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Centro de Investigación en
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Mixed displacement-rotation-pressure formulations for elasticity

Verónica Anaya,∗ Zoa De Wijn,‡ David Mora,∗,† Ricardo Ruiz-Baier‡

Abstract

We propose a family of mixed finite element and finite volume element methods for the approxi-
mation of linear elastostatics, formulated in terms of displacement, rotation vector, and pressure.
The unique solvability of the three-field continuous formulation, as well as the invertibility and
stability of the proposed Galerkin and Petrov-Galerkin methods, is established thanks to the
Babuška-Brezzi theory. Optimal a priori error estimates are derived using norms robust with
respect to the Lamé constants, turning these numerical methods particularly appealing for nearly
incompressible materials. We exemplify the accuracy and applicability of the new formulation
and the mixed schemes by conducting a number of computational tests in 2D and 3D.

Key words: Elasticity equations; rotation vector; mixed finite elements; finite volume element for-
mulation; error analysis
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1 Introduction

The numerical solution of elasticity-based problems encompasses well-documented difficulties. For
instance, for pure-displacement formulations, if one uses classical finite element discretisations based
on piecewise linear and continuous elements, then accuracy is ensured only for moderate values of
the Poisson ratio ν. As ν → 0.5 (that is, when the Lamé constant λ → ∞ and the elastic material
becomes nearly incompressible), the numerical scheme might generate spurious solutions (unphysically
small deformations referred to as locking phenomenon, see for instance [9]). A number of alternative
formulations and associated numerical methods are available to overcome this issue. Notably, choosing
a mixed scheme would produce accurate solutions even for nearly incompressible materials, and at
the same time, one accommodates the direct approximation of auxiliary variables of interest such as
pressure, stress, or rotations.

One of the most commonly used mixed approaches for linear elasticity is the Hu-Washizu formu-
lation [25, 45]. Some popular methods based on the Hu-Washizu formulation include the enhanced
assumed strain method [42], the assumed stress method [38], the mixed-enhanced strain method [28],
the strain gap method [40], and the so-called B-bar method [26]. Some of these methods actually
coincide under certain conditions (see the discussions in e.g. [1, 10, 15]). The well-posedness for this
class of formulations has been established in [33], where it is also shown that a modified version of
the Hu-Washizu formulation is more amenable for obtaining uniform convergence with respect to the
model parameters when approaching the incompressibility limit. Alternatively, other mixed formu-
lations (such as the Hellinger-Reissner principle) can be employed to obtain robust methods with
respect to the Lamé constants.
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Schemes more closely related to the present contribution deal with mixed formulations for elasticity
involving pressure, stress, and rotation. We mention for instance mixed formulations based on stress
[3, 4, 7, 8], the augmented scheme in [22], a family of pseudostress-based methods from [20, 21], the
displacement-pressure mixed formulations [9, 11]; and the first-order least squares presented in [12].
We also mention locking-free methods for plate models [6], and the membrane elements introduced
in [27], all including rotation tensors as an additional field.

In contrast to the brief literature survey given above, here we advocate to the formulation of the
elasticity equations in terms of displacement, rotation vector, and pressure. It is worth noticing that
the present three-field formulation has a resemblance with the displacement, pressure, and vorticity
momentum formulations for acoustic fluid-structure interaction studied in [43, 44]. However in these
two contributions the system is solved for the fluid displacement, and the vorticity momentum arises
as the Lagrange multiplier imposing an irrotationality constraint.

In our case, after regarding the pressure together with the rotation vector as a single auxiliary
unknown (defined in an appropriate product functional space), we are able to analyse the solvability
of the resulting mixed variational formulation using the classical Babuška-Brezzi theory for saddle-
point problems. Thanks to a rescaling of the rotation vector norm, the well-posedness result and the
continuous dependence on the data turn out to be independent of the Lamé constants. Concerning
numerical approximation, we first introduce a family of finite elements given by piecewise continuous
polynomials of degree k ≥ 1 for the displacement, and piecewise polynomials of degree k − 1 for the
rotation and pressure. The unique solvability of the finite element scheme is then established using
analogous techniques as in the continuous case. In addition, we prove optimal a priori error estimates
with constants fully independent of the Lamé coefficient λ; guaranteeing robustness of the method also
in the nearly incompressible limit. We remark that in the two-dimensional case, the computational
cost of the proposed finite element method in its lowest order configuration is 6|Nh| (where Nh denotes
the set of vertices in the mesh and |Nh| its cardinality), which is lower than, for instance, the MINI
element for displacement-pressure formulations (accounting for 7|Nh| local degrees of freedom). These
features turn the proposed discretisation into a very appealing method.

A further goal in this contribution is to employ the three-field formulation and the aforementioned
finite element discretisation, to construct a finite volume element (FVE) method specifically tailored
for elasticity equations. FVE schemes correspond to Petrov-Galerkin formulations where the trial
space is constructed using a primal partition of the domain, whereas the test space is associated
with either a dual mesh or a dual basis. Depending on the particular kind of dual grid, the transfer
operator between trial and test spaces possesses different interpolation properties which are used in
recasting a preliminary pure finite volume formulation into a Petrov-Galerkin one. In general, these
methods enjoy some features shared by finite element and finite volume schemes, including local flux
conservation properties, liberty to choose different numerical fluxes and dual partitions associated to
unstructured primal meshes; and several others (see for example [13]). Discretisation schemes following
this principle have been systematically employed in numerous fluid flow problems, including Stokes,
Navier-Stokes (see e.g. [24,34,36,39,46]) and also in coupled flow-transport systems arising from diverse
applications (see [16,17,41]). However, up to our knowledge, the only contributions addressing FVE-
like discretisations for solid mechanics are the hybrid-stress finite volume method for linear elasticity
on quads studied in [47]; and [31], where two alternative stabilisation approaches based on nodal
pressure and dual bases and meshes are applied to construct inf-sup stable approximations for nearly
incompressible linear elasticity. The class of finite volume element methods we introduce here is based
on the lowest-order mixed finite element method discussed above. As in well-established FVE schemes
for Stokes equations (cf. [34,39]), it turns out that the two schemes differ only by the assembly of the
forcing term, and therefore straightforward derivation of stability properties and energy estimates in
natural norms can be done exploiting the results obtained for the family of mixed finite elements. In
addition, the FVE scheme features mass conservativity on the dual control volumes, suitability for
irregular domains and unstructured partitions, and robust approximations of displacements.
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Outline. We have structured the contents of the manuscript in the following manner. A few recur-
rent notations and useful identities are recalled in the remainder of this section. In Section 2 we state
the precise form of the linear elasticity equations that we will focus on, and we derive a suitable mixed
weak formulation, and provide its solvability analysis. A Galerkin method is introduced in Section 3,
where we also obtain stability properties and a priori error estimates. Section 4 concentrates on the
development of a low-order finite volume element scheme, and its accuracy is studied in connection
with the properties of the finite element method. The convergence and robustness of the proposed
methods is illustrated via a set of insightful computational tests collected in Section 5. Finally, we
present a variational formulation considering mixed boundary conditions in the Appendix.

Preliminaries. Let d = 2, 3 denote spatial dimension. For given vector fields θ = (θi)
d
i=1, v =

(vi)
d
i=1 we recall the following notation for differential operators:

div v := ∂1v1 + ∂2v2 + ∂3v3, θ × v :=

θ2v3 − θ3v2

θ3v1 − θ1v3

θ1v2 − θ2v1

 , curlv := ∇× v =

∂2v3 − ∂3v2

∂3v1 − ∂1v3

∂1v2 − ∂2v1

 .

We also recall a version of Green’s formula given in e.g. [23, Theorem 2.11]:∫
Ω

curlω · v =

∫
Ω

ω · curlv + 〈ω × n,v〉∂Ω, (1.1)

and the following useful identity

curl(curlv) = −∆v +∇(div v). (1.2)

2 The model problem

2.1 Derivation of a displacement-rotation-pressure formulation

We assume that an isotropic and linearly elastic solid occupies a bounded and connected Lipschitz
domain Ω of Rd, with boundary ∂Ω. Determining the deformation of a linearly elastic body subject
to a volume load and with given boundary conditions, and adopting the hypothesis of small strains,
results in the classical linear elasticity problem, formulated as follows. Given a external force f̃ and
a prescribed boundary motion g, we seek the displacements u such that

div
(
2µε(u) + λ divu I

)
= −f̃ in Ω, u = g on ∂Ω, (2.1)

where ε(u) = 1
2 (∇u + ∇ut) is the infinitesimal strain tensor, I denotes the d × d−identity matrix,

and µ, λ are the Lamé coefficients (intrinsic to the material properties of the solid, and here assumed
constant).

Next, and following the pseudostress-based formulation recently introduced in [21] (and motivated
by the seminal work [3]), one notices that using the identity

div(ε(u)) =
1

2
∆u+

1

2
∇(divu),

and dividing the momentum equation by λ + µ, we can rewrite (2.1) in the form of the well-known
Cauchy-Navier (or Navier-Lamé) equations

µ

λ+ µ
∆u+∇(divu) = −f in Ω, u = g on ∂Ω, (2.2)
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where the right hand side has been rescaled as f = 1
λ+µ f̃ . We then proceed to define the auxiliary

scaling parameter η := µ
λ+µ > 0, and recast (2.2) in a displacement-pressure formulation (considering

p = −divu as the solid pressure) as follows

η∆u−∇p = −f in Ω,

divu+ p = 0 in Ω, (2.3)

u = g on ∂Ω.

At this point, and with the aim of deriving formulations whose stability holds independently of
the Lamé coefficient λ, we introduce the field of rescaled rotations ω :=

√
η curlu, as an additional

unknown in the problem. Exploiting (1.2) and the definition of pressure in terms of displacements, we
observe that (2.3) is fully equivalent to the following set of governing equations, in their pure-Dirichlet
case. Find the displacement u, the rotation ω and the pressure p such that (see [12]):

√
η curlω + (1 + η)∇p = f in Ω, (2.4)

ω −√η curlu = 0 in Ω, (2.5)

divu+ p = 0 in Ω, (2.6)

u = g on ∂Ω. (2.7)

On the other hand, should one necessitate to incorporate mixed boundary conditions, to e.g.
impose a displacement g only on a part of the boundary ΓD, and set a given traction t̃ on the
remainder of the boundary, say ΓN = ∂Ω \ ΓD, we can proceed as follows. First we realise that
ε(u)n = (∇u)n− 1

2 curlu× n (where n denotes the outward unit normal on the boundary). Then,
thanks to (2.1) and (2.4), the normal Cauchy stress can be recast in terms of the strain, rotations and
pressure, and so the following set of mixed boundary conditions can be used instead of (2.7):

u = g on ΓD, and 2η(∇u)n−√ηω × n− (1− η)pn = t on ΓN, (2.8)

where the rescaled traction is t = 1
λ+µ t̃. However, and for sake of clarity, we will restrict the presenta-

tion and analysis to the pure Dirichlet case ΓD ≡ ∂Ω, considering only clamped boundaries g = 0. A
brief comment on how (2.8) is set up in a mixed variational formulation is postponed to the Appendix.

2.2 Weak form of the governing equations

Let us introduce the functional spaces

H := H1
0(Ω)d, Z := L2(Ω)d, and Q := L2(Ω),

where Z and Q are endowed with their natural norms, and we recall the definition of the norm in the
product space Z×Q as

‖(θ, q)‖2Z×Q := ‖θ‖20,Ω + ‖q‖20,Ω.

On the other hand, for H we consider the following η−dependent scaled norm (see for instance, [23,
Remark 2.7]):

‖v‖2H := η‖ curlv‖20,Ω + ‖ div v‖20,Ω,

We proceed to test (2.6) against adequate functions, to integrate by parts in two terms, and to
take into account the boundary conditions (2.7) in such a way that the resulting mixed variational
formulation reads as follows. Find

(
(ω, p),u

)
∈ (Z×Q)×H such that∫

Ω

ω · θ + (1 + η)

∫
Ω

pq + (1 + η)

∫
Ω

q divu−√η
∫

Ω

θ · curlu = 0 ∀(θ, q) ∈ Z×Q,
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(1 + η)

∫
Ω

p div v −√η
∫

Ω

ω · curlv = −
∫

Ω

f · v ∀v ∈ H.

Introducing the bilinear forms a : (Z × Q) × (Z × Q) → R, b : (Z × Q) × H → R, together with the
linear functional F : H→ R, all defined as

a
(
(ω, p), (θ, q)

)
:=

∫
Ω

ω · θ + (1 + η)

∫
Ω

pq,

b
(
(θ, q),v

)
:= (1 + η)

∫
Ω

q div v −√η
∫

Ω

θ · curlv,

F (v) := −
∫

Ω

f · v,

for all v ∈ H, ω,θ ∈ Z, and p, q ∈ Q; we realise that the variational problem above can be recast as:
Find

(
(ω, p),u

)
∈ (Z×Q)×H such that

a
(
(ω, p), (θ, q)

)
+ b
(
(θ, q),u

)
= 0 ∀(θ, q) ∈ Z×Q, (2.9)

b
(
(ω, p),v

)
= F (v) ∀v ∈ H. (2.10)

2.3 Well-posedness

The unique solvability of problem (2.9)-(2.10), together with the continuous dependence on the data
will be established using the well-known Babuška-Brezzi theory.

We first observe that the bilinear forms a(·, ·), b(·, ·) and the linear functional F (·) are all bounded
by positive constants independent of η (and therefore independent of the Lamé coefficient λ). In
addition, the bilinear form a(·, ·) is (Z×Q)−elliptic, uniformly with respect to the scaling parameter
η, as stated in the following result.

Lemma 2.1 There exists α > 0, independent of η, such that

a
(
(θ, q), (θ, q)

)
≥ α‖(θ, q)‖2Z×Q ∀ (θ, q) ∈ Z×Q.

Moreover, an inf-sup condition holds for the bilinear form b(·, ·).

Lemma 2.2 There exists C > 0, independent of η, such that

sup
(θ,q)∈Z×Q

b
(
(θ, q),v

)
‖(θ, q)‖Z×Q

≥ C‖v‖H ∀v ∈ H.

Proof. Let us consider a generic v ∈ H and define

θ̃ := −√η curlv ∈ Z, and q̃ := div v ∈ Q.

We immediately notice that
‖(θ̃, q̃)‖Z×Q ≤ ‖v‖H,

and from the definition of b(·, ·), we readily obtain

sup
(θ,q)∈Z×Q

b((θ, q),v)

‖(θ, q)‖Z×Q
≥ b((θ̃, q̃),v)

‖(θ̃, q̃)‖Z×Q

≥ C‖v‖H ∀v ∈ H,

which finishes the proof. �

We are now in a position to state the solvability of the continuous problem (2.9)-(2.10).
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Theorem 2.1 There exists a unique solution
(
(ω, p),u

)
∈ (Z×Q)×H to problem (2.9)-(2.10), which

satisfies the following continuous dependence on the data

‖(ω, p)‖Z×Q + ‖u‖H ≤ C‖f‖0,Ω.

Proof. By virtue of the general theory for saddle-point problems (see e.g. [19]), the desired result
follows from a direct application of Lemmas 2.1 and 2.2. �

3 Finite element discretisation

In this section, we introduce a Galerkin scheme associated to problem (2.9)-(2.10), we specify the
finite dimensional subspaces to employ, and analyse the well-posedness of the resulting methods using
suitable assumptions on the discrete spaces. The section also contains a derivation of error estimates.

3.1 Formulation and solvability

Let {Th(Ω)}h>0 be a shape-regular family of partitions of the domain Ω, by tetrahedrons (if d = 3, or
triangles if d = 2) T of diameter hT , having meshsize h := max{hT : T ∈ Th(Ω)}. Given an integer
k ≥ 1 and a set S ⊂ Rd, the space of polynomial functions defined in S and having total degree ≤ k
will be denoted by Pk(S).

Next, we define the following discrete spaces:

Hh := {vh ∈ H : vh|T ∈ Pk(T )d ∀T ∈ Th(Ω)},
Zh := {θh ∈ Z : θh|T ∈ Pk−1(T )d ∀T ∈ Th(Ω)},
Qh := {qh ∈ Q : qh|T ∈ Pk−1(T ) ∀T ∈ Th(Ω)},

which are subspaces of H, Z and Q, respectively; and proceed to state a Galerkin scheme associated
to the continuous variational formulation (2.9)-(2.10). Find ((ωh, ph),uh) ∈ (Zh×Qh)×Hh such that

a((ωh, ph), (θh, qh)) + b((θh, qh),uh) = 0 ∀(θh, qh) ∈ Zh ×Qh, (3.1)

b((ωh, ph),vh) = F (vh) ∀vh ∈ Hh. (3.2)

Our next goal is to establish discrete counterparts of Lemmas 2.1 and 2.2, leading to the solvability
and stability of the Galerkin method (3.1)-(3.2). Their proofs are obtained using the same arguments
exploited in the continuous case. For completeness we provide the essential steps of the latter result.

Lemma 3.1 There exists α > 0, independent of η, such that

a((θh, qh), (θh, qh)) ≥ α‖(θh, qh)‖2Z×Q.

Lemma 3.2 There exists C > 0, independent of η, such that

sup
(θh,qh)∈Zh×Qh

b((θh, qh),vh)

‖(θh, qh)‖Z×Q
≥ C‖vh‖H ∀vh ∈ Hh.

Proof. For a generic v ∈ Hh, let us define

θ̃h := −√η curlvh ∈ Zh, and q̃h := div vh ∈ Qh.

Then we readily notice that
‖(θ̃h, q̃h)‖Z×Q ≤ ‖vh‖H,

6



Displacement-rotation-pressure formulations for elasticity Anaya et al.

and so, from the definition of the bilinear form b(·, ·), we arrive at

sup
(θh,qh)∈Zh×Qh

b((θh, qh),vh)

‖(θh, qh)‖Z×Q
≥ b((θ̃h, q̃h),vh)

‖(θ̃h, q̃h)‖Z×Q

≥ C‖vh‖H ∀vh ∈ Hh,

which finishes the proof. �

We can now state the unique solvability, stability, and convergence properties of the discrete
problem (3.1)-(3.2), formulated in form of the three following theorems.

Theorem 3.1 There exists a unique ((ωh, ph),uh) ∈ (Zh×Qh)×Hh solution of the discrete problem
(3.1)-(3.2). Moreover, there exists a constant C > 0, independent of h and η, such that

‖(ωh, ph)‖Z×Q + ‖uh‖H ≤ C‖f‖0,Ω.

In addition, the following approximation property is satisfied

‖(ω −ωh, p− ph)‖Z×Q + ‖u− uh‖H ≤ C inf
((θh,qh),vh)∈(Zh×Qh)×Hh

‖(ω − θh, p− qh)‖Z×Q + ‖u− vh‖H,

where ((ω, p),u) ∈ (Z×Q)×H is the unique solution of the mixed variational formulation (2.9)-(2.10).

Theorem 3.2 Let ((ω, p),u) ∈ (Z×Q)×H and ((ωh, ph),uh) ∈ (Zh ×Qh)×Hh be the solutions of
the continuous and discrete problems (2.9)-(2.10) and (3.1)-(3.2), respectively. Then

‖(ω − ωh, p− ph)‖Z×Q + ‖u− uh‖H ≤ Chk(‖ω‖k,Ω + ‖p‖k,Ω + ‖u‖k+1,Ω).

Proof. The result follows from Theorem 3.1 and the standard error estimates for the Lagrange inter-
polant of u and the vectorial and scalar L2−orthogonal projections for ω and p, respectively. �

To close this section, we observe that the convergence of the displacement approximation can be
also measured in the L2(Ω)d−norm, thanks to a classical duality strategy.

Theorem 3.3 Let ((ω, p),u) ∈ (Z×Q)×H and ((ωh, ph),uh) ∈ (Zh ×Qh)×Hh be the solutions of
the continuous and discrete problems (2.9)-(2.10) and (3.1)-(3.2), respectively. Then, there exists a
constant C > 0, independent of h and η, such that

‖u− uh‖0,Ω ≤ Chk+1(‖ω‖k,Ω + ‖p‖k,Ω + ‖u‖k+1,Ω).

Proof. Resorting to a duality argument, we first consider the following well posed problem: Find
((ξ, φ), z) ∈ (Z×Q)×H such that

a((θ, q), (ξ, φ)) + b((θ, q), z) = 0 ∀(θ, q) ∈ Z×Q, (3.3)

b((ξ, φ),v) =

∫
Ω

(u− uh) · v ∀v ∈ H. (3.4)

We assume that the unique solution to (3.3)-(3.4) satisfies an additional regularity. More precisely,
there exists a constant C̃ > 0, independent of η such that

‖(ξ, φ)‖1,Ω + ‖z‖2,Ω ≤ C‖u− uh‖0,Ω. (3.5)

Next, and thanks to (3.4), we observe that for all (ξh, φh) ∈ Zh ×Qh we can write

‖u− uh‖20,Ω = b((ξ, φ),u− uh)

= b((ξ − ξh, φ− φh),u− uh) + b((ξh, φh),u− uh)

= b((ξ − ξh, φ− φh),u− uh)− a((ω − ωh, p− ph), (ξh, φh)), (3.6)
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where we have also employed (2.9) and (3.1). We then proceed to bound the second term in the right
hand side of (3.6). This is carried out by adding and subtracting (ξ, φ), and applying (3.3)

a((ω − ωh, p− ph), (ξh, φh)) = a((ω − ωh, p− ph), (ξ, φ))− a((ω − ωh, p− ph), (ξ − ξh, φ− φh))

=− b((ω − ωh, p− ph), z)− a((ω − ωh, p− ph), (ξ − ξh, φ− φh))

=− b((ω − ωh, p− ph), z − zh)− a((ω − ωh, p− ph), (ξ − ξh, φ− φh)),

(3.7)

where in the last step we have also used (2.10) and (3.2), valid for all zh ∈ Hh. Hence, from (3.6)-(3.7),
we can deduce that

‖u− uh‖20,Ω = ‖(ξ − ξh, φ− φh)‖Z×Q‖u− uh‖H + ‖(ω − ωh, p− ph)‖Z×Q‖z − zh‖H
+ ‖(ω − ωh, p− ph)‖Z×Q‖(ξ − ξh, φ− φh)‖Z×Q,

which holds for all (ξh, φh) ∈ Zh × Qh and zh ∈ Hh. Taking in particular the L2−orthogonal
projections for ξ and φ and the Lagrange interpolant of z in this last estimate, and using classical
error estimates for the involved spaces together with the additional regularity (3.5), we finally obtain

‖u− uh‖0,Ω ≤ Chk+1(‖ω‖k,Ω + ‖p‖k,Ω + ‖u‖k+1,Ω),

thus completing the proof. �

4 A finite volume element scheme

In addition to the mesh Th (from now on, the primal mesh), we introduce another tessellation of Ω,
denoted by T ?h and referred to as the dual mesh, where for each element K ∈ Th we create segments
joining its barycentre bK with the midpoints (2D barycentres) mF of each face F ⊂ ∂K (or the
midpoints of each edge, in 2D), forming four polyhedra (or three quadrilaterals, in the 2D case) Qz
for z in the set of vertices of K, that is, z ∈ Nh ∩K. Then to each vertex sj ∈ Nh, we associate a so-
called control volume K?

j consisting of the union of the polyhedra (quadrilaterals in 2D) Qsj sharing
the vertex sj . A sketch of the resulting control volume associated to sj is depicted in Figure 1(a).

In its lowest-order version, a FVE method for the approximation of (2.9)-(2.10) can be constructed
by associating discrete spaces to a dual partition of the domain

H?
h :=

{
v ∈ L2(Ω)d : v|K?

j
∈ P0(K?

j )d for allK?
j ∈ T ?h , v|K?

j
= 0 if K?

j is a control volume on ∂Ω
}
,

and notice that no additional space is introduced for the finite volume approximation of ω or p.
Furthermore, we define the T ?h −piecewise lumping map Hh : Hh → H?

h which relates the primal and
conforming dual meshes by

vh(x) =
∑
j

vh(sj)ϕj(x) 7→ Hhvh(x) =
∑
j

vh(sj)χj(x),

for all vh ∈ Hh, where χj is the vectorial characteristic function of the control volume K?
j and {ϕj}j

is the canonical FE basis of Hh (cf. [39]). For any v ∈ H, this operator satisfies the interpolation
bound (see e.g. [13])

‖v −Hhv‖0,Ω ≤ Ch|v|1,Ω.

In addition, since H := H1
0(Ω)d = H0(curl; Ω) ∩H0(div; Ω), remark [23, Remark 2.7] implies that the

operator Hh(·) also satisfies

‖v −Hhv‖0,Ω ≤ Ch||v||H, (4.1)
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mF

bK

sjK⋆
j

K

(a)

Th−T ?
h --

(b)

s1

s2

s3

m1

m2

m3
bK

Q3

Q1

Q2

K

1

(c)

Figure 1: Sketch of five elements in the primal mesh Th sharing the vertex sj and employed to
construct the control volume K?

j belonging to the dual partition T ?h (a); example of coarse primal and
dual meshes (b); and one triangular element K ∈ Th with barycentre bK , where the mi’s denote the
midpoints of the edges, and the Qi’s are the quadrilaterals that form the control volumes (c).

which plays a role in the convergence proof for the envisioned FVE method.

The discrete FVE formulation is obtained by multiplying (2.4) by v?h ∈ H?
h and integrating

by parts over each K?
j ∈ T ?h , multiplying (2.5) by θh ∈ Zh and integrating by parts over each

K ∈ Th, and multiplying (2.6) by (1 + η)qh, for qh ∈ Qh, and integrating by parts over each K ∈ Th.
This, along with identity (1.1), results in a Petrov-Galerkin formulation that reads as follows: Find(
(ω̂h, p̂h), ûh

)
∈ (Zh ×Qh)×Hh such that

a
(
(ω̂h, p̂h), (θh, qh)

)
+ b
(
(θh, qh), ûh

)
= 0 ∀(θh, qh) ∈ Zh ×Qh, (4.2)

b̃
(
(ω̂h, p̂h),v?h

)
= F̃ (v?h) ∀v?h ∈ H?

h, (4.3)

where the bilinear form b̃ : (Zh ×Qh)×H?
h → R and the linear functional F̃ : H?

h → R are defined as

b̃
(
(θh, qh),v?h

)
:= −(1 + η)

|Nh|∑
j=1

∫
∂K?

j

qh(v?h · n)−√η
|Nh|∑
j=1

∫
∂K?

j

(θh × n) · v?h,

F̃ (v?h) := −
|Nh|∑
j=1

∫
K?

j

f · v?h.

Observe that the bilinear form b̃
(
·, ·
)

and the linear functional F̃
(
·
)

are both bounded by positive
constants independent of η. We also introduce the bilinear form B : (Zh ×Qh)×Hh → R defined by

B
(
(θh, qh

)
,vh
)

:= b̃
(
(θh, qh

)
,Hhvh

)
,

which allows us to recast the Petrov-Galerkin formulation (4.2)-(4.3) as a standard Galerkin method.
If one is interested in imposing mixed boundary conditions (prescribing a displacement g on ΓD ⊂ ∂Ω,
and setting a given traction t̃ on the remainder of the boundary), we can modify the FVE scheme as
detailed in the Appendix.

We proceed to establish a relationship between the bilinear forms b(·, ·) and B(·, ·), which will be
useful to carry out the error analysis in a finite-element-fashion. For the sake of brevity, only the
proof for the two-dimensional case is provided. The proof for the three-dimensional case follows in
an analogous manner, where we instead consider polyhedral control volumes and boundary surfaces
rather than boundary edges.
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Lemma 4.1 For any
(
θh, qh

)
∈ Zh ×Qh and vh ∈ Hh, one has

B
(
(θh, qh),vh

)
:= b̃

(
(θh, qh),Hhvh

)
= b
(
(θh, qh),vh

)
. (4.4)

Proof. First, let g be a function that is continuous on the interior of each quadrilateral Qj (as shown
in Figure 1(c)) with

∫
e
g = 0 for any boundary edge e. Using Figure 1(c), it is straightforward to show

that the following relation holds:

|Nh|∑
j=1

∫
∂K?

j

g =
∑
K∈Th

3∑
j=1

∫
mj+1bKmj

g,

where mj+1bKmj denotes the union of the line segments mj+1bK and bKmj . We take mj+3 = mj in
the case that the index is out of bound.

Next, from the definition of the transfer operator Hh(·), we find that

B
(
(θh, qh),vh

)
= −(1 + η)

|Nh|∑
j=1

∫
∂K?

j

qhvh(sj) · n−
√
η

|Nh|∑
j=1

∫
∂K?

j

(θh × n) · vh(sj).

In order to arrive at (4.4), we use the definition of B
(
·, ·
)

in combination with integration by parts
and the fact that both qh and vh(sj) are constant in the interior of each quadrilateral Qj , to obtain

B
(
(θh, qh),vh

)
= −(1 + η)

∑
K∈Th

3∑
j=1

∫
mj+1bKmj

qhvh(sj+1) · n

−√η
∑
K∈Th

3∑
j=1

∫
mj+1bKmj

(θh × n) · vh(sj+1)

= (1 + η)
∑
K∈Th

3∑
j=1

qh

[ ∫
sjmj

vh(sj+1) · n+

∫
mjsj+1

vh(sj+1) · n
]

+
√
η
∑
K∈Th

3∑
j=1

[ ∫
sjmj

(θh × n) · vh(sj+1) +

∫
mjsj+1

(θh × n) · vh(sj+1)

]
.

Since qh and θh are constant on the edges of each element K ∈ Th, we can write

B
(
(θh, qh),vh

)
= (1 + η)

∑
K∈Th

3∑
j=1

qh

∫
sjsj+1

vh · n+
√
η
∑
K∈Th

3∑
j=1

∫
sjsj+1

(θh × n) · vh

= (1 + η)
∑
K∈Th

∫
∂K

qhvh · n+
√
η
∑
K∈Th

∫
∂K

(θh × n) · vh.

Then, after one application of integration by parts and identity (1.1), we arrive at

B
(
(θh, qh),vh

)
= (1 + η)

∑
K∈Th

∫
K

qh div vh −
√
η
∑
K∈Th

∫
K

θh · curlvh

= b
((
θh, qh

)
,vh
)
,

which finishes the proof. �

Our next goal is to prove a FVE-counterpart of Lemma 3.2, leading to the solvability and stability
of (4.2)-(4.3). Recall that Lemma 3.1 establishes that the bilinear form a

(
·, ·
)

is (Zh × Qh)−elliptic,
uniformly with respect to the auxiliary parameter η. It is also straightforward to show that the bilinear
form B(·, ·) satisfies the inf-sup condition, as stated in the following result.

10
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Lemma 4.2 There exists C > 0, independent of η, such that

sup
(θh,qh)∈Zh×Qh

B((θh, qh),vh)

‖(θh, qh)‖Z×Q
≥ C‖vh‖H ∀vh ∈ Hh.

Proof. This result immediately follows from a straightforward application of Lemma 4.1 in combination
with Lemma 3.2. �

Analogously to the previous section, the following two theorems formulate the unique solvability,
stability, best approximation, and convergence properties of the discrete problem (4.2)-(4.3).

Theorem 4.1 There exists a unique ((ω̂h, p̂h), ûh) ∈ (Zh×Qh)×Hh solution of the discrete problem
(4.2)-(4.3). Moreover, there exists a constant C > 0, independent of h and η, such that

‖(ω̂h, p̂h)‖Z×Q + ‖ûh‖H ≤ C‖f‖0,Ω.

In addition, the following best approximation result is satisfied

‖(ω − ω̂h, p− p̂h)‖Z×Q + ‖u− ûh‖H ≤ C inf
((θh,qh),vh)∈(Zh×Qh)×Hh

‖(ω − θh, p− qh)‖Z×Q + ‖u− vh‖H,

where ((ω, p),u) ∈ (Z×Q)×H is the unique solution of the mixed variational formulation (2.9)-(2.10).

The next lemma establishes linear convergence, which is expected as the only difference with respect
to the FE scheme is the right hand side.

Theorem 4.2 Let ((ω, p),u) ∈ (Z×Q)×H and ((ω̂h, p̂h), ûh) ∈ (Zh ×Qh)×Hh be the solutions of
the continuous and discrete problems (2.9)-(2.10) and (4.2)-(4.3), respectively. Then

‖(ω − ω̂h, p− p̂h)‖Z×Q + ‖u− ûh‖H ≤ Ch(‖ω‖1,Ω + ‖p‖1,Ω + ‖u‖2,Ω).

Proof. Let ((ωh, ph),uh) and ((ω̂h, p̂h), ûh) denote the solutions to the FE formulation (3.1)-(3.2)
and the FVE formulation (4.2)-(4.3), respectively. Observe that Lemma 4.1 readily implies that

a((ωh − ω̂h, ph − p̂h), (θh, qh)) + b((θh, qh),uh − ûh) = 0 ∀(θh, qh) ∈ Zh ×Qh,

b((ωh − ω̂h, ph − p̂h),vh) = F (vh −Hhvh) ∀vh ∈ Hh,

such that substituting (ωh − ω̂h, ph − p̂h) for (θh, qh) and uh − ûh for vh gives

a((ωh − ω̂h, ph − p̂h), (ωh − ω̂h, ph − p̂h)) = −b((ωh − ω̂h, ph − p̂h),uh − ûh), (4.5)

b((ωh − ω̂h, ph − p̂h),uh − ûh) = F ((uh − ûh)−Hh(ũh − ûh)). (4.6)

Next, after applying the inf-sup condition from Lemma 4.2 to equation (4.5), standard arguments
imply that there exists a constant C0 > 0, independent of h and η, such that

||uh − ûh||H ≤ C0h. (4.7)

Moreover, combining equation (4.5) with equation (4.6) relates the bilinear form a
(
·, ·
)

and the linear

functional F
(
·
)
, such that (4.1) in combination with Lemma 3.1 implies that there exists a constant

C1 > 0, independent of h and η, such that

||(ωh − ω̂h, ph − p̂h)||Z×Q ≤ C1h. (4.8)

Applying the triangle inequality to the convergence bound for the FE method established in Theo-
rem 3.2 in combination with the inequalities (4.7) and (4.8) finishes the proof. �

To close this section, we prove an L2−estimate for the displacement error. For this purpose we
first state a preliminary result (cf. [39]) that involves the transfer operator Hh(·).
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Lemma 4.3 For any function zh ∈ Hh and any element K ∈ Th, one has∫
K

(zh −Hhzh) = 0.

Theorem 4.3 Let ((ω, p),u) ∈ (Z × Q) × H and ((ω̂h, p̂h), ûh) ∈ (Zh × Qh) × Hh be the solutions
of the continuous and discrete problems (2.9)-(2.10) and (4.2)-(4.3), respectively. Then there exists a
constant C > 0, independent of h and η, such that

‖u− ûh‖0,Ω ≤ Ch2

[
‖ω‖1,Ω + ‖p‖1,Ω +

( ∑
K∈Th

‖f‖21,K
)1/2

+ ‖u‖2,Ω
]
.

Proof. Let ((ωh, ph),uh) and ((ω̂h, p̂h), ûh) denote the solutions to the FE formulation (3.1)-(3.2)
and the FVE formulation (4.2)-(4.3), respectively. Following the proof of Theorem 3.3, we once again
resort to a duality argument involving problem (3.3)-(3.4) with ûh instead of uh, for which we assume
there exists a unique solution that satisfies the regularity requirement (3.5). Next, we employ identity
(3.6) in order to arrive at the envisioned error bound. Using (2.10) and (3.2) in combination with
(4.3) and Lemma 4.1, and by adding and subtracting B((ω̂h, p̂h), zh) we obtain

b((ω − ω̂h, p− p̂h), zh) + b((ω̂h − ωh, p̂h − ph), zh) = b((ω, p), zh)− b((ωh, ph), zh) = 0, (4.9)

such that employing identity (3.7) and identity (4.9) yields

a((ω − ω̂h, p− p̂h), (ξh, φh)) =− b((ω − ω̂h, p− p̂h), z)− a((ω − ω̂h, p− p̂h), (ξ − ξh, φ− φh))

=− b((ω − ω̂h, p− p̂h), z − zh)− a((ω − ω̂h, p− p̂h), (ξ − ξh, φ− φh))

+ b((ω̂h − ωh, p̂h − ph), zh),

(4.10)

which holds for all zh ∈ Hh. In particular, we take the Lagrange interpolant of z, denoted by zI ∈ Hh.
Moreover, for every element K ∈ Th, we use fK to denote the average of f on such element. Then, by
the virtue of Lemma 4.3 and by integrating over elements K ∈ Th instead of over the control volumes
K?
j ∈ T ?h and the domain Ω, we find that for some constant C0 > 0, independent of h and η,

|b((ω̂h − ωh, p̂h − ph), zI)| ≤
∣∣∣∣ |Nh|∑
j=1

∫
K?

j

f · HhzI −
∫

Ω

f · zI
∣∣∣∣

=

∣∣∣∣ ∑
K∈Th

∫
K

f · (HhzI − zI)
∣∣∣∣

=

∣∣∣∣ ∑
K∈Th

∫
K

(f − fK) · (HhzI − zI)
∣∣∣∣

≤ C0h
2

( ∑
K∈Th

||f ||21,K
)1/2

|zI |1,Ω,

where the last step follows from the interpolation bound satisfied by the transfer operator Hh(·).
Furthermore, by one application of the triangle inequality it follows that for some constants C1, C2 > 0,
independent of h and η, one has

|b((ω̂h − ωh, p̂h − ph), zI)| ≤ C0h
2

( ∑
K∈Th

||f ||21,K
)1/2(

|zI − z|1,Ω + |z|1,Ω
)

≤ C1h
2

( ∑
K∈Th

||f ||21,K
)1/2(

||z||2,Ω + |z|1,Ω
)
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D.o.f. h e0(u) r0(u) eH(u) rH(u) e0(ω) r0(ω) e0(p) r0(p)

Mixed finite volume element with k = 1

34 0.7071 0.079453 – 0.35510 – 0.04578 – 0.42279 –
68 0.4714 0.063802 0.681 0.27558 0.573 0.04244 0.486 0.36318 0.476

172 0.2828 0.023599 1.540 0.21289 1.021 0.03270 0.638 0.20001 1.034
524 0.1571 0.009612 1.960 0.10311 1.065 0.02033 0.798 0.10700 1.074

1804 0.0831 0.001842 2.071 0.05018 1.073 0.01143 0.921 0.05688 1.079
6668 0.0428 0.000819 2.071 0.02001 1.048 0.00613 0.980 0.02730 1.051

25612 0.0217 0.000079 2.053 0.01295 1.027 0.00304 1.001 0.01258 1.029
100364 0.0109 0.000035 2.027 0.00645 1.015 0.00123 1.002 0.00693 1.016

Mixed finite element with k = 1

34 0.7071 0.082091 – 0.44686 – 0.05045 – 0.44405 –
68 0.4714 0.069138 0.623 0.38582 0.562 0.04647 0.202 0.38301 0.464

172 0.2828 0.033144 1.439 0.22359 1.067 0.03639 0.478 0.22061 1.079
524 0.1571 0.009937 2.049 0.11873 1.076 0.02256 0.813 0.11656 1.085

1804 0.0831 0.002630 2.090 0.06008 1.070 0.01247 0.931 0.05877 1.076
6668 0.0428 0.000661 2.082 0.03000 1.047 0.00649 0.984 0.02929 1.050

25612 0.0217 0.000163 2.062 0.01495 1.027 0.00329 1.002 0.01458 1.028
100364 0.0109 0.000041 2.032 0.00745 1.014 0.00165 1.002 0.00727 1.015

Mixed finite element with k = 2

98 0.7071 0.042104 – 0.19409 – 0.06606 – 0.18250 –
206 0.4714 0.020403 1.788 0.10392 1.549 0.03889 1.903 0.09637 1.577
542 0.2828 0.005284 2.647 0.03914 1.918 0.01338 2.027 0.03678 1.885

1694 0.1571 0.000945 2.923 0.01239 1.956 0.00418 1.973 0.01166 1.956
5918 0.0831 0.000138 3.027 0.00349 1.995 0.00114 2.033 0.00330 1.982

22046 0.0428 0.000018 3.042 0.00092 2.002 0.00029 2.023 0.00087 1.994
85022 0.0217 0.000003 3.018 0.00023 2.002 0.00008 2.052 0.00022 1.992

333854 0.0109 0.000001 3.039 0.00006 2.001 0.00002 2.013 0.00006 1.998

Table 1: Test 1A. Experimental convergence for the mixed Petrov-Galerkin (cf. (4.2)-(4.3)) and
Galerkin (cf. (3.1)-(3.2)) approximation of the compressible linear elasticity equations using µ = 50
and λ = 5000.

≤ C2h
2

( ∑
K∈Th

||f ||21,K
)1/2

||u− ûh||0,Ω, (4.11)

where the last two inequalities follow from the classical error estimates for the Lagrange interpolants
and the additional regularity requirement. Hence, by taking the L2−projections for ξ and φ, using the
classical error estimates for the involved spaces, and employing identity (4.10) in combination with
inequality (4.11), we straightforwardly deduce that for some constant C > 0 (independent of h and
η), one has the bound

‖u− ûh‖0,Ω ≤ Ch2

[
‖ω‖1,Ω + ‖p‖1,Ω +

( ∑
K∈Th

||f ||21,K
)1/2

+ ‖u‖2,Ω
]
,

thus completing the proof. �
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(a) (b) (c)

Figure 2: Test 1A (scheme accuracy). Approximate displacement magnitude (a), rotation scalar field
(b), and pressure (c); obtained with the lowest order FVE method.

5 Numerical tests

Test 1 (accuracy assessment). For our first computational example we conduct a convergence
test using a sequence of successively refined uniform partitions of the elastic domain Ω = (0, 1)2. We
arbitrarily choose the Lamé parameters µ = 50, λ = 5000, so that η = 0.0099. This example focuses
on the pure-Dirichlet problem (2.4)-(2.7), where we propose the following closed-form solutions

u =

(
x(1− x) cos(πx) sin(2πy)
sin(πx) cos(πy)y2(1− y)

)
, ω =

√
η curlu, p = −divu,

satisfying the homogeneous Dirichlet datum, and where the forcing term f is constructed using these
smooth functions and the linear momentum equation. The convergence study is performed for the
FVE method (4.2)-(4.3) (of lowest order), and for the Galerkin schemes (3.1)-(3.2) of order k = 1 and
k = 2. For a generic scalar or vectorial field v, on each nested mesh we will denote computed errors
and experimental convergence rates as

e0(v) = ‖v − vh‖0,Ω, eH(v) = ‖v − vh‖H, ri(v) = log

(
ei(v)

ê(v)

)
[log(h/ĥ)]−1, i = 0,H,

where e, ê stand for errors generated by methods defined on meshes with meshsizes h, ĥ, respectively;
and we recall that ‖ · ‖H denotes the η−dependent norm. These errors are tabulated by number of
degrees of freedom in Table 1. Apart from the displacement error measured in the L2−norm (whose
error decays with order hk+1 as anticipated by Theorem 3.3), each individual error exhibits an O(hk)
rate of convergence, as expected from the a priori error estimates stated in Theorems 3.2 and 4.2.
Moreover, the errors produced by the first two methods practically coincide. This is due to the fact
that they only differ in the RHS assembly. For reference, in Figure 2 we depict approximate solutions
generated with the lowest order FVE scheme. Analogous numerical studies using mixed boundary
conditions (see the formulation in the Appendix) produce the same optimal convergence behaviour
observed in the pure Dirichlet case.

In addition, these methods are robust with respect to the model parameters, which we confirm by a
series of tests where we fix a Young modulus E = 10000, we vary the Poisson ratio ν, and measure the
errors produced by the first order finite element method on an unstructured mesh of 33282 elements
and 100364 D.o.f. (see first block in Table 2). Furthermore, we also construct a different smooth forcing
term f = (105 cos(x), 105 cos(y))t, independent of the model parameters, solve the discrete problem
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ν λ µ η e0(u) eH(u) e0(ω) e0(p)

0.33333 7500 3750.00 0.33333 0.000040 0.01127 0.00807 0.00787
0.40000 14285.71 3571.43 0.20000 0.000038 0.01004 0.00658 0.00758
0.45000 31034.48 3448.28 0.10000 0.000037 0.00886 0.00491 0.00738
0.49000 164429.53 3355.71 0.02000 0.000035 0.00763 0.00232 0.00727
0.49900 1664442.96 3335.56 0.00200 0.000036 0.00730 0.00075 0.00726
0.49990 16664444.30 3333.56 0.00020 0.000039 0.00727 0.00025 0.00726
0.49999 166664444.43 3333.36 0.00002 0.000040 0.00726 0.00008 0.00726

ν λ µ η ‖uh‖0,Ω ‖uh‖H ‖ωh‖0,Ω ‖ph‖0,Ω
0.33333 7500 3750.00 0.33333 6.346721 23.1147 13.0760 19.0607
0.40000 14285.71 3571.43 0.20000 7.749333 26.3285 12.6964 23.0649
0.45000 31034.48 3448.28 0.10000 9.346012 29.7836 11.1665 27.6111
0.49000 164429.53 3355.71 0.02000 11.28440 33.7542 6.26612 33.1675
0.49900 1664442.96 3335.56 0.00200 11.85713 34.8893 2.10631 34.8257
0.49990 16664444.30 3333.56 0.00020 11.91832 35.0094 0.67041 35.0030
0.49999 166664444.43 3333.36 0.00002 11.92467 35.0215 0.21214 35.0209

Table 2: Test 1B. Accuracy (top rows) and robustness with respect to the Lamé constants (bot-
tom rows) studied on two different benchmark tests approximated with the lowest-order mixed finite
element method.

for relatively large Lamé constants (we recall that λ = Eν/[(1 + ν)(1− 2ν)] and µ = E/(2 + 2ν)), and
tabulate in the bottom block of Table 2 the obtained norms of the approximate solutions. We evidence
stable and robust computations even in the regimes of near incompressibility. All linear systems in
this example were solved with the Unsymmetric Multi-Frontal sparse LU factorisation (UMFPACK).

Test 2 (2D beam bending). For the next computational example we consider the displacement-
rotation-pressure patterns of a rectangular beam (with length L = 10 and height l = 2) subjected to a
couple (that is, a prescribed traction (f(1−y), 0)t, with f = 200) at one end, as shown in Figure 3(a).
We assume that the origin O is fully fixed and that the horizontal displacement is zero along the
left edge of the domain Ω. Furthermore, on the remainder of the boundary we consider zero normal
stresses incorporated through the bilinear form c(·, ·) (see (A.3)) and we set up a zero body force
f = 0. The availability of an exact solution (cf. [30])

u1(x, y) =
2f(1− ν)2

El
x

(
l

2
− y
)
, and u2(x, y) =

f(1− ν)2

El

[
x2 +

ν

1 + ν
y(y − l)

]
, (5.1)

makes that this problem is frequently used as a benchmark. In Figure 3 we illustrate the components
of the displacement, the rotation and the pressure computed on a mesh consisting of 5120 triangular
elements using the mixed FE method corresponding to k = 2, where the rectangular beam we consider
has the following material properties: Young’s modulus E = 1500, Poisson’s ratio ν = 0.49, Lamé
constants λ = 24664.4 and µ = 503.356, such that the model parameter equals η = 0.02. In addition,
we conduct several tests for the lowest order mixed FE and FVE methods on different mesh resolutions
and report on the error with respect to the analytic solution (5.1). In particular, Figure 4 displays
the displacement error in the H−norm and the L2−norm versus the meshsize, for the FE and FVE
schemes, and for two values of the Poisson ratio ν = 0.49, 0.4999. The Young’s modulus is in both
cases E = 1500. Observe that these results are in agreement with the theoretical results obtained in
Sections 3-4. In addition, although this is in general not true, we mention that the second order FE
scheme ensures extremely rapid convergence (explained by the regularity of the true solution (5.1)).
For ν = 0.4999, optimal convergence is recovered for finer meshes.

We also perform a series of tests for the lowest order FE method using different Lamé constants
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⌦⌦

O x

y
f

f

L

l

1

(a) (b)

(c) (d) (e)

Figure 3: Test 2. Rectangular beam fixed at the origin O and with zero horizontal displacement
along the left lateral edge, subjected to bending due to a couple at one end. Sketch of the domain
configuration with a coarse structured mesh and the imposed boundary conditions (a), displacement
components (b,c), pressure distribution (d), and rotation (e); all computed with a second order mixed
FE method on a mesh of 5120 triangular elements.
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Figure 4: Test 2. Convergence history for the displacement approximation using the first order mixed
FE and FVE schemes, for ν = 0.49 (a) and ν = 0.4999 (b).

and model parameters in order to test the performance of the methods when approaching the incom-
pressibility limit, where we fix a Young’s modulus E = 1500, vary the Poisson ratio ν, and use a mesh
consisting of 100000 triangular elements and using 301201 D.o.f.. Based on the comparisons in Table
3, we observe that the performance is barely modified for large values of λ.
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ν λ µ η e0(u) eH(u) ‖uh‖0,Ω ‖uh‖H

0.2000 416.667 625.00 0.6000 0.0041 0.0048 12.9021 0.9667
0.3333 1124.69 562.51 0.3333 0.0044 0.0046 11.9137 0.8786
0.4000 2142.86 535.71 0.2000 0.0055 0.0045 11.2365 0.8231
0.4500 4655.17 517.24 0.1000 0.0088 0.0045 10.6469 0.7774
0.4900 24664.4 503.36 0.0200 0.0367 0.0053 10.1009 0.7371
0.4990 249666 500.33 0.0020 0.3426 0.0269 9.6729 0.7047
0.4999 2499666 500.03 0.0002 2.5086 0.1928 7.4972 0.5378

Table 3: Test 2. Displacement errors for different Lamé constants produced by the lowest order mixed
FE method on an regular mesh of 100000 triangular elements, for a fixed Young’s modulus E = 1500.

k
h

(w/4)3 (w/8)3 (w/16)3 (w/32)3 (w/64)3

1 -0.4322 -0.4465 -0.4688 -0.4691 -0.4695
2 -0.4671 -0.4694 -0.4702 -0.4703 -0.4704
3 -0.4693 -0.4701 -0.4704 -0.4704 -0.4704

Table 4: Test 3. Maximal deflection of a beam computed at the point (x0, y0, z0) = (`, 1
2w,

1
2w),

according to meshsize and discretisation order. The expected value corresponds to δ = −0.47040.

Test 3 (3D beam bending). We also consider a three-dimensional beam problem. The beam
occupies the domain Ω = (0, `)× (0, w)× (0, w), with ` = 2.5, w = 0.5 (see a sketch in Figure 5(a));
and its elastic properties are characterised by a Young modulus of E = 1000 and a Poisson ratio
ν = 0.3, giving Lamé constants λ = 576.923, µ = 384.615, and the coefficient η = 0.4. The body
force acts in the direction of gravity f̃ = (0, 0,−ρg)t and it is specified by g = 9.8 and ρ = 0.2. Zero
displacements are enforced on the face x = 0, whereas on the remainder of the boundary we consider
zero normal stresses incorporated through the term

∫
x>0

2η(∇u − divu I)n · v defining the bilinear
form c(·, ·) (see (A.3)). In Figure 5 we illustrate (on the deformed configuration) the displacement,
rotation vector, and pressure computed on a mesh of 45221 tetrahedral elements, employing a method
of order k = 2. In the case of gravity-induced deflection, the Euler-Bernoulli beam theory predicts
a maximum vertical deflection of δ = ρgA`/(8EI), occurring at the free end of the body, A = w2 is
the area of the cross-section, and I = A4/12 is the planar inertial moment. Table 4 compares the
expected deflection with the vertical displacement measured on the midpoint of the face located at
x = `, for different discretisation choices.

Test 4 (Cook’s membrane benchmark). We finalise the set of tests by considering a two-
dimensional quadrilateral panel with domain Ω defined as the convex hull of the set {(0, 0), (`, w), (`, `+
s), (0, w)}, with ` = 48, w = 44, s = 16, and proceed to study its elastic response dominated by bend-
ing and shear. This benchmark is known as Cook’s membrane problem (cf. [14]). The panel is clamped
at the left edge (x = 0) and the body is subjected to a shearing distributed load t̃ = (0, 1/s)t on the
opposite end (at x = ` and giving a resulting load of magnitude 1, see a sketch in Figure 6(a)). This
effect is incorporated in the formulation through the term −

∫
x=`

t · v ds added to the functional F (·)
in the modified weak formulation (A.1)-(A.2). A traction-free condition is applied on the non-vertical
boundaries (imposed as in the previous test, using (A.3)), and we set up a zero volume force f = 0
(so that the weight of the membrane is not considered). The elastic plate has Young’s modulus E = 1,
Poisson ratio ν = 1/3, Lamé constants λ = 3/4, µ = 3/8, and model coefficient η = 1/3. Figure 6
portrays the displacement, rotation and pressure fields on the deformed domain (without amplifica-
tion of the deformation field). We also conduct several tests for different mesh resolutions and report
on the vertical displacement (deflection) measured at the midpoint of the right end of the domain,
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(a)

-0.04 0.00 0.04-0.08 0.08

(b)

-0.03 0.00 0.03-0.06 0.06

(c)

-0.002 0.000 0.002-0.004 0.004

(d)

-0.352 -0.235 -0.117-0.470 0.000

(e)

-0.011 0.000 0.011-0.022 0.022

(f)

0.079 0.158 0.237-0.009 0.307

(g)

-0.023 0.000 0.023-0.046 0.045

(h)

Figure 5: Test 3. Cantilever beam fixed on the left end and subjected to bending due to distributed
load applied in the gravity direction. Sketch of the domain configuration and a coarse structured
mesh (a), pressure distribution (b), displacement components (c,d,e), and rotation vector components
(f,g,h); all computed with a second order finite element method.

(x0, y0) = (`, ` + s/2). The test results are shown in panel (b) of the figure, where the convergence
behaviour of the deflection is observed as a function of the number of points discretising the right edge
of the membrane. In the absence of a known closed form solution for this problem, we also include a
referential value reported in the literature (according to [18,29,35], under plane stress conditions the
maximum vertical displacement expected at this point is around 23.92).

To conclude we perform again the Cook’s membrane test, but focusing in the nearly incompress-
ibility limit. We choose the model parameters E = 250, ν = 0.4999, λ = 416611, µ = 83.3389, and
η = 0.0002. As reference value for the maximum deflection at the point (x0, y0) we consider 7.505
(see [32, 37,42]), and conduct a convergence analysis portrayed in Figure 6(c). This time the vertical
displacement is plotted against the D.o.f. associated to the underlying discretisation, where we also
include a comparison against numerical results obtained with other finite element formulations applied
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-12.84 -8.02 -3.19-17.67 1.64

(d)

5.98 11.95 17.93-0.01 23.89

(e)

0.51 1.04 1.57-0.02 2.10

(f)

0.20 0.40 0.59-0.12 0.79

(g)

Figure 6: Test 4. Cook’s membrane test where he left edge is clamped and an upward shear force
is applied on the right edge. Sketch of the domain configuration and a coarse structured mesh (a),
maximum deflection of the right edge midpoint according to spatial resolution and approximation
order, using ν = 0.3 (b), and according to the number of degrees of freedom and comparison against
other classical methods, using ν = 0.4999 (c), approximate displacement components (d,e), rotation
scalar (f), and pressure (g); all computed with a second order mixed method.

to the original equations (2.1) (a classical pure-displacement formulation discretised with piecewise
continuous elements of degree k, the Taylor-Hood finite element for a displacement-pressure formu-
lation, the MINI-element [2], and a stabilised interior-penalty DG method [5]). These schemes have
comparable complexity, and we do not include other mixed methods based on stress or pseudo-stress
formulations, (as their associated cost would be much higher). In any case, we highlight the compet-
itive performance of the methods proposed in this paper (in particular for k = 2 and k = 3), and
envisage many extensions including formulations in finite elasticity and coupled elasticity-diffusion
problems.
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EPSRC through the Research Grant EP/R00207X/1.
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A Appendix. The case of mixed boundary conditions

Let us consider the Cauchy-Navier equations, now furnished with the mixed boundary conditions
(2.8). Testing (2.4) against v ∈ H̃ := H1

ΓD
(Ω)d = {v ∈ H1(Ω)d : v|ΓD

= 0}, and integrating by parts
using (1.1), leads to

−(1 + η)

∫
Ω

p div v + (1 + η)

∫
ΓN

v · (pn) +
√
η

∫
Ω

ω · curlv +
√
η

∫
ΓN

(ω × n) · v =

∫
Ω

f · v ∀v ∈ H̃.

We then use the definition of the traction t (second relation in (2.8)) to obtain

−(1 +η)

∫
Ω

p div v+ (1 +η)

∫
ΓN

v · (pn) +
√
η

∫
Ω

ω ·curlv+

∫
ΓN

[2η(∇u)n− (1−η)pn− t] ·v =

∫
Ω

f ·v,

for all v ∈ H̃.

Therefore, employing equation (2.6) and rearranging terms, we arrive at the following modification
of (2.9)-(2.10) incorporating mixed displacement-traction boundary conditions: Find ((ω, p),u) ∈
(Z×Q)× H̃ such that

a
(
(ω, p), (θ, q)

)
+ b
(
(θ, q),u

)
= 0 ∀(θ, q) ∈ Z×Q, (A.1)

b
(
(ω, p),v

)
− c(u,v) = F (v)−

∫
ΓN

t · v ∀v ∈ H̃, (A.2)

where the additional diagonal bilinear form c : H̃× H̃→ R is defined as

c(u,v) := 2η

∫
ΓN

[∇u− (divu)I]n · v, ∀u,v ∈ H̃. (A.3)

Note that since u ∈ H̃ and div(2µε(u)+λdivu) is in L2(Ω)d, then 2η(∇un−divun) is in H−1/2(ΓN)d.
Therefore the bilinear form c(·, ·) is simply a duality pairing between H−1/2 and H1/2. A similar
observation can be found in [3].

The Galerkin formulation will then adopt an analogous structure. In turn, the FVE method from
Section 4 can be modified to incorporate mixed boundary conditions as follows. We consider the
discrete space

H̃?
h :=

{
v ∈ L2(Ω)d : v|K?

j
∈ P0(K?

j )d for allK?
j ∈ T ?h , v|K?

j
= 0 if sj ∈ K?

j lies on ΓD

}
.

In view of discretising the Cauchy-Navier equations subject to mixed boundary conditions (2.8), we

can test (2.4) against v?h ∈ H̃?
h and integrate by parts, which leads to

(1 + η)

|Nh|∑
j=1

∫
∂K?

j

phv
?
h · n+

√
η

|Nh|∑
j=1

∫
∂K?

j

(ωh × n) · v?h =

|Nh|∑
j=1

∫
K?

j

f · v?h ∀v?h ∈ H̃?
h.

Next, we employ an argument similar to the one used in the proof of Lemma 4.1 by considering the
edges that coincide with the boundary segment ΓN separately. More precisely, by substituting Hhvh
and by definition of the traction t, we readily obtain

(1 + η)

[ ∑
K∈Th

∫
∂K/ΓN

phvh · n+

|Nh|∑
j=1

∫
∂K?

j ∩ΓN

phHhvh · n
]

+
√
η

[ ∑
K∈Th

∫
∂K/ΓN

(ωh × n) · vh +

|Nh|∑
j=1

∫
∂K?

j ∩ΓN

(ωh × n) · Hhvh
]
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+

|Nh|∑
j=1

∫
∂K?

j ∩ΓN

[2η(∇uh)n− (1− η)phn− t] · Hhvh =

|Nh|∑
j=1

∫
K?

j

f · Hhvh,

for all vh ∈ H̃h. In order to simplify the previous expression further, we use that
∫
e
(Hhvh−vh) = 0 for

every vh ∈ H̃h and every edge e of each element K ∈ Th (cf. [39]) in combination with the assumption
that ph ∈ Qh and ωh ∈ Zh are both constant on each element K ∈ Th, which implies that

|Nh|∑
j=1

∫
∂K?

j ∩ΓN

phHhvh · n =
∑
K∈Th

∫
∂K∩ΓN

phHhvh · n =
∑
K∈Th

∫
∂K∩ΓN

phvh · n, (A.4)

|Nh|∑
j=1

∫
∂K?

j ∩ΓN

(ωh × n) · Hhvh =
∑
K∈Th

∫
∂K∩ΓN

(ωh × n) · Hhvh =
∑
K∈Th

∫
∂K∩ΓN

(ωh × n) · vh, (A.5)

where we have also used that the union of boundary edges of control volumes and the union of boundary
edges of elements coincide. Consequently, after joining integrals by employing (A.4)-(A.5) and using
identity (1.1), we obtain the following modification of the FVE formulation when incorporating mixed

displacement-traction boundary conditions: Find ((ω̂h, p̂h), ûh) ∈ (Zh ×Qh)× H̃h such that

a
(
(ω̂h, p̂h), (θh, qh)

)
+ b
(
(θh, qh), ûh

)
= 0 ∀(θh, qh) ∈ Zh ×Qh,

b
(
(ω̂h, p̂h),vh

)
− C(ûh,vh) = F̃ (vh)−

|Nh|∑
j=1

∫
∂K?

j ∩ΓN

t · Hhvh ∀vh ∈ H̃h,

where the newly introduced bilinear form C : H̃h × H̃h → R is defined as

C(uh,vh) := 2η

|Nh|∑
j=1

∫
∂K?

j ∩ΓN

[∇uh − (divuh)I]n · Hhvh, ∀uh,vh ∈ H̃h. (A.6)

Moreover, using a similar argument as before in combination with the assumption that uh ∈ H̃h is
linear on each element K ∈ Th, we find that

C(uh,vh)− c(uh,vh) = 2η
∑
K∈Th

∫
∂K∩ΓN

[∇uh − (divuh)I]n · (Hhvh − vh) = 0,

for all uh,vh ∈ H̃h. In other words, also for mixed displacement-traction boundary conditions we find
that the lowest order FE and FVE schemes only differ by assembly of the right hand side.
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