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PREPRINT 2017-19

SERIE DE PRE-PUBLICACIONES





Computational uncertainty quantification for some strongly degenerate
parabolic convection-diffusion equations

Raimund Bürgera, Ilja Krökerb,∗
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Abstract

Strongly degenerate parabolic convection-diffusion equations arise as governing equations in a number of
applications such as traffic flow with driver reaction and anticipation distance and sedimentation of solid-
liquid suspensions in mineral processing and wastewater treatment. In these applications certain parameters
that define the convective flux function and the degenerating diffusion coefficient are subject to stochastic
variability. A method to efficiently evaluate the variability of the solution of the governing partial differential
equation in response to that of the parameters is presented. To this end, a general polynomial chaos (gPC)
expansion of the solution is approximated by its projection onto a finite-dimensional space of piecewise
polynomial functions defined on a suitable discretization of the stochastic domain, according to the basic
principle of the hybrid stochastic Galerkin (HSG) approach. This approach is combined with a finite volume
(FV) method, resulting in a so-called FV-HSG method, to compute the sought deterministic coefficient
functions of the truncated polynomial-chaos-based expansion of the solution. Since the stochastic parameter
space is now spanned by piecewise polynomial functions, one may employ the numerical result to compute
the reconstruction of the numerical solution for arbitrary values of the random variables. The expectation,
the variance or other stochastic quantities of the solution (as functions of time and position) can also be
computed from these coefficient functions. The method is illustrated by a number of numerical examples.

Keywords: clarifier-thickener model, polynomial chaos, uncertainty quantification, traffic modelling,
hybrid stochastic Galerkin, finite volume method

1. Introduction

1.1. Scope

This work is focused on numerical methods for the quantification of the stochastic variability of solutions
u = u(x, t) of the strongly degenerate parabolic equation

∂tu+ ∂xf(u) = ∂2
xA(u), (x, t) ∈ QT := I × (0, T ), T > 0, (1)

that arises from uncertainty in the parameters that define the function a = a(u), where

A(u) =

∫ u

0

a(s) ds, a ∈ L1[0, umax], a(u) ≥ 0 for 0 ≤ u ≤ umax. (2)

Here the x-interval is either I = R corresponding to an initial value problem, or I = (0, 1), for which (1)
is posed with suitable initial and boundary conditions. We assume that f is a piecewise smooth, Lipschitz
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continuous, non-negative function with support on (0, umax), where umax is a maximum solution value. We
allow that a(u) = 0 on u-intervals of positive lengths, which motivates why (1) is called strongly degenerate.
For the u-values such that a(u) = 0, (1) degenerates into the first-order conservation law

∂tu+ ∂xf(u) = 0, (3)

where the location of the type change interface is unknown beforehand. Consequently, solutions of (1) are
in general discontinuous, and must be defined as weak solutions along with an entropy condition, that is, as
entropy solutions.

Under the assumption of strong degeneracy, (1) arises in a number of applications, including a model
of vehicular traffic with reaction times and anticipation lengths [8, 29, 30] and a model of sedimentation of
flocculated suspensions [10, 13]. In both applications, it is frequently assumed that

a(u)


= 0 for u ≤ uc and u > umax,

> 0 for uc < u < umax,

≥ 0 for u = umax,

(4)

where uc ≥ 0 is a given critical value, so that (1) degenerates into (3) wherever u ≤ uc. The value
of uc is, however, problem-dependent and usually not based on first principles. It either estimates the
“threshold” value of the density u beyond which nonlinear diffusive effects become significant (a motivation
that is common in traffic flow modeling) or represents a “phenomenological” parameter that characterizes
geometrically complicated behaviour (such a the formation of a porous network formed by sedimentation
of flocculated, non-spherical particles). In any case, the value of uc is subject to uncertainty, and there is
theoretical and practical interest in quantifying the uncertainty in the solution of (1) in terms of that of uc

and other parameters that arise in the algebraic definition of a(u). It is the purpose of this contribution
to provide an efficient computational method to solve this task. To this end, we introduce an appropriate
definition of several random parameters, which represent uncertainty in the model problems. Based on this
definition we provide the hybrid stochastic Galerkin (HSG) discretization for uncertain strongly parabolic
degenerate problems. The HSG method is an intrusive stochastic Galerkin discretization method that was
successfully applied to several non-linear hyperbolic problems, for example in [4, 12]. In general, intrusive
SG discretizations transform the underlying partial differential equation (PDE), which is assumed to depend
on random parameters, into a deterministic system by means of a Galerkin projection onto the stochastic
space. We present an appropriate numerical scheme, which is based on central upwind method, and apply
it to several examples motivated by real-world applications. Moreover, we study the accuracy of the method
in short- and long-time numerical simulations and also the influence of the several random parameters on
expectation and variance of the solution.

1.2. Related work

To put the present paper into the proper perspective, we mention that the applications motivating
strongly degenerate parabolic equation (1), (2), namely traffic flow and sedimentation of flocculated suspen-
sions, are broadly discussed in [1, 8, 29, 30, 34] and [13, 14], respectively (see also references cited in these
papers). For the application to sedimentation, (1) equipped with initial and zero-flux boundary conditions
describes the simple process of batch settling in a column, but the same functions f and A also arise in more
involved models of continuous sedimentation in clarifier-thickener models, in which the governing PDE (not
written out here) includes additional transport terms accounting for bulk flows, singular source terms, and
discontinuous coefficients (see [7, 10, 16] and references cited in these papers). The usefulness of (1) as a
practical model for real-world phenomena depends critically on calibration, that is, the possibility to identify
the model functions f and A (or equivalently, a) for real situations. These issues are addressed in [1] and
[6, 17, 15, 38] for the models of traffic flow and sedimentation, respectively. The present work deals with
a closely related issue, namely the assessment of the variability of the model prediction in response to the
uncertainty in constitutive model functions. Another problem that arises for clarifier-thickener models with
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time-dependent control functions lies in the fact that there is not only uncertainty in the appropriate choice
of material specific constitutive functions (as is considered herein), but that also many input parameters
that represent time-dependent operating conditions cannot be described with deterministic accuracy but by
stochastic methods. For instance, in mineral processing the uncertainty comes from the fact that the feed
flow stems from other units that are not under control of the CT operator, while in wastewater treatment
weather conditions, which may affect the operation of the unit, are unpredictable. An HSG approach to
computationally quantify the uncertainty arising in this situation was applied in [4, 11, 12].

With respect to uncertainty quantification for conservation laws and related partial differential equations
in a general context, we mention that the straightforward Monte Carlo (MC) computations of sampling
solutions produced under stochastic variation of the input data are easily implemented, but quantifying
randomness via the MC approach can be computationally inefficient due to the slow convergence rate of
stochastic approach, in particular in the case of high computational costs for each sample. However, the
computational efficiency of MC can be significantly improved by multi-level Monte-Carlo [5, 28] and quasi-
Monte-Carlo [20] techniques.

In this paper we focus on the hybrid stochastic Galerkin (HSG) discretization which belongs to the broad
class of intrusive stochastic Galerkin (SG) methods. The application of the intrusive SG methods to the
uncertainty quantification of PDEs goes back to the work by Ghanem and Spanos in the early 1990s [18,
27]. In the past decades several authors used several intrusive methods for uncertainty quantification of
the random perturbed hyperbolic problems. In particular we would like to accent the work by Poëtte et
al. [31] who discussed the well-posedness of the application of intrusive SG methods to non-linear random
perturbed hyperbolic problems, and the work by Tryoen et al. [37] who introduced multi-wavelet stochastic
discretization [2, 25] for hyperbolic problems.

As is mentioned above, the intrusive SG discretization was applied to the clarifier-thickener (CT) model
with random feed in [11]. The HSG discretization and stochastic adaptivity for this discretization applied to
the CT model were introduced in [12]. This method was extended in [4] to handle several random variables
within the CT model with random feed.

1.3. Outline of this paper

The remainder of this paper is organized as follows. In Section 2 some preliminaries are collected. In this
work we discuss three different initial-boundary value problems for (1) that are addressed as Problem A,
B and C, respectively, and that differ by the choice of I and the boundary conditions, which are specified
in Section 2.1. Problems A or B correspond to the diffusively corrected version of the Lighthill-Whitham-
Richards (LWR) traffic model, which is summarized in Section 2.2, on an infinite or circular highway,
while Problem C, with zero-flux boundary conditions, arises as a model of batch settling of a suspension of
fine particles dispersed in a viscous fluid that form a compressible sediment. This model is summarized in
Section 2.3. For each model we specify in Section 2.4 the parameters that are subject to stochastic variability.

In Section 3 we give a short overview on the HSG discretization. We start with an introduction to
the general polynomial chaos (gPC) expansion (Section 3.1) and its extension to the HSG discretization
(Section 3.2). Then, in Section 3.3 we apply the HSG method to the governing equation (1), and outline
in Section 3.4 the finite volume method for the numerical approach. Section 3.5 summarises Section 3 and
provides a brief overview of the motivation and computational aspects of the method.

In Section 4 we present several numerical experiments, based on settings provided in Section 2. We start
with Section 4.1, where we specify several problem parameters that are used in the numerical examples.
Example 1, presented in Section 4.2, treats the diffusively corrected LWR traffic model with random per-
turbations on infinite highway. In Section 4.3 we present Example 2, which considers the model above on a
circular highway. Examples 3 to 5 in Sections 4.4 and 4.5 deal with a model of sedimentation of flocculated
suspensions, where Section 4.4 handles the setting common for mineral processing, and we analyse in Sec-
tion 4.5 long- and short-time simulations for the setting that is used in wastewater treatment. Finally, in
Section 5 we recapitulate the results presented, analyse advantages and limitations of the presented method
and provide an outlook on the future research. An appendix addresses the preservation of parabolicity for
the HSG discretization.
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2. Preliminaries

2.1. Initial and boundary conditions

For Problems A, B and C we always impose the initial condition

u(x, 0) = u0(x), x ∈ I, (5)

where Problem A corresponds to I = R and an initial value problem, and Problems B and C to I = [0, 1]
with the following periodic conditions for Problem B:

u(0, t) = u(1, t) for t > 0, (6)

and zero-flux boundary conditions for Problem C, i.e.,(
f(u)− ∂xA(u)

)∣∣
x=0

= 0,
(
f(u)− ∂xA(u)

)∣∣
x=1

= 0. (7)

2.2. Diffusively corrected LWR traffic model

The classical LWR traffic model [26, 32] postulates that vehicular traffic on an infinite or circular highway
can be modeled by Problem A or B, respectively, for the first-order conservation law (3), where u is the local
density of cars that is assumed to vary between zero and a maximum value umax, and

f(u) = vmaxuV (u). (8)

Here vmax > 0 is a maximum freeway velocity and V is a decreasing function that satisfies V (0) = 1 and
V (umax) = 0, and which describes drivers’ attitude to reduce speed in presence of other cars. A common
choice [19] is the function

V (u) = 1− u/umax. (9)

Numerous motifications of the original LWR model (3), (8) have been proposed. In particular, this model
lacks realism in that the driver reaction of the vehicle located at position x at time t depends on the
spot value u(x, t) (instead of the density some “anticipation distance” La ahead), and that the reaction is
instantaneous while in reality it would be delayed by a reaction time τ . These shortcomings are corrected
in the modification of the LWR model advanced by Nelson [30] (see also [1, 8]) that includes the effects
of anticipation distance and reaction time. The anticipation length La may depend on V (u). In fact, the
following formula is proposed in [30]:

La(u) = max

{
(vmaxV (u))2

2α
,Lmin

}
, (10)

where Lmin is a minimal anticipation distance and α denotes a deceleration, so that the first argument in
(10) denotes the distance required to decelerate from speed V (u) to full stop at deceleration α. The velocity
of a vehicle at position x at time t is no longer assumed to depend on the spot value u(x, t), but rather on the
density at position x+La − V τ at time t− τ . By an appropriate expansion of u evaluated at this displaced
argument around (x, t) [8, 30] we obtain that to within an O(τ2 + L2

a) error in consistency, u = u(x, t) is
now given by (1) (instead of (3)) with A given by (2), where

a(u) = −uvmaxV
′(u)

(
La(u) + τuvmaxV

′(u)
)
. (11)

In [1, 8, 30] it is proposed to utilize a particular function V (alternative to (9)) that satisfies V (u) = const.
for u < u∗, where 0 < u∗ < umax, such that in view of (11), the strongly degenerate behaviour (4) holds
for uc := u∗ and u = umax. Herein we assume, however, that independently of the algebraic definition of V ,
the critical value uc is a prescribed “psycho-physiological” threshold value in the sense that reaction times
and anticipation lengths are assumed to be effective only whenever the local traffic density u exceeds uc (see
[34]). Consequently, our analysis will be based on the following formula:

a(u) =

{
0 for u ≤ uc,

−uvmaxV
′(u)

(
La(u) + τuvmaxV

′(u)
)

for u > uc.
(12)

4



2.3. Settling of a suspension forming compressible sediments

Problem C describes the settling of a suspension of fine particles dispersed in a viscous fluid, where
u denotes the local solids concentration in depth x at time t. The convective flux f is again given by (8),
where vmax now denotes the settling velocity of a single particle in an unbounded fluid and the function V
describes the effect of hindrance to settling exerted by other particles. Common formulas are the Richardson-
Zaki expression [33] (widely used in mineral processing)

V (u) = (1− u)nRZ , nRZ > 1, (13)

where nRZ is a material-dependent exponent, and the Vesilind formula [39] (common in wastewater treat-
ment)

V (u) = exp(−rVu), where rV > 0 is a parameter. (14)

According to a well-studied sedimentation-consolidation model [10, 14], the diffusion function is given by

a(u) =
V (u)σ′e(u)

∆ρg
, (15)

where σ′e(u) := dσe/du is the derivative of the effective solid stress function, ∆ρ > 0 is the solid-fluid density
difference, and g is the acceleration of gravity. It is assumed that the effective solid stress can only be
transmitted wherever particles touch each other and form a porous network, which is assumed to occur
whenever u exceeds a critical concentration or gel point uc, and that σe is an increasing function of u
whenever u > uc. Consequently, the diffusion coefficient a(u) defined by (15) satisfies (4). A widely used
formula for σe in mineral processing is the power law

σe(u) =

{
0 for u ≤ uc,

σ0

(
(u/uc)k − 1

)
for u > uc,

σ0 = 0, k > 0, (16)

while the following expression is more common in wastewater treatment [7, 15]:

σe(u) =

{
0 for u ≤ uc,

σ0 ln
(
1 + (u− uc)/β

)
for u > uc,

σ0 = 0, β > 0. (17)

Thus, will discuss either the diffusion coefficient suitable for mineral processing (where V is given by (13)),

a(u) =

0 for u ≤ uc,
vmaxV (u)σ0k

∆ρgukc
uk−1 for u > uc,

(18)

or the diffusion coefficient appropriate for wastewater treatment, where V is given by (14):

a(u) =

0 for u ≤ uc,
vmaxV (u)σ0ρu

∆ρg(β + u− uc)
for u > uc.

(19)

2.4. Stochastic variability

We assume that the parameters arising in a(u) in the traffic model and both variant of the sedimentation
model are subject to stochastic variability while in all cases the parameters vmax and the function V are
given. For a unified treatment we denote the parameters arising in (12) by

p1 = uc, p2 = τ, p3 = α, p4 = Lmin, (20)
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those of (18) by,

p1 = uc, p2 = σ0, p3 = k, (21)

and those of (19) by

p1 = uc, p2 = σ0, p3 = β. (22)

We wish to assess the uncertainty in the solution of Problem A or B (for the traffic model) and of
Problem C (for the sedimentation model) under the assumption that the stochastic variability of a number N
of parameters p1, . . . , pN is specified by

pi = p̄i

(
1 +

(
θi −

1

2

)
σi

)
i = 1, . . . , Ns,

where N denotes the total number of parameters that are subject to random variability, p̄i the mean value
of pi, θi is a random variable that is uniformly distributed on (0, 1) (θi ∼ U(0, 1)), and σi measures the
variation of pi, all for i = 1, . . . , Ns. Here we consider the cases 1 ≤ Ns ≤ 4.

3. Hybrid stochastic Galerkin (HSG) discretization

3.1. General polynomial chaos (gPC) expansion

Let θ(ω) := (θ1(ω1), . . . , θNs(ωNs)
T be anNs–dimensional random vector of i.i.d. (independent identically

distributed) random variables defined on the probability spaces (Ωi,Fi,Pi), i = 1, . . . , Ns. We define a
multivariate polynomial Φp for a multi-index p ∈ NNs by

Φp(ω) := φp1
(θ1) · . . . · φpNs

(θNs
).

The choice of the orthonormal polynomial φpi , pi ∈ N0 depends on the law of the random variable θi. In the
present work we assume that the random variables are uniformly distributed θi ∼ U(0, 1) and therefore use
re-scaled Legendre polynomials. The family of the multivariate polynomials {Φp}p∈NNs

0
is orthonormal with

respect to the scalar product on L2(ΩNs), i.e.,

〈Φp, Φq〉L2(ΩNs ) :=

∫
Ω1

· · ·
∫

ΩNs

Φp(θ(ω))Φq(θ(ω)) dP1(ω1) · · · PNs
(ωNs

) = δpq.

Furthermore, the polynomial chaos expansion of a random variable with finite variance w = w(x, t,θ(ω)),
(x, t) ∈ R× [0, T ], ω ∈ ΩNs is given by

w
(
x, t,θ(ω)

)
=

∞∑
q=0

∑
|p|=q

wp(x, t)Φp(θ(ω)), where wp(x, t) := 〈w(x, t, ·), Φp〉L2(ΩN ) (23)

for (x, t) ∈ R × [0, T ], ω ∈ ΩNs . Truncating the infinite series (23) by summing over |p| ≤ No leads to a
finite sum of (No +Ns)!/(No!Ns!) terms. This observation will be applied when constructing the truncation
within the HSG discretization.

3.2. Extension to HSG discretization

The main idea of the HSG method is the decomposition of the stochastic domain [0, 1]Ns (we assume
θi ∼ U(0, 1)) into the following 2NsNr sub-domains, where Nr ∈ N0:

INr

Ns,l
:= INr

l1
× · · · × INr

lNs
, l = (l1, . . . , lNs

) ∈ I :=
{

0, . . . , 2Nr − 1
}Ns

.
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Here we define the intervals

INr

li
:= [2−Nr li, 2

−Nr(li + 1)], li = 0, . . . , 2Nr − 1.

The space of the multivariate piecewise polynomial functions SNo, Nr

Ns
is given by

SNo, Nr

Ns
:=
{
w : [0, 1]Ns → R

∣∣∣ w|INr
Ns,l
∈ QNs

No
[θ], ∀l ∈ I

}
.

Here QNs

No
[θ] denotes the space of Ns-variate polynomials of degree ≤ No. The basis of the space SNo, Nr

Ns
can

be given by the polynomials

ΦNr

p,l(θ) :=

{
2NsNr/2ΠNs

k=1φpk
(2Nrθk − lk) for θ ∈ INr

Ns,l
,

0 otherwise,
for p ∈ NNs

0 , |p| ≤ No, l ∈ I, (24)

where {φk}k≥0 are the re-scaled orthonormal Legendre polynomials. Therefore also the Ns-variate polyno-
mials (24) satisfy the orthogonality relation〈

ΦNr

p,l , ΦNr

q,k

〉
L2(ΩNs )

= δpqδlk, for p, q ∈ NNs
0 , k, l ∈ I. (25)

Similarly to the gPC expansion in the previous section we define the projection

ΠNo,Nr : L2(ΩNs)→ SNr, No

Ns

of the random variable w(x, t,θ(ω)) ∈ L2(ΩNs) for (x, t) ∈ R × [0, T ] onto the space of the multivariate
piecewise polynomial functions SNr, No

Ns
by

ΠNo,Nr [w] (x, t,θ) :=
∑
l∈I

∑
|p|≤No

wNr

p,l (x, t)Φ
Nr

p,l(θ), wNr

p,l :=
〈
w, ΦNr

p,l

〉
L2(ΩNs )

for l ∈ I, p ∈ NNs
0 . (26)

This projection allows us to represent the random variable w(x, t,θ) by the vector of deterministic coeffi-
cients wNr

p,l (x, t) for l ∈ I, p ∈ NNs
0 , which are associated with appropriate multivariate piecewise polynomial

functions in SNr, No

Ns
. The convergence of ΠNo,Nr for Nr, No →∞ was shown in [3]. Due to the assumptions

on the random variable w, the expectation and variance of ΠNo,Nr [w] can be computed as follows:

E
[
ΠNo,Nr [w]

]
(x, t) :=

∑
l∈I

wNr

0,l (x, t)
〈

ΦNr

0,l , Φ0
0,0

〉
L2(ΩNs )

, (27)

Var
[
ΠNo,Nr [w]

]
(x, t) :=

∑
l∈I

∑
|p|≤No

wNr

p,l (x, t)
2 −

(
E
[
ΠNo,Nr [w]

]
(x, t)

)2
. (28)

3.3. Application of the HSG approach to the governing equation
In order to apply the HSG approach to the final model we replace the unknown u in (1), (2) by its pro-

jection onto SNr, No

Ns
for Ns, Nr, No ∈ N0, denoted by ΠNo,Nr [u]. The HSG approach of the equation (1), (2)

reads as follows: find coefficients uNr

p,l : R× [0, T ]→ R such that∫
ΩNs

(
ΠNo,Nr [u]t + f

(
ΠNo,Nr [u]

)
x
−A

(
ΠNo,Nr [u]

)
xx

)
ΦNr

p,l dP(ω) = 0

for all (p, l) ∈ NNs
0 × I, |p| ≤ No.

By using the orthogonality relation (25) we obtain for (x, t,ω) ∈ R× (0, T ]× ΩNs , α = (p, l) ∈ NNs
0 × I,

|p| ≤ No the system

uαt +
(〈
f
(
ΠNo,Nr [u]

)
, Φα

〉
L2(ΩNs )

)
x

= ∂2
x

〈
A
(
ΠNo,Nr [u]

)
, Φα

〉
L2(ΩNs )

(29)

of dimension

M := 2NsNr
(No +Ns)!

No!Ns!
. (30)
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3.4. Finite volume method

The central-upwind scheme was introduced in [24] and successfully used together with an HSG discretiza-
tion in [12, 21, 22]. For the numerical approach we extend that scheme by a second-order term and obtain
for j ∈ Z the following numerical scheme in semi-discrete form:

d

dt
Ū j+1/2(t) = − 1

∆x

(
F j+1(t)− F j(t)

)
+

1

∆x2

(
A(Ū j+3/2(t))− 2A(Ū j+1/2(t)) +A(Ū j−1/2(t))

)
,

where we define the numerical flux

F j(t) :=
a+
j f(U+

j ) + a−j f(U−j )

a+
j + a−j

+
a+
j a
−
j

a+
j + a−j

(
U+
j −U

−
j

)
.

The so-called local speeds a±j are derived from the Jacobian of f , we refer to [23, 24, 40] for details. Moreover,
the cell averages on [xj , xj+1], denoted by Ū j+1/2, and the piecewise polynomial reconstructions denoted by
U±j are given by

Ū j+1/2 =
(
ū0
j+1/2, . . . , ū

M−1
j+1/2

)T
and U±j =

(
(u±j )0, . . . , (u±j )M−1

)T
.

The piecewise polynomial reconstructions (u±j )α for α = 0, . . . ,M − 1 (cf. (30)) are defined by

(u+
j )α := ūαj+1/2 −

∆x

2
rαj+1/2, (u−j )α := ūαj−1/2 +

∆x

2
rαj−1/2,

where

rαj+1/2 := minmod

(
s
ūαj+1/2 − ū

α
j−1/2

∆x
,
ūαj+3/2 − ū

α
j−1/2

2∆x
, s
ūαj+3/2 − ū

α
j+1/2

∆x

)
, s ∈ [1, 2],

and we use the standard minmod function defined by

minmod(a, b, c) =

{
sgn(a) min{|a|, |b|, |c|} if sgn(a) = sgn(b) = sgn(c),

0 otherwise.

The vectors f(U j) and A(U j) are given by

f(U j) =
(
f0(U j), . . . , f

M−1(U j)
)T
, A(U j) =

(
A0(U j), . . . , A

M−1(U j)
)T
,

where we define

fα(U j) :=

〈
f

M−1∑
β=0

uβj Φβ

 , Φα

〉
L2(ΩNs )

, Aα(U j) :=

〈
A

M−1∑
β=0

uβj Φβ

 , Φα

〉
L2(ΩNs )

.

The time discretization is given by the second-order Runge-Kutta/Heun method defined by

Un+1 =
1

2
Un +

1

2
(U∗ + ∆tL[U∗]) , U∗ = Un + ∆tL[Un].

Here Un is the unknown variable at the n-th time-step, L[U ] the spatial operator, which is supposed to
provide a second order approach of L[U ], solving Ut = L[U ]. For more details, see e.g. [35].
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Examples 1 and 2 Example 3 Example 4 Example 5

i pi p̄i σi pi p̄i σi pi p̄i σi pi p̄i σi

1 uc [cars/km] 10.0 0.25 uc [−] 0.2 0.1 uc [kg/m3] 5 0.1 uc [kg/m3] 5 0.02

2 τ [s] 2.0 0.25 σ0 [Pa] 50 0.2 σ0 [Pa] 7 0.02 σ0 [Pa] 7 0.1

3 α [m/s2] 9.81 × 10−4 0.5 k [−] 6 1/3 β [kg/m3] 2.9 0.02 β [kg/m3] 2.9 0.1

4 Lmin [km] 0.08 0.125 —— —— ——

Table 1: Examples 1 to 5: randomly perturbed parameters.

3.5. Summary of the method of computational uncertainty quantification

We conclude the analysis by a summary of the method of computational uncertainty quantification.
The purpose of the method is to provide an efficient tool to numerically investigate the influence of several
random parameters within the coefficients of the governing PDE (1) on the unknown solution u. The
unknown solution u is considered as a random variable, which is represented by their projection onto the
space of piecewise polynomial functions defined in (26). Precisely speaking, the goal of the method is to
compute the deterministic coefficient functions uNr

p,l(x, t) that determine the projection ΠNo,Nr [u] of the
unknown u, defined by (26) for w = u with u satisfying (29), for all indices |p| ≤ No, l ∈ I. Since the
stochastic parameter space is spanned by the piecewise polynomial functions in SNo, Nr

Ns
, this procedure

allows us to compute the reconstruction of the numerical approach of u(x, t,θ) for (x, t) ∈ R× [0, T ] and an
arbitrary choice of θ ∈ [0, 1]Ns by evaluation of ΠNo,Nr [u] on (x, t,θ).

The usual quantities of interest in stochastic applications, namely the expectation and the variance, can
be also computed from the coefficient functions uNr

p,l by application of formulas (27) and (28), respectively.
The other quantities of interest, for example higher stochastic moments, can also be computed by using the
orthogonality of the polynomials {ΦNr

p,l}l∈I, |p|≤No
or computing of the reconstructions of the approximate

solution for an appropriate choice of the random parameters θ ∈ [0, 1]Ns .

4. Numerical examples

4.1. Preliminaries

In the numerical examples we apply the FV-HSG method presented in the previous section to different
scenarios. We compute the numerical solutions for several maximal polynomial ordersNo and resolutionNr at
the end time T . For the spatial discretization of the interval I use an equidistant mesh with 200 subintervals.

For the analysis of the accuracy of the stochastic discretization we compare the expectation and variance
at time T computed with the FV-HSG method with the corresponding quantities of the reference solution.
To analyze the error in the approach of the expectation and variance we use spatial L1 and L2 norms for
the expectation and L2 and L4 norms for the variance, respectively.

The reference solution in each case is the result of the MC approach with 105 samples, where each sample
is a deterministic solution of the problem (1), (2) for a randomly chosen parameter set θ ∈ [0, 1]Ns computed
by the scalar version of the finite volume method which was introduced in the Sec. 3.4.

4.2. Example 1: Model 1/Problem A

In Example 1, vehicular traffic on an infinite highway is modelled by the random perturbed diffusively
corrected LWR traffic model on the interval I = [0, 5.6] (Problem A in Sect. 2.1). For the traffic model
(Model 1) we use the function (8) with vmax = 100 km/h = 2.78 × 10−2 m/s. The density u is measured in
cars per kilometer, and we assume that umax = 120 cars/km. The critical density is set to uc = 10 cars/km.
The remaining parameters are similar to those used in [1, 8] for the reaction and anticipation terms, namely
α = 0.1g = 0.981 m/s2, where g is the acceleration of gravity, τ = 2 s, and Lmin = 80 m.
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Figure 1: Example 1 (Model 1/Problem A): numerical solution for T = 100 s, computed with the central-upwind scheme: (a)
deterministic solution; (b) time series of the deterministic solution for t ∈ [0, T ]; (c) f(u) for u ∈ [0, 120]; (d) a(u) for u ∈ [0, 120].

The initial distribution is given by

u0(x) :=

{
80 cars/km if 2.0 ≤ x ≤ 2.5 km,

0 cars/km otherwise.
(31)

The problem parameters that are subject to stochastic variability mentioned in Table 1.
The interval I is subdivided into N = 200 subintervals, and we simulate until a final time T = 100 s. The

numerical results are computed with the FV-HSG method with Nr = 0, . . . , 2, No = 0, . . . , 2. Figure 2 (a)
shows the expectation and the variance at t = T . Figure 2 (b) shows reconstructions of the numerical
solution for ten parameter sets at t = T . These reconstructions illustrate the dependence of the solution
on the possible random perturbed parameter values and explain the shape of the plot of the variance in
Figure 2 (a). Figures 2 (c) and (d) show the evolution of the expectation and variance of the numerical
solution for t ∈ [0, 100]. Figures 2 (e) and (f) show expectation and variance computed with several choices
of Nr and No compared with MC solution. Table 2 shows the L1- and L2-errors for the expectation and L2-
and L4-errors for the variance of the FV-HSG approach compared with the MC solution.

The numerical approach of expectation and variance with the FV-HSG method shows the convergence
for increasing Nr in all norms considered, where the convergence for lower maximal polynomial order No is
faster, then for the higher order. In particular, the method provides a good approach of the expectation also
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Figure 2: Example 1 (Model 1/Problem A): numerical solution for T = 100 s computed with the central-upwind and FV-HSG
schemes for Nr = 2, No = 2: (a) expectation and variance; (b) reconstructions for 10 different parameter sets; (c) expectation
of the solution for t ∈ [0, T ]; (d) variance of the solution for t ∈ [0, T ]; (e, f) comparisons of (e) expectations and (f) variances:
(1) MC, (2) HSG with Nr = 0, No = 2, (3) HSG with Nr = 1, No = 2, (4) HSG with Nr = 2, No = 2.

for the lower accuracy of the stochastic discretization. In the approach of the variance we have also general
good match away from the peaks caused by the convection part of the equation, which shows an appropriate
matching only for Nr ≥ 1.

4.3. Example 2: Model 1/Problem B

We now simulate the vehicular traffic on a circular highway modelled by the diffusively corrected LWR
traffic model. The circular highway is modeled by the interval I = [0, 1] km with periodic boundary conditions
(Problem B). The initial distribution is given by

u0(x) :=

{
80 cars/km if 0.25 ≤ x ≤ 0.5 km,

0 cars/km otherwise.
(32)

The parameters used in the simulation and those that are perturbed randomly are the same as in Example 1,
see Table 1. The numerical solution for the deterministic setting at t = T and also the evolution for t ∈ [0, T ]
are shown in Figure 3.

The numerical results for the random perturbed problem are shown in Figure 4. In particular, Figure 4 (a)
shows expectation variance computed by the FV-HSG method with Nr = 2, No = 2 at T = 100 s. The
reconstructions for ten parameter sets at t = T from the HSG representation with Nr = 2 and No = 2
are presented in Figure 4 (b). The evolution of the expectation and variance computed with FV-HSG with
Nr = 2, No = 2 for t ∈ [0, T ] is presented in Figures 4 (c) and (d), respectively. Figures 4 (e) and (f) show the
comparison of the FV-HSG numerical solution for several choices of Nr and No with the reference solution.
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Expectation Variance

L1 error L2 error FV-HSG/MC L2 error L4 error FV-HSG/MC

No Nr = 0 Nr = 1 Nr = 2 Nr = 0 Nr = 1 Nr = 2 Nr = 0 Nr = 1 Nr = 2 Nr = 0 Nr = 1 Nr = 2

Example 1 0 2.63e-1 6.64e-2 1.72e-2 2.54e-1 5.92e-2 1.50e-2 2.48e+0 5.78e-1 1.39e-1 3.26e+0 7.51e-1 1.75e-1

1 1.19e-1 5.38e-2 2.26e-2 1.35e-1 5.49e-2 2.31e-2 7.76e-1 2.58e-1 9.82e-2 1.18e+0 4.36e-1 1.67e-1

2 1.11e-1 6.06e-2 2.81e-2 1.20e-1 6.11e-2 2.60e-2 7.18e-1 2.66e-1 1.04e-1 1.19e+0 4.55e-1 1.76e-1

Example 2 0 3.85e-2 9.20e-3 2.34e-3 4.29e-2 1.02e-2 2.59e-3 4.76e-2 1.25e-2 3.14e-3 6.02e-2 1.57e-2 3.96e-3

1 2.42e-3 1.42e-3 6.87e-4 3.01e-3 1.71e-3 8.40e-4 2.67e-3 6.09e-4 1.47e-4 3.16e-3 8.06e-4 1.85e-4

Table 2: Examples 1 and 2 (Model 1, Problems A and B): Expectation: (a) L1-error, (b) L2-error of the FV-HSG approach
compared with MC. Variance: (c) L2-error, (d) L4-error of the FV-HSG approach compared with MC.
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Figure 3: Example 2 (Model 1/Problem B): numerical solution of the deterministic problem computed with the central-upwind
scheme: (a) numerical solution at T = 100; (b) time series of the numerical solution for t ∈ [0, T ].

Table 2 shows L1 and L2 error of the expectation and L2 and L4 error of the variance for Nr = 0, . . . , 2 and
No = 0, 1.

The numerical experiments show the convergence of the expectation and variance for increasing Nr. The
highest difference between reconstructions of the several parameter sets corresponds to the maximum of the
variance. Similar to the Example 1 the method provides fair accuracy for the approach of the expectation also
for the lower Nr, but the proper approach of the variance requires higher computational accuracy (Nr ≥ 1).

4.4. Example 3: Model 2/Problem C

Examples 3 to 5 are related to the settling of a suspension forming compressible sediment. The sedimen-
tation model will be used in two versions (Model 2 (Example 3) and Model 3 (Examples 4 and 5)). Model 2
is based on the assumptions stated in [9] that are typical for mineral processing. In that setting u is assumed
to denote a volume fraction, assuming values between zero and one, and we assume that f is given by (8)
with vmax = 10−4 m/s and V is given by (14) with rV = 6 m3/kg. Here the diffusion coefficient is given
by (18), where the effective solid stress function σe is defined by (16) with σ0 = 50 Pa, uc = 0.2 and k = 6.
Other parameters are g = 9.81 m/s2 and ∆ρ = 1500 kg/m3.

We use the zero-flux boundary conditions (Problem C in Sect. 2.1). The initial distribution u0(·) on the
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Figure 4: Example 2 (Model 1/Problem B): numerical results for T = 100 s computed with central-upwind and FV-HSG schemes
for Nr = 2, No = 1: (a) expectation and variance; (b) reconstructions for 10 several parameter sets; (c) expectation of the
solution for t ∈ [0, T ]; (d) variance of the solution for t ∈ [0, T ]; (e, f) comparison of (e) expectations and (f) variances (f): (1)
MC, (2) HSG with Nr = 0, No = 1, (3) HSG with Nr = 1, No = 1, (4) HSG with Nr = 2, No = 1.

interval I is given by

u0(x) :=

{
0.85 if 0.5 ≤ x ≤ 0.6,

0 otherwise.
(33)

The parameters that are subject to stochastic variability are indicated in Table 1.
The numerical solution at t = T of the deterministic version of the problem, the evolution for t ∈ [0, T ],

the flux function f(u), its derivative f ′(u), and the diffusion coefficient a(u) are shown in Figure 5. The results
of the application of the FV-HSG method on the random perturbed problem with three random parameters
are shown in the Fig. 6. In particular Fig. 6 (a) shows the expectation and variance at T = 1.5 × 104.
Figure 6 (b) shows the reconstructions for ten parameter sets. Figures 6 (c) and (d) show the evolutions of
the expectation and and variance for t ∈ [0, T ].

For the analysis of accuracy of the stochastic discretization we compare the expectation and variance com-
puted with FV-HSG with Nr = 0, . . . , 3, No = 0, 1 with the both moments computed with MC. Figures 6 (e)
and (f) show the corresponding plots, and Table 3 shows the error of the approach.

The comparison of the numerical approach of expectation and variance computed with FV-HSG with
the reference solution indicates convergence for increasing Nr. Nevertheless the high variability of shape of
the solution with respect to the choice of random parameter θ, in particular position of the shock, requires
to use the higher Nr to achieve an accurate numerical solution.

4.5. Examples 4 and 5 (Model 3/Problem C)

The parameters of Model 3 (Examples 4 and 5) are chosen more closely to assumptions typical in wastew-
ater treatment. In that application, and in our examples, u is measured in kg/m3. We adopt the parameters
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Figure 5: Example 3 (Model 2/Problem C): (a) deterministic solution at t = T = 15000 s computed with the central-upwind
scheme; (b) time series for t ∈ [0, T ]; (c) comparison of f(u), f ′(u) and a(u) for u ∈ [0, 1].

employed in [7]. The function f is given by (8) with vmax = 6.336 m/h = 1.76 × 10−3 m/s and V is given
by (14) with rV = 0.55 m3/kg. The effective solid stress function σe is defined by (17) with σ0 = 7 Pa,
uc = 5 kg/m3 and β = 2.9 kg/m3. The diffusion function a is then given by (18) with g = 9.81 m/s2,
ρu = 1050kg/m3 and ∆ρ = 52 kg/m3.

In Examples 4 and 5 we investigate the short- and long-time influence of the magnitude of the random
parameters controlled by σi, i = 1, 2, 3 on the settling of a suspension forming compressible sediments
introduced in the Sect. 2.3. Here the diffusion coefficient is given by (19). We use zero-flux boundary
conditions (Problem C). The initial distribution is given by

u0(x) :=

{
10 [kg/m3] if 0.25 m ≤ x ≤ 0.5 m,

0 otherwise.
(34)

Examples 4 and 5 differ in the specification of the random parameters (see Table 1). The short- and the
long- time behaviour of the deterministic numerical solution for t = 200 s and t = T = 2500 s, respectively is
shown in Figure 7. The flux function f(u), derivative of the flux function f ′(u) and the diffusion coefficient
a(u) for u ∈ [0, 40] are shown in Figure 7 (e).

For the discussion of the short-time behaviour of the numerical solution we apply the FV-HSG method
to Examples 4 and 5 at t = 200 s for Nr = 0, . . . , 3, No = 0, . . . , 2. Figures 8 and 9 show the expectation,
variance, reconstructions for ten parameter sets and also comparison with the MC results for first and
second settings respectively. Table 3 shows L1- and L2- error for the expectation and L2- and L4 error for
the variance. For tests of the accuracy we use the MC result as the reference solution.

In the next step we study the long-time behaviour of the numerical solution. For this purpose we apply
the FV-HSG method to both Examples 4 and 5 at T = 2500 for Nr = 0, . . . , 3, No = 0, 1. Figures 10 and 11
show the expectation, variance, reconstructions for ten parameter sets and also the comparison with the MC
results. Table 3 displays the L1- and L2-errors for the expectation and L2- and L4-error for the variance.

The numerical experiments have shown that the magnitude of the random perturbations of the diffusion
threshold parameter uc have a strongest influence on the short- and also the long- time behaviour of the
numerical solution. This can also be concluded from the comparison of the variances of the numerical
solutions for Examples 4 and 5. In both examples it can be observed that the position of the highest
variance correlates with the uncertain position of the shock. The numerical approach of expectation and
variance with the FV-HSG method shows convergence for increasing Nr in all considered norms in both
examples. In particular in the test case with higher variance of the solution the FV-HSG approach shows
the slightly higher accuracy for No = 2 than for No = 1 also for higher Nr.
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Figure 6: Example 3 (Model 2/Problem C): numerical solution for T = 1.5× 104 computed with central-upwind and FV-HSG
scheme for Nr = 3, No = 1: (a) expectation and variance; (b) reconstructions for 10 several parameter sets; (c) expectation
of the solution for t ∈ [0, T ]; (d) variance of the solution for t ∈ [0, T ]; (e, f) comparison of (e) expectations and (f) variances:
(1) MC; (2) HSG with Nr = 1, No = 1; (3) HSG with Nr = 2, No = 1; (4) HSG with Nr = 3, No = 0; (5) HSG with Nr = 3,
No = 1.

5. Conclusions

In this work we applied the FV-HSG method to several scenarios (motivated by traffic modelling, mineral
processing and wastewater treatment) that are modelled by the non-linear parabolic strongly degenerate
equation (1) with Ns = 3 or Ns) = 4 random parameters. The numerical challenge of the problem is
the complicated definition of the diffusion term that requires adaptive time-stepping and evaluation of the
numerical quadrature over the stochastic space in each time step. We have presented the HSG discretization
of the model problems and introduced a corresponding numerical scheme. Several examples illustrate the
utility of the FV-HSG method for studying the expectation and variance of the numerical solution and also
the influence of singular random parameters.

The short-time and long-time numerical experiments show the convergence of the expectation and vari-
ance computed with the FV-HSG method to the reference solution given by the MC approach for increasing
polynomial order No for a low number of resolution Nr as well as for an increasing number of resolution Nr.
It could be also observed that at least for the complex settings considered in Example 1, Tab. 2, a lower
polynomial order No provides a higher accuracy for increasing Nr than a higher polynomial order No. The
observation of the highest variance of the numerical solution usually correlates with the uncertain position
of the shock front, which is also often the cause of the Gibbs phenomena in several polynomial-based UQ
discretization methods. Nevertheless, the numerical artefacts caused by Gibbs phenomenon, which often ap-
pear in numerical simulations of non-linear hyperbolic problems discretized by classical SG, can be avoided
for higher Nr.

One of the important advantages of the HSG method (and also of other intrusive methods) is the pos-
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No Nr = 0 Nr = 1 Nr = 2 Nr = 3 No Nr = 0 Nr = 1 Nr = 2 Nr = 3

Example 3 Expectation (a) 0 1.60e-2 6.55e-3 2.24e-3 8.66e-4 (b) 0 3.21e-2 1.27e-2 4.76e-3 1.82e-3

T = 15000 1 9.58e-3 6.85e-3 4.79e-3 3.32e-3 1 2.07e-2 1.53e-2 1.01e-2 7.36e-3

Variance (c) 0 3.77e-3 1.50e-3 6.14e-4 2.28e-4 (d) 0 6.05e-3 2.74e-3 1.13e-3 4.38e-4

1 2.81e-3 2.02e-3 1.19e-3 9.51e-4 1 5.18e-3 3.95e-3 2.03e-3 1.78e-3

Example 4 Expectation (a) 0 5.07e-2 2.29e-2 6.07e-3 6.44e-3 (b) 0 1.91e-1 9.22e-2 2.45e-2 3.38e-2

T = 200 1 7.91e-2 3.22e-2 1.51e-2 5.31e-3 1 2.39e-1 9.49e-2 4.89e-2 2.36e-2

2 7.63e-2 3.53e-2 1.10e-2 4.73e-3 2 2.33e-1 1.03e-1 3.65e-2 2.30e-2

Variance (c) 0 5.20e-1 2.22e-1 6.68e-2 8.16e-2 (d) 0 1.35e+0 5.27e-1 1.70e-1 2.43e-1

1 3.13e-1 1.79e-1 1.12e-1 4.36e-2 1 7.47e-1 4.89e-1 2.98e-1 1.49e-1

2 3.11e-1 1.89e-1 5.90e-2 4.22e-2 2 7.75e-1 5.14e-1 1.73e-1 1.48e-1

Example 4 Expectation (a) 0 5.16e-2 2.30e-2 8.67e-3 9.89e-4 (b) 0 2.46e-1 1.15e-1 4.36e-2 5.08e-3

T = 2500 1 2.65e-2 1.24e-2 3.51e-3 9.27e-4 1 1.36e-1 6.20e-2 1.76e-2 3.33e-3

Variance (c) 0 8.25e-1 3.28e-1 1.33e-1 5.15e-2 (d) 0 1.98e+0 9.25e-1 3.47e-1 1.24e-1

1 3.56e-1 2.40e-1 8.92e-2 2.38e-2 1 9.15e-1 6.60e-1 2.50e-1 6.69e-2

Example 5 Expectation (a) 0 5.76e-3 2.66e-3 2.06e-3 2.06e-3 (b) 0 2.72e-2 1.57e-2 1.43e-2 1.48e-2

T = 200 1 1.48e-2 5.92e-3 2.79e-3 2.18e-3 1 7.07e-2 2.56e-2 1.64e-2 1.53e-2

2 1.53e-2 5.10e-3 2.55e-3 2.14e-3 2 7.29e-2 2.35e-2 1.61e-2 1.53e-2

Variance (c) 0 6.61e-2 2.37e-2 2.42e-2 2.20e-2 (d) 0 2.15e-1 6.55e-2 7.22e-2 6.76e-2

1 5.44e-2 2.78e-2 2.29e-2 2.27e-2 1 1.90e-1 8.85e-2 7.12e-2 7.09e-2

2 5.28e-2 2.90e-2 2.34e-2 2.28e-2 2 1.86e-1 9.42e-2 7.33e-2 7.14e-2

Example 5 Expectation (a) 0 8.16e-3 1.13e-3 3.00e-4 1.07e-4 (b) 0 7.08e-2 8.17e-3 2.48e-3 8.16e-4

T=2500 1 2.85e-3 6.83e-4 1.04e-4 4.51e-5 1 2.39e-2 3.56e-3 7.90e-4 3.47e-4

Variance (c) 0 2.34e-1 5.65e-2 1.16e-2 3.18e-3 (d) 0 8.15e-1 1.91e-1 4.14e-2 1.13e-2

1 8.86e-2 2.48e-2 4.96e-4 1.04e-3 1 3.20e-1 8.44e-2 1.56e-3 3.86e-3

Table 3: Examples 3 to 5: (a) L1-error, (b) L2-error of the FV-HSG approach compared with MC. Variance: (c) L2-error, (d)
L4-error of the FV-HSG approach compared with MC.

sibility to reconstruct the quantities of interest during post-processing without to consider them during the
simulation, and also without the saving of all samples.

The main limitation of the method is the rapidly increasing computational complexity for increasing
number of random parameters Ns. Nevertheless the partially decoupled structure of the HSG discretization
allows efficient parallelization also on bigger clusters, because the effort for the synchronisation of data be-
tween stochastic elements INr

Ns,l
during the simulation can be reduced to the minimum. Therefore the method

can be efficiently implemented on MPI+OpenMP infrastructure and combined with stochastic adaptivity
discussed in [4, 12].

Further improvements of the computational efficiency could be expected by using of load balancing tools
particularly with regard to the different computational effort on different stochastic elements. Also the
exploiting of the matrix vector structure is promising from the point of view of implementation for many
core or GPU-based systems.

6. Appendix: Parabolicity of the HSG discretization

Let us consider the system (29) in the non-degenerate case. For U =
(
u0, . . . , uM−1

)T
the system (29)

can be rewritten into
U t +B(U)Ux = C(U)Uxx, on R× (0, T ). (35)
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Figure 7: Example 4 (Model 3/Problem C): numerical solution computed with the central-upwind scheme (deterministic
solution) (a) at T = 200; (b) time series for t ∈ [0, 200]; (c) at T = 2500; (d) time series for t ∈ [0, 2500]. (e) a(u) for u ∈ [0, 40].

Here the M ×M matrices B(U) := (bαβ) and C(U) := (cαβ) are given by

bαβ :=

〈
f ′
(
ΠNo,Nr [u]

)
− a′

(
ΠNo,Nr [u]

)M−1∑
γ=0

uγxΦγ , ΦαΦβ

〉
L2(ΩNs )

cαβ :=
〈
a
(
ΠNo,Nr [u]

)
, ΦαΦβ

〉
L2(ΩNs )

.

It is easy to see, that the matrix B(U) is symmetric. From the equation (4) we know that a(u) ≥ 0 for all
u ∈ R. Therefore we can write cαβ as

cαβ =

〈√
a (ΠNo,Nr [u])Φα,

√
a (ΠNo,Nr [u])Φβ

〉
L2(ΩNs )

,

and obtain that C(U) is a positive semi-definite Gram matrix. From the assumption of the non-degeneracy
follows a(u) > 0 and also that the vectors{√

a (ΠNo,Nr [u])Φα | α = 0, . . . ,M − 1

}
are linearly independent. In this case the matrix C(U) positive definite. This implies that the system (35)
is parabolic (cf. [36, Chapter 7]).
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Figure 8: Example 4 (Model 3/Problem C; first setting): numerical solution for T = 200 computed with central-upwind and
FV-HSG for Nr = 3, No = 2: (a) expectation and variance; (b) reconstructions for 10 several parameter sets; (c) time series of
the expectation of the solution for t ∈ [0, 200]; (d) time series of the variance of the solution for t ∈ [0, 200]; (e) comparison of
expectations and (f) variance: (1) MC, (2) HSG with Nr = 2, No = 1, (3) HSG with Nr = 3, No = 1, (4) HSG with Nr = 3,
No = 2.
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