts in Ω, and use the Dirichlet
boundary condition to deduce that∫

Ω
σd : τd + µ

∫
Ω

u · div(τ ) +

∫
Ω

(u⊗ u)d : τ = µ〈τn,g〉Γ ∀ τ ∈ H(div; Ω) .

In turn, the equilibrium equation, which is given by the second equation of (2.5), is rewritten as

µ

∫
Ω

v · div(σ) = −µ
∫

Ω
f · v ∀ v ∈ L2(Ω) .

In this way, we arrive at first instance at the following weak formulation of (2.5): Find σ ∈ H(div; Ω)
and u in a suitable space, such that∫

Ω
σd : τd + µ

∫
Ω

u · div(τ ) +

∫
Ω

(u⊗ u)d : τ = µ〈τn,g〉Γ ∀ τ ∈ H(div; Ω) ,

µ

∫
Ω

v · div(σ) = −µ
∫

Ω
f · v ∀ v ∈ L2(Ω) ,∫

Ω
tr(σ) = −

∫
Ω

tr(u⊗ u) .

(2.6)

We now define

H0(div; Ω) :=

{
τ ∈ H(div; Ω) :

∫
Ω

tr(τ ) = 0

}
,

and recall (see [12, 26]) that there holds the decomposition

H(div; Ω) = H0(div; Ω)⊕ R I . (2.7)

More precisely, for each τ ∈ H(div; Ω) there exist unique τ 0 ∈ H0(div; Ω) and c := 1
2|Ω|

∫
Ω tr(τ ) ∈ R,

where |Ω| denotes the measure of Ω, such that τ = τ 0 + c I. In particular, the third equation of (2.6)
yields σ = σ0 + c I, with σ0 ∈ H0(div; Ω) and the constant c given explicitly in terms of u by

c = − 1

2|Ω|

∫
Ω

tr(u⊗ u) = − 1

2|Ω|
‖u‖20,Ω . (2.8)
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In this way, replacing σ by the expression σ0 + c I in (2.6), using that σd = σd
0 and div(σ) =

div(σ0), taking into account the condition (2.2), and denoting from now on the remaining unknown
σ0 ∈ H0(div; Ω) simply by σ, we deduce that the weak formulation of (2.5) can be written as: Find
σ ∈ H0(div; Ω) and u in a suitable space, such that∫

Ω
σd : τd + µ

∫
Ω

u · div(τ ) +

∫
Ω

(u⊗ u)d : τ = µ〈τn,g〉Γ ∀ τ ∈ H0(div; Ω) ,

µ

∫
Ω

v · div(σ) = −µ
∫

Ω
f · v ∀ v ∈ L2(Ω) .

On the other hand, we notice that the third term in the first equation of the foregoing system requires
u to lie in a smaller space than L2(Ω). In fact, applying the Cauchy-Schwarz inequality, and employing
the compact (and hence continuous) injection

ic : H1(Ω)→ L4(Ω) (2.9)

(cf. the Rellich-Kondrachov theorem in [1, Theorem 6.3] or [31, Theorem 1.3.5]), we arrive at∣∣∣∣∫
Ω

(w ⊗ z)d : ζ

∣∣∣∣ ≤ ‖w‖0,4,Ω‖z‖0,4,Ω‖ζ‖0,Ω ≤ ‖ic‖2 ‖w‖1,Ω‖z‖1,Ω‖ζ‖0,Ω , (2.10)

for all w, z ∈ H1(Ω), and ζ ∈ L2(Ω), which suggests to look for the unknown u in H1(Ω) and to
restrict the set of corresponding test functions v to the same space. Consequently, and in order to
be able to analyze the present variational formulation of (2.5), we follow [18] and incorporate the
following redundant Galerkin terms:

κ1

∫
Ω

div(σ) · div(τ ) = −κ1

∫
Ω

f · div(τ ) ∀ τ ∈ H0(div; Ω) ,

κ2

∫
Ω

{
µ∇u− σd − (u⊗ u)d

}
: ∇v = 0 ∀ v ∈ H1(Ω) ,

κ3

∫
Γ

u · v = κ3

∫
Γ

g · v ∀ v ∈ H1(Ω) ,

where κ1, κ2 and κ3 are positive parameters to be specified later. In this way, we obtain the following
augmented mixed formulation: Find ~σ := (σ,u) ∈ H := H0(div; Ω)×H1(Ω) such that

A(~σ, ~τ ) + B(u; ~σ, ~τ ) = F(~τ ) ∀ ~τ := (τ ,v) ∈ H , (2.11)

where A : H×H→ R is the bilinear form

A(~ζ, ~τ ) :=

∫
Ω
ζd : τd + κ1

∫
Ω

div(ζ) · div(τ ) + κ2µ

∫
Ω
∇w : ∇v + κ3

∫
Γ

w · v

− µ

∫
Ω

v · div(ζ) + µ

∫
Ω

w · div(τ ) − κ2

∫
Ω
ζd : ∇v

(2.12)

for all ~ζ := (ζ,w), ~τ := (τ ,v) ∈ H, F : H→ R is the linear functional

F(~τ ) := µ〈τn,g〉Γ − κ1

∫
Ω

f · div(τ ) + µ

∫
Ω

f · v + κ3

∫
Γ

g · v (2.13)

for all ~τ := (τ ,v) ∈ H, and given z ∈ H1(Ω), B(z; ·, ·) : H×H→ R is the bilinear form

B(z;~ζ, ~τ ) :=

∫
Ω

(w ⊗ z)d :
{
τ − κ2∇v

}
(2.14)
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for all ~ζ := (ζ,w), ~τ := (τ ,v) ∈ H. We notice here, according to (2.10) and (2.14), that there holds

|B(z;~ζ, ~τ ) | ≤ ‖ic‖2 (1 + κ2
2)1/2 ‖z‖1,Ω ‖~ζ‖H ‖~τ‖H ∀ z ∈ H1(Ω), ∀~ζ, ~τ ∈ H . (2.15)

Up to minor changes caused by the present non-homogeneous Dirichlet boundary condition for u,
the unique solvability of (2.11) was basically derived in [18]. In particular, it was proved there (cf.
[18, Lemma 3.1]) that for κ1, κ3 > 0 and 0 < κ2 < 2µ, there exists αA > 0, depending on κ1, κ2, κ3,
µ, and the constants c1(Ω) and c2(Ω) (cf. Lemma 4.10 below), such that

A(~τ , ~τ ) ≥ αA ‖~τ‖2H ∀ ~τ ∈ H , (2.16)

which, together with (2.15), yielded the H-ellipticity of the bilinear form A + B(z; ·, ·) for sufficiently
small z. More precisely, for each z ∈ H1(Ω) such that ‖z‖1,Ω ≤ αA

2 ‖ic‖2 (1+κ22)1/2
, there holds (cf. [18,

eq. (3.16)])

A(~τ , ~τ ) + B(z; ~τ , ~τ ) ≥ αA

2
‖~τ‖2H ∀ ~τ ∈ H . (2.17)

In addition, letting γ0 : H1(Ω)→ L2(Ω) be the usual trace operator, it was shown (cf. [18, eqs. (3.6)
and (3.9)]) that there exist CA, MF > 0, depending on κ1, κ2, κ3, µ, and ‖γ0‖, such that

|A(~ζ, ~τ ) | ≤ CA ‖~ζ‖H ‖~τ‖H ∀~ζ, ~τ ∈ H , (2.18)

and
|F(~τ )| ≤ MF

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
‖~τ‖H ∀ ~τ ∈ H . (2.19)

In this way, reformulating (2.11) as a fixed-point operator equation, and assuming that f and g are
suitably bounded, the well-posedness of (2.11) was established thanks to the Lax-Milgram Lemma
and the Banach fixed-point Theorem. The corresponding result is stated as follows.

Theorem 2.1. Let κ1, κ3 > 0, 0 < κ2 < 2µ, and given ρ ∈
(

0, αA

2 ‖ic‖2 (1+κ22)1/2

)
(cf. (2.9) and

(2.16)), set Wρ :=
{
z ∈ H1(Ω) : ‖z‖1,Ω ≤ ρ

}
. In addition, assume that the data f ∈ L2(Ω) and

g ∈ H1/2(Γ) satisfy (cf. (2.19))

MF

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ αA

2
ρ .

Then, there exists a unique ~σ := (σ,u) ∈ H solution of (2.11), with u ∈Wρ, and there holds

‖~σ‖H ≤ CT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
with the constant CT := 2MF

αA
.

Proof. We omit details and refer to [18, Theorem 3.4] (see also [17, Theorem 3.9] for a similar proof).

3 The virtual element subspaces

3.1 Preliminaries

Let {Th}h>0 be a family of decompositions of Ω in polygonal elements. For each K ∈ Th we denote
its barycenter, diameter, and number of edges by xK , hK , and dK , respectively, and define, as usual,
h := max{hK : K ∈ Th}. Furthermore, in what follows we assume that there exists a constant CT > 0
such that for each decomposition Th and for each K ∈ Th there hold:
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a) the ratio between the shortest edge and the diameter hK of K is bigger than CT , and

b) K is star-shaped with respect to a ball B of radius CT hK and center xB ∈ K, that is , for each
x0 ∈ B, all the line segments joining x0 with any x ∈ K are contained in K, or equivalently, for
each x ∈ K, the closed convex hull of {x} ∪B is contained in K.

As consequence of the above hypotheses, one can show that each K ∈ Th is simply connected, and
that there exists an integer NT (depending only on CT ), such that dK ≤ NT ∀K ∈ Th.

Now, given an integer ` ≥ 0 and O ⊆ R2, we let P`(O) be the space of polynomials on O of degree
up to `, and according to the notations introduced at the end of Section 1, we set P`(O) := [P`(O)]2

and P`(O) := [P`(O)]2×2. Also, in what follows we use the multi-index notation, that is, given
x := (x1, x2)t ∈ R2 and α := (α1, α2)t, with non-negative integers α1, α2, we let xα := xα1

1 xα2
2 and

|α| := α1 + α2. Furthermore, given K ∈ Th and an edge e ∈ ∂K with barycentric xe and diameter
he, we introduce the following sets of (`+ 1) normalized monomials on e

B`(e) :=

{(
x− xe
he

)j}
0≤j≤`

,

and 1
2(`+ 1)(`+ 2) normalized monomials on K

B`(K) :=

{(
x− xK
hK

)α}
0≤|α|≤`

,

which constitute basis of P`(e) and P`(K), respectively. In addition, denoting B̃1(K) := B1(K), we
define for each integer ` ≥ 2,

B̃`(K) := B`(K) \ B`−2(K) ,

which is a basis of the subspace of polynomials on K of degree exactly ` − 1 or `. In turn, the
corresponding vector and tensor versions of the foregoing sets of monomials are given by

B`(e) :=
{

(q, 0)t : q ∈ B`(e)
}
∪
{

(0, q)t : q ∈ B`(e)
}
,

B`(K) :=
{

(q, 0)t : q ∈ B`(K)
}
∪
{

(0,q)t : q ∈ B`(K)
}
,

and
B̃`(K) :=

{
(q, 0)t : q ∈ B̃`(K)

}
∪
{

(0,q)t : q ∈ B̃`(K)
}
.

On the other hand, for each integer ` ≥ 0, we let G`(K) be a basis of
(
∇P`+1(K)

)⊥∩P`(K), which
is the L2(K)-orthogonal of ∇P`+1(K) in P`(K), and denote its vectorial counterparts as follow:

G`(K) :=

{(
q
0

)
: q ∈ G`(K)

}
∪
{(

0
q

)
: q ∈ G`(K)

}
.

Finally, we let

H1(Th) :=
{

v ∈ L2(Ω) : v|K ∈ H1(K) ∀ K ∈ Th
}
,

and consider the H1–broken seminorm

|v|1,h :=

{ ∑
K∈Th

‖∇v‖20,K

}1/2

∀ v ∈ H1(Th) .
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3.2 The virtual element subspace of H1(Ω)

In this section we present a suitable choice for the virtual element subspace of H1(Ω). To this end,
given K ∈ Th and an integer k ≥ 1, we first let RKk : H1(K) → Pk(K) be the projection operator
defined for each v ∈ H1(K) as the unique polynomial RKk (v) ∈ Pk(K) satisfying (cf. [6])∫

K
∇RKk (v) : ∇q =

∫
K
∇v : ∇q ∀ q ∈ Pk(K) ,∫

∂K
RKk (v) =

∫
∂K

v .

(3.1)

Notice, however, that a modified version of RKk can be found in [2]. Also, it is readily seen from the
first equation of (3.1) that

|RKk (v)|1,K ≤ |v|1,K ∀ v ∈ H1(K) . (3.2)

In addition, we recall from [6, Lemma 5.1] that for integers s ∈ [1, k + 1] and m ∈ [1, s], there holds

‖v −RKk (v)‖m,K ≤ C hs−mK |v|s,K ∀v ∈ Hs(K) , ∀K ∈ Th . (3.3)

Furthermore, we now consider the finite-dimensional subspace of C(∂K) given by

Bk(∂K) :=
{

v ∈ C(∂K) : v|e ∈ Pk(e) , ∀ edge e ⊆ ∂K
}
,

define the following local virtual element space of order k (see, e.g. [2])

V K
k :=

{
v ∈ H1(K) : v|∂K ∈ Bk(∂K) , ∆v|K ∈ Pk(K) ,

and

∫
K

{
RKk (v)− v

}
· p = 0 ∀ p ∈ B̃k(K)

}
,

(3.4)

and recall from [2] the following degrees of freedom for a given v ∈ V K
k

mV
i,v(v) := value of v at the ith vertex of K , ∀ i vertex of K

mV
e (v) := values of v at k − 1 uniformly spaced points on e , ∀ e ∈ ∂K , for k ≥ 2 ,

mV
q,K(v) := value of

∫
K

v · q , ∀ q ∈ Bk−2(K) , for k ≥ 2 .

(3.5)

Then, the following result summarizes the unisolvency of (3.5) with respect to V K
k .

Lemma 3.1. Let k ≥ 1 be an integer. Then the amount of degrees of freedom defined by (3.5) is
given by nVk,K := dimV K

k = 2k dK + k(k− 1). In addition, they are unisolvent with respect to V K
k .

Proof. We refer to [2, Propositions 1 and 2] for details.

In what follows we show that for each v ∈ V K
k its projection RKk (v) can be computed explicitly by

using the degrees of freedom defined in (3.5). In fact, we begin by noticing that, given v ∈ V K
k and

q ∈ Pk(K), the right-hand side of the first equation of (3.1) can be integrated by parts to yield∫
K
∇v : ∇q = −

∫
K

v ·∆q +

∫
∂K

(∇q)n · v .

9



Since ∆q ∈ Pk−2(K), the first term on the right-hand side of the foregoing equation can be computed
by using the moments mV

q,K(v), whereas for the second one the degrees of freedom given by mV
i,v(v)

and mV
e (v) are employed. In turn, it is straightforward to see that the right-hand side of the second

equation of (3.1) can be calculated using also mV
i,v(v) and mV

e (v).

Furthermore, we now denote by {mV
j,K(v)}

nV
k,K

j=1 the degrees of freedom defined by (3.5), and let

ΠK
k : H1(K)→ V K

k be the associated local interpolation operator, that is, given v ∈ H1(K), ΠK
k (v)

is the unique element in V K
k such that

mV
j,K(v −ΠK

k (v)) = 0 ∀ j ∈
{

1, 2, . . . , nVk,K
}
.

The following lemma establishes the approximation properties of ΠK
k .

Lemma 3.2. Let k,m and s be integers such 0 ≤ m ≤ 1 and 2 ≤ s ≤ k + 1. Then, there exists a
constant C > 0, independent of K, such that for each K ∈ Th, there holds

|v −ΠK
k (v)|m,K ≤ C hs−mK |v|s,K ∀ v ∈ Hs(K) .

Proof. See [2, Proposition 4].

We end this section by establishing the virtual element space on the whole Ω. Indeed, for every
polygonal decomposition Th of Ω, and for every integer k ≥ 1, we consider the following virtual element
subspace of H1(Ω)

V h
k :=

{
v ∈ H1(Ω) : v|K ∈ V K

k ∀ K ∈ Th
}
. (3.6)

In addition, we remark here that, for a given v ∈ V h
k , the local degrees of freedom defined by mV

i,v(v)

and mV
e (v) in (3.5), together with the fact that v|e ∈ Pk(e) ∀ e ∈ Th (cf. (3.4)), guarantee the

continuity of the trace of v across the edges e of Th. It follows that v ∈ H1(Ω), which confirms
that V h

k is in fact a H1(Ω)-conforming subspace. According to this discussion and Lemma 3.2, the
approximation property of V h

k is given by:

(APu
h) : there exists C > 0, independent of h, such that for each integer s ∈ [2, k + 1] there holds

dist(v, V h
k ) ≤ Chs−1

{ ∑
K∈Th

|v|2s,K
}1/2

∀v ∈ H1(Ω) such that v|K ∈ Hs(K) ∀K ∈ Th .

3.3 The virtual element subspace of H0(div; Ω)

Throughout this section we consider an integer k ≥ 1. Then, given K ∈ Th, we introduce the local
virtual element space HK

k of order k as follows (see, e.g. [5, 6, 14])

HK
k :=

{
τ ∈ H(div;K) ∩H(rot;K) : τn|e ∈ Pk(e) ∀ edge e ∈ ∂K ,

div(τ )|K ∈ Pk−1(K) , and rot(τ )|K ∈ Pk−1(K)
}
,

(3.7)

whose local degrees of freedom are given by (see [5])

mH
q,n(τ ) :=

∫
e
τn · q ∀ q ∈ Bk(e) , ∀ edge e ∈ ∂K ,

mH
q,div(τ ) :=

∫
K
τ : ∇q ∀ q ∈ Bk−1(K) \ {(1, 0)t, (0, 1)t} ,

mH
ρ,rot(τ ) :=

∫
K
τ : ρ ∀ ρ ∈ Gk(K) .

(3.8)
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The unisolvency of (3.8) in HK
k is summarized as follows.

Lemma 3.3. The amount of local degrees of freedom defined in (3.8) is given by

nHk,K := dimHK
k = 2

{
(k + 1)(dK + k)− 1

}
,

where dK is the number of edges of K ∈ Th. In addition, the local degrees of freedom (3.8) are
unisolvent in HK

k .

Proof. See [5, Theorem 1] for details.

We now gather all the degrees of freedom (3.8) in the set {mH
j,K(τ )}

nH
k,K

j=1 , and then, we introduce

the interpolation operator ΠK
k : H1(K) → HK

k , which is defined for each τ ∈ H1(K) as the unique
ΠK
k (τ ) in Hh

k such that

mH
j,K(τ −ΠK

k (τ )) = 0 ∀ j ∈ {1, 2, . . . , nHk,K} .

Concerning the approximation properties of ΠK
k , we first recall from [7, eq. (3.19)] that for each

integer s ∈ [1, k + 1] there exists C > 0, independent of K, such that

‖τ −ΠK
k (τ )‖0,K ≤ C hsK |τ |s,K ∀ τ ∈ Hs(K) . (3.9)

In addition, similarly to [14, eq. (3.14)], it is easy to check that

div(ΠK
k (τ )) = PKk−1(div(τ )) ∀ τ ∈ H1(K) ,

where PKk−1 : L2(K) → Pk−1(K) is the orthogonal projector (see Section 3.4 below). In this way,
applying (3.14) we deduce that for each integer s ∈ [0, k] there exists C > 0, independent of K, such
that

‖div(τ )− div(ΠK
k (τ ))‖0,K ≤ C hsK |div(τ )|s,K ∀ τ ∈ H1(K) with div(τ ) ∈ Hs(K) . (3.10)

The foregoing estimate together with (3.9) yields the following result.

Lemma 3.4. For each integer s ∈ [1, k] there exists C > 0, independent of K, such that

‖τ −ΠK
k (τ )‖div;K ≤ C hsK

{
|τ |s,K + |div(τ )|s,K

}
∀ τ ∈ Hs(K) with div(τ ) ∈ Hs(K) .

Proof. It follows straightforwardly from (3.9) and (3.10).

Finally, for every integer k ≥ 1 we define the global virtual element subspaces of H0(div; Ω) as

Hh
k :=

{
τ ∈ H0(div; Ω) : τ |K ∈ HK

k ∀ K ∈ Th
}
. (3.11)

Note here that given τ ∈ Hh
k , the local degrees of freedom defined by mH

q,n(τ ) in (3.8), along with
the fact that τn|e ∈ Pk(e) ∀ edge e ∈ Th (cf. (3.7)), guarantee the continuity of the normal
components of τ across the edges e of Th. It follows that τ ∈ H(div; Ω), which confirms that Hh

k

is in fact contained in H(div; Ω). Also, using this and Lemma 3.4, it is easy to obtain the following
approximation property:

(APσh ) For each integer s ∈ [1, k] there exists C > 0, independent of h, such that

dist(τ , Hh
k ) ≤ C hs

{ ∑
K∈Th

(
|τ |2s,K + |div(τ )|2s,K

)}1/2

for all τ ∈ H0(div; Ω) such that τ |K ∈ Hs(K) and div(τ )|K ∈ Hs(K), for all K ∈ Th.
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3.4 L2-orthogonal projections

We now let PKk : L2(K) → Pk(K) and PK
k : L2(K) → Pk(K) be the vectorial and tensorial ver-

sions of the L2(K)-orthogonal projector, respectively, which, given v ∈ L2(K) and τ ∈ L2(K), are
characterized by

PKk (v) ∈ Pk(K) and

∫
K
PKk (v) · q =

∫
K

v · q ∀q ∈ Pk(K) (3.12)

and

PK
k (τ ) ∈ Pk(K) and

∫
K
PK
k (τ ) : p =

∫
K
τ : p ∀p ∈ Pk(K) , (3.13)

respectively. In addition, it is well-known (see, e.g. [13, Lemma 3.4]) that, given integers k, s, and m
such that k ≥ 0, s ∈ [1, k + 1], and m ∈ [0, s], there hold the following approximation properties

‖v − PKk (v)‖m,K ≤ C hs−mK |v|s,K ∀v ∈ Hs(K) , ∀K ∈ Th , (3.14)

and
‖τ −PK

k (τ )‖m,K ≤ C hs−mK |τ |s,K ∀ τ ∈ Hs(K) , ∀K ∈ Th . (3.15)

In addition, we remark here that the degrees of freedom given by (3.5) do allow the explicit
calculation of the right-hand side of (3.12) (and hence of PKk (v)) for each v ∈ V K

k . Indeed, it is easy
to see first that the degrees of freedom given by mV

q,K(v) (cf. (3.5)) yields the computation of
∫
K v ·q

when q ∈ Bk−2(K), whereas for q ∈ B̃k(K) we recall from (3.4) that∫
K

v · q =

∫
K
RKk (v) · q ,

and then use that RKk (v) is explicitly computable for each v ∈ V K
k .

On the other hand, we now aim to derive additional approximation properties for the projection
PKk . The goal is to extend the estimate (3.14) to the case of general Sobolev spaces. To this end, we
need to recall from [13, Section 3.3] some preliminary notations and technical results. Indeed, for each
element K ∈ Th we first define K̃ := TK(K), where TK : R2 → R2 is the bijective affine mapping
defined by

TK(x) :=
x− xB
hK

∀ x ∈ R2 .

Then, as it was remarked in [13, Section 3.3], it is easy to see that the diameter h
K̃

of K̃ is 1, the

shortest edge of K̃ is bigger than CT (which follows from assumptions a) and b) in Section 3.1),
and K̃ is star-shaped with respect to a ball B̃ of radius CT and centered at the origin. Then, by
connecting each vertex of K̃ to the center of B̃, that is to the origin, we generate a partition of K̃
into d

K̃
triangles ∆̃i, i ∈ {1, 2, . . . , dK̃}, where d

K̃
≤ NT , and for which the minimum angle condition

is satisfied. The later means that there exists a constant cT > 0, depending only on CT and NT ,
such that h̃i(ρ̃i)

−1 ≤ cT ∀ i ∈ {1, 2, . . . , d
K̃
}, where h̃i is the diameter of ∆̃i and ρ̃i is the diameter

of the largest ball contained in ∆̃i. We also let ∆̂ be the canonical triangle of R2 with corresponding
parameters ĥ and ρ̂, and for each i ∈ {1, 2, . . . , d

K̃
} we let Fi : R2 → R2 be the bijective linear

mapping, say Fi(x) := Bix ∀ x ∈ R2, with Bi ∈ R2×2 invertible, such that Fi(∆̂) = ∆̃i. We remark
that the fact that the origin is a vertex of each triangle ∆̃i allows to choose Fi as indicated.

In what follows, given K ∈ Th and v ∈ L2(K), we let ṽ := v ◦ T−1
K ∈ L2(K̃). Also, we recall from

the Introduction that given r ≥ 0, p > 1, p 6= 2, and an arbitrary domain O ⊆ R2, ‖ · ‖r,p,O and
| · |r,p,O stand for the norm and seminorm, respectively, of the Sobolev space Wr,p(O) and its vectorial
and tensorial versions. Then, we have the following result.
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Lemma 3.5. Given an integer ` ≥ 0, there holds P̃K` (v) = PK̃` (ṽ) for all v ∈ L2(K). In addition, for

integers r, s ≥ 0 and for p ≥ 2, there holds PK̃` ∈ L(Wr,p(K̃),Ws,p(K̃)), with ‖PK̃` ‖L(Wr,p(K̃),Ws,p(K̃))

independent of K̃.

Proof. We begin by recalling from [13, Lemma 3.2] that P̃K` (v) = PK̃` (ṽ) for all v ∈ L2(K). Next,

denoting N` := (`+1)(`+2), we let {ϕ̃1, ϕ̃2, . . . , ϕ̃N`
} be a L2(K̃)-orthonormal basis of P`(K̃), which

yields

PK̃` (ṽ) =

N∑̀
j=1

〈ṽ, ϕ̃j〉0,K̃ ϕ̃j ∀ ṽ ∈ L2(K̃) .

Now, given p ≥ 2, we let q be the conjugate of p, that is q := p
p−1 . Thus, using the triangle and Hölder

inequalities, we find that for any pair of non-negative integers r and s there holds

‖PK̃` (ṽ)‖
s,p,K̃

≤


N∑̀
j=1

‖ϕ̃j‖0,q,K̃‖ϕ̃j‖s,p,K̃

 ‖ ṽ‖
0,p,K̃

≤


N∑̀
j=1

‖ϕ̃j‖0,q,K̃‖ϕ̃j‖s,p,K̃

 ‖ṽ‖r,p,K̃ ∀ ṽ ∈Wr,p(K̃) ,

which proves that PK̃` ∈ L(Wr,p(K̃),Ws,p(K̃)) with

‖PK̃` ‖L(Wr,p(K̃),Ws,p(K̃))
≤

N∑̀
j=1

‖ϕ̃j‖0,q,K̃‖ϕ̃j‖s,p,K̃ .

In this way, applying the same arguments from the last part of the proof of [13, Lemma 3.2], we

deduce that ‖PK̃` ‖L(Wr,p(K̃),Ws,p(K̃))
is bounded independently of K̃. In fact, using the afore described

decomposition of K̃, we can write

‖ϕ̃j‖s,p,K̃ =

{
s∑
t=0

|ϕ̃j |
p

t,p,K̃

}1/p

=


s∑
t=0

d
K̃∑
i=1

|ϕ̃j |
p

t,p,∆̃i


1/p

.

In turn, applying the usual scaling properties, we deduce the existence of a constant C̃t > 0, depending
only on t, such that

|ϕ̃j |t,p,∆̃i
≤ C̃t h̃

−t+2/p
i |ϕ̂j,i|t,p,∆̂ ,

where ϕ̂j,i := ϕ̃j |∆̃i
◦ Fi ∈ Pl(∆̂). Then, according to the equivalence of norms in Pl(∆̂), we find

that
|ϕ̃j |t,p,∆̃i

≤ C̃t h̃
−t+2/p
i ‖ϕ̂j,i‖t,p,∆̂ ≤ C̃t h̃

−t+2/p
i Ĉ ‖ϕ̂j,i‖0,∆̂ ,

with a constant Ĉ > 0 depending on t, p, `, and ∆̂. Moreover, applying again the scaling properties,
we have that

‖ϕ̂j,i‖0,∆̂ ≤ C0 h̃
−1
i ‖ϕ̃j‖0,∆̃i

≤ C0 h̃
−1
i ‖ϕ̃j‖0,K̃ = C0 h̃

−1
i ,

with a constant C0 > 0 depending only on ∆̂, and using that 1 ≤ h̃−1
i ≤ C−1

T , we get

|ϕ̃j |t,p,∆̃i
≤ C̃t Ĉ C0 h̃

−t+2/p−1
i ≤ C̃t Ĉ C0 ĈT ,
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where

ĈT :=

{
1 if −t+ 2/p− 1 ≥ 0

C
t+1−2/p
T if −t+ 2/p− 1 < 0

.

Finally, since d
K̃
≤ NT , we conclude that ‖ϕ̃j‖s,p,K̃ is bounded by a constant depending only on s,

p, NT , CT , ∆̂, and `. The estimate for ‖ϕ̃j‖0,q,K̃ proceeds similarly, and hence further details are
omitted, thus concluding the proof.

The next result is taken from [10, Lemma 4.3.8].

Lemma 3.6. Let O be star-shaped with respect to a ball B with radius ρ > 1
2ρmax, where ρmax :=

max {ρ : O is star-shaped with respect to a ball of radius ρ}. In addition, given an integer s ≥ 0,
p ≥ 1, and v ∈ Ws,p(O), we let Qs(v) be the Taylor polynomial of degree s of v averaged over B.
Then, there holds

|v −Qs(v)|m,p,O ≤ C ds−m |v|s,p,O ∀ m ∈ {0, 1, . . . , s} ,

where d = diam(O) and C > 0 depends on s and the chunkiness parameter d/ρmax.

The following lemma establishes the approximation properties of the projector PKk : L2(K) →
Pk(K) with respect to more general Sobolev norms.

Lemma 3.7. Let K ∈ Th and k, s, m, and p be integers such that k ≥ 0, 0 ≤ m ≤ s ≤ k + 1, and
p ≥ 2. Then, there exists a constant C > 0, independent of K, such that

|v − PKk (v)|m,p,K ≤ C hs−mK |v|s,p,K ∀ v ∈Ws,p(K) . (3.16)

Proof. Given K ∈ Th and v ∈Ws,p(K), we first observe, thanks to the scaling properties, that there
hold

|ṽ|
m,p,K̃

≤ Cm h
m−2/p
K |v|m,p,K and |v|m,p,K ≤ C̃m h

−m+2/p
K |ṽ|

m,p,K̃
, (3.17)

where Cm and C̃m are positive constants depending only on m. In turn, letting Q̃s(ṽ) be the Taylor
polynomial of order s of ṽ averaged over a ball of radius > 1

2 ρ̃max, we have that Q̃s(ṽ) ∈ Ps−1(K̃) ⊆
Pk(K̃), which certainly yields

PK̃k (Q̃s(ṽ)) = Q̃s(ṽ) . (3.18)

Recall here that h
K̃

:= diam(K̃) = 1 and that K̃ is star-shaped with respect to a ball B̃ of radius CT
and centered at the origin. It follows, using (3.17), that

|v − PKk (v)|m,p,K ≤ C̃m h
−m+2/p
K |ṽ − P̃Kk (v)|

m,p,K̃
= C̃m h

−m+2/p
K |ṽ − PK̃k (ṽ)|

m,p,K̃
,

and along with (3.18), we obtain from Lemmas 3.5 (with r = s = m) and 3.6 (with O = K̃), that

|v − PKk (v)|m,p,K ≤ C̃m h
−m+2/p
K |(I − PK̃k )(ṽ − Q̃s(ṽ))|

m,p,K̃

≤ C̃m ‖I − PK̃k ‖L(Wm,p(K̃),Wm,p(K̃))
h
−m+2/p
K ‖ṽ − Q̃s(ṽ)‖

m,p,K̃

≤ C h
−m+2/p
K hs−m

K̃
|ṽ|

s,p,K̃
= C h

−m+2/p
K |ṽ|

s,p,K̃

≤ C h
−m+2/p
K h

s−2/p
K |v|s,p,K = C hs−mK |v|s,p,K ,

which completes the proof of the lemma.
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As a consequence of the previous lemma, we have the following result.

Lemma 3.8. Let K ∈ Th and k, s, and p be integers such that k ≥ 0, 0 ≤ s ≤ k + 1, and p ≥ 2.
Then, there exists a constant Mk ≥ 1, independent of K, such that

|PKk (v)|s,p,K ≤ Mk |v|s,p,K ∀ v ∈Ws,p(K) .

Proof. It follows by adding and subtracting v and then employing the triangle inequality and Lemma
3.7 with m = s.

We end this section by remarking that for the case s = 0 and p = 4, Lemma 3.8 yields

‖PKk (v)‖0,4,K ≤ Mk ‖v‖0,4,K ∀ v ∈ L4(K) , ∀ K ∈ Th . (3.19)

4 The discrete forms

We begin by introducing the global virtual element subspaces of H := H0(div; Ω) × H1(Ω). More
precisely, given k ≥ 1, we set

Hh
k := Hh

k × V h
k ,

where Hh
k and V h

k have been defined in (3.11) and (3.6), respectively. Hence, the main goal of this
section is to propose computable discrete versions Ah : Hh

k ×Hh
k → R and Bh(z; · , · ) : Hh

k ×Hh
k →

R, for each z ∈ V h
k , of the bilinear forms A (cf. (2.12)) and B(z; ·, ·) (cf. (2.14)), respectively.

Additionally, a computable discrete version of the functional F (cf. (2.13)) is also presented here.

4.1 The discrete bilinear form Ah

According to the definition of the spaces V h
k (cf. (3.6)) and Hh

k (cf. (3.11)), we observe from (2.12)

that, given ~ζ := (ζ,w), ~τ := (τ ,v) ∈ Hh
k , A(~ζ, ~τ ) is not explicitly computable because of the

following three terms:

AK,d(ζ, τ ) :=

∫
K
ζd : τd , AK,∇(w,v) := κ2µ

∫
K
∇w : ∇v , and κ2

∫
K
ζd : ∇v , (4.1)

in which the tensors ζd, τd, ∇w and ∇v are not known on each K ∈ Th. This is the reason why in
what follows we define discrete computable versions of the forms in (4.1), all them in terms of some
suitable projection operators.

We begin by defining the discrete local bilinear form AK,dh : HK
k ×HK

k → R as follows

AK,dh (ζ, τ ) := AK,d(PK
k (ζ),PK

k (τ )) + SK,d(ζ −PK
k (ζ), τ −PK

k (τ )) ∀ ζ, τ ∈ HK
k , (4.2)

where SK,d : HK
k ×HK

k → R is the bilinear form associated to the identity matrix in RnH
k,K×n

H
k,K with

respect to a basis of HK
k . Equivalently, we set

SK,d(ζ, τ ) :=

nH
k,K∑
i=1

mH
i,K(ζ)mH

i,K(τ ) ∀ ζ, τ ∈ HK
k ,

where mH
i,K , i ∈

{
1, . . . , nHk,K

}
, are the degrees of freedom defined in (3.8).

The following estimates concerning SK,d will be very useful in what follows.
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Lemma 4.1. There exist constants ĉ0, ĉ1 > 0, depending only on CT , such that

ĉ0 ‖ζ‖20,K ≤ SK,d(ζ, ζ) ≤ ĉ1 ‖ζ‖20,K ∀ ζ ∈ HK
k , ∀ K ∈ Th . (4.3)

Proof. See [7, eqs. (3.36) and (6.2)] (see also [11, eq. (5.8)] and [13, Lemma 4.5]).

As a consequence of Lemma 4.1 and the properties of PK
k , we have the following result.

Lemma 4.2. For each K ∈ Th, there holds

AK,dh (p, τ ) = AK,d(p, τ ) ∀ p ∈ Pk(K) , ∀ τ ∈ HK
k . (4.4)

In addition, there exist constants α1, α2 > 0, independent of h and K, such that

|AK,dh (ζ, τ )| ≤ α2 ‖ζ‖0,K‖τ‖0,K ∀ ζ, τ ∈ HK
k , (4.5)

and
α1 ‖ζd‖20,K ≤ AK,dh (ζ, ζ) ≤ α2 ‖ζ‖20,K ∀ ζ ∈ HK

k . (4.6)

Proof. Let p ∈ Pk(K) and τ ∈ HK
k . Then, bearing in mind the definitions of AK,dh (cf. (4.2)), AK,d

(cf. (4.1)), and PK
k (cf. (3.13)), and using that certainly PK

k (p) = p and pd ∈ Pk(K), we deduce
that

AK,dh (p, τ ) =

∫
K

pd :
(
PK
k (τ )

)d
=

∫
K
PK
k (τ ) : pd =

∫
K
τ : pd = AK,d(p, τ ) ,

which establishes (4.4). In turn, applying the Cauchy-Schwarz inequality and the upper bound in
(4.3), we find that for each ζ, τ ∈ HK

k there holds

|AK,dh (ζ, τ )| ≤ ‖PK
k (ζ)‖0,K‖PK

k (τ )‖0,K

+
{
SK,d(ζ −PK

k (ζ), ζ −PK
k (ζ))

}1/2 {
SK,d(τ −PK

k (τ ), τ −PK
k (τ ))

}1/2

≤ ‖ζ‖0,K‖τ‖0,K + ĉ1 ‖ζ −PK
k (ζ)‖0,K‖τ −PK

k (τ )‖0,K

≤ (1 + ĉ1) ‖ζ‖0,K‖τ‖0,K ,

which is (4.5) with α2 := 1+ ĉ1. Next, employing triangle inequality, the definition of AK,d (cf. (4.1)),
and the lower bound in (4.3), we deduce that

‖ζd‖20,K ≤ 2 ‖(PK
k (ζ))d‖20,K + 2 ‖(ζ −PK

k (ζ))d‖20,K

≤ 2 ‖(PK
k (ζ))d‖20,K +

2

ĉ0

{
ĉ0 ‖ζ −PK

k (ζ)‖20,K
}

≤ 2AK,d(PK
k (ζ),PK

k (ζ)) +
2

ĉ0
SK,d(ζ −PK

k (ζ), ζ −PK
k (ζ)) ,

which yields the lower bound in (4.6) with α1 :=
(

2 max
{

1, (ĉ0)−1
})−1

. Finally, we remark that the

upper bound in (4.6) follows straightforwardly from (4.5).

On the other hand, we define the discrete local bilinear form AK,∇h : V K
k × V K

k → R as

AK,∇h (w,v) := AK,∇(RKk (w),RKk (v)) + SK,∇(w −RKk (w),v −RKk (v)) ∀ w,v ∈ V K
k , (4.7)
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where RKk is defined in (3.1), and SK,∇ : V K
k ×V K

k → R is the bilinear form associated to the identity

matrix in RnV
k,K×n

V
k,K with respect to a basis of V K

k , that is,

SK,∇(w,v) :=

nV
k,K∑
i=1

mV
i,K(w)mV

i,K(v) ∀ w,v ∈ V K
k ,

where, as indicated in Section 3.2, mV
i,K , i ∈

{
1, . . . , nVk,K

}
, are the degrees of freedom defined by (3.5).

Similarly to Lemma 4.1, the following result establishes the estimates for SK,∇.

Lemma 4.3. There exist constants c̃0, c̃1 > 0, depending only on CT , such that

c̃0 |w|21,K ≤ SK,∇(w,w) ≤ c̃1 |w|21,K ∀ w ∈ V K
k , ∀ K ∈ Th . (4.8)

Proof. It follows from [4, eq. (4.20) and Section 4.6].

Now, as a consequence of the previous lemma and the properties of the projector RKk (cf. (3.1)),
we deduce the following result.

Lemma 4.4. For each K ∈ Th there holds

AK,∇h (q,v) = AK,∇(q,v) ∀ q ∈ Pk(K) , ∀ v ∈ V K
k , (4.9)

and there exist positive constants β1, β2, independent of h and K, such that

|AK,∇h (w,v)| ≤ β2 |w|1,K |v|1,K (4.10)

and
β1 |w|21,K ≤ AK,∇h (w,w) ≤ β2 |w|21,K (4.11)

for all w,v ∈ V K
k .

Proof. Given q ∈ Pk(K), it is clear from (3.1) that RKk (q) = q. In addition, given v ∈ V K
k , it follows

from the definitions of AK,∇h (cf. (4.7)), AK,∇ (cf. (4.1)), and RKk (cf. (3.1)), that

AK,∇h (q,v) = κ2µ

∫
K
∇q : ∇RKk (v) = κ2µ

∫
K
∇RKk (v) : ∇q = κ2µ

∫
K
∇v : ∇q = AK,∇(q,v) ,

which proves (4.9). Now, for the estimate (4.10) we apply the Cauchy-Schwarz inequality, the upper
bound in (4.8), and (3.2), to establish that for each w,v ∈ V K

k there holds

|AK,∇h (w,v)| ≤ κ2µ |RKk (w)|1,K |RKk (v)|1,K

+
{
SK,∇(w −RKk (w),w −RKk (w))

}1/2 {SK,∇(v −RKk (v),v −RKk (v))
}1/2

≤ κ2µ |w|1,K |v|1,K + c̃1 |w −RKk (w)|1,K |v −RKk (v)|1,K

≤ β2 |w|1,K |v|1,K ,

with β2 := κ2µ+ 4 c̃1. Next, using the lower bound in (4.8), we easily obtain

|w|21,K ≤ 2 |RKk (w)|21,K + 2 |w −RKk (w)|21,K

≤ 2 |RKk (w)|21,K +
2

c̃0

{
c̃0 |w −RKk (w)|21,K

}
≤ 2AK,∇(RKk (w),RKk (w)) +

2

c̃0
SK,∇(w −RKk (w),w −RKk (w)) ,
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which establishes (4.11) with β1 :=
(
2 max{1, (c̃0)−1}

)−1
. Finally, the upper bound of (4.11) follows

straightforwardly from (4.10).

The following two lemmas compare AK,d and AK,∇ with their computable versions AK,dh and AK,∇h ,
respectively.

Lemma 4.5. Let α2 be the constant from (4.5) (cf. proof of Lemma 4.2). Then, for each K ∈ Th
there holds

|AK,d(ζ, τ )−AK,dh (ζ, τ )| ≤ α2 ‖ζ −PK
k (ζ)‖0,K‖τ‖0,K ∀ ζ, τ ∈ HK

k . (4.12)

Proof. Let ζ, τ ∈ HK
k . Then, from the definitions of AK,d (cf. (4.1)), AK,dh (cf. (4.2)), and PK

k (cf.
(3.13)), along with Lemma 4.1, it follows that

|AK,d(ζ, τ )−AK,dh (ζ, τ )| ≤
∣∣∣∣∫
K
ζd : τ −

∫
K

(PK
k (ζ))d : PK

k (τ )

∣∣∣∣
+

{
SK,d(ζ −PK

k (ζ), ζ −PK
k (ζ))

}1/2 {
SK,d(τ −PK

k (τ ), τ −PK
k (τ ))

}1/2

≤
∣∣∣∣∫
K

(
ζ −PK

k (ζ)
)d

: τ

∣∣∣∣ + ĉ1‖ζ −PK
k (ζ)‖0,K ‖τ −PK

k (τ )‖0,K

≤ ‖ζ −PK
k (ζ)‖0,K‖τ‖0,K + ĉ1‖ζ −PK

k (ζ)‖0,K ‖τ‖0,K

= α2 ‖ζ −PK
k (ζ)‖0,K ‖τ‖0,K ,

which yields (4.12), thus completing the proof.

Lemma 4.6. Let β2 > 0 be the constant from (4.10) (cf. proof of Lemma 4.4). Then, for each K ∈ Th
there holds

|AK,∇(w,v)−AK,∇h (w,v)| ≤ β2 |w −Rhk(w)|1,K |v|1,K ∀w,v ∈ V K
k . (4.13)

Proof. Let v,w ∈ V h
k . Then, according to the definitions of AK,∇ (cf. (4.1)), AK,∇h (cf. (4.7)), and

RKk (cf. (3.1)), and using (4.8), we find that

|AK,∇(w,v)−AK,∇h (w,v)| ≤ κ2µ

∣∣∣∣∫
K
∇w : ∇v −

∫
K
∇RKk (w) : ∇RKk (v)

∣∣∣∣
+
{
SK,∇(w −RKk (w),w −RKk (w))

}1/2{
SK,∇(v −RKk (v),v −RKk (v))

}1/2

≤ κ2µ

∣∣∣∣∫
K
∇
(
w −RKk (w)

)
: ∇v

∣∣∣∣ + c̃1 |w −RKk (w)|1,K |v −RKk (v)|1,K
≤ κ2µ |w −RKk (w)|1,K |v|1,K + 2 c̃1 |w −RKk (w)|1,K |v|1,K
≤ β2 |w −RKk (w)|1,K |v|1,K ,

which shows (4.13), thus finishing the proof.

Having provided the above analysis, we now introduce the complete local discrete bilinear form
AK
h : HK

k ×HK
k → R in terms of AK,dh , AK,∇h , and PK

k , as

AK
h (~ζ, ~τ ) := AK,dh (ζ, τ ) + κ1

∫
K

div(ζ) · div(τ ) + AK,∇h (w,v) + κ3

∫
∂K∩Γ

w · v

− µ

∫
K

v · div(ζ) + µ

∫
K

w · div(τ ) − κ2

∫
K

(PK
k (ζ))d : PK

k (∇v)

(4.14)
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for all ~ζ := (ζ,v), ~τ := (τ ,w) ∈ HK
k := HK

k × V K
k . It is important to remark here that the integrals∫

K
v · div(ζ) and

∫
K

w · div(τ ) are both computable. Indeed, using the fact that div(ζ), div(τ ) ∈

Pk−1(K), it readily follows that∫
K

v · div(ζ) =

∫
K
PKk−1(v) · div(ζ)

and ∫
K

w · div(τ ) =

∫
K
PKk−1(w) · div(τ ) .

Similarly, integrating by parts we observe that∫
K
∇v : p = −

∫
K

v · div(p) +

∫
∂K

pn · v

= −
∫
K
PKk−1(v) · div(p) +

∫
∂K

pn · v ∀ p ∈ Pk(K) ,

which yields the explicit computation of PK
k (∇v) ∀ v ∈ V K

k .

Hence, we define the global discrete bilinear form Ah : Hh
k ×Hh

k → R as

Ah(~ζ, ~τ ) :=
∑
K∈Th

AK
h (~ζ, ~τ ) ∀ ~ζ, ~τ ∈ Hh

k . (4.15)

In turn, in what follows we denote by Rhk , Phk , and Ph
k , the global counterparts of the projections RKk

(cf. (3.1)), PKk (cf. (3.12)), and PK
k (cf. (3.13)), respectively. In other words, for each K ∈ Th we let

Rhk(z)|K := RKk (z|K) , Phk (v)|K := PKk (v|K) , and Ph
k(τ )|K := PK

k (τ |K) ,

for all z ∈ H1(Ω), v ∈ L2(Ω), and τ ∈ L2(Ω).

The following two lemmas, which refer to the relationship between Ah and A, can be seen as the
global analogues of (4.4) - (4.9) (cf. Lemmas 4.2 and 4.4) and Lemmas 4.5 - 4.6.

Lemma 4.7. There holds
Ah(~p, ~τ ) = A(~p, ~τ )

for all ~p ∈ Pk(Ω)×Pk(Ω) and ~τ ∈ HK
k .

Proof. Let ~p := (p,q) ∈ Pk(Ω) ×Pk(Ω) and ~τ := (τ ,v) ∈ HK
k . Then, noting that PK

k (p) = p and
pd ∈ Pk(Ω), and employing the characterization of PK

k (cf. (3.13)), we observe that∫
K

(PK
k (p))d : PK

k (∇v) =

∫
K

pd : PK
k (∇v) =

∫
K

pd : ∇v .

which, together with (4.4), (4.9), and the definitions of Ah (cf. (4.15)) and AK
h (cf. (4.14)), yield the

required identity.

Lemma 4.8. There exists a constant LA > 0, depending only on α2, β2 and κ2, such that

|A(~ζ, ~τ )−Ah(~ζ, ~τ )| ≤ LA

{
‖ζ −Ph

k(ζ)‖0,Ω + |w −Rhk(w)|1,h
}
‖~τ‖H (4.16)

for all ~ζ := (ζ,w), ~τ := (τ ,v) ∈ HK
k .
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Proof. It follows from the definitions of A (cf. (2.12)) and Ah (cf. (4.15)) that

A(~ζ, ~τ )−Ah(~ζ, ~τ ) =
∑
K∈Th

{
AK,d(ζ, τ )−AK,dh (ζ, τ ) + AK,∇(w,v) − AK,∇h (w,v)

− κ2

∫
K
ζd : ∇v + κ2

∫
K

(PK
k (ζ))d : PK

k (∇v)

}
.

Next, thanks to the fact that (PK
k (ζ))d ∈ Pk(K), along with (3.13), we have∫

K
(PK

k (ζ))d : PK
k (∇v) =

∫
K

(PK
k (ζ))d : ∇v ,

which implies that

|A(~ζ, ~τ )−Ah(~ζ, ~τ )| ≤
∑
K∈Th

{
|AK,d(ζ, τ )−AK,dh (ζ, τ )|

+
∣∣∣AK,∇(w,v) − AK,∇h (w,v)

∣∣∣ + κ2

∣∣∣∣∫
K

(
ζ −PK

k (ζ)
)d

: ∇v

∣∣∣∣ } .
Now, employing the Cauchy-Schwarz inequality, (4.12), and (4.13), we find that

|A(~ζ, ~τ )−Ah(~ζ, ~τ )| ≤
∑
K∈Th

{
α2 ‖ζ −PK

k (ζ)‖0,K‖τ‖0,K

+ β2 |w −RKk (w)|1,K |v|1,K + κ2 ‖ζ −PK
k (ζ)‖0,K |v|1,K

}

≤ max{α2 + κ2, β2}

∑
K∈Th

{
‖ζ −PK

k (ζ)‖20,K + |w −RKk (w)|21,K
}1/2

‖~τ‖H ,

which is (4.16) with LA := max{α2 + κ2, β2}.

Next, we prove the boundedness and ellipticity properties of Ah. We begin with the first of them.

Lemma 4.9. There exists a constant C̃A > 0, independent of h, such that

|Ah(~ζ, ~τ )| ≤ C̃A ‖~ζ‖H ‖~τ‖H ∀ ~ζ, ~τ ∈ Hh
k .

Proof. The result follows straightforwardly from the definition of Ah (cf. (4.15)), the estimates (4.5)
and (4.10) (cf. Lemmas 4.2 and 4.4), the Cauchy-Schwarz and trace inequalities, and the boundedness
of Ph

k . We omit further details and just mention that C̃A depends on µ, α2, β2, κ1, κ3, and ‖γ0‖.

In turn, for the second property we require the estimates provided by the following lemma.

Lemma 4.10. There exist constants c1(Ω), c2(Ω) > 0, independent of h, such that

c1(Ω) ‖τ‖20,Ω ≤ ‖τd‖20,Ω + ‖div(τ )‖20,Ω ∀ τ ∈ H0(div; Ω)

and
c2(Ω) ‖v‖21,Ω ≤ |v|21,Ω + ‖v‖20,Γ ∀ v ∈ H1(Ω) .

Proof. See [12, Proposition 3.1, Chapter IV] and [25, Lemma 3.3], respectively.
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In this way, the Hh
k-ellipticity of Ah is proved as follows.

Lemma 4.11. Assume that κ1, κ3 > 0 and 0 < κ2 < 2 min{α1, β1}, where α1 and β1 are the positive
constants from (4.6) and (4.11), respectively. Then, there exists a constant α(Ω) > 0, independent of
h, such that

Ah(~τ , ~τ ) ≥ α(Ω) ‖~τ‖2H ∀ ~τ ∈ Hh
k . (4.17)

Proof. Let ~τ h := (τ ,v) ∈ Hh
k . Then, bearing in mind the definition of the bilinear form Ah (cf.

(4.14) and (4.15)), and employing the estimates (4.6) and (4.11), the Cauchy-Schwarz inequality, the
fact that (Ph

k(τ ))d = Ph
k(τd) ∀ τ ∈ L2(Ω), and the boundedness of Ph

k , we find that

Ah(~τ , ~τ ) ≥ α1‖τd‖20,Ω + κ1 ‖div(τ )‖20,Ω + β1 |v|21,Ω + κ3 ‖v‖20,Γ − κ2‖(Ph
k(τ ))d‖0,Ω ‖Ph

k(∇v)‖0,Ω

= α1‖τd‖20,Ω + κ1 ‖div(τ )‖20,Ω + β1 |v|21,Ω + κ3 ‖v‖20,Γ − κ2‖Ph
k(τd)‖0,Ω‖Ph

k(∇v)‖0,Ω

≥ α1‖τd‖20,Ω + κ1 ‖div(τ )‖20,Ω + β1 |v|21,Ω + κ3 ‖v‖20,Γ − κ2‖τd‖0,Ω|v|1,Ω ,

which, using the Young inequality, yields

Ah(~τ , ~τ ) ≥
(
α1 −

κ2

2

)
‖τd‖20,Ω + κ1 ‖div(τ )‖20,Ω +

(
β1 −

κ2

2

)
|v|21,Ω + κ3 ‖v‖20,Γ .

Then, assuming the stipulated hypotheses on κ1, κ2 and κ3, applying the estimates provided by Lemma
4.10, and defining the constant α̃(Ω) := min

{
α1 − κ2

2 ,
κ1
2 , β1 − κ2

2 , κ3

}
, it follows that

Ah(~τ , ~τ ) ≥ α̃(Ω)

{
‖τd‖20,Ω + ‖div(τ )‖20,Ω + ‖div(τ )‖20,Ω + |v|21,Ω + ‖v‖20,Γ

}
≥ α̃(Ω)

{
c1(Ω) ‖τ‖20,Ω + ‖div(τ )‖20,Ω + c2(Ω)‖v‖21,Ω

}
which yields (4.17) with α(Ω) := α̃(Ω) min{1, c1(Ω), c2(Ω)}, thus completing the proof.

4.2 The discrete trilinear form Bh

Similarly as in the previous section, we now introduce a computable discrete version of the form B
defined in (2.14). More precisely, for each z ∈ V h

k we let Bh(z; · , · ) : Hh
k ×Hh

k → R be the bilinear
form defined by

Bh(z;~ζ, ~τ ) :=

∫
Ω

(
Phk (w)⊗ Phk (z)

)d
:
{
Ph
k(τ )− κ2Ph

k(∇v)
}

(4.18)

for all ~ζ := (ζ,w), ~τ := (τ ,v) ∈ Hh
k .

The following result establishes the comparison between B and Bh.

Lemma 4.12. Let ic and Mk ≥ 1 be specified in (2.9) and (3.19), respectively. Then, there holds

|B(z;~ζ, ~τ )−Bh(z;~ζ, ~τ )| ≤ (1 + κ2
2)1/2

{
‖w ⊗ z−Ph

k(w ⊗ z)‖0,Ω

+ ‖ic‖Mk

(
‖w‖1,Ω‖z− Phk (z)‖0,4,Ω + ‖z‖1,Ω ‖w − Phk (w)‖0,4,Ω

)}
‖~τ‖H

(4.19)

for all ~ζ := (ζ,w), ~τ := (τ ,v) ∈ Hh
k and z ∈ V h

k .
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Proof. Let ~ζ := (ζ,w), ~τ := (τ ,v) ∈ Hh
k and z ∈ V h

k . Then, from the definitions of B (cf. (2.14))
and Bh (cf. (4.18)), and after adding and subtracting suitable terms, we obtain

B(z;~ζ, ~τ )−Bh(z;~ζ, ~τ ) =

∫
Ω

(w ⊗ z)d : {τ − κ2∇v} −
∫

Ω

(
Phk (w)⊗ Phk (z)

)d
: Ph

k(τ − κ2∇v)

=

∫
Ω

(w ⊗ z)d : {τ − κ2∇v} −
∫

Ω
(w ⊗ z)d : Ph

k(τ − κ2∇v)

+

∫
Ω

(
w ⊗ z− Phk (w)⊗ Phk (z)

)d
: Ph

k(τ − κ2∇v)

=

∫
Ω

{
(w ⊗ z)d −Ph

k

(
(w ⊗ z)d

)}
: {τ − κ2∇v}

+

∫
Ω

(
w ⊗ z− Phk (w)⊗ Phk (z)

)d
: Ph

k(τ − κ2∇v) ,

which, along with the Cauchy-Schwarz inequality and the fact that Ph
k(τd) =

(
Ph
k(τ )

)d ∀ τ ∈ L2(Ω),
leads to

|B(z;~ζ, ~τ )−Bh(z;~ζ, ~τ )| ≤ ‖w ⊗ z−Ph
k(w ⊗ z)‖0,Ω ‖τ − κ2∇v‖0,Ω

+ ‖w ⊗ z− Phk (w)⊗ Phk (z)‖0,Ω ‖Ph
k(τ − κ2∇v)‖0,Ω

≤ (1 + κ2
2)1/2

{
‖w ⊗ z−Ph

k(w ⊗ z)‖0,Ω + ‖w ⊗ z− Phk (w)⊗ Phk (z)‖0,Ω
}
‖~τ‖H .

(4.20)

In turn, adding and subtracting Phk (z), employing the Cauchy-Schwarz inequality, and applying (2.9)
and the estimate (3.19), we find that

‖w ⊗ z− Phk (w)⊗ Phk (z)‖0,Ω = ‖w ⊗ (z− Phk (z)) + (w − Phk (w))⊗ Phk (z)‖0,Ω

≤ ‖w‖0,4,Ω ‖z− Phk (z)‖0,4,Ω + ‖w − Phk (w)‖0,4,Ω ‖Phk (z)‖0,4,Ω

≤ ‖w‖0,4,Ω ‖z− Phk (z)‖0,4,Ω + Mk ‖z‖0,4,Ω ‖w − Phk (w)‖0,4,Ω

≤ ‖ic‖Mk

{
‖w‖1,Ω ‖z− Phk (z)‖0,4,Ω + ‖z‖1,Ω ‖w − Phk (w)‖0,4,Ω

}
.

Finally, replacing the foregoing estimate into (4.20) we arrive to (4.19) and complete the proof.

On the other hand, the boundedness of the bilinear form Bh is established in the following result.

Lemma 4.13. There holds

|Bh(z;~ζ, ~τ )| ≤ ‖ic‖2M2
k (1 + κ2

2)1/2 ‖z‖1,Ω ‖~ζ‖H ‖~τ‖H (4.21)

for all z ∈ V h
k and ~ζ, ~τ ∈ Hh

k.

Proof. Let z ∈ V h
k , ~ζ := (ζ,w), ~τ := (τ ,v) ∈ Hh

k . Then, applying the Cauchy-Schwarz inequality in
(4.18), and then employing the boundedness of Ph

k , the Cauchy-Schwarz inequality, the boundedness
of ic (cf. (2.9)), and the estimate (3.19), we readily obtain

|Bh(z;~ζ, ~τ )| ≤ ‖Phk (w)⊗ Phk (z)‖0,Ω ‖Ph
k(τ − κ2∇v)‖0,Ω

≤ (1 + κ2
2)1/2 ‖Phk (w)⊗ Phk (z)‖0,Ω ‖~τ‖H

≤ (1 + κ2
2)1/2 ‖Phk (w)‖0,4,Ω ‖Phk (z)‖0,4,Ω ‖~τ‖H

≤ M2
k (1 + κ2

2)1/2 ‖z‖0,4,Ω ‖w‖0,4,Ω ‖~τ‖H

≤ ‖ic‖2M2
k (1 + κ2

2)1/2 ‖z‖1,Ω ‖w‖1,Ω‖~τ‖H ,

(4.22)
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which, noticing that ‖w‖1,Ω ≤ ‖~ζ‖H, yields (4.21) and completes the proof.

4.3 The discrete linear form Fh

In this section we introduce a computable discrete version Fh : Hh
k → R of the functional F (cf.

(2.13)). More precisely, we define

Fh(~τ ) := µ〈τn,g〉Γ − κ1

∫
Ω

f · div(τ ) + µ

∫
Ω
Phk−1(f) · v + κ3

∫
Γ

g · v , (4.23)

which can be calculated using the fact that div(τ )|K ∈ Pk−1(K) and τn|e ∈ Pk(e), for each e ∈ ∂K
and for all K ∈ Th. Similarly, the degrees of freedom of v allow us to compute the boundary integrals∫

Γ g · v and the term ∫
Ω
Phk−1(f) · v =

∫
Ω
Phk−1(f) · Phk−1(v) .

In addition, we have the following lemma comparing F and Fh.

Lemma 4.14. There exists a constant CF > 0, independent of h, such that

|F(~τ )− Fh(~τ )| ≤ CF h ‖f − Phk−1(f)‖0,Ω |v|1,Ω (4.24)

for all ~τ := (τ ,v) ∈ Hh
k.

Proof. It suffices to observe from the definitions of F (cf. (2.13)), Fh (cf. (4.23)), and Phk−1 (cf.
(3.12)), that

|F(~τ )− Fh(~τ )| = µ

∣∣∣∣∫
Ω

{
f − Phk−1(f)

}
· v
∣∣∣∣ = µ

∣∣∣∣∫
Ω

{
f − Phk−1(f)

}
·
{
v − Phk−1(v)

}∣∣∣∣
≤ µ ‖f − Phk−1(f)‖0,Ω ‖v − Phk−1(v)‖0,Ω ,

from which we arrive to (4.24) after applying (3.14) with m = 0 and s = 1.

5 The virtual element scheme

We now use the discrete forms analyzed in the previous section to introduce our mixed virtual element
scheme associated with (2.11), which reads: Find ~σh := (σh,uh) ∈ Hh

k such that

Ah(~σh, ~τ h) + Bh(uh; ~σh, ~τ h) = Fh(~τ h) ∀ ~τ h ∈ Hh
k , (5.1)

where Ah, Bh and Fh are the forms defined by (4.15), (4.18), and (4.23), respectively.

5.1 The solvability analysis

In this section we follow the approach from [17, Section 3.2] and employ a fixed-point strategy to
analyze the solvability and stability of the Galerkin scheme (5.1). To this end, we first define the
discrete operator Th : V h

k → V h
k as

Th(zh) := wh ∀ zh ∈ V h
k ,
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where wh is the second component of the unique solution (to be confirmed below) of the discrete
problem: Find ~ζh := (ζh,wh) ∈ Hh

k such that

Ah(~ζh, ~τ h) + Bh(zh;~ζh, ~τ h) = Fh(~τ h) ∀ ~τ h ∈ Hh
k . (5.2)

In this way, we realize that the augmented mixed-VEM formulation (5.1) can be rewritten as the
fixed-point problem: Find uh ∈ V h

k such that

Th(uh) = uh . (5.3)

Now, before studying the solvability of (5.3), we need to prove that Th is well-defined, which is
equivalent to the well-posedness of (5.2). Indeed, the following lemma shows that Th makes sense
only in a closed ball of V h

k .

Lemma 5.1. Suppose that the parameters κ1, κ2 and κ3, satisfy the conditions required by Lemma
4.11. Then, there exists ρ0 > 0, independent of h, such that for each ρ ∈ (0, ρ0), problem (5.2) has
a unique solution ~ζh := (ζh,wh) ∈ Hh

k for each zh ∈ V h
k such that ‖zh‖1,Ω ≤ ρ. In addition, there

exists a constant cT > 0, independent of zh, f , g, and h, such that

‖Th(zh)‖1,Ω = ‖wh‖1,Ω ≤ ‖~ζh‖H ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
. (5.4)

Proof. Let zh ∈ V h
k . Then, thanks to the boundedness properties of Ah and Bh (cf. Lemmas 4.9

and 4.13), and defining CAB(zh) := C̃A + ‖ic‖2M2
k (1 + κ2

2)1/2 ‖zh‖1,Ω, we find that

|Ah(~ζh, ~τ h) + Bh(zh;~ζh, ~τ h)| ≤ CAB(zh) ‖~ζh‖H ‖~τ h‖H ∀ ~ζh, ~τ h ∈ Hh
k ,

which shows that Ah + Bh(zh; ·, ·) is bounded. Next, according to the hypotheses on κ1, κ2, and κ3,
we know from Lemma 4.11 that Ah becomes elliptic with constant α(Ω), and hence, employing (4.21),
we deduce that

Ah(~τ h, ~τ h) + Bh(zh; ~τ h, ~τ h) ≥
{
α(Ω)− ‖ic‖2M2

k (1 + κ2
2)1/2 ‖zh‖1,Ω

}
‖~τ h‖2H ≥

α(Ω)

2
‖~τ h‖2H (5.5)

for all ~τ h ∈ Hh
k , provided

‖ic‖2M2
k (1 + κ2

2)1/2 ‖zh‖1,Ω ≤
α(Ω)

2
.

Therefore, given zh ∈ V h
k , the ellipticity of the bilinear form Ah + Bh(zh; ·, ·) is ensured with the

constant α(Ω)
2 , independent of zh, by requiring

‖zh‖1,Ω ≤ ρ0 :=
α(Ω)

2 ‖ic‖2M2
k (1 + κ2

2)1/2
. (5.6)

In turn, it is easy to see that, with the same constant MF > 0 from (2.19), which is independent of
zh, h, and the data f and g, there holds

|Fh(~τ h)| ≤ MF

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
‖~τ h‖H ∀ ~τ h ∈ Hh

k ,

which shows that Fh is bounded with

‖Fh‖ ≤ MF

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
. (5.7)

Hence, a straightforward application of the Lax-Milgram lemma implies the existence of a unique
solution ~ζh := (ζh,wh) ∈ Hh

k of (5.2). Moreover, the corresponding continuous dependence result
establishes that

‖~ζh‖H ≤
2

α(Ω)
‖Fh‖ ,

from which, utilizing (5.7), we conclude (5.4) with cT := 2MF
α(Ω) , which is clearly independent of zh.
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Having proved that Th : Hh
k → Hh

k is well defined, we now employ the Banach theorem to establish
the existence of a unique fixed-point of this operator. We begin with the following result, from which
a Lipschitz-continuity property of Th will be derived later on (see the proof of Theorem 5.1 below).

Lemma 5.2. Given ρ ∈ (0, ρ0), with ρ0 defined by (5.6), we let

W h
ρ :=

{
zh ∈ V h

k : ‖zh‖1,Ω ≤ ρ
}
. (5.8)

Then, there holds

‖Th(z1,h)−Th(z2,h)‖1,Ω ≤
1

ρ0
‖Th(z1,h)‖1,Ω ‖z1,h − z2,h‖1,Ω ∀ z1,h, z2,h ∈W h

ρ . (5.9)

Proof. Given ρ ∈ (0, ρ0) and z1,h, z2,h ∈W h
ρ , we let

u1,h = Th(z1,h) and u2,h = Th(z2,h)

be the second components of the corresponding solutions ~σ1,h and ~σ2,h of the problems

Ah(~σ1,h, ~τ h) + Bh(z1,h; ~σ1,h, ~τ h) = Fh(~τ h) (5.10)

and
Ah(~σ2,h, ~τ h) + Bh(z2,h; ~σ2,h, ~τ h) = Fh(~τ h) , (5.11)

for all ~τ h ∈ Hh
k , respectively. Then, applying the ellipticity of Ah + Bh(z2,h, ·, ·) (cf. (5.5)) with

~τ h := ~σ1,h − ~σ2,h, and employing (5.10) and (5.11), we find that

α(Ω)

2
‖~σ1,h − ~σ2,h‖2H ≤ Ah(~σ1,h − ~σ2,h, ~σ1,h − ~σ2,h) + Bh(z2,h; ~σ1,h − ~σ2,h, ~σ1,h − ~σ2,h)

= − Bh(z1,h − z2,h; ~σ1,h, ~σ1,h − ~σ2,h) ,

which, together with the estimate obtained at the end of (4.22), yield

α(Ω)

2
‖~σ1,h − ~σ2,h‖2H ≤ ‖ic‖2M2

k (1 + κ2
2)1/2 ‖z1,h − z2,h‖1,Ω ‖u1,h‖1,Ω ‖~σ1,h − ~σ2,h‖H . (5.12)

Finally, recalling the definition of ρ0 (cf. (5.6)), we see that (5.12) can be rewritten as

‖~σ1,h − ~σ2,h‖H ≤ 1

ρ0
‖u1,h‖1,Ω ‖z1,h − z2,h‖1,Ω ,

which gives (5.9) and finishes the proof.

The main result of this section is stated as follows.

Theorem 5.1. Suppose that the parameters κ1, κ2 and κ3, satisfy the conditions required by Lemma
4.11. In addition, given ρ ∈ (0, ρ0), with ρ0 defined by (5.6), we let W h

ρ as in (5.8), and assume that
the data satisfy

cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ ρ , (5.13)

with cT given by Lemma 5.1. Then, the mixed virtual element scheme (5.1) has a unique solution
~σh := (σh,uh) ∈ Hh

k with uh ∈W h
ρ , and there holds

‖~σh‖H ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
. (5.14)

25



Proof. We first notice, thanks to (5.4), that the assumption (5.13) guarantees that Th(W h
ρ ) ⊆ W h

ρ .
Next, using (5.9) along with (5.4) and (5.13), we obtain

‖Th(z1,h)−Th(z2,h)‖1,Ω ≤
ρ

ρ0
‖z1,h − z2,h‖1,Ω ∀ z1,h, z2,h ∈W h

ρ ,

which proves that Th : W h
ρ → W h

ρ is a contraction, that is a Lipschitz-continuous mapping with
corresponding constant in (0, 1). Hence, a simple application of the Banach theorem implies the
existence of a unique fixed-point uh ∈W h

ρ of (5.3). In this way, the equivalence between (5.3) and the

Galerkin scheme (5.1) shows that (5.1) has a unique solution ~σh ∈ Hh
k , whose stability (5.14) follows

directly from (5.4).

5.2 The a priori error analysis

We now aim to derive the a priori estimates for the error ‖~σ − ~σh‖H, where ~σ := (σ,u) ∈ H :=
H0(div; Ω)×H1(Ω) and ~σh := (σh,uh) ∈ Hh

k := Hh
k × V h

k are the unique solutions of the continuous
and discrete schemes (2.11) and (5.1), respectively. In this regard, and as suggested by Theorems 2.1
and 5.1, we first define

ρ̃0 := min

{
αA

2 ‖ic‖2 (1 + κ2
2)1/2

, ρ0

}
,

with ic, αA, and ρ0, given by (2.9), (2.16), and (5.6), respectively, and observe that the existence of
~σ and ~σh is guaranteed within the respective balls centered at the origin and with radius ρ ∈ (0, ρ̃0),
and under the assumptions that κ1, κ3 > 0, and 0 < κ2 < 2 min{µ, α1, β1}. In particular, we know
from Theorem 2.1 that there holds

‖~σ‖H ≤ CT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ ρ . (5.15)

Furthermore, we now recall from [20, Theorem 4.1.1] (see also [32, Theorem 11.1]) the first Strang
lemma for linear problems, which will be utilized to obtain the main result of this section.

Lemma 5.3. Let H be a Hilbert space, F ∈ H ′, and A : H × H → R a bounded and H-elliptic
bilinear form. In addition, let {Hh}h>0 be a sequence of finite-dimensional subspaces of H, and for
each h > 0 consider a functional Fh ∈ H ′h and a bounded bilinear form Ah : Hh ×Hh → R. Assume
that the family {A}∪ {Ah}h>0 is uniformly bounded and uniformly elliptic with constants LB and LE,
respectively. In turn, let u ∈ H and uh ∈ Hh such that

A(u, v) = F (v) ∀ v ∈ H

and
Ah(uh, vh) = Fh(vh) ∀ vh ∈ Hh .

Then, for all h > 0 there holds

‖u− uh‖H ≤ CST

{
sup

wh∈Hh
wh 6=0

|F (wh)− Fh(wh)|
‖wh‖H

+ inf
vh∈Hh

(
‖u− vh‖H + sup

wh∈Hh
wh 6=0

|A(vh, wh)−Ah(vh, wh)|
‖wh‖H

)}
,

with CST := L−1
E max{1, LE + LB}.
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We begin the analysis with a preliminary estimate for ‖~σ − ~σh‖H.

Lemma 5.4. There exists a positive constant Cp, independent of h, such that

‖~σ − ~σh‖H ≤ Cp

{
‖σ −Ph

k(σ)‖0,Ω + |u−Rhk(u)|1,h + h ‖f − Phk−1(f)‖0,Ω

+ inf
~ζh∈Hh

k

(
‖~σ − ~ζh‖H + sup

~τh∈H
h
k

~τh 6=0

|B(u;~ζh, ~τ h)−Bh(uh;~ζh, ~τ h)|
‖~τ h‖H

)}
(5.16)

Proof. It reduces to apply Lemma 5.3 to the context given by (2.11) and (5.1). In fact, we first set

A(~ζ, ~τ ) := A(~ζ, ~τ ) + B(u;~ζ, ~τ ) , F (~τ ) := F(~τ ) ,

Ah(~ζh, ~τ h) := Ah(~ζh, ~τ h) + Bh(uh;~ζh, ~τ h) , and Fh(~τ h) := Fh(~τ h) ,

for all ~ζ, ~τ ∈ H := H and ~ζh, ~τ h ∈ Hh := Hh
k . Then, employing the bounds provided by (2.15), (2.18),

Lemmas 4.9 and 4.13, and (5.15), and recalling that Mk ≥ 1 (cf. (3.19)), we deduce that the family
{A} ∪ {Ah}h>0 is uniformly bounded with a constant, independent of h, given by

LB := max
{
CA, C̃A

}
+ ‖ic‖2M2

k (1 + κ2
2)1/2 ρ̃0 .

In turn, using now (2.17) and (5.5), we obtain that {A} ∪ {Ah}h>0 is uniformly elliptic with the
constant

LE :=
1

2
min{αA, α(Ω)} .

Hence, a straightforward application of Lemma 5.3 yields

‖~σ − ~σh‖H ≤ CST

{
sup

~τh∈Hh
k

~τh 6=0

|F(~τ h)− Fh(~τ h)|
‖~τ h‖H

+ inf
~ζh∈Hh

k

(
‖~σ − ~ζh‖H

+ sup
~τh∈Hh

k
~τh 6=0

|A(~ζh, ~τ h)−Ah(~ζh, ~τ h) + B(u;~ζh, ~τ h)−Bh(uh;~ζh, ~τ h)|
‖~τ h‖H

)}
, (5.17)

where CST := L−1
E max

{
1, LE + LB

}
. Next, thanks to (4.24) (cf. Lemma 4.14), we find that

sup
~τh∈Hh

k
~τh 6=0

|F(~τ h)− Fh(~τ h)|
‖~τ h‖H

≤ CF h‖f − Phk−1(f)‖0,Ω , (5.18)

whereas, setting ~ζh := (ζh,wh), (4.16) (cf. Lemma 4.8) gives

|A(~ζh, ~τ h)−Ah(~ζh, ~τ h)| ≤ LA

{
‖ζh −Ph

k(ζh)‖0,Ω + |wh −Rhk(wh)|1,h
}
‖~τ h‖H .

Thus, adding and subtracting σ−Ph
k(σ) and u−Rhk(u), respectively, in the first and second expressions

on the right-hand side of the foregoing equation, and using the boundedness of Ph
k and Rhk (cf. (3.2)),

we deduce that

|A(~ζh, ~τ h)−Ah(~ζh, ~τ h)|

≤ LA

{
2‖σ − ζh‖0,Ω + ‖σ −Ph

k(σ)‖0,Ω + 2|u−wh|1,Ω + |u−Rhk(u)|1,h
}
‖~τ h‖H

≤ LA

{
3‖~σ − ~ζh‖H + ‖σ −Ph

k(σ)‖0,Ω + |u−Rhk(u)|1,h
}
‖~τ h‖H .

(5.19)

Finally, replacing (5.18) and (5.19) back into (5.17), we arrive at (5.16) with Cp depending on CST,
CF, and LA, thus completing the proof.
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We now aim to bound the supremum in (5.16). For this purpose, we first observe that, while the
estimates (4.19) (cf. Lemma 4.12) and (4.21) (cf. Lemma 4.13) were proved for z ∈ V h

k , it is easily
seen that they are also valid for z ∈ H1(Ω). Then, we have the following result.

Lemma 5.5. There exists C̃p > 0, independent of h, but depending on κ2, ‖ic‖, and Mk, such that

|B(u;~ζh, ~τ h)−Bh(uh;~ζh, ~τ h)| ≤ C̃p

{(
‖~σ‖H + ‖~σh‖H

)
‖~σ − ~ζh‖H

+ ‖~σ‖H
(
‖~σ − ~σh‖H + ‖u− Phk (u)‖0,4,Ω

)
+ ‖u⊗ u−Ph

k(u⊗ u)‖0,Ω
}
‖~τ h‖H ,

(5.20)

for all ~ζh := (ζh,wh), ~τ h := (τ h,vh) ∈ Hh
k.

Proof. Let ~ζh := (ζh,wh), ~τ h := (τ h,vh) ∈ Hh
k . Then, adding and subtracting Bh(u;~ζh, ~τ h), we

find that

|B(u;~ζh, ~τ h)−Bh(uh;~ζh, ~τ h)| ≤
∣∣B(u;~ζh, ~τ h)−Bh(u;~ζh, ~τ h)

∣∣ +
∣∣Bh(u− uh;~ζh, ~τ h)

∣∣ . (5.21)

For the second term on the right-hand side of (5.21) we apply (4.21) (cf. Lemma 4.13) and obtain∣∣Bh(u− uh;~ζh, ~τ h)
∣∣ ≤ ‖ic‖2M2

k (1 + κ2
2)1/2 ‖u− uh‖1,Ω ‖~ζh‖H ‖~τ h‖H ,

which, adding and subtracting ~σ, yield

|Bh(u− uh;~ζh, ~τ h)| ≤ ‖ic‖2M2
k (1 + κ2

2)1/2
{
‖~σ − ~ζh‖H + ‖~σ‖H

}
‖u− uh‖1,Ω ‖~τ h‖H

≤ ‖ic‖2M2
k (1 + κ2

2)1/2

{(
‖u‖1,Ω + ‖uh‖1,Ω

)
‖~σ − ~ζh‖H + ‖~σ‖H ‖u− uh‖1,Ω

}
‖~τ h‖H .

(5.22)

In addition, thanks to (4.19) (cf. Lemma 4.12), the corresponding first term is bounded as follows∣∣B(u;~ζh, ~τ h)−Bh(u;~ζh, ~τ h)
∣∣ ≤ (1 + κ2

2)1/2

{
‖wh ⊗ u−Ph

k(wh ⊗ u)‖0,Ω

+ ‖ic‖Mk

(
‖wh‖1,Ω ‖u− Phk (u)‖0,4,Ω + ‖u‖1,Ω ‖wh − Phk (wh)‖0,4,Ω

)}
‖~τ h‖H .

(5.23)

Now, adding and subtracting u, it follows that

wh ⊗ u−Ph
k(wh ⊗ u) = (wh − u)⊗ u + u⊗ u − Ph

k

(
(wh − u)⊗ u + u⊗ u

)
,

from which, using the L2(Ω)-boundedness of Ph
k , the Cauchy-Schwarz inequality, and (2.9), we deduce

that

‖wh ⊗ u−Ph
k(wh ⊗ u)‖0,Ω ≤ 2 ‖u−wh‖0,4,Ω ‖u‖0,4,Ω + ‖u⊗ u−Ph

k(u⊗ u)‖0,Ω

≤ 2 ‖ic‖2 ‖u−wh‖1,Ω ‖u‖1,Ω + ‖u⊗ u−Ph
k(u⊗ u)‖0,Ω .

(5.24)

In turn, similar reasonings, but employing now the L4(Ω)-boundedness of Ph
k (cf. (3.19)), yield

‖wh‖1,Ω ‖u− Phk (u)‖0,4,Ω ≤ ‖ic‖ (1 +Mk) ‖u‖1,Ω ‖u−wh‖1,Ω + ‖u‖1,Ω ‖u− Phk (u)‖0,4,Ω (5.25)

and
‖wh − Phk (wh)‖0,4,Ω ≤ ‖ic‖ (1 +Mk) ‖u−wh‖1,Ω + ‖u− Phk (u)‖0,4,Ω . (5.26)

In this way, replacing (5.24), (5.25), and (5.26) back into (5.23), and then using the resulting estimate
together with (5.22) in (5.21), we are lead to (5.20) after bounding ‖u−wh‖1,Ω, ‖u−uh‖1,Ω, ‖u‖1,Ω,

and ‖uh‖1,Ω by ‖~σ − ~ζh‖H, ‖~σ − ~σh‖H, ‖~σ‖H, and ‖~σh‖H, respectively.
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As a consequence of Lemmas 5.4 and 5.5, we are able to establish the following definite a priori
estimate for ‖~σ − ~σh‖H.

Theorem 5.2. Let CT, Cp, and C̃p be the constants from Theorem 2.1, Lemma 5.4, and Lemma 5.5,
respectively, and assume that the data f and g satisfy

CTCp C̃p

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ 1

2
. (5.27)

Then there exists a positive constant Ĉp, independent of h, such that

‖~σ − ~σh‖H ≤ Ĉp

{
‖σ −Ph

k(σ)‖0,Ω + |u−Rhk(u)|1,h + h ‖f − Phk−1(f)‖0,Ω

+ ‖u− Phk (u)‖0,4,Ω + ‖u⊗ u−Ph
k(u⊗ u)‖0,Ω + dist(~σ,Hh

k)

}
.

(5.28)

Proof. It suffices to replace (5.20) back into (5.16), and then proceed to estimate the resulting terms
in a suitable manner. In particular, the expressions ‖~σ‖H and ‖~σh‖H multiplying ‖~σ − ~ζh‖H or
‖u−Phk (u)‖0,4,Ω are bounded by ρ̃0, whereas (5.15) is used to bound ‖~σ‖H in terms of the data when

it multiplies the exact error ‖~σ− ~σh‖H. In this way, and after taking the infimum on ~ζh ∈ Hh
k , which

yields dist(~σ,Hh
k), we are lead on the right hand side to the remaining expression

CTCp C̃p

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
‖~σ − ~σh‖H ,

which is handled according to the assumption (5.27). Other details are omitted.

Having established Theorem 5.2, we now provide the corresponding rates of convergence.

Theorem 5.3. Let ~σ ∈ H and ~σh ∈ H be the unique solutions of the continuous and discrete schemes
(2.11) and (5.1), respectively. Assume that for integers r ∈ [1, k], s ∈ [2, k + 1], and ` ∈ [1, k + 1],
there hold σ|K ∈ Hr(K), f |K = −div(σ)|K ∈ Hr(K), u|K ∈ Hs(K), and (u ⊗ u)|K ∈ H`(K), for
each K ∈ Th. Then, there exists a positive constant C, independent of h, such that

‖~σ − ~σh‖H := ‖σ − σh‖div;Ω + ‖u− uh‖1,Ω

≤ C hmin{r,s−1,`}
{ ∑
K∈Th

(
|σ|2r,K + |div(σ)|2r,K + |u|2s,K + |u⊗ u|2`,K

)}1/2

+ C hs−1

{ ∑
K∈Th

|u|4s−1,4,K

}1/4

.

(5.29)

Proof. It follows from (5.28) and the approximation properties provided along the paper. In fact,
employing (APu

h) (cf. Section 3.2) and (APσh ) (cf. Section 3.3), we obtain

dist(u, V h
k ) ≤ C hs−1

{ ∑
K∈Th

|u|2s,K
}1/2

and

dist(σ, Hh
k ) ≤ C hr

{ ∑
K∈Th

(
|σ|2r,K + |div(σ)|2r,K

)}1/2

,
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respectively, whereas straighforward applications of (3.14) and (3.15) imply

h ‖f − Phk−1(f)‖0,Ω ≤ C hr+1

{ ∑
K∈Th

|f |2r,K
}1/2

= C hr+1

{ ∑
K∈Th

|div(σ)|2r,K
}1/2

,

‖σ −Ph
k(σ)‖0,Ω ≤ C hr

{ ∑
K∈Th

|σ|2r,K
}1/2

,

and

‖u⊗ u−Ph
k(u⊗ u)‖0,Ω ≤ C h`

{ ∑
K∈Th

|u⊗ u|2`,K
}1/2

.

In turn, (3.3) gives

|u−Rhk(u)|1,h ≤ C hs−1

{ ∑
K∈Th

|u|2s,K
}1/2

,

and the fact that Hs(K) ⊆ Ws−1,4(K) together with (3.16) (cf. Lemma 3.7) yield

‖u− Phk (u)‖0,4,Ω ≤ C hs−1

{ ∑
K∈Th

|u|4s−1,4,K

}1/4

.

The foregoing estimates and a simple algebraic inequality lead to (5.29), thus concluding the proof.

5.3 Computable approximations of σ, u, and p

We first introduce the fully computable approximations of σh and uh given by

σ̂h := Ph
k(σh) and ûh := Phk (uh) , (5.30)

and establish the corresponding a priori error estimates in the L2(Ω)-norm for σ − σ̂h, and in the
L2(Ω)-norm and broken H1-seminorm for u− ûh. As shown below in Theorem 5.6, they yield exactly
the same rate of convergence given by Theorem 5.3.

We begin the analysis with the following result.

Theorem 5.4. There exists a positive constant C > 0, independent of h, such that

‖σ − σ̂h‖0,Ω + ‖u− ûh‖0,Ω +

{ ∑
K∈Th

|u− ûh|21,K
}1/2

≤ C

{
‖~σ − ~σh‖H + ‖σ −Ph

k(σ)‖0,Ω +

{ ∑
K∈Th

‖u− PKk (u)‖21,K
}1/2

}
.

(5.31)

Proof. In order to bound ‖σ−σ̂h‖0,Ω, we add and subtract Ph
k(σ), and then employ the boundedness

of Ph
k , which gives

‖σ − σ̂h‖0,Ω ≤ ‖σ −Ph
k(σ)‖0,Ω + ‖Ph

k(σ)−Ph
k(σh)‖0,Ω

≤ ‖σ −Ph
k(σ)‖0,Ω + ‖σ − σh‖0,Ω .

(5.32)

Similarly, adding and subtracting PKk (u), and using now the boundedness of PKk (cf. Lemma 3.8), we
are lead to

‖u− ûh‖1,K ≤ ‖u− PKk (u)‖1,K + Mk ‖u− uh‖1,K ∀K ∈ Th ,
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from which, taking square and summing over K ∈ Th, it follows that

‖u− ûh‖0,Ω +

{ ∑
K∈Th

|u− ûh|21,K
}1/2

≤ C

{{ ∑
K∈Th

‖u− PKk (u)‖21,K
}1/2

+ ‖u− uh‖1,Ω

}
. (5.33)

In this way, (5.32) and (5.33) yield (5.31), which ends the proof.

Next, according to the second equation in (2.4) and the decomposition of σ provided by (2.7) and
(2.8), we suggest the following computable approximation of the pressure:

p̂h := −1

2
tr
(
σ̂h + ĉhI + ûh ⊗ ûh

)
in Ω , with ĉh := − 1

2|Ω|
‖ûh‖20,Ω . (5.34)

The following lemma establishes the corresponding a priori error estimate.

Theorem 5.5. There exists a positive constant C > 0, independent of h, such that

‖p− p̂h‖0,Ω ≤ C
{
‖~σ − ~σh‖H + ‖σ −Ph

k(σ)‖0,Ω + ‖u− Phk (u)‖0,Ω + ‖u− Phk (u)‖0,4,Ω
}
. (5.35)

Proof. According to (2.4), (2.7), (2.8), and (5.34), we have that

p− p̂h = − 1

2
tr
(

(σ − σ̂h) + (u⊗ u− ûh ⊗ ûh)
)

+
1

2|Ω|

∫
Ω

tr(u⊗ u− ûh ⊗ ûh) ,

which, applying the Cauchy-Schwarz inequality, yields

‖p− p̂h‖0,Ω ≤ C
{
‖σ − σ̂h‖0,Ω + ‖u⊗ u− ûh ⊗ ûh‖0,Ω

}
. (5.36)

Then, adding and subtracting ûh, and using the triangle and Cauchy-Schwarz inequalities, the boun-
dedness of Phk (cf. (3.19)), (2.9), and the fact that ‖u‖1,Ω and ‖uh‖1,Ω are bounded by ρ̃0, we find
that

‖u⊗ u− ûh ⊗ ûh‖0,Ω = ‖u⊗ (u− ûh)‖0,Ω + ‖(u− ûh)⊗ ûh‖0,Ω

≤
(
‖u‖0,4,Ω + ‖ûh‖0,4,Ω

)
‖u− ûh‖0,4,Ω =

(
‖u‖0,4,Ω + ‖Phk (uh)‖0,4,Ω

)
‖u− ûh‖0,4,Ω

≤
(
‖u‖0,4,Ω +Mk ‖uh‖0,4,Ω

)
‖u− ûh‖0,4,Ω ≤ (1 +Mk) ‖ic‖ ρ̃0 ‖u− ûh‖0,4,Ω .

(5.37)

In turn, adding and subtracting Phk (u), and employing again the boundedness of Phk and (2.9), we
readily obtain

‖u− ûh‖0,4,Ω ≤ ‖u− Phk (u)‖0,4,Ω + ‖Phk (u− uh)‖0,4,Ω

≤ ‖u− Phk (u)‖0,4,Ω + ‖ic‖Mk ‖u− uh‖1,Ω .
(5.38)

Finally, (5.36), (5.37), and (5.38), together with (5.31) imply (5.35) and finish the proof.

We end this section by providing the theoretical rates of convergence for σ̂h, ûh, and p̂h.

Theorem 5.6. Let ~σ ∈ H and ~σh ∈ H be the unique solutions of the continuous and discrete schemes
(2.11) and (5.1), respectively. In addition, let (σ̂h, ûh) and p̂h be the discrete approximations introduced
in (5.30) and (5.34), respectively. Assume that for integers r ∈ [1, k], s ∈ [2, k+ 1], and ` ∈ [1, k+ 1],

31



there hold σ|K ∈ Hr(K), f |K = −div(σ)|K ∈ Hr(K), u|K ∈ Hs(K), and (u ⊗ u)|K ∈ H`(K), for
each K ∈ Th. Then, there exists a positive constant C, independent of h, such that

‖σ − σ̂h‖0,Ω + ‖u− ûh‖0,Ω +

{ ∑
K∈Th

|u− ûh|21,K
}1/2

+ ‖p− p̂h‖0,Ω

≤ C hmin{r,s−1,`}
{ ∑
K∈Th

(
|σ|2r,K + |div(σ)|2r,K + |u|2s,K + |u⊗ u|2`,K

)}1/2

+ C hs−1

{ ∑
K∈Th

|u|4s−1,4,K

}1/4

.

(5.39)

Proof. It follows from (5.31), (5.35), Theorem 5.3, and the approximation properties provided along
the paper. In particular, applying (3.16) (cf. Lemma 3.7), we readily find that{ ∑

K∈Th

‖u− PKk (u)‖21,K
}1/2

≤ C hs−1

{ ∑
K∈Th

|u|2s,K
}1/2

.

Further details, being similar to those shown in the proof of Theorem 5.3, are omitted.

5.4 A convergent approximation of σ in the broken H(div; Ω)-norm

In what follows we proceed as in [14, Section 5.3] and propose a second approximation σ̃h of the
pseudostress σ, which yields the same rate of convergence from Theorems 5.3 and 5.6 in the broken
H(div; Ω)-norm. For this purpose, we now consider for each K ∈ Th an arbitrary but explicitly known
finite dimensional subspace U(K) of H(div;K), to be specified later on, and let (·, ·)div;K be the usual
H(div;K)-inner product with induced norm ‖ · ‖div;K . Then, we let σ̃h ∈ L2(Ω) be the tensor defined
locally as σ̃h |K := σ̃h,K , where σ̃h,K ∈ U(K) is the unique solution of the problem

(σ̃h,K , τ h)div;K =

∫
K
σ̂h : τ h +

∫
K

div(σh) · div(τ h) ∀ τ h ∈ U(K) . (5.40)

Note here that the right-hand side of (5.40), and hence σ̃h,K , is fully computable since both σ̂h
and div(τ h) are. In addition, it is important to remark that σ̃h,K can be calculated for each K ∈
Th, independently, which certainly suggests a parallel implementation of these computations. Next,
denoting by ΠK

U : H(div;K)→ U(K) the orthogonal projector with respect to (·, ·)div;K , we have the
following result establishing the a priori estimate for the local error ‖σ − σ̃h,K‖div;K .

Lemma 5.6. For each K ∈ Th there holds

‖σ − σ̃h,K‖div;K ≤ ‖div(σ − σh)‖0,K + ‖σ − σ̂h‖0,K + ‖σ −ΠK
U (σ)‖div;K . (5.41)

Proof. It proceeds exactly as the proof of [14, Lemma 5.3], and hence we refer to that work and omit
details here.

In this way, since we know from (5.29) (cf. Theorem 5.3) and (5.39) (cf. Theorem 5.6) that the
errors ‖div(σ − σh)‖0,Ω and ‖σ − σ̂h‖0,Ω converge at most with order O(hk), which holds when
r = k, s = k + 1, and ` = k, it follows from (5.41) that we need to guarantee at least the same

rate for

{ ∑
K∈Th

‖σ − ΠK
U (σ)‖2div;K

}1/2

. Thus, in order to achieve this goal, we take for simplicity

U(K) := Pk(K), which means that ΠK
U becomes PK

k , whence (3.15) yields

‖τ −ΠK
U (τ )‖div;K ≤ ‖τ −ΠK

U (τ )‖1,K ≤ C hrK |τ |r+1,K ∀ τ ∈ Hr+1(K) , ∀K ∈ Th .
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Therefore, according to the foregoing analysis, we are able to state the following theorem.

Theorem 5.7. Let ~σ := (σ,u) ∈ H and ~σh := (σh,uh) ∈ H be the unique solutions of the
continuous and discrete schemes (2.11) and (5.1), respectively. In addition, let σ̂h and σ̃h be the
discrete approximations of σ introduced in (5.30) and (5.40), respectively. Assume that for integers
r ∈ [1, k], s ∈ [2, k + 1], and ` ∈ [1, k + 1], there hold σ|K ∈ Hr+1(K), f |K = −div(σ)|K ∈ Hr(K),
u|K ∈ Hs(K), and (u⊗ u)|K ∈ H`(K), for each K ∈ Th. Then, there holds{ ∑

K∈Th

‖σ − σ̃h,K‖2div;K

}1/2

= O(hmin{r,s−1,`}) .

We end this paper by remarking that full details on the computational implementation of (5.1),
and several numerical results confirming the theoretical rates of convergence, will be provided in a
forthcoming work.
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