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Abstract

A mixed virtual element method (mixed-VEM) for a pseudostress-velocity formulation of the two-
dimensional Navier-Stokes equations with Dirichlet boundary conditions is proposed and analyzed
in this work. More precisely, we employ a dual-mixed approach based on the introduction of a non-
linear pseudostress linking the usual linear one for the Stokes equations and the convective term. In
this way, the aforementioned new tensor together with the velocity constitute the only unknowns
of the problem, whereas the pressure is computed via a postprocessing formula. In addition, the
resulting continuous scheme is augmented with Galerkin type terms arising from the constitutive
and equilibrium equations, and the Dirichlet boundary condition, all them multiplied by suitable
stabilization parameters, so that the Banach fixed-point and Lax-Milgram theorems are applied
to conclude the well-posedness of the continuous and discrete formulations. Next, we describe the
main VEM ingredients that are required for our discrete analysis, which, besides projectors com-
monly utilized for related models, include, as the main novelty, the simultaneous use of virtual
element subspaces for H! and H(div) in order to approximate the velocity and the pseudostress,
respectively. Then, the discrete bilinear and trilinear forms involved, their main properties and the
associated mixed virtual scheme are defined, and the corresponding solvability analysis is performed
using again appropriate fixed-point arguments. Moreover, Strang-type estimates are applied to de-
rive the a priori error estimates for the two components of the virtual element solution as well as
for the fully computable projections of them and the postprocessed pressure. As a consequence,
the corresponding rates of convergence are also established. Finally, we follow the same approach
employed in previous works by some of the authors and introduce an element-by-element post-
processing formula for the fully computable pseudostress, thus yielding an optimally convergent
approximation of this unknown with respect to the broken H(div)-norm.

Key words: Navier-Stokes problem, pseudostress-based formulation, augmented formulation, mixed
virtual element method, high-order approximations

1 Introduction

The utilization of virtual element methods (VEM) in fluid mechanics has become a very active research
subject in recent years. Indeed, regarding the Stokes equations, we begin by referring to [3], [8], and
[19], where stream function-based, divergence free, and non-conforming virtual element methods,
respectively, have been developed for the classical velocity-pressure formulation of this problem. In
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particular, a new family of virtual elements for the Stokes problem on polygonal meshes, in which
the discrete velocity is pointwise divergence-free, is provided in [8]. Moreover, the associated virtual
scheme is shown to be equivalent to a problem with less degrees of freedom, thus yielding a more
efficient method. In turn, the virtual element method proposed in [19] approximates the pressure
using discontinuous piecewise polynomials, whereas the components of the velocity are approximated
using a globally nonconforming virtual element space. In fact, the virtual element functions are
locally defined as the solution of Poisson problems with polynomial Neumann boundary conditions.
More recently, a family of virtual element methods for the two-dimensional Navier-Stokes equations is
introduced and analyzed in [9], which constitutes, up to our knowledge, the first paper applying the
VEM technique to that nonlinear model. As in [8], pointwise divergence-free discrete velocities are
also obtained in [9], and hence the virtual element scheme suggested there can be seen as a natural
extension of the approach provided in [8].

Furthermore, other contributions in the aforementioned direction have concentrated on the com-
bined use of pseudostress-based dual-mixed variational formulations and virtual element methods,
thus yielding the first mixed-VEM schemes known so far for the Stokes and related models in fluid
mechanics (see [13], [14], and [15]). Before describing the main aspects of these works in what follows,
we notice that the name dual-mized refers here to those formulations in which the main unknown of
the resulting saddle point problem lives in either a vectorial H(div) or a tensorial H(div) space, which
is precisely the case when the stress or the pseudostress is employed. Having said the above, we now
recall that a mixed-VEM for the pseudostress-velocity formulation of the Stokes problem, in which
the pressure is computed via a postprocessing formula, was introduced and analized in [13]. In par-
ticular, in order to derive the explicitly computable discrete bilinear form, a new local projector onto
a suitable polynomial space, which takes into account the main features of the continuous solution
and allows the explicit integration of terms involving deviatoric tensors, is proposed there. Then, the
analysis in [13] is extended in [14] to derive two mixed virtual element methods for the two-dimensional
Brinkman problem. Proceeding as in [27], the equilibrium equation and the incompressibility condition
are utilized in [14] to eliminate the velocity and the pressure, respectively, whence the pseudostress
becomes the only unknown of the resulting dual-mixed formulation. In this way, the aforementioned
two schemes arise from the use of one from two different projectors, the ad-hoc one introduced in
[13] and the L2-orthogonal one analyzed in [7] (see also [5]). Another virtual element method for the
Brinkman equations, not employing the aforementioned dual-mixed approach, is proposed in [33]. We
end this paragraph by remarking that the analysis and results from [13] and [14] were extended in [15]
to the case of quasi-Newtonian Stokes flows, for which the nonlinear model studied in [28] (see also
[29]) was considered.

In addition to the above, it is important to highlight that the incorporation of the pseudostress as
one of the main unknowns of a dual-mixed variational formulation in continuum mechanics, is mainly
motivated by the need of finding new ways of circumventing the symmetry requirement of the usual
stress-based methods. In particular, and since in this paper we are interested in developing a VEM
scheme for a dual-mixed formulation of the Navier-Stokes equations, we begin the corresponding
bibliographic discussion with [30], where a new mixed finite element method for that model was
introduced and analyzed. More precisely, the main unknowns of the approach in [30] are given by
the velocity, its gradient, and a modified nonlinear pseudostress tensor linking the usual stress and
the convective term. A fixed-point argument and the Babuska-Brezzi theory are applied there to
derive the well-posedness of the resulting continuous formulation. Then, the procedure from [30] is
modified in [18] through the introduction of a new nonlinear tensor linking now the pseudostress
(instead of the stress) and the convective term, which, together with the velocity, constitute the only
unknowns. Suitable Galerkin type terms arising from the constitutive and equilibrium equations, and
the boundary condition, are then incorporated into the formulation of [18], so that the Lax-Milgram
and Banach fixed-point theorems are employed to prove the well-posedness of both the continuous and



discrete schemes. In turn, the approach from [18] has been further extended to other boundary value
problems, including the development of new dual-mixed formulations for the stationary Boussinesq
problem (see [21], [22], [23], [24]), and for the Navier-Stokes equations with constant density and
variable viscosity (see [16], [17]). Besides the methods and tools utilized in [18], the foregoing extensions
also make use of the Brouwer fixed-point theorem and the Babuska-Brezzi theory.

According to the above discussion, and in order to additionally contribute in the direction drawn
by [15] and [9], we now aim to continue extending the applicability of the VEM technique to nonlinear
problems in fluid mechanics. More precisely, we consider the same variational formulation from [18]
(see also [16], [17]), and develop, up to our knowledge, the first dual-mixed virtual element method
for the Navier Stokes equations. The rest of this work is organized as follows. At the end of the
present section we provide some useful notations. In Section 2 we describe our nonlinear model, recall
from [18] the derivation of the augmented pseudostress-velocity formulation to be employed, and
state the corresponding well-posedness result. Then, in Section 3 we introduce the virtual element
subspaces approximating the velocity and the pseudostress in H' and H(div), respectively, state their
approximation properties, and define the projectors and remaining ingredients that are needed for the
discrete analysis. In turn, computable discrete versions of the bilinear and trilinear forms involved, and
of the corresponding functional on the right-hand side of the formulation, are locally and then globally
defined in Section 4. In addition, the main mapping properties connecting them with their continuous
versions are also proved in this section. Next, in Section 5 we define the associated mixed virtual
element scheme, perform the solvability analysis by using suitable fixed-point arguments (as done in
[18] and its further extensions), and apply Strang-type estimates to derive the a priori error estimates
for both the virtual element solution and the fully computable projections of its components. The
corresponding rates of convergence are then readily established by using the approximation properties
given in Section 3. Finally, following previous works by some of the authors, an element-by-element
postprocessing formula for the fully computable pseudostress is suggested at the last part of Section
5, which leads to an optimally convergent approximation of this unknown with respect to the broken
H(div)-norm.

Notations

We end the present section by providing some notations to be used along the paper, including those
already employed above. Firstly, for any vector fields v = (v;)i=12 and w = (w;)i=1,2 we set the
gradient, divergence and tensor product operators as

2
Vv = (g;j;)i’jm, div(v) = Z gvj, and vV ®W:= (vw;)ij=1.2,

=
j=1 "7

respectively. In addition, denoting by I the identity matrix of R?*2, and given 7 := (7;5), ¢ :== (¢;j) €
R?*2, we write as usual

2 2

1
= (150), tr(7):= Zm? =7 itr(‘r)]l, and T:¢(:= Z Ti;Cij)

i=1 ij=1

which corresponds, respectively, to the transpose, the trace, and the deviator tensor of 7, and to the
tensorial product between 7 and ¢. Next, given a bounded domain © C R?, with boundary 00, we
let n be the outward unit normal vector on 00O. Also, given r > 0 and p > 1, we let W"P(QO) be the

standard Sobolev space with norm || - ||, 0 and seminorm |- |., 0. In particular, for r = 0 we let
LP(O) := WYP(O) be the usual Lebesgue space, and for p = 2 we let H*(0Q) := W"2(O) be the classical
Hilbertian Sobolev space with norm || - ||s,0 and seminorm |- |s 0. Furthermore, given a generic scalar



functional space M, we let M and M be its vector and tensorial counterparts, respectively, whose
norms and seminorms are denoted exactly as those of M. On the other hand, letting div (resp. rot)
be the usual divergence operator div (resp. rotational operator rot) acting along the rows of a given
tensor, we recall that the spaces

H(div;0) := {r € 12(0): div(r) € 12(0)},

H(div; O) := {’T ceL*(0): div(r) e L2(O)},

H(rot; O) = {7’ cL*(0): rot(r) € LQ(O)},

and

H(rot; O) := {T €eL*(0): rot(r) € LQ(O)}a

equipped with the usual norms

I7lGvo = lI7llio + ldv(n)l§eo V7 eH(div;0),

ITl&Gvio = [ITl50 + ldiv(T)l[§o ¥ € H(div;0),

I7lfto = lI7lgo + Ilot(r)5o V7€ H(rot; 0),
and

ITlzot:0 = ITl60 + Irot(T)llfo VT € H(rot; 0),

are Hilbert spaces. Finally, in what follows we employ 0 to denote a generic null vector, null tensor
or null operator, and use C' to denote generic constants independent of the discretization parameters,
which may take different values at different places.

2 The Navier-Stokes equations

2.1 The model problem

Let ©Q be a bounded polygonal domain in R? with boundary I'. In what follows we consider the
stationary Navier-Stokes equations with constant viscosity u > 0. In other words, given a volume
force f € L?(Q) and a Dirichlet datum g € H'/2(I"), we seek the velocity u and the pressure p of a
fluid occupying the region €2, such that

—pAu + (Vu)u+ Vp = f in Q, diviu) = 0 in Q,

(2.1)
u=g on [', and /sz,
Q

where the last equation in (2.1) is imposed to guarantee the uniqueness of the pressure solution. Notice
here that, due to the incompressibility condition given by the second equation of (2.1), g must satisfy
the compatibility condition

/Fg-n = 0. (2.2)

Then, following [18] (see also [17, 22]), we introduce a pseudostress tensor defined by

o = puVu—u®u —pl in Q, (2.3)



which establishes that the first equation in (2.1) can be written as the equilibrium equation
—div(e) = f in Q.

Next, it is not difficult to see that (2.3) and the incompressibility condition div(u) = 0 in Q, are
equivalent to the pair of equations given by

1
o = uVu — (u@u?d in Q and p = —itr(a+u®u) in Q, (2.4)

whence (2.1) can be rewritten as: Find the pseudostress o and the velocity u such that

od = uVu — (u@u)d in Q, —div(e) = f in Q,
(2.5)
u=g on I' and /tr(a—l—u@u) = 0.
Q
We stress here that we have eliminated the pressure from the original model (2.1). However, using

the second equation in (2.4) we can recover p by a postprocessing formula in terms of o and u.

2.2 The augmented mixed formulation

In what follows we derive a weak formulation of (2.5). To this end, and proceeding as in [18, 17], we
multiply the first equation in (2.5) by 7 € H(div;{2), integrate by parts in €, and use the Dirichlet
boundary condition to deduce that

/ od:rd 4 ,u/ u-div(r) + /(u®u)d 7 = p{tn,g)r vV 1 € H(div; ) .
Q Q Q
In turn, the equilibrium equation, which is given by the second equation of (2.5), is rewritten as
,u/v-div(o'):—u/f-v VveLiQ).
Q Q

In this way, we arrive at first instance at the following weak formulation of (2.5): Find o € H(div; )
and u in a suitable space, such that

/Qad:Td—l—u/Qu-div(T) —|—/Q(u®u)d:'r = p{rn,g)r vV 1 € H(div; ),
u/ﬂv~div(a) = _M/Qf"’ vV veL3(Q), (2.6)

/Qtr(a) = —/Qtr(u®u).

Hy(div; Q) := {T € H(div; Q) : /tr(T) = 0} ,
Q
and recall (see [12, 26]) that there holds the decomposition
H(div; Q) = Hy(div; Q) & RI. (2.7)

We now define

More precisely, for each 7 € H(div; () there exist unique 7¢ € Hy(div;2) and ¢ := ﬁ Jotr(T) € R,
where |Q| denotes the measure of €2, such that 7 = 79 + c¢I. In particular, the third equation of (2.6)
yields o = o + cl, with o € Hy(div;2) and the constant ¢ given explicitly in terms of u by

1 / 1 9
¢c = —— [ trlu®u) = ———||u : (2.8)

5



In this way, replacing o by the expression o + cI in (2.6), using that ¢ = o and div(o) =
div(op), taking into account the condition (2.2), and denoting from now on the remaining unknown
oo € Ho(div; Q) simply by o, we deduce that the weak formulation of (2.5) can be written as: Find
o € Hy(div; Q) and u in a suitable space, such that

/O'd:Td +u/u-div(7') +/(u®u)d:7' = p{rn,g)r V 1 € Hy(div; ),
Q Q Q

,u/Qv-div(a) - —M/Qf-v Vv eLQ).

On the other hand, we notice that the third term in the first equation of the foregoing system requires
u to lie in a smaller space than L2(€2). In fact, applying the Cauchy-Schwarz inequality, and employing
the compact (and hence continuous) injection

i. : H(Q) - L*(Q) (2.9)

(cf. the Rellich-Kondrachov theorem in [1, Theorem 6.3] or [31, Theorem 1.3.5]), we arrive at

/Q(W®Z)d:C| < |IwlosellzloaglClon < [l [wlielzlielSloo, (2.10)

for all w,z € HY(Q), and ¢ € L?(f), which suggests to look for the unknown u in H!(Q2) and to
restrict the set of corresponding test functions v to the same space. Consequently, and in order to
be able to analyze the present variational formulation of (2.5), we follow [18] and incorporate the
following redundant Galerkin terms:

m/div(a')-div(r) = —Iil/ f-div(r) V 7 € Ho(div; ),
Q Q
Iig/ {uVu—ad—(u@)u)d}:Vv =0 vV veHY(Q),
Q
ng/u-v = ng/g~v vV veHY(Q),
r r

where k1, ko and k3 are positive parameters to be specified later. In this way, we obtain the following
augmented mixed formulation: Find & := (o,u) € H := Hy(div; Q) x H'(Q) such that

A(G,7) + B(w;jé,7) = F(#) V#:=(r,v)eH, (2.11)

where A : H x H — R is the bilinear form

A7) = /QCd:Td —f—I{,l/QdiV(C)'diV(T) —I—HQM/QVWIVV-FI{,?,/FW'V

(2.12)
- u/v'div(C) + ,u/w~div(7‘) — ﬁg/(d:Vv
Q Q Q
for all ¢ := (¢, w), #:= (7,v) € H, F: H— R is the linear functional
F(7) = p(mn,g)r — /{1/ f-div(r) + ,u/ f-v+ /fg/g-v (2.13)
Q Q r
for all 7 := (7,v) € H, and given z € H!(Q), B(z;-,-) : H x H — R is the bilinear form
B(z;f, T) = /(w®z)d AT — KV} (2.14)
Q

6



for all ¢ := (¢, w), 7 := (7,v) € H. We notice here, according to (2.10) and (2.14), that there holds

[B(z:¢.7)| < il (14 #3)"/ |1z

ellflulFla VzeHYQ), v¢ FeH. (2.15)

all

Up to minor changes caused by the present non-homogeneous Dirichlet boundary condition for u,
the unique solvability of (2.11) was basically derived in [18]. In particular, it was proved there (cf.
[18, Lemma 3.1]) that for k1, k3 > 0 and 0 < ko < 2u, there exists ap > 0, depending on k1, Ko, K3,
u, and the constants ¢;(2) and ¢2(€2) (cf. Lemma 4.10 below), such that

A7, 7) > aalFln  V7eH, (2.16)
which, together with (2.15), yielded the H-ellipticity of the bilinear form A + B(z;-,-) for sufficiently
small z. More precisely, for each z € H'(Q) such that |z[,,o < MHQ?&%, there holds (cf. [18,

c K5
eq. (3.16)]) N
AR, 7) + B(z; 7,7) > 7’* 173 V7 eH. (2.17)

In addition, letting ~, : HY(Q) — L2(£2) be the usual trace operator, it was shown (cf. [18, eqs. (3.6)
and (3.9)]) that there exist Ca, Mg > 0, depending on k1, K2, K3, i, and |||, such that

(A7) < Callllul?la V¢ 7eH, (2.18)

and
F@)| < Me{lElon + lglor + lgljor} 17l V7 eH. (2.19)

In this way, reformulating (2.11) as a fixed-point operator equation, and assuming that f and g are
suitably bounded, the well-posedness of (2.11) was established thanks to the Lax-Milgram Lemma
and the Banach fixed-point Theorem. The corresponding result is stated as follows.

Theorem 2.1. Let k1, k3 > 0, 0 < ko < 2u, and given p € (0, W) (cf. (2.9) and

(2.16)), set W, := {z € H'(Q) : |z|1,0 < p}. In addition, assume that the data £ € L*() and
g € HY2(D) satisfy (cf. (2.19))

aaA
Me {00 + lgllor + gl jar f < e

Then, there ezists a unique & := (o, u) € H solution of (2.11), with u € W,, and there holds

131 < Cx {Iflog + lglor + gl /ar

2 Mg
[ 7

with the constant Ct =
Proof. We omit details and refer to [18, Theorem 3.4] (see also [17, Theorem 3.9] for a similar proof).
O

3 The virtual element subspaces

3.1 Preliminaries

Let {Tn}r>0 be a family of decompositions of €2 in polygonal elements. For each K € T, we denote
its barycenter, diameter, and number of edges by xx, hx, and dg, respectively, and define, as usual,
h:= max{hg : K € T }. Furthermore, in what follows we assume that there exists a constant Cr > 0
such that for each decomposition 7; and for each K € 7}, there hold:



a) the ratio between the shortest edge and the diameter hg of K is bigger than Cr, and

b) K is star-shaped with respect to a ball B of radius C'rhg and center xp € K, that is , for each
xg € B, all the line segments joining zg with any x € K are contained in K, or equivalently, for
each z € K, the closed convex hull of {z} U B is contained in K.

As consequence of the above hypotheses, one can show that each K € 7T}, is simply connected, and
that there exists an integer N7 (depending only on C7), such that dx < Ny VK € Tp,.

Now, given an integer £ > 0 and O C R?, we let P;(O) be the space of polynomials on O of degree
up to ¢, and according to the notations introduced at the end of Section 1, we set P,(O) := [P,(O)]?

and Py(O) := [P,(0)]**2. Also, in what follows we use the multi-index notation, that is, given
x = (z1,72)% € R? and o := (a1, a2)®, with non-negative integers a1, as, we let x& := x]1z5? and
|| := aq + ag. Furthermore, given K € T;, and an edge e € 9K with barycentric x. and diameter

he, we introduce the following sets of (¢ + 1) normalized monomials on e

Be(e) = {(x ;e$e>j}0§j§f’

and % (¢4 1)(¢ + 2) normalized monomials on K

Bi(K) = {(Xh;K>a}ogla|§f’

which constitute basis of Py(e) and Py(K), respectively. In addition, denoting By (K) = Bi(K), we
define for each integer £ > 2,

By(K) = By(K)\ Bi_s(K),

which is a basis of the subspace of polynomials on K of degree exactly ¢ — 1 or . In turn, the
corresponding vector and tensor versions of the foregoing sets of monomials are given by

Bile) = {(@0": qeBlefu{0a': qeBie)}.
Bu(K) = {(@0): aeB(m)fu{0a: qeBi(K)},

and
Bu(K) = {(@0": aeB(K)}u{0.a" aeB(K)}.

On the other hand, for each integer £ > 0, we let Gy(K) be a basis of (VP@H(K))J‘ NPy(K), which
is the L2(K)-orthogonal of VP, 1(K) in P,(K), and denote its vectorial counterparts as follow:

au() = {(§ ) sacam}of( o) acaum}.

H(T;) = {v cL2(Q): v|x e HY(K) VK¢ Th} ,

Finally, we let

and consider the H-broken seminorm

1/2
Vi = { > ||VV||(2),K} VveH\(T).

KeTy



3.2 The virtual element subspace of H'(Q2)
In this section we present a suitable choice for the virtual element subspace of H(2). To this end,

given K € Tj, and an integer k > 1, we first let R : H!(K) — Py(K) be the projection operator
defined for each v € H!(K) as the unique polynomial RE (v) € Py (K) satisfying (cf. [6])

/VRkK(v):Vq = /Vv:Vq YV qePL(K),
K K

RE(v) = / V.
oK oK

Notice, however, that a modified version of RE can be found in [2]. Also, it is readily seen from the
first equation of (3.1) that

(3.1)

R (Ve < vk  VveHY(K). (3.2)
In addition, we recall from [6, Lemma 5.1] that for integers s € [1,k + 1] and m € [1, s], there holds
v =RE®)lmx < Chig™|vlsx VveHNK), VKET,. (3.3)
Furthermore, we now consider the finite-dimensional subspace of C(0K) given by
B (0K) := {v €C(OK): v|eePile), VedgeeC OK},
define the following local virtual element space of order k (see, e.g. [2])

Vi = {v cH'(K): vlox € BLOK), Av|x € Pu(K),

. (3.4)
and / {R?(V)—v}p:() VpEBk(K)},
K
and recall from [2] the following degrees of freedom for a given v € VX
m},(v) := value of v at the ith vertex of K, Vi vertex of K
mY (v) := values of v at k — 1 uniformly spaced points on e, ¥ e € 9K , for k > 2, (3.5)

m(‘;K(v) = value of/v‘q, Vqe By oK), for k>2.
K

Then, the following result summarizes the unisolvency of (3.5) with respect to VkK .

Lemma 3.1. Let k > 1 be an integer. Then the amount of degrees of freedom defined by (3.5) is
given by n) - = dim VX = 2kdx + k(k—1). In addition, they are unisolvent with respect to V,I*.

Proof. We refer to [2, Propositions 1 and 2| for details. O
In what follows we show that for each v € VkK its projection Rf (v) can be computed explicitly by

using the degrees of freedom defined in (3.5). In fact, we begin by noticing that, given v € VkK and
q € Py (K), the right-hand side of the first equation of (3.1) can be integrated by parts to yield

/Vv:Vq = —/V~Aq+/ (Vg)n - v.
K K 0K



Since Aq € Pji_o(K), the first term on the right-hand side of the foregoing equation can be computed

by using the moments m(‘; x(v), whereas for the second one the degrees of freedom given by mX,U(V)

and mY (v) are employed. In turn, it is straightforward to see that the right-hand side of the second

equation of (3.1) can be calculated using also va(v) and mY (v).

1%
Furthermore, we now denote by {m;/K(v)}:if( the degrees of freedom defined by (3.5), and let
Hf - HY(K) — VkK be the associated local interpolation operator, that is, given v € H(K), HkK(v)
is the unique element in VkK such that

m}{K(V—HkK(V)) =0 VjG{l,Z,...,n,‘;K}.

The following lemma establishes the approximation properties of HkK .

Lemma 3.2. Let k,m and s be integers such 0 < m <1 and 2 < s < k+ 1. Then, there exists a
constant C > 0, independent of K, such that for each K € Ty, there holds

Vv —IE (V)| < CR™v[sxk ¥V veH(K).
Proof. See [2, Proposition 4]. O

We end this section by establishing the virtual element space on the whole 2. Indeed, for every
polygonal decomposition Ty, of 2, and for every integer k > 1, we consider the following virtual element
subspace of H!(Q)

vl = {veH @) vikeVE VKGE}. (3.6)

In addition, we remark here that, for a given v € th, the local degrees of freedom defined by m}fv(v)

and mY (v) in (3.5), together with the fact that v|. € Pr(e) ¥V e € T (cf. (3.4)), guarantee the
continuity of the trace of v across the edges e of T;. It follows that v € H(Q), which confirms
that th is in fact a H'(Q)-conforming subspace. According to this discussion and Lemma 3.2, the
approximation property of Vk,h is given by:

(AP}) : there exists C' > 0, independent of h, such that for each integer s € [2, k 4 1] there holds

1/2
dist(v, V1) < Chst { > |v|§’K} Vv € HY(Q) such that v|x € HY(K) VK e€T,.
KeTy,

3.3 The virtual element subspace of Hy(div; (2)

Throughout this section we consider an integer k > 1. Then, given K € 7Tj, we introduce the local
virtual element space H[ of order k as follows (see, e.g. [5, 6, 14])

HE = {7’ € H(div; K) NH(rot; K) :  7n|. € Pr(e) Vedgee € 0K,

div(r)|i € Pri(K), and rot(r)|x € Pi(K) ), 0
whose local degrees of freedom are given by (see [5])
mg{n(T) = /Tn-q V' qeBile), Vedgeee€cdK,
i) = [ TiVa YaEBak) \ (L0 0.0, (3.8)
o) = [ Tip Y peGuE).
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The unisolvency of (3.8) in Hf is summarized as follows.
Lemma 3.3. The amount of local degrees of freedom defined in (3.8) is given by
nilg = dimHF = 2{(k+1)(dx +k) — 1},
where dg is the number of edges of K € Tp. In addition, the local degrees of freedom (3.8) are

unisolvent in H,f

Proof. See [5, Theorem 1] for details. O

H
We now gather all the degrees of freedom (3.8) in the set {me(T)}jif , and then, we introduce

the interpolation operator ITX : HY(K) — HX, which is defined for each 7 € H!(K) as the unique
ITX (1) in H} such that

me(T—HkK(T)) =0 Vj6{1,2,...,nkH7K}.

Concerning the approximation properties of TI, we first recall from [7, eq. (3.19)] that for each
integer s € [1,k + 1] there exists C' > 0, independent of K, such that

|7 —TE (T)lox < Chic|7|sx VreH(K). (3.9)
In addition, similarly to [14, eq. (3.14)], it is easy to check that
div(II{ (1)) = P (div(T)) V7 eH (K),

where PE | : L}(K) — Pj_1(K) is the orthogonal projector (see Section 3.4 below). In this way,
applying (3.14) we deduce that for each integer s € [0, k| there exists C' > 0, independent of K, such
that

|div(T) — div(IIF (7)) o.x < Chi |div(T)|s.x V7 € H'(K) with div(r) € H*(K). (3.10)

The foregoing estimate together with (3.9) yields the following result.
Lemma 3.4. For each integer s € [1,k] there exists C > 0, independent of K, such that

|7 — TF (7) laiv.e < Chi {|T!5,K + |diV(’T)|s,K} V 1 € H°(K) with div(T) € H*(K).
Proof. Tt follows straightforwardly from (3.9) and (3.10). O

Finally, for every integer k£ > 1 we define the global virtual element subspaces of Hy(div; ) as
H = {T € Ho(div;Q) : Tlx e HX VK¢ Th} . (3.11)

Note here that given 7 € H}!, the local degrees of freedom defined by mf;{n(r) in (3.8), along with
the fact that 7n|. € Pi(e) V edge e € T, (cf. (3.7)), guarantee the continuity of the normal
components of 7 across the edges e of T,. It follows that = € H(div;2), which confirms that H ,?
is in fact contained in H(div;2). Also, using this and Lemma 3.4, it is easy to obtain the following
approximation property:

(AP¢) For each integer s € [1, k| there exists C' > 0, independent of h, such that

1/2
diSt(T,H]?) < Chs{ Z (|7-]§K + |div(T) §K)}
KeTy,

for all 7 € Hy(div;$?) such that 7|x € H*(K) and div(7)|x € H*(K), for all K € Tj,.
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3.4 L2-orthogonal projections

We now let P : L2(K) — Py(K) and Pf : L}(K) — P(K) be the vectorial and tensorial ver-
sions of the L?(K)-orthogonal projector, respectively, which, given v € L?(K) and 7 € L?(K), are
characterized by

PE(v) € Py(K) and /Kp,f(v)-q: /Kv-q Vaq € Py(K) (3.12)
and
Pi(T) € Pp(K) and /Pk 'p = / T:p VpeP(K), (3.13)

respectively. In addition, it is well-known (see, e.g. [13, Lemma 3.4]) that, given integers k, s, and m
such that & > 0, s € [1,k + 1], and m € [0, s], there hold the following approximation properties

IV —=PEV)lmrx < Chiy™|vlsxk VveHY(K), YKET,, (3.14)

and
7 = PE(T)lmx < ChiZ™ 7|k V7T €HNK), VKET,. (3.15)
In addition, we remark here that the degrees of freedom given by (3.5) do allow the explicit
calculation of the right-hand side of (3.12) (and hence of P (v)) for each v € V. Indeed, it is easy
to see first that the degrees of freedom given by mg (V) (cf. (3.5)) yields the computation of [;-v-q

when q € By_o(K), whereas for q € Bj(K) we recall from (3.4) that

/Kv-q = /KRi((V)-q,

and then use that R (v) is explicitly computable for each v € V}€

On the other hand, we now aim to derive additional approximation properties for the projection
73,5 . The goal is to extend the estimate (3.14) to the case of general Sobolev spaces. To this end, we
need to recall from [13, Section 3.3] some preliminary notations and technical results. Indeed, for each
element K € T, we first define K = T (K), where Tx : R? — R? is the bijective affine mapping
defined by

Tk(x) = X;;B Vx € R?.

Then, as it was remarked in [13, Section 3.3], it is easy to see that the diameter hj of K is 1, the
shortest edge of K is bigger than Cf (which_follows from assumptions a) and b) in Section 3.1),
and K is star- shaped with respect to a ball B of radius C7 and centered at the origin. Then, by
connecting each vertex of K to the center of B that is to the origin, we generate a partition of K
into dj triangles AZ, i €{1,2,...,dz}, where di < N7, and for which the minimum angle condition
is satlsﬁed The later means that there exists a constant ¢y > 0, depending only on C7 and N,
such that h; (pi) ' <er Vic {1 2,...,dz}, where h; is the diameter of A; and p, p; is the diameter
of the largest ball contained in A;. We also let A be the canonical triangle of R? with corresponding
parameters h and p. p, and for each i € {1,2,...,dz} we let F; : R? — R? be the bijective linear
mapping, say Fj(x) := B;x V x € R?, with B; € R?*? invertible, such that Fz(A) = A,;. We remark
that the fact that the origin is a vertex of each triangle 51 allows to choose F; as indicated.

In what follows, given K € Tj, and v € L?(K), we let v := v o Tj' € L2(K). Also, we recall from
the Introduction that given r > 0, p > 1, p # 2, and an arbitrary domain O C R?, || - ||,p.0 and
|- |r.p,0 stand for the norm and seminorm, respectively, of the Sobolev space W""P(0O) and its vectorial
and tensorial versions. Then, we have the following result.

12
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Lemma 3.5. Given an integer { > 0, there holds P (v) = PZF((N) for allv € L3(K). In addition, for
integers r, s > 0 and for p > 2, there holds Pz e L(W"P(K), W*P(K)), with HPZKHL:(WW(E) Wern(i)
independent of K.

Proof. We begin by recalling from [13, Lemma 3.2] that P/ (v) = Pf(i?) for all v € L2(K). Next,

denoting Ny := (£+1)(£+2), we let {1, $P9,...,PnN,} bea L2 (K )-orthonormal basis of Py(K), which

yields
Ny

PEE) = Y (V@05 P; VVEL(K).
j=1
Now, given p > 2, we let ¢ be the conjugate of p, that is ¢ : p . Thus, using the triangle and Holder
inequalities, we find that for any pair of non-negative integers r and s there holds

- Ne
K ~ ~ ~ ~
IPE N,z < S D N@jllo0 2185107 ¢ 1107
j=1
N,
< 1B, 2@l 5 b 90, 5 YV E WHR(E),
j=1

which proves that 73[( € L(W™P(K), W*?(K)) with

Ny

- ~ ~
IPE N oy i@y < D@5l 71851l 07 -
j=1

In this way, applying the same arguments from the last part of the proof of [13, Lemma 3.2], we
deduce that ||PX|| LW (R), W (R) is bounded independently of K. In fact, using the afore described

decomposition of K we can write

1
s d- /p

1/P K
_ _ _ p
HSOsz,p,l? - {Z |S0] tpK} B Z |on t.p,A;

t=0 i=1

In turn, applying the usual scaling properties, we deduce the existence of a constant Cy > 0, depending
only on ¢, such that

=~ T—t42/p|~
Ct hi / P’

Pl pa, < il p A

where @,;; = @,|x o F; € Py(A). Then, according to the equivalence of norms in P;(A), we find
that

< Cih P

%, ~ 7-t+2/p A1~
@5l p5, < Cihy jillopa < Ceh 20T g

j,i”oyﬁv

with a constant C > 0 depending on t, p, £, and A. Moreover, applying again the scaling properties,
we have that

”aj,iH()’ﬁ = ”onqu < CO ! H(’OJHOK =y h_

with a constant Cy > 0 depending only on A, and using that 1 < hi_ 1< C7_- , we get

|¢j’tpﬁi < 6(té\c()%i_ﬂ_z/p_l < étéCQ 67‘,
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where

~ 1 if —t+2/p—1>0
Cr =

CHFIPIP it t42/p—1<0
Finally, since d < N7, we conclude that ||g~0j||sp 7 is bounded by a constant depending only on s,

p, Ny, Cr, ﬁ, and ¢. The estimate for ||gBj||0q 7 broceeds similarly, and hence further details are
omitted, thus concluding the proof. O

The next result is taken from [10, Lemma 4.3.8].

Lemma 3.6. Let O be star-shaped with respect to a ball B with radius p > %pmax, where pmax =
max {p : O is star-shaped with respect to a ball of radius p}. In addition, given an integer s > 0,
p>1, and v € WP(O), we let Q°(v) be the Taylor polynomial of degree s of v averaged over B.
Then, there holds

V- Q(V)mpo < Cd™|v|spo Vme{01,...,s},

where d = diam(O) and C > 0 depends on s and the chunkiness parameter d/pmax.

The following lemma establishes the approximation properties of the projector P,g( : LA(K) —
Pj.(K) with respect to more general Sobolev norms.

Lemma 3.7. Let K € T, and k, s, m, and p be integers such that k > 0, 0 < m < s<k+1, and
p > 2. Then, there exists a constant C > 0, independent of K, such that

V= PEV) lmpre < Chic™ |V]spxc VveW(K). (3.16)

Proof. Given K € T, and v € W*P(K), we first observe, thanks to the scaling properties, that there
hold

~ -2 ~ — 2 ~
N, & < Cuhi P Vlnpr and  [Vmpx < Cohy" P[]

mp,K (3.17)

mp,K

where C,,, and 5m are positive constants depending only on m. In turn, letting (;)s (V) be the Taylor
polynomial of order s of v averaged over a ball of radius > %ﬁmax, we have that Q°(v) € Ps_1(K) C

P, (K), which certainly yields ~

PR QW) = Q(¥). (3.18)
Recall here that hj = diam([? ) = 1 and that K is star-shaped with respect to a ball B of radius Cr
and centered at the origin. It follows, using (3.17), that

V= PEW)mprc < Conh" PR —PEN,, & = Cnhid" P8~ PEF)

= m,p, K m,p, K’

and along with (3.18), we obtain from Lemmas 3.5 (with r = s = m) and 3.6 (with O = K), that

v = PEOmpr < Con " 2P| =PEYE = Q)i

IN

Con Il =PI ity w18 = Q@) p 2

—m+2/p 1 s—m |~
< O i

S7p71?
< CR PR )k = CRE™ Y apie

which completes the proof of the lemma. O

14



As a consequence of the previous lemma, we have the following result.

Lemma 3.8. Let K € T, and k, s, and p be integers such that k > 0, 0 < s < k+ 1, and p > 2.
Then, there exists a constant My > 1, independent of K, such that

P (Wlspx < Milvlspe Vv e W P(K).

Proof. It follows by adding and subtracting v and then employing the triangle inequality and Lemma
3.7 with m = s. O

We end this section by remarking that for the case s = 0 and p = 4, Lemma 3.8 yields

IPE (v) < My |vloarx VveLdK), VKeT,. (3.19)

4 The discrete forms

We begin by introducing the global virtual element subspaces of H := Hy(div; Q) x H*(Q2). More
precisely, given k > 1, we set
H} = H'x VP,

where HI' and V}* have been defined in (3.11) and (3.6), respectively. Hence, the main goal of this
section is to propose computable discrete versions Ay, : HZ X HZ — R and By(z; -, -): HZ X HZ —
R, for each z € V}*, of the bilinear forms A (cf. (2.12)) and B(z;-,-) (cf. (2.14)), respectively.
Additionally, a computable discrete version of the functional F (cf. (2.13)) is also presented here.

4.1 The discrete bilinear form A,

According to the definition of the spaces V)" (cf. (3.6)) and H}' (cf. (3.11)), we observe from (2.12)
that, given ¢ = ¢, w), ¥ := (r,v) € H, A(g, 7) is not explicitly computable because of the
following three terms:

AR, T /Cd ABY (w, v) = F\ZQM/KVW:VV, and ng/KCd:Vv, (4.1)

in which the tensors ¢¢, 74, Vw and Vv are not known on each K € 7Tj,. This is the reason why in
what follows we define discrete computable versions of the forms in (4.1), all them in terms of some
suitable projection operators.

We begin by defining the discrete local bilinear form A}If’d : H 15 x H 15 — R as follows
A (¢m) = ANYPEQ, PE(T) + SMUC-PEQ), T -PE(T)  V¢TEHS, (42

H H
where SK4 . H ,f( x H ,g( — R is the bilinear form associated to the identity matrix in Rk "k with
respect to a basis of H ,f . Equivalently, we set

"k K
st T) Z me(Ombe(r) V¢ e HE,
where me, 1€ {1, e ,nﬁK}, are the degrees of freedom defined in (3.8).
The following estimates concerning S¥9 will be very useful in what follows.
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Lemma 4.1. There exist constants ¢y, ¢1 > 0, depending only on C1, such that

Qlclte < SO < aldlin  YCEHT, YEKET,. (43)
Proof. See [7, egs. (3.36) and (6.2)] (see also [11, eq. (5.8)] and [13, Lemma 4.5]). O

As a consequence of Lemma 4.1 and the properties of ’PkK , we have the following result.

Lemma 4.2. For each K € Ty, there holds
Afdp,T) = AB9(p,7)  VpePuK), VTeHE. (4.4)
In addition, there exist constants oy, ao > 0, independent of h and K, such that
A9 ¢ < azliCloxlrlor V¢ T e HE, (4.5)

and
alll¢YB x < AFYCC) < an|CIRkx V¢ e HE. (4.6)

Proof. Let p € Px(K) and 7 € H[S. Then, bearing in mind the definitions of Aff’d (cf. (4.2)), AKA

(cf. (4.1)), and PE (cf. (3.13)), and using that certainly PX(p) = p and p? € Py(K), we deduce
that

ARA(p oy = /K pd - (PE(r)? = /K PE(r):pd = /K ripd = AK9(p 7).

which establishes (4.4). In turn, applying the Cauchy-Schwarz inequality and the upper bound in
(4.3), we find that for each ¢, 7 € HE there holds

14754¢ )] < IPEONoxIPEE) s

v % PEO.c- PR} {559 - PE L - PEE))

< llo,gliTlox + 2l = Pr(Olloxllm — Pr (7)llo,x
< (I1+c)ClloxllTlox

which is (4.5) with ag := 14¢;. Next, employing triangle inequality, the definition of A%d (cf. (4.1)),
and the lower bound in (4.3), we deduce that

€5 & < 2Pk + 211(¢ = Pr(O)IIE &

< 2PE Rk + = el - PEQIR A}
0

< 2 AKA(PE (). PE(C)) + ;s“(c —PEC).¢-PE©),

—1
which yields the lower bound in (4.6) with a; := (2 max {1, (Eo)_l}) . Finally, we remark that the
upper bound in (4.6) follows straightforwardly from (4.5). O

On the other hand, we define the discrete local bilinear form A,[f’v : VkK X VkK — R as

ATV (w,v) = ARV(RE(w), RE(V)) + S5V (w - RE(w),v - RE(v)) Yw,veVE, (47
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where RE is defined in (3.1), and SV : VX x V;E — R is the bilinear form associated to the identity

. . V V . . .
matrix in R™5 ™K with respect to a basis of V;X, that is,

ny i
SK’V(W,V) = mXK(w) mZK(V) Vw,ve VkK,
=1
where, as indicated in Section 3.2, mY ., i € {1, e ,nZK}, are the degrees of freedom defined by (3.5).

Similarly to Lemma 4.1, the following result establishes the estimates for S%V.
Lemma 4.3. There exist constants ¢y, c1 > 0, depending only on Cr, such that

alwig < ®V(w,w) < alwlly VweVl, VKeT,. (4.8)

Proof. It follows from [4, eq. (4.20) and Section 4.6]. O

Now, as a consequence of the previous lemma and the properties of the projector R¥X (cf. (3.1)),
we deduce the following result.

Lemma 4.4. For each K € Ty, there holds

AFV(qv) = ARY(q,v) YaqePy(K), YveVL, (4.9)
and there exist positive constants 31, B2, independent of h and K, such that
4,7 (w, V)| < Balwliklvli (4.10)
and
Bilwlig < APY(w,w) < Balwlig (4.11)

for all w,v € VkK.

Proof. Given q € Py(K), it is clear from (3.1) that Rf(q) = q. In addition, given v € Vk,K, it follows
from the definitions of Aﬁ(’v (cf. (4.7)), ABY (cf. (4.1)), and RE (cf. (3.1)), that

AFY(q,v) = w/ Vq: VRE(v) = qu/ VR (v):Vq = @u/ Vv:Vq=A%V(q,v),
K K K

which proves (4.9). Now, for the estimate (4.10) we apply the Cauchy-Schwarz inequality, the upper
bound in (4.8), and (3.2), to establish that for each w,v € V¥ there holds

AR (w,v)| < kopt [RE (W)]1 x| RE (v)

1,K
+ (ST (w = RE (W), w = REW)} {SF Y (v = RE(v),v = RE (W)}

1,k T 21 ‘W — R?(W)‘I,K’V - Rf(v)’LK

< kop Wl K|V

< B2 |wlik|V|iK,

with B := kop + 4 ¢1. Next, using the lower bound in (4.8), we easily obtain

IN

Wi« 2|RE (W)lik + 2|w — R (W) ¢

IN

2 (.
2REW)Exe + = {a0lw —RE W)k}

< 2AKTRE () RE () + = S5 (w = RE (w), w = RE (w))
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which establishes (4.11) with 8; := (2max{1, (50)71})—1. Finally, the upper bound of (4.11) follows
straightforwardly from (4.10). O

AK,d AK,V

The following two lemmas compare and with their computable versions AhK’d and A}If’v,

respectively.

Lemma 4.5. Let ag be the constant from (4.5) (c¢f. proof of Lemma 4.2). Then, for each K € Tp,
there holds

A ) — ALY )] < aa K- PEOloxlTlox V¢ TeHE. (4.12)

Proof. Let {, 7 € HEX. Then, from the definitions of A% (cf. (4.1)), AhK’d (cf. (4.2)), and PE (cf.
(3.13)), along with Lemma 4.1, it follows that

\AKWQT)—AdenﬁSkéﬁdvr—zgpfxﬁdrpfﬁ)

1/2 1/2
+ SR -PEQ.C-PEQ)} T {85 - PE(n). T - PE(T)}
< ]Axc—PEK»dn-+ewc—P§@ﬂwwr—P§vww(
< 1¢=PEOloxlTlox + Ellc = PEC o 1o
= al¢—PrOlox lITlox
which yields (4.12), thus completing the proof. O

Lemma 4.6. Let 53 > 0 be the constant from (4.10) (cf. proof of Lemma 4.4). Then, for each K € T
there holds

|AKY (w,v) — Aff’v(w,v)] < Bolw — RUW)|1k|V]1K Vw,v e V. (4.13)

Proof. Let v,w € V*. Then, according to the definitions of A%V (cf. (4.1)), AhK’v (cf. (4.7)), and
RE (cf. (3.1)), and using (4.8), we find that

Vw: Vv — / VRE(w) : VRE(v)
K K

+ {899 - R ) w = REG) | {895 (v - RE@)v - RE)}

ﬂzu‘/KV(w—RkK(w)) : Vv

gt [w — RE (W)L |v

|ABY (w,v) — AV (w,v)| < @u’

IN

+ a1 |w— Ry (W)|Lklv — RE (V)1

IN

LK+ 26 [w = RE (W)l k|Vhk
< Balw =Ry (W)L klVlik,

which shows (4.13), thus finishing the proof. O

Having provided the above analysis, we now introduce the complete local discrete bilinear form
AhK : HkK X Hk,K — R in terms of AhK’d, A}If’v, and ’Pé(, as

AKE) = AR e + o [ div(Q) divir) + ATV ke [ we
K OKNI' (414)
- u/Kv-div(g) + u/Kw'div(T) - ng/K(Pé‘(CDd:Pf(VV)
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for all E =(,v), T:=(T,w) € Hf = Hlf X VkK. It is important to remark here that the integrals

/ v - div(¢) and / w - div(7) are both computable. Indeed, using the fact that div(¢), div(7) €
K K

Pj_1(K), it readily follows that

[ vedivie) = [ Pl divie)
and /K w - div(r) — /K PE (w) - div(T).

Similarly, integrating by parts we observe that

/szp:/v~div(p)+/ pn-v
K K oK

:_/p,gfl(v)-div(p)Jr/ pn-v  VpePy(K),
K oK

which yields the explicit computation of ’Pf (Vv) Vve VkK .

Hence, we define the global discrete bilinear form Ay, : HZ X HZ’ — R as
AW(C.7) = > AT V(FeH]. (4.15)
In turn, in what follows we denote by R, 77,?, and ’PZ, the global counterparts of the projections ’Rf
(cf. (3.1)), PK (cf. (3.12)), and PE (cf. (3.13)), respectively. In other words, for each K € Tj, we let
Ri(z)k = Rif(zlk), Pr(v)lx = P{(vlk), and Pk = Pi(rlk),
for all z € HY(Q), v € L2(Q), and T € L(9).

The following two lemmas, which refer to the relationship between A and A, can be seen as the
global analogues of (4.4) - (4.9) (cf. Lemmas 4.2 and 4.4) and Lemmas 4.5 - 4.6.

Lemma 4.7. There holds
for all p € Pr(Q) x Pr(Q) and ¥ € HE.

Proof. Let p := (p,q) € Px(Q) x Px(Q) and ¥ := (7,v) € HX. Then, noting that P£ (p) = p and
pd € P,(Q), and employing the characterization of PF (cf. (3.13)), we observe that

/K(PkK(P))d5’P£<(VV) = /Kpdi'Pf(VV) = /Kpd:Vv.

which, together with (4.4), (4.9), and the definitions of Ay, (cf. (4.15)) and AX (cf. (4.14)), yield the
required identity. O

Lemma 4.8. There exists a constant La > 0, depending only on as, B2 and ko, such that

ACT) — AW A < La{lC = PhQloo + [w = RE(w)

L I (4.16)

for all ¢ == ¢, w),7 = (1,v) € HE.
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Proof. It follows from the definitions of A (cf. (2.12)) and Ay (cf. (4.15)) that

A7) - AWCT) = > {A“@,T) = Apd(¢ ) + AV (w,v) = A0V (w,v)
KeTy

e [ vyt [ (PEO S PET).
Next, thanks to the fact that (PX(¢))d € Pp(K), along with (3.13), we have
[ PE@ s PESY) = [ PE@) Vv,
K K
which implies that
AGT - M@ < T {\A“(c, 7) = A4,

+ ‘AK’V(W,V) - AhK’V(W,V)’ + Ko

/ (¢-PE)L: v
K

3

Now, employing the Cauchy-Schwarz inequality, (4.12), and (4.13), we find that

0.5 |17 lo,x

AGT - MER < T {a2 ¢~ PE()

=0
+ Bo|lw = RE (W)L |VILe + r2 (€= Pr(Qlloxlv

)
1/2

< max{os tro ) | 3 {Hc—P?(onaK n |w—R£<<w>\%,K} 1.

KeT,

which is (4.16) with La := max{ag + ko, 52}. d

Next, we prove the boundedness and ellipticity properties of Aj,. We begin with the first of them.

Lemma 4.9. There exists a constant Ca > 0, independent of h, such that
AL P < CalldllulFla V¢ 7eH]

Proof. The result follows straightforwardly from the definition of Ay, (cf. (4.15)), the estimates (4.5)
and (4.10) (cf. Lemmas 4.2 and 4.4), the Cauchy-Schwarz and trace inequalities, and the boundedness
of ’PZ. We omit further details and just mention that C'a depends on p, ag, B2, K1, k3, and ||vy|. O

In turn, for the second property we require the estimates provided by the following lemma.

Lemma 4.10. There exist constants ¢1(€2), c2(2) > 0, independent of h, such that

a@|rlie < I8 + Idiv(n)l§e ¥ 7 € Ho(div; Q)

and
c2(2) [Iv

fo < Vg + IvIEr  VveH(Q).

Proof. See [12, Proposition 3.1, Chapter IV] and [25, Lemma 3.3], respectively. O
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In this way, the HZ-ellipticity of Ay, is proved as follows.

Lemma 4.11. Assume that k1,k3 > 0 and 0 < kg < 2min{ay, 51}, where ay and [y are the positive
constants from (4.6) and (4.11), respectively. Then, there exists a constant () > 0, independent of
h, such that

AL(7,7) > Q) |7k V7 eH!. (4.17)

Proof. Let 7, := (7,v) € HI'. Then, bearing in mind the definition of the bilinear form Ay (cf.
(4.14) and (4.15)), and employing the estimates (4.6) and (4.11), the Cauchy-Schwarz inequality, the
fact that (P(7))d = Pi(rd) V7 € L?(Q), and the boundedness of P!, we find that

AR(7,7) > TG o + w1 ldiv(T) 5o + BilvIE o + s V]G — m2l (PR(T)) o | PR(VY) o

IPL(VV) o0

= al| 30 + mlldiv(n)3a + B Ve + msllVIGr — m2lPL(Tlloo

V

alr3 0 + mlldiv(r)§a + B Vg + msllVISr — m2llToalviie,

which, using the Young inequality, yields

. K2 d . K2
AnF ) = (a1 = F) IrRa + s ldivin) o + (8= 5) Vg + ms IvIEr-

Then, assuming the stipulated hypotheses on k1, k2 and k3, applying the estimates provided by Lemma
4.10, and defining the constant a(2) := min {al — 2,5, 81— 2, Hg}, it follows that

MW7 7) = (@) { IR0 + Idiv(r)[Za + Idivr)2a + V2o + ”V”%,F}

2
1,0

which yields (4.17) with «(Q2) := a&(Q) min{1, ¢1(2), c2(Q)}, thus completing the proof. O

> a(Qa@lITlfa + [Idiv(r)

b + Qv

—N— Q

4.2 The discrete trilinear form By,

Similarly as in the previous section, we now introduce a computable discrete version of the form B
defined in (2.14). More precisely, for each z € th we let By(z; -, ) : H’,z X Hz — R be the bilinear
form defined by

B (z: ¢, 7) = /Q (Pl(w) @ P(z))® : {PR(T) — ko PR(VV)} (4.18)

for all  := (¢, w), 7 :== (1, v) € H}.
The following result establishes the comparison between B and By,.
Lemma 4.12. Let i, and My > 1 be specified in (2.9) and (3.19), respectively. Then, there holds

B(z;¢,7) — Bp(z: ¢, 7)| < (1+Hg)1/2{|W®Z_PZ(W®Z)||O,Q
(4.19)

+ 1l M (1wlhale — P @losa + lzlha -~ Phlosa) {17l
for all ¢ == ¢, w),7 = (1,v) € H} and z € V1.
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Proof. Let ¢ := ({,w), 7 := (7,v) € H} and z € V. Then, from the definitions of B (cf. (2.14))
and By, (cf. (4.18)), and after adding and subtracting suitable terms, we obtain

B(z: ¢, 7) — Bu(z: C,7) = /Q (wez)d: {r— mVv} — /Q (Pl(w) @ Pl(2)d : Ph(r — ra¥)

I
S~

(w®z)d: {1 - kyVv} — /(w ®z): Pl — ko V)
Q

+ / (W®z—73,?(w)®77£(z))d:’PZ(T—@VV)

¥

+ / (woz—Pl(w) @ Pz)": Ph(r — 52Vv),
Q

o)

{(w ®z)d — ’PZ((W ® z)d)} {1 — RaVV}

)

which, along with the Cauchy-Schwarz inequality and the fact that Pj(7d) = (P} (T))d V1 elL?(9),
leads to

B(z:{,#) = Bu(z:¢.7)| < |wez—Phwez)oalr - rVvog
+ W@z Pl (w) @ Pi(2)lloa |PLT — 52VV) oo (4.20)

< 1+ ) {lwez-Piwe e + |wez- Piw) @ Plz)

0o} 7.

In turn, adding and subtracting PJ(z), employing the Cauchy-Schwarz inequality, and applying (2.9)
and the estimate (3.19), we find that

lw@z—Pr(w) @ Pi(z)oe = |we(z—Pi(z) + (w—Pi(w) @ P(2)og

< wloaallz—Pr@)loae + W —Prw)lloae |Pr ()00
< |wloaellz — Pr(@)lloae + Mellzloas |w — Pr(w)loa
. h h
< liell My, {HWHLQ |z — Py (2)oan + l|lzllo llw— Py (W)||0,4,9} :

Finally, replacing the foregoing estimate into (4.20) we arrive to (4.19) and complete the proof. [

On the other hand, the boundedness of the bilinear form By, is established in the following result.
Lemma 4.13. There holds

Bi(z: ¢, P) < liel® M (1 +#3)"2 ||z]l1.0 IC]le | 7]l (4.21)
for allz € V}* and ¢, 7 € HY.
Proof. Let z € V}, ¢ = (¢,w), 7 := (7,v) € H}. Then, applying the Cauchy-Schwarz inequality in

(4.18), and then employing the boundedness of ’PZ , the Cauchy-Schwarz inequality, the boundedness
of i. (cf. (2.9)), and the estimate (3.19), we readily obtain

Bu(2: ¢, 7)| < [|IP(w) ® PR(@)oo | Ph(T - £2VV) oo

IN

(L+ 1) 2P (w) © PR (2)]lo.0 |1 7]

IN

(L+ 1) PE W) lloae PR (2)oae |7a (4.22)

IN

Mi (1 + 53)? |zlloa0 wloas |17l

IN

licl® M (1 + &)Y |zl|0 Wl oll#l
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which, noticing that ||[w|; o < |¢|le, vields (4.21) and completes the proof. O

4.3 The discrete linear form F},

In this section we introduce a computable discrete version Fy, : HZ — R of the functional F (cf.
(2.13)). More precisely, we define

Fn(7) = p{mn,g)r — /il/Qf-diV(T) + M/ngl(f) v+ HS/Fg'V’ (4.23)

which can be calculated using the fact that div(7)|x € Py_1(K) and 7nl. € Pg(e), for each e € 0K
and for all K € Tj. Similarly, the degrees of freedom of v allow us to compute the boundary integrals
Jr & v and the term

[Pty = [ PP,
In addition, we have the following lemma comparing F and Fy,.
Lemma 4.14. There exists a constant Cg > 0, independent of h, such that
[F(7) = Fu(F)| < Crh|f —Pii()loglvhe (4.24)
for all # := (T,v) € H.

Proof. It suffices to observe from the definitions of F (cf. (2.13)), Fy, (cf. (4.23)), and P | (cf.
(3.12)), that

F(7) — Fo(#)] = 4 \A{f@£_1<f>}-v - \/Q{fpﬁ_1<f>}-{v73£_1<v>}

< ullf =P ®)log v = Pioi(W)log.

from which we arrive to (4.24) after applying (3.14) with m =0 and s = 1. O

5 The virtual element scheme

We now use the discrete forms analyzed in the previous section to introduce our mixed virtual element
scheme associated with (2.11), which reads: Find &), := (o, up,) € HY such that

A (Gh, Th) + Bu(wp 64, ) = Fi(#n) V7, e HY, (5.1)

where Ay, By, and Fy, are the forms defined by (4.15), (4.18), and (4.23), respectively.

5.1 The solvability analysis

In this section we follow the approach from [17, Section 3.2] and employ a fixed-point strategy to
analyze the solvability and stability of the Galerkin scheme (5.1). To this end, we first define the
discrete operator T}, : Vk.h — th as

Th(Zh) = Wy Yz, € th,

23



where wy, is the second component of the unique solution (to be confirmed below) of the discrete
problem: Find ¢, := ({;,, wy) € H} such that

An(Cr, Th) + Bu(zn; € Tn) = Fu(Fr) V7, e HE. (5.2)

In this way, we realize that the augmented mixed-VEM formulation (5.1) can be rewritten as the
fixed-point problem: Find uy € th such that

Th(up) = up. (5.3)

Now, before studying the solvability of (5.3), we need to prove that T}, is well-defined, which is
equivalent to the well-posedness of (5.2). Indeed, the following lemma shows that T} makes sense
only in a closed ball of th.

Lemma 5.1. Suppose that the parameters k1,ke and k3, satisfy the conditions required by Lemma
4.11. Then, there exists pg > 0, independent of h, such that for each p € (0, po), problem (5.2) has
a unique solution &, = (Cp,wp) € H! for each zj, € V' such that ||zp|1.0 < p. In addition, there
exists a constant cp > 0, independent of zy,, £, g, and h, such that

ITh(zn)lhe = Iwalle < Gl < CT{Hfllo,ﬂ + lgllor + IIglh/z,r}- (5.4)

Proof. Let z; € th. Then, thanks to the boundedness properties of Aj and By (cf. Lemmas 4.9
and 4.13), and defining Cap(zp) := Ca + |licl|? M7 (1 + £2)Y/2||zp| /1.0, we find that

|AL(Chy Tr) + Bu(2ni € 7a)l < Caslzn) ICalla [Falla ¥ Cpo7a € HY,

which shows that Ay, + Bp(zp;-,-) is bounded. Next, according to the hypotheses on k1, k2, and k3,
we know from Lemma 4.11 that A, becomes elliptic with constant a(€2), and hence, employing (4.21),
we deduce that

Ap(Th, Tn) + Bn(2zn; Th, Tn) 2 {04(9) — lliell® Mg (1 + 53)"72 ||z, 1,9} 17l > 04(29)||7'h||%1 (5.5)
for all 7, € H’,;f , provided
il 222 (14 692 fanll o < 252
Therefore, given z; € th, the ellipticity of the bilinear form Aj; + Bj(zp;-, ) is ensured with the
constant O‘TQ), independent of zj, by requiring
Jlie < po = o) (5.6

2 Jlicl|? M (1+ s3)1/2

In turn, it is easy to see that, with the same constant Mg > 0 from (2.19), which is independent of
zy, h, and the data f and g, there holds

()l < Me{|t

00 + lglor + Iglar f IFal ¥ 74 € HE,

which shows that F}, is bounded with

IFull < Me {|ifloo + liglor + liglh/zr} - (5.7)

Hence, a straightforward application of the Lax-Milgram lemma implies the existence of a unique
solution ¢}, = (¢, ws) € H} of (5.2). Moreover, the corresponding continuous dependence result

establishes that 5

IChllm < —5 Il

()

from which, utilizing (5.7), we conclude (5.4) with ey := %, which is clearly independent of z;,. [
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Having proved that Ty, : HZ — HZ is well defined, we now employ the Banach theorem to establish
the existence of a unique fixed-point of this operator. We begin with the following result, from which
a Lipschitz-continuity property of T} will be derived later on (see the proof of Theorem 5.1 below).

Lemma 5.2. Given p € (0, po), with po defined by (5.6), we let

who= {zh eVl lznllg < p}. (5.8)

Then, there holds

1
ITh(z1,n) — Th(z2p)llo < o ITh(zip)ll0llzin — zopllie ¥ 2z, 220 € W) (5.9)

Proof. Given p € (0,p0) and z1 5, 22 € W;‘, we let
u, = Th(z1n) and  ugp = Th(zas)
be the second components of the corresponding solutions &1 5, and &'y, of the problems
An(G1n, Th) + Bu(zip; 61, Tn) = Fr(Fn) (5.10)
and
Ay (Gon, Th) + Bi(zon; 024, Th) = Fr(Th), (5.11)

for all 7, € HZ, respectively. Then, applying the ellipticity of Aj + Bp(z24,-, ) (cf. (5.5)) with
Tp = &1 — 02, and employing (5.10) and (5.11), we find that
a(2)

THa'Lh — Gonllt < An(Grp — Gon, G1n — Gaon) + Bu(zon; G1h — Fap, G1n — GFap)

=— Bp(zi,n — 224 Gip, O1p — O2p)
which, together with the estimate obtained at the end of (4.22), yield

Q
MH&M — o

5 B < el ME(L+ 63) 2 |zon — zonlie luinlie |G, — Goplla.  (5.12)

Finally, recalling the definition of py (cf. (5.6)), we see that (5.12) can be rewritten as

. . 1
[G1n — Gapllm < o i nllie lz1,n — z2nllie,

which gives (5.9) and finishes the proof. O

The main result of this section is stated as follows.

Theorem 5.1. Suppose that the parameters k1, ke and k3, satisfy the conditions required by Lemma
4.11. In addition, given p € (0, po), with py defined by (5.6), we let W;‘ as in (5.8), and assume that
the data satisfy

er {Ifloe + lelor + el or} < o, (5.13)

with ¢t given by Lemma 5.1. Then, the mized virtual element scheme (5.1) has a unique solution

o= (op,up) € HZ with vy, € W/f”, and there holds

Gl < ex {Ifloe + lelor + lighar }- (5.14)
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Proof. We first notice, thanks to (5.4), that the assumption (5.13) guarantees that Th(W;L) C Wlf”.
Next, using (5.9) along with (5.4) and (5.13), we obtain

| Th(z1h) — Th(zop)lio < p% 210 — Zonllie V¥ Zin, Zon € W),

which proves that T}, : th — W;L is a contraction, that is a Lipschitz-continuous mapping with
corresponding constant in (0,1). Hence, a simple application of the Banach theorem implies the
existence of a unique fixed-point uy € W;L of (5.3). In this way, the equivalence between (5.3) and the
Galerkin scheme (5.1) shows that (5.1) has a unique solution &), € HJ!, whose stability (5.14) follows
directly from (5.4). O

5.2 The a priori error analysis

We now aim to derive the a priori estimates for the error |6 — &/, where & := (o,u) € H :=
Ho(div; ) x HY(2) and &, := (o, up) € HY := H x V] are the unique solutions of the continuous
and discrete schemes (2.11) and (5.1), respectively. In this regard, and as suggested by Theorems 2.1
and 5.1, we first define

~ A

‘= min , ,
Po {2 il (1 + £2)172 ”}

with i., aa, and pg, given by (2.9), (2.16), and (5.6), respectively, and observe that the existence of
o and &', is guaranteed within the respective balls centered at the origin and with radius p € (0, po),
and under the assumptions that k1, k3 > 0, and 0 < ke < 2min{u, aq,51}. In particular, we know
from Theorem 2.1 that there holds

|60 < Cr {If

00 + leglor + lglyar} < p. (5.15)

Furthermore, we now recall from [20, Theorem 4.1.1] (see also [32, Theorem 11.1]) the first Strang
lemma for linear problems, which will be utilized to obtain the main result of this section.

Lemma 5.3. Let H be a Hilbert space, ' € H', and A : H x H — R a bounded and H -elliptic
bilinear form. In addition, let {Hp}p>o be a sequence of finite-dimensional subspaces of H, and for
each h > 0 consider a functional Fy, € H; and a bounded bilinear form Ay, : Hy, x Hp, — R. Assume
that the family {A} U{Ap}n>0 is uniformly bounded and uniformly elliptic with constants Ly and Ly,
respectively. In turn, let w € H and uy, € Hy, such that

A(u,v) = F(v) YveH

and
Ap(up,vp) = Fp(vp) YV op € Hp.

Then, for all h > 0 there holds

|F'(wn) — Fp(wp)|

lu—upllag < CST{ sup

wi €M), w1
wp 70
: Aoy, wy) — Ap (v, w
b inf (el 4 sup 1A = An(onwn)l) L
onE wp€Hp, lwnll 1
wp 70

with CyT := Lgl max{1l, Ly + Lp}.

26



We begin the analysis with a preliminary estimate for ||6" — &1 ||a1.

Lemma 5.4. There exists a positive constant Cy, independent of h, such that
|6 —dnlln < Cp { lo = Pi(a)lloo + [u—RE(W)n + h|If =Py (D)oo

. Blw:Cr #) — Br(un: & 7 (5.16)
it (=G + sup BOECHTh) = Bu(unin i)l
Cher 7 eHY HThHH

7 #0

Proof. Tt reduces to apply Lemma 5.3 to the context given by (2.11) and (5.1). In fact, we first set

d (5
AC,7) = AL, 7) + B(w; ¢, 7), F(7) = F(7),
An(Ch, ) = AR(Ch, 7)) + Ba(wp; Cp, 7h) s and  Fp(7h) = Fp(Th),

for all ¢, 7 € H := H and Eh,‘f'h € Hj, := H. Then, employing the bounds provided by (2.15), (2.18),
Lemmas 4.9 and 4.13, and (5.15), and recalling that My > 1 (cf. (3.19)), we deduce that the family
{A} U{Ap}r>0 is uniformly bounded with a constant, independent of h, given by

Ly = max{Ca,Ca} + licl? ME (1+ 13)"/% 5o

In turn, using now (2.17) and (5.5), we obtain that {A} U {Ap}r>0 is uniformly elliptic with the
constant

1
Lg = imin{aA,a(Q)}.

Hence, a straightforward application of Lemma 5.3 yields

L. F(75) — Fa(7n . L
16— Galler < Csrq sup ECWFnEWl e (157 1
7, eH! |7nllm ¢, eH)
71,20
+ sup IA(C,, 7n) — An(Ch, 7n) + B(w; &, 71) — Bu(up; Cp, 7)) (5.17)
#neH] |7rlla ’
?hio

where Csr = Lg' max {1,Lg + Lp}. Next, thanks to (4.24) (cf. Lemma 4.14), we find that
F(7) — Fp(7
sup ‘ (Th)_’ h(Th)| < CF th_P]?_l(f)
7,eH) 175
74,40

(5.18)

whereas, setting ¢, := (¢, Wh), (4.16) (cf. Lemma 4.8) gives
ACh 70) — AnC )l < La {11Ch = PR log + W — RE(wa) 1 flI 7l

Thus, adding and subtracting o-—’PZ (o) and u—R’Ig(u), respectively, in the first and second expressions
on the right-hand side of the foregoing equation, and using the boundedness of ’PZ and RZ (cf. (3.2)),
we deduce that

|A(Ch. Th) — An(Chy 7))l

La{2lo = Cilloa + o~ Pl(o)

IN

L@} [Pl (5.19)

IN

La {316 = Culla + llo = Pi@)og + lu = REWin} |1 7alm.

Finally, replacing (5.18) and (5.19) back into (5.17), we arrive at (5.16) with Cp depending on Csr,
CF, and La, thus completing the proof. O
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We now aim to bound the supremum in (5.16). For this purpose, we first observe that, while the
estimates (4.19) (cf. Lemma 4.12) and (4.21) (cf. Lemma 4.13) were proved for z € V), it is easily
seen that they are also valid for z € H!(Q2). Then, we have the following result.

Lemma 5.5. There exists 6p > 0, independent of h, but depending on ko, ||i.||, and My, such that
B G 7) ~ B G 70l < Gy { (1610 + 104 l) 16 - ol
+ 116l (16 = Gnll + = PEloae) (5.20)
+ e Phwsulon | 17,
for all Eh = (¢, Wh), Th = (Th,Vp) € HZ

Proof. Let Eh = (CpyWh), Th := (Th,Va) € HZ Then, adding and subtracting By (u; Eh,i‘h), we
find that

B(w; Cp, 7h) — Br(up; €, 7r)| < [BwiCpy 7n) — Br(ws Cp, 70)| + [Br(u—upi €, 70)| . (5.21)
For the second term on the right-hand side of (5.21) we apply (4.21) (cf. Lemma 4.13) and obtain

[Br(u =y € 7a)| < Jlell? ME (1 +#3)"2 [ —wpllr 0 1€ulls |75

which, adding and subtracting &, yield

Ba(u—wii G Pl < [l ME (L4132 {16 = Cill + 160} 10— walluo |1 Fallm
B (5.22)
< el ME (14 63)1/2 {(Hulh,n + lnllie) 16 = Gl + 17 m uu—uhnm} EARS

In addition, thanks to (4.19) (cf. Lemma 4.12), the corresponding first term is bounded as follows

B(w; G, 7) — Br(w; Gy, 70)| < (14 #3)? {HWh ©u—P(w,®u)loo
(5.23)
+ [l My (HWhHl,n lu =P (wloan + lulliellws — P;?(Wh)!!o,4,n) } 1788 -

Now, adding and subtracting u, it follows that
wp,@u—Prw,®u) = (W —uw)@u+ueu — Pi((w,—u)®@u +ucu),

from which, using the L?()-boundedness of 'PZ , the Cauchy-Schwarz inequality, and (2.9), we deduce
that

040 + [u®@u—Pru®u)le

[wr, @u—Pr(wy @)oo < 2[u—wloselu
(5.24)
< 2[ic)? lu = Wil l[ulie + lu@u—Piu ).

In turn, similar reasonings, but employing now the L*(Q)-boundedness of P} (cf. (3.19)), yield

049 < llicll (1 + M) [uliella = wilie + llullie lu—Pi()lose  (5.25)

[wrll1a [a— P (a)
and
lwi — Pr(wi)lloae < lliell (14 M) [u—wilia + [[u—Prw)|oan- (5.26)

In this way, replacing (5.24), (5.25), and (5.26) back into (5.23), and then using the resulting estimate
together with (5.22) in (5.21), we are lead to (5.20) after bounding |[[u — wp||1,0, |[u— w10, ||uli,o

and [[upllLe by |6 — ), 116 — G, 6], and [|64]|es, respectively. O
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As a consequence of Lemmas 5.4 and 5.5, we are able to establish the following definite a prior:
estimate for || — &y ||lm-

Theorem 5.2. Let Ct, Cp, and ép be the constants from Theorem 2.1, Lemma 5.4, and Lemma 5.5,

respectively, and assume that the data f and g satisfy

1

log + lglor + gl or} < 5 (5.27)

Cr Gy Gy { I < 3

Then there exists a positive constant ﬁp, independent of h, such that

16— Gnllm < Cp { lo —Pi(o)log + [u=Ri(w)in + 7l =Py (F)llogo
(5.28)
+ Ju—=PrMW)|osn + [u®@u—Pluzu)|oo + dist(&,HZ)} .

Proof. It suffices to replace (5.20) back into (5.16), and then proceed to estimate the resulting terms
in a suitable manner. In particular, the expressions ||&|g and ||&p||g multiplying |6 — {},|lm or
[u—"PP(u)lo4,0 are bounded by o, whereas (5.15) is used to bound || || in terms of the data when

it multiplies the exact error ||& — &||m. In this way, and after taking the infimum on ¢, € H/?, which
yields dist (&, HZ), we are lead on the right hand side to the remaining expression

Or o Gy {Ifllo + lighor + legllyjzr f 1 = Gl

which is handled according to the assumption (5.27). Other details are omitted. O

Having established Theorem 5.2, we now provide the corresponding rates of convergence.

Theorem 5.3. Let & € H and &5, € H be the unique solutions of the continuous and discrete schemes
(2.11) and (5.1), respectively. Assume that for integers r € [1,k], s € [2,k + 1], and £ € [1,k + 1],
there hold o|x € H'(K), f|x = —div(o)|x € H'(K), u|x € H¥(K), and (u® u)|x € HY(K), for
each K € Tn. Then, there exists a positive constant C, independent of h, such that

|6 — Gnlla = |lo —onllavie + lu— w10

. 1/2
< cnmnire 0L 5 (jof i+ ldivio)x + i + lusuc) |
KeTy

1/4
+ Chs_l{ Z u|;1—1,4,K} .

KeTh

(5.29)

Proof. It follows from (5.28) and the approximation properties provided along the paper. In fact,
employing (AP}) (cf. Section 3.2) and (APY) (cf. Section 3.3), we obtain

1/2
dist(u, V) < ChS‘l{ > Iu!iK}

and

1/2
dist(or, H}') < Ch”{ > (lofx + |div(a)y;iK)} ,
KeTy
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respectively, whereas straighforward applications of (3.14) and (3.15) imply

1/2 1/2
th—P;i%(f)Ho,Qsch{Zrf\%,K} h’“*l{Z\dw \TK} ,

KeTy, KeTy

1/2
lo — Phio)loa < cm{ T |a|2,K} ,

KeTy,

and

1/2
lu@u—Piucu)|oe < Chf{ > !u®u\iK} :
KeTn

In turn, (3.3) gives

1/2
u— R < Ch“{ 3 |u|§,K} ,

KeTy
and the fact that H*(K) C W* 14(K) together with (3.16) (cf. Lemma 3.7) yield

1/4
lu = Pl oa < cm-l{ 3 |u\§_1,4,K} .
KeTy,

The foregoing estimates and a simple algebraic inequality lead to (5.29), thus concluding the proof. [J

5.3 Computable approximations of o, u, and p

We first introduce the fully computable approximations of o and uy given by
Gy = Pl(op) and 4, = Plwy), (5.30)

and establish the corresponding a priori error estimates in the L?(Q)-norm for & — &, and in the
L?(92)-norm and broken H'-seminorm for u — . As shown below in Theorem 5.6, they yield exactly
the same rate of convergence given by Theorem 5.3.

We begin the analysis with the following result.
Theorem 5.4. There exists a positive constant C' > 0, independent of h, such that

1/2
lo — &ulloe + |u—dullon + { > Iu—ﬁhiK}
KeTy,

1/2
sc{u&—&humna—ﬂ \on+{ZHu PE(u HlK} }

KeTh

Proof. In order to bound ||e — &40, we add and subtract P} (), and then employ the boundedness
of P!, which gives

lo = &nllog < llo—Pi(o)lloe + IPLe) —Pilon)lo

(5.32)
< o =Pi@)oge + llo = oullog-

Similarly, adding and subtracting P/ (u), and using now the boundedness of PX (cf. Lemma 3.8), we
are lead to
lu—pllx < u=PE@)Lk + My lu-wpix VK €T,
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from which, taking square and summing over K € Ty, it follows that
1/2 1/2
futulon + { ¥ u-wlia) < c{{ > - PE@IEL} + Hu—uhul,a}. (5.33)
KeTh KeTh
In this way, (5.32) and (5.33) yield (5.31), which ends the proof. O

Next, according to the second equation in (2.4) and the decomposition of o provided by (2.7) and
(2.8), we suggest the following computable approximation of the pressure:

~

1 N , _ .
Ph = —§tr<ah+chﬂ+uh®uh> i Q, with @& = —m”uhug@. (5.34)

The following lemma establishes the corresponding a priori error estimate.

Theorem 5.5. There exists a positive constant C' > 0, independent of h, such that

Ip = Drlloo < C{H&—&hIIH + llo = Pr@)lloe + lu—Pi(wloge + ||u—7’;’§(u)||o,4,ﬂ}- (5.35)

Proof. According to (2.4), (2.7), (2.8), and (5.34), we have that
1 . o~ A 1 PO
pP—Dn = —*tr<(0—0h) + (U®u—uh®uh)) + oo / trlu®u— U, ®up),
2 219 Ja

which, applying the Cauchy-Schwarz inequality, yields

Ip=Billoe < C{llo = Gulloo + [usu b, @ duloe}. (5.36)
Then, adding and subtracting Uy, and using the triangle and Cauchy-Schwarz inequalities, the boun-
dedness of P! (cf. (3.19)), (2.9), and the fact that ||ul|;,o and ||up||1,0 are bounded by po, we find
that

[u®@u—1,@uplloe = [[u®@(u—up)loe + [[(u—1,) @ Uglloe

IA

040 + [P (ay)

(||11H0,4,Q + ||ﬁhH0,4,Q) [u—1pllosn = (||u 0,4,9) [u—upllosn  (5.37)

IN

(Ialloae + M funlloas) o = Baloan < (+ M) il 7o lu ~ Snflosc.

In turn, adding and subtracting PJ(u), and employing again the boundedness of P} and (2.9), we
readily obtain

lu—nlloae < fu—Pilose + IP(u—up)loas
(5.38)
< = Pelloas + el M llu — upllo.
Finally, (5.36), (5.37), and (5.38), together with (5.31) imply (5.35) and finish the proof. O

We end this section by providing the theoretical rates of convergence for &y, Uy, and py,.

Theorem 5.6. Let & € H and &, € H be the unique solutions of the continuous and discrete schemes
(2.11) and (5.1), respectively. In addition, let (&, Uy) and py, be the discrete approximations introduced
in (5.30) and (5.34), respectively. Assume that for integers r € [1,k], s € [2,k+ 1], and £ € [1,k + 1],
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there hold o|x € H'(K), f|x = —div(e)|x € H'(K), u|x € H¥(K), and (u® u)|x € HY(K), for
each K € Tp. Then, there exists a positive constant C, independent of h, such that

1/2
lo = &ullos + u—ullog + { S - ﬁh\iK} T o= Fallos

KETn 1/2
< C h‘“m{’"’s‘l’”{ > (IU\E,K + |div(e)2 ¢ + [uf2x + |u®u|%7;<)} (5.39)
KeT,
1/4
+ Chs_l{ Z u\3—1,4,K} .
KeTy,

Proof. It follows from (5.31), (5.35), Theorem 5.3, and the approximation properties provided along
the paper. In particular, applying (3.16) (cf. Lemma 3.7), we readily find that

1/2 1/2
{Zuu—Pf(u)HiK} sc*h“{Zm@,K} .

KeTy, KeTy

Further details, being similar to those shown in the proof of Theorem 5.3, are omitted. O

5.4 A convergent approximation of o in the broken H(div; 2)-norm

In what follows we proceed as in [14, Section 5.3] and propose a second approximation o of the
pseudostress o, which yields the same rate of convergence from Theorems 5.3 and 5.6 in the broken
H(div; Q)-norm. For this purpose, we now consider for each K € T} an arbitrary but explicitly known
finite dimensional subspace U(K) of H(div; K'), to be specified later on, and let (-, -)aiv;x be the usual
H(div; K)-inner product with induced norm || - [|aiv;x. Then, we let &), € L2(2) be the tensor defined
locally as o}, |k := 04 i, Where o} i € U(K) is the unique solution of the problem

(5-h,K7Th)diV;K = / &h CTh + / diV(O’h) . diV(Th) V1, € U(K) . (540)
K K

Note here that the right-hand side of (5.40), and hence ok, is fully computable since both &,
and div(7p) are. In addition, it is important to remark that o x can be calculated for each K €
Tr, independently, which certainly suggests a parallel implementation of these computations. Next,
denoting by IT¥ : H(div; K) — U(K) the orthogonal projector with respect to (-, -)aiv:i, we have the
following result establishing the a priori estimate for the local error |o — o i ||div; k-

Lemma 5.6. For each K € Ty, there holds
lo = onxllavix < [ldiv(e —an)llox + o =Gnllox + o —TI{ ()laivik - (5.41)

Proof. It proceeds exactly as the proof of [14, Lemma 5.3], and hence we refer to that work and omit
details here. 0

In this way, since we know from (5.29) (cf. Theorem 5.3) and (5.39) (cf. Theorem 5.6) that the
errors ||div(e — a3)|loq and || — &plloo converge at most with order O(h*), which holds when
r==k s=k+1, and £ = k, it follows from (5.41) that we need to guarantee at least the same

1/2
rate for { Z |o — 1IE (O')H?iiv; K} . Thus, in order to achieve this goal, we take for simplicity
KeTy
U(K) := Px(K), which means that ITX becomes P5, whence (3.15) yields

I~ 1 (Dl < IIr ~ T (D) lk < Chclrline V7T e HHU(K), YK €T
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Therefore, according to the foregoing analysis, we are able to state the following theorem.

Theorem 5.7. Let & = (o,u) € H and &), = (on,up) € H be the unique solutions of the
continuous and discrete schemes (2.11) and (5.1), respectively. In addition, let oy and o, be the
discrete approximations of o introduced in (5.30) and (5.40), respectively. Assume that for integers
r € [1,k], s € [2,k+1], and £ € [1,k + 1], there hold o|x € H'Y(K), f|x = —div(o)|x € H(K),
ulg € H(K), and (u®u)|g € HY(K), for each K € Ty,. Then, there holds

1/2 A
{ Z lo — &h,KH(Qﬁv;K} = O(pmin{rs—Lehy
KeTy

We end this paper by remarking that full details on the computational implementation of (5.1),
and several numerical results confirming the theoretical rates of convergence, will be provided in a
forthcoming work.
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