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Abstrat

We propose and analyze a disretization sheme that ombines the disontinuous Petrov-

Galerkin and �nite element methods. The underlying model problem is of general di�usion-

advetion-reation type on bounded domains, with deomposition into two sub-domains. We

propose a heterogeneous variational formulation that is of the ultra-weak (Petrov-Galerkin)

form with broken test spae in one part, and of Bubnov-Galerkin form in the other. A

standard disretization with onforming approximation spaes and appropriate test spaes

(optimal test funtions for the ultra-weak part and standard test funtions for the Bubnov-

Galerkin part) gives rise to a oupled DPG-FEM sheme. We prove its well-posedness and

quasi-optimal onvergene. Numerial results on�rm expeted onvergene orders.

Key words: DPG method with optimal test funtions, �nite element method, domain de-

omposition, oupling, ultra-weak formulation, di�usion-advetion-reation problem
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1 Introdution

The disontinuous Petrov-Galerkin method with optimal test funtions (DPG method) is an

approximation sheme that makes the use of optimal test funtions, f. [1, 5, 7℄, feasible by

onsidering broken test norms [8℄. Optimal test funtions are those whih maximize disrete

inf-sup numbers, and the broken form of test spaes and norms allows for their loal alula-

tion or approximation. In this form, the DPG method has been developed by Demkowiz and

Gopalakrishnan, see the just ited referenes [7, 8℄.

The DPG method has been designed having in mind problems where standard methods

su�er from loking phenomena (of small inf-sup numbers) or, otherwise, require spei� stabi-

lization tehniques. This is partiularly the ase with singularly perturbed problems where DPG
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shemes have made some ontributions [9, 6, 2, 3, 14℄. Nevertheless, in the urrent form most

of the shemes are not heap to implement. On the one hand, orresponding formulations have

several unknowns as is the ase with mixed �nite elements. On the other hand, the e�ient

approximation of optimal test funtions for singularly perturbed problems is ongoing researh.

For these reasons, advaned DPG tehniques are best used for spei� problems whereas �nite

elements are hard to beat when solving uniformly well-posed problems. Though, it has to be

said, that in the latter ases DPG shemes an also be e�ient and are ompetitive in general,

f. the software pakage developed by Roberts [15℄.

In this paper we develop a disretization method that ombines DPG tehniques with stan-

dard �nite elements. In this way, one an restrit the use of more expensive DPG approximations

to regions where they are bene�ial. Examples are, e.g., reation-advetion-di�usion problems

with small di�usivity in a redued area, or transmission problems that ouple a singularly per-

turbed problem with an unperturbed problem. In a previous publiation [12℄ we have proposed

suh a ombination with boundary elements to solve transmission problems of the Laplaian in

the full spae, and studied a singularly perturbed ase of reation di�usion in [11℄. In this paper

we follow the general framework from [12℄. There, the basis is set by a heterogeneous variational

formulation onsisting of an ultra-weak one in a bounded domain and variational boundary in-

tegral equations for the exterior unbounded part. Here, we ombine an ultra-weak formulation

with a standard variational form. We remark that this approah of ombining di�erent varia-

tional formulations has been systematially analyzed in [10℄. Indeed, it is not essential to use an

ultra-weak formulation for the DPG sheme, any well-posed formulation would work. Though,

the overall strategy in [10℄ is to employ DPG tehniques throughout whereas we ombine di�erent

disretization tehniques.

Having set our heterogeneous formulation, we proeed to rewrite it by using the so-alled

trial-to-test operator (whih maps the test spae to the ansatz spae). This is only done for the

ultra-weak formulation. The whole system then transforms into one where spaes on the ansatz

and test sides are idential. In this way, our heterogeneous variational formulation �ts the

Lax-Milgram framework just as in [12℄. We prove oerivity under the ondition that the trial-

to-test operator is weighted by a su�iently large onstant. Then, quasi-optimal onvergene of

a disretized version follows by standard arguments. When proving oerivity we follow steps

that are similar to the ones when studying the oupling of DPG with boundary elements. But

whereas [12℄ analyzes only the Laplaian, here we set up the sheme and prove oerivity for a

general seond-order equation of reation-advetion-di�usion type. Throughout we assume that

our problem is uniformly well posed, i.e., we do not study variations for singularly perturbed

ases as in [11℄. Also note that, sine oe�ients are variable, transmission problems an be

treated the same way by seleting the sub-domains aordingly. One only has to move the

possibly non-homogeneous jump data to the right-hand side funtional.

The remainder of this paper is as follows. In Setion 2 we start by formulating the model

problem. A heterogeneous variational formulation is given in �2.1. There, we also state its

well-posedness and oerivity (Theorem 1) and brie�y mention a simpli�ed ase where ontinu-

ity aross the sub-domain interfae is inorporated strongly (Corollary 2). The orresponding

disrete DPG-FEM sheme is presented in �2.2. Its quasi-optimal onvergene is announed in
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Theorem 3. Most tehnial details and proofs are given in Setion 3. In the last setion we report

on some numerial experiments.

Furthermore, throughout the paper, suprema are taken over sets exluding the null element,

and the notation A . B is used to say that A ≤ C · B with a onstant C > 0 whih does not

depend on any quantity of interest. Correspondingly, the notation A & B is used.

2 Mathematial setting and main results

Let Ω ⊂ R
d
, d ∈ {2, 3}, be a bounded, simply onneted polygonal/polyhedral Lipshitz domain

with boundary ∂Ω, and normal vetor nΩ on ∂Ω pointing outside of Ω. We onsider the following

ellipti problem of di�usion-advetion-reation type. Given f ∈ L2(Ω) �nd u ∈ H1
0 (Ω) suh that

Au := div
(
−α∇u+ βu

)
+ γu = f in Ω. (1)

Here, L2(Ω) and H1
0 (Ω) denote standard Sobolev spaes, the latter with zero trae on ∂Ω.

Furthermore, all oe�ients are supposed to be su�iently regular, with α(x) ∈ R
d×d

, β(x) ∈ R
d
,

γ(x) ∈ R for x ∈ Ω̄. We assume that all oe�ients are uniformly bounded. Furthermore, we

assume that the symmetri part of α is positive de�nite and uniformly bounded from below,

with minimum eigenvalue larger than or equal to α0 > 0, and that

1
2divβ + γ ≥ 0 in Ω. These

onditions imply that the operator A is bounded and oerive on H1
0 (Ω).

2.1 Heterogeneous variational formulation

In order to solve (1) by a ombination of DPG method and �nite elements, we formulate the

problem in a heterogeneous way, using di�erent variational forms in di�erent parts of the domain.

For ease of illustration, we restrit ourselves to two Lipshitz sub-domains Ω1, Ω2 (again of

polygonal/polyhedral form, eah with one onneted omponent) with boundaries ∂Ω1, ∂Ω2,

as spei�ed in Figure 2.1. There, also a notation for the boundary piees is introdued. In

partiular, Γ denotes the interfae between the sub-domains. The piture indiates that both

sub-domains touh the boundary of Ω (where the homogeneous Dirihlet ondition is imposed),

but this is not essential. For instane, one sub-domain, Ω2, an be of annular type so that, in

that ase, ∂Ω ⊂ ∂Ω2 and Γ = ∂Ω1. Other ombinations an be analyzed without di�ulty, also

inluding Neumann onditions. Nevertheless, sine our analysis enters around proving oerivity

of bilinear forms, we need positivity of the ombined advetion-reation term on a sub-domain

that does not touh the Dirihlet boundary.

Assumption 1. For i = 1, 2 there holds:

If meas(Γi) = 0 then there exists β > 0 suh that

1
2divβ + γ ≥ β a.e. in Ωi.

Standard and broken Sobolev spaes. Essential for the DPG method is to use broken

test spaes. Therefore, at this early stage we onsider a partitioning T1 of Ω1 into (regular non-

interseting) �nite elements T suh that Ω̄1 = ∪{T̄ ; T ∈ T1}, and with skeleton S := {∂T ; T ∈
T1}.
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Ω1

(DPG)

Ω2

(FEM)

Γ

Γ1

Γ2

Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩ Ω2 = ∅,

Ω̄1 ∩ Ω̄2 = Γ,

Ω̄1 ∩ ∂Ω = Γ̄1, Ω̄2 ∩ ∂Ω = Γ̄2.

Figure 1: Deomposition of the domain Ω into sub-domains.

Before desribing the variational formulation we introdue the Sobolev spaes we need. For

a domain ω ⊂ Ω we use the standard spaes L2(ω), H
1(ω), H1

0 (ω), and H(div, ω). The trae

operator ating on H1(ω) will be denoted simply by (·)|∂ω. Then we de�ne the trae spae

H1/2(∂ω) := H1(ω)|∂ω and its dual spae H−1/2(∂ω) :=
(
H1/2(∂ω)

)′
with anonial norms.

The duality pairing on ∂ω is 〈· , ·〉∂ω and extends the L2(∂ω) bilinear form. Correspondingly,

(· , ·)ω is the L2(ω) bilinear form.

We also need H1
D(Ωi) onsisting of H

1
-funtions with vanishing trae on Γi (i = 1, 2). Vetor-

valued spaes and funtions will be denoted by bold symbols. Conneted with T1 we use the

produt spaes H1(T1) and H(div,T1) with orresponding produt norms.

Now, related with T1 are the skeleton trae spaes

H1/2(S) :=
{
û ∈ ΠT∈T1H

1/2(∂T ); ∃w ∈ H1(Ω) suh that û|∂T = w|∂T ∀T ∈ T1
}
,

H−1/2(S) :=
{
σ̂ ∈ ΠT∈T1H

−1/2(∂T ); ∃q ∈ H(div,Ω) suh that σ̂|∂T = (q · nT )|∂T ∀T ∈ T1
}

and

H
1/2
00 (S) :=

{
û ∈ H1/2(S); û|∂Ω1

= 0
}
,

H
1/2
D (S) :=

{
û ∈ H1/2(S); û|Γ1

= 0
}
.

Here, nT is the exterior unit normal vetor on ∂T , and (q · nT )|∂T indiates the standard way

of de�ning normal traes of H(div, T )-funtions. The notation û|∂Ω1
= 0 (resp. û|Γ1

= 0) is
to be understood in the sense that û is a T1-pieewise trae of an element of H1

0 (Ω1) (resp. of

H1
D(Ω1)). These trae spaes are equipped with the norms

‖û‖H1/2(S) := inf
{
‖w‖H1(Ω); w ∈ H1(Ω) suh that û|∂T = w|∂T ∀T ∈ T1

}
, (2a)

‖σ̂‖H−1/2(S) := inf
{
‖q‖H(div,Ω); q ∈ H(div,Ω) suh that σ̂|∂T = (q · nT )|∂T ∀T ∈ T1

}
, (2b)

and analogously for H
1/2
00 (S) and H

1/2
D (S). For funtions û ∈ H1/2(S), σ̂ ∈ H−1/2(S) (they are
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elements of produt spaes) and τ ∈ H(div,T1), v ∈ H1(T1) we use the duality pairings

〈û , τ · n〉S :=
∑

T∈T1

〈û|∂T , τ · nT 〉∂T , 〈σ̂ , v〉S :=
∑

T∈T1

〈σ̂|∂T , v〉∂T .

Heterogeneous formulation in Ω1 ∪Ω2. In Ω1, where the DPG method will be used, we

onsider an ultra-weak variational formulation. As mentioned before, this is just for illustration

as any other formulation of primal, mixed, dual-mixed or strong type an be used and analyzed

analogously to our ase, f. [10, Setion 2.3℄.

The ultra-weak formulation requires additional independent unknowns

σ := α∇u− βu on Ω1, û := ΠT∈T1u|∂T , σ̂ := ΠT∈T1(σ · nT )|∂T . (3)

Then we test the de�ning relation of σ with α−T
and τ ∈ H(div,T1), and equation (1) with

v ∈ H1(T1). Integrating by parts element-wise, and substituting the orresponding terms by σ,

û, and σ̂, we obtain

(u ,divT τ + βα−Tτ + γv)Ω1
+ (σ ,∇T v + α−Tτ )Ω1

− 〈û , τ · n〉S − 〈σ̂ , v〉S = (f , v)Ω1
. (4)

Here, divT and ∇T denote the T1-pieewise divergene and gradient operators, respetively.

In Ω2 we use the standard primal formulation

(α∇u− βu ,∇w)Ω2
+ (γu ,w)Ω2

− 〈nΩ2
· (α∇u− βu) , w〉∂Ω2

= (f ,w)Ω2
(5)

for w ∈ H1
D(Ω2).

Solving (1) in Ω is equivalent to solving (in appropriate spaes) (4) and (5) with homogeneous

Dirihlet ondition on ∂Ω and transmission onditions on Γ. These transmission onditions will

be imposed in variational form. For the time being, we replae nΩ2
· (α∇u− βu)|Γ by −σ̂|Γ in

(5). Here, we slightly abuse the notation of σ̂ noting that 〈σ̂ , v〉S = 〈σ̂ , v〉Γ for v ∈ H1(Ω1) with
v|Γ1

= 0, f., e.g., [11, Setion 2.2℄.

We formally distinguish between u1 := u|Ω1
and u2 := u|Ω2

. Then, our preliminary hetero-

geneous variational formulation onsists in �nding

(u, u2) = (u1,σ, û, σ̂, u2) ∈ U := U1 ×H1
D(Ω2)

with U1 := L2(Ω1)× L2(Ω1)×H
1/2
D (S)×H−1/2(S)

suh that û|Γ = u2|Γ and

(u1 ,divT τ + βα−Tτ + γv)Ω1
+ (σ ,∇T v + α−Tτ )Ω1

− 〈û , τ · n〉S − 〈σ̂ , v〉S = (f , v)Ω1
,

(α∇u2 − βu2 ,∇w)Ω2
+ (γu2 , w)Ω2

+ 〈σ̂ , w〉Γ = (f ,w)Ω2

for any (v, w) ∈ V ×H1
D(Ω2)

with

v = (v, τ ) and V := H1(T1)×H(div,T1).
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This formulation an be used to de�ne the ombined DPG-FEM disretization, but requires

that T1 be ompatible aross Γ with the �nite element mesh in Ω2. We therefore replae the

ontinuity onstraint û|Γ = u2|Γ by a variational oupling on Γ that is similar to a DG-bilinear

form involving jumps and �uxes aross element boundaries. To this end we abbreviate

b(u,v) := (u1 ,divT τ + βα−Tτ + γv)Ω1
+ (σ ,∇T v + α−Tτ )Ω1

− 〈û , τ · n〉S − 〈σ̂ , v〉S ,

c2(u2, w2) := (α∇u2 − βu2 ,∇w2)Ω2
+ (γu2 , w2)Ω2

, (6)

L1(v) := (f , v)Ω1
, L2(w2) := (f ,w2)Ω2

,

and de�ne the oupling bilinear form

d(u, u2;w, w2) := 〈σ̂ , w2〉Γ + 〈χ̂ , û− u2〉Γ +
1

2
〈β · nΩ1

(û− u2) , ŵ + w2〉Γ (7)

for (u, u2), (w, w2) ∈ U with u = (u1,σ, û, σ̂), w = (w1,χ, ŵ, χ̂).

The �nal ombined ultra-weak primal formulation of (1) then reads

(u, u2) = (u1,σ, û, σ̂, u2) ∈ U :

b(u,v) = L1(v) ∀v ∈ V, (8a)

c2(u2, w2) + d(u, u2;w, w2) = L2(w2) ∀(w, w2) ∈ U. (8b)

We will also need the bilinear form for Ω1 that orresponds to c2(·, ·):

c1(u1, w1) := (α∇u1 − βu1 ,∇w1)Ω1
+ (γu1 , w1)Ω1

(
u1, w1 ∈ H1(Ω1)

)
. (9)

For referene, we expliitly speify the strong form of (8a):

u := (u1,σ, û, σ̂) ∈ U1 : Bu = L1. (10)

Following [10℄ one an show that (8) is equivalent to (1) so that, in partiular, (8) has a unique

solution. However, sine we will use di�erent strategies for solving (8a) and (8b), we need a

slightly di�erent representation.

To this end we de�ne the trial-to-test operator Θ : U1 → V by

〈Θu ,v〉V = b(u,v) ∀v ∈ V.

Here, 〈· , ·〉V denotes the anonial inner produt in V . Note that Θ = R−1B with Riesz operator

R : V → V ′
. Sine B is de�ned on U1 without boundary ondition along Γ it has a non-trivial

kernel, and so does Θ. Still, Θ : U1 → V is surjetive. Therefore, denoting by Θκ := κΘ the

saled trial-to-test operator (for κ > 0 to be hosen), an equivalent formulation is: For given

κ > 0 �nd (u, u2) ∈ U suh that

a(u, u2;w, w2) = L(w, w2) ∀(w, w2) ∈ U (11)

with a(u, u2;w, w2) := b(u,Θκw) + c2(u2, w2) + d(u, u2;w, w2)

and L(w, w2) := L1(Θκw) + L2(w2).

One of our main results is the following theorem.
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Theorem 1. The variational formulation (11) is well posed, and is equivalent to problem (1)

in the following sense. If u ∈ H1
0 (Ω) solves (1) then (u, u2) = (u1,σ, û, σ̂, u2), with ui := u|Ωi

(i = 1, 2) and σ, û, σ̂ de�ned by (3), satis�es (u, u2) ∈ U and solves (11).

Vie versa, if (u, u2) = (u1,σ, û, σ̂, u2) ∈ U solves (11) then u de�ned by u|Ωi := ui (i = 1, 2)
satis�es u ∈ H1

0 (Ω) and solves (1).

Furthermore, for su�iently large κ > 0, the bilinear form a(·, ·) is U -oerive, i.e.,

a(u, u2;u, u2) & ‖(u, u2)‖
2
U ∀(u, u2) ∈ U. (12)

Proof. By the assumptions on Ω, f , α, β, and γ, problem (1) is uniquely solvable. Furthermore,

by the derivation of (11), if u ∈ H1
0 (Ω) solves (1) then (u, u2) as spei�ed in the statement solves

(11). This an be seen by integrating by parts and noting that d(u, u2;w, w2) = 〈σ̂ , w2〉Γ sine

û|Γ = u2|Γ, f. (7).
The oerivity of a(·, ·) will be shown in Setion 3.1 under the assumption that κ > 0 is large

enough. It is also straightforward to show that this bilinear form is bounded on U × U , as is
the linear funtional L on U . In that ase the Lax-Milgram lemma proves the well-posedness of

(11).

Now, sine κ introdues only a saling of the test funtions Θκw ∈ V , the variational formu-

lation (11) is atually independent of κ 6= 0, and so is its well-posedness.

As previously mentioned, the ontinuity onstraint û|Γ = u2|Γ an also be imposed strongly.

In this ase the solution spae is

U0 := {(u1,σ, û, σ̂;u2) ∈ U ; û|Γ = u2|Γ}

and the oupling bilinear form redues to

d0(u, w2) := d(u, u2;w, w2) = 〈σ̂ , w2〉Γ ∀(u, u2) = (u1,σ, û, σ̂, u2), (w, w2) ∈ U0.

The variational formulation beomes: For given κ > 0 �nd (u, u2) ∈ U0
suh that

a0(u, u2;w, w2) = L(w, w2) ∀(w, w2) ∈ U0
(13)

with a0(u, u2;w, w2) := b(u,Θκw) + c2(u2, w2) + d0(u;w2) (14)

and L(w, w2) := L1(Θκw) + L2(w2).

Analogously as Theorem 1 one obtains the well-posedness of (13) and oerivity of a0(·, ·).

Corollary 2. The variational formulation (13) is well posed, and is equivalent to problem (1)

in the following sense. If u ∈ H1
0 (Ω) solves (1) then (u, u2) = (u1,σ, û, σ̂, u2), with ui := u|Ωi

(i = 1, 2) and σ, û, σ̂ de�ned by (3), satis�es (u, u2) ∈ U0
and solves (13).

Vie versa, if (u, u2) = (u1,σ, û, σ̂, u2) ∈ U0
solves (13) then u de�ned by u|Ωi := ui (i = 1, 2)

satis�es u ∈ H1
0 (Ω) and solves (1).

Furthermore, for su�iently large κ > 0, the bilinear form a0(·, ·) is U0
-oerive, i.e.,

a(u, u2;u, u2) & ‖(u, u2)‖
2
U ∀(u, u2) ∈ U0.
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2.2 Combined DPG-FEM disretization

The oupled DPG-FEM method onsists in solving (11) within �nite-dimensional subspaes

Uhp ⊂ U . The indies h and p indiate that this an be pieewise polynomial, onforming spaes

of ertain polynomial degrees. Spei�ally, the omponents of Uhp that belong to the unknowns

u1,σ, û, σ̂ will be pieewise polynomial with respet to the mesh T1 and its skeleton S. On the

other hand, the omponent of Uhp that approximates u2 is pieewise polynomial with respet to

a mesh T2 in Ω2. In the urrent form we do not need ompatibility of the meshes T1, T2 along

Γ. The disrete sheme then reads: For given κ > 0 �nd (uhp, u2,hp) ∈ Uhp suh that

a(uhp, u2,hp;w, w2) = L(w, w2) ∀(w, w2) ∈ Uhp. (15)

Note that this formulation inludes the use of optimal test funtions for the disretization in

Ω1, f. (8a) and the orresponding terms in (11) with trial-to-test operator Θκ. On the other

hand, the part of the problem that belongs to Ω2 is solved by standard �nite elements, f. the

orresponding relation (8b).

Our seond main result is the following theorem.

Theorem 3. If κ > 0 is su�iently large then the sheme (15) is uniquely solvable and onverges

quasi-optimally, i.e.,

‖u− uhp‖U1
+ ‖u2 − u2,hp‖H1(Ω2) . inf{‖u−w‖U1

+ ‖u2 − w2‖H1(Ω2); (w, w2) ∈ Uhp}.

Proof. The statement is a diret impliation of the U -oerivity of a(·, ·) for large κ by Theorem 1,

the Lax-Milgram lemma and Cea's estimate.

Remark 4. We note that also the disrete sheme an be hanged to impose strongly the ontinu-

ity of the approximations of û and u2 aross Γ. This only requires ompatibility of the meshes T1
and T2 along the interfae, onforming subspaes Uhp ⊂ U0

, and replaing the bilinear form a(·; ·)
in (15) by the bilinear form a0(·; ·), f. (14). The quasi-optimal error estimate from Theorem 3

then holds analogously.

3 Tehnial details and proof of oerivity

We start with realling the H1
0 (Ω)-oerivity of the full di�erential operator A. This transforms

into the following properties of the bilinear forms c2, c1, f. (6), (9).

Lemma 5. The bilinear forms c1(·, ·) and c2(·, ·) satisfy

ci(ui, ui) +
1

2
〈β · nΩiui , ui〉Γ & ‖ui‖

2
H1(Ωi)

for all ui ∈ H1
D(Ωi) (i = 1, 2).
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Proof. Noting that

(βu ,∇u)Ωi = −
1

2
((divβ)u , u)Ωi +

1

2
〈β · nΩiu , u〉∂Ωi

(
u ∈ H1(Ωi), i = 1, 2

)
,

there holds for ui ∈ H1
D(Ωi) (i = 1, 2)

ci(ui, ui) = (α∇ui − βui ,∇ui)Ωi + (γui , ui)Ωi

= (α∇ui ,∇ui)Ωi + ((
1

2
divβ + γ)ui , ui)Ωi −

1

2
〈β · nΩiui , ui〉Γ.

The oerivity property then follows with the positivity of the symmetri part of α and by

using either the Poinaré-Friedrihs inequality and

1
2divβ + γ ≥ 0 in Ωi (if meas(Γi) 6= 0) or

Assumption 1, i.e.,

1
2divβ + γ ≥ βi > 0 in Ωi (i = 1, 2).

We ontinue with some properties of the operator B, f. (10), when restrited to the spae

inorporating homogeneous Dirihlet boundary onditions on the whole of ∂Ω1, that is,

B : U1,0 := L2(Ω1)× L2(Ω1)×H
1/2
00 (S)×H−1/2(S) → V ′. (16)

Lemma 6. The operator B : U1,0 → V ′
is an isomorphism with ‖B‖L(U1,0,V ′) and ‖B

−1‖L(V ′,U1,0)

bounded independently of the mesh T1.

Proof. This is a partiular ase of the di�erent variational formulations studied in [4, Example

3.7℄. More generally, in [4℄, Carstensen, Demkowiz and Gopalakrishnan proved that �breaking�

a ontinuous variational formulation of a well-posed problem (by introduing broken test spaes)

and using anonial trae norms, this does not alter the well-posedness of the formulation.

Let us introdue the trae spae H
1/2
00 (Γ) := H1

0 (Ω)|Γ with anonial norm. To simplify the

presentation of some tehnial details we will need the following trae operator,

trΓ : U1 → H
1/2
00 (Γ), trΓ(u,σ, û, σ̂) := û|Γ.

The boundedness of this operator is immediate, and is analogous to the ase of the Laplaian on

a single domain onsidered in [12, Lemma 4℄.

Lemma 7. The operator trΓ is bounded with bound independent of T1.

In the following we identify the kernel of B when ating on the full spae U1. Let us reall

that A is the operator of our problem (1). For given ϕ ∈ H
1/2
00 (Γ) we de�ne its A-harmoni

extension E(ϕ) := (u1,σ, û, σ̂) ∈ U1 by

u1 ∈ H1
D(Ω1) : Au1 = 0 in Ω1, u1 = ϕ on Γ, (17a)

σ = α∇u1 − βu1, û = u1 on S, σ̂ = σ · nT on ∂T ∀T ∈ T1. (17b)
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Lemma 8. The operator E : H
1/2
00 (Γ) → U1 is bounded with bound independent of T1. Moreover,

E is a right-inverse of trΓ, and the image of E is the kernel of B, kerB = E H
1/2
00 (Γ).

Proof. These statements an be proved analogously to the ase of the Laplaian, f. [12, Lemmas

11 and 12℄.

Of ourse, we also need ontinuity of the bilinear forms b(·, ·), c2(·, ·) and d(·, ·). This is

straightforward to show and has already been used in the initial part of the proof of Theorem 1.

We only give the statement.

Lemma 9. The bilinear forms b : U1×V → R, c2 : H1(Ω2)×H1(Ω2) → R, and d : U×U → R

are all uniformly (in T1) bounded.

3.1 Proof of oerivity, statement (12) in Theorem 1

We are now ready to prove the U -oerivity of the bilinear form a(·, ·), f. (11). We adapt the

proedure from [12℄ to our situation.

Let (u, u2) = (u1,σ, û, σ̂, u2) ∈ U be given. We start with the simple estimate

‖(u, u2)‖U ≤ ‖u‖U1
+ ‖u2‖H1(Ω2) ≤ ‖u− E trΓ(u)‖U1

+ ‖ E trΓ(u)‖U1
+ ‖u2‖H1(Ω2). (18)

By Lemma 8, the û-omponent of u− E trΓ(u) has zero trae on ∂Ω1, i.e., u− E trΓ(u) ∈ U1,0,
f. (16). Combining Lemmas 6 and 8 this gives

‖u− E trΓ(u)‖U1
≤ ‖u− E trΓ(u)‖U1,0 . ‖Bu‖V ′ = b(u,Θu)1/2. (19)

The last identity is due to the well-known relations of the trial-to-test operator Θ,

‖Bu‖V ′ = sup
v∈V

b(u,v)

‖v‖V
=

b(u,Θu)

‖Θu‖V
, ‖Θu‖V = ‖R−1Bu‖V = ‖Bu‖V ′ .

Aording to Lemma 8, operator E is bounded,

‖ E trΓ(u)‖U1
. ‖û‖

H
1/2
00

(Γ)
. (20)

A ombination of (18), (19), and (20) then gives

‖(u, u2)‖
2
U . b(u,Θu) + ‖û‖2

H
1/2
00

(Γ)
+ ‖u2‖

2
H1(Ω2)

. (21)

We ontinue by onsidering ue := (ue1,σ
e, ûe, σ̂e) := E trΓ(u) = E û|Γ. In partiular, there holds

‖û‖
H

1/2
00

(Γ)
. ‖ue1‖H1(Ω1). Noting that, f. (7),

d(ue, u2;u
e, u2) = 〈σ̂e , u2〉Γ + 〈σ̂e , û− u2〉Γ +

1

2
〈β · nΩ1

(û− u2) , û+ u2〉Γ

= 〈σ̂e , û〉Γ +
1

2
〈β · nΩ1

û , û〉Γ −
1

2
〈β · nΩ1

u2 , u2〉Γ, (22)
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an appliation of Lemma 5 gives

‖û‖2
H

1/2
00

(Γ)
+ ‖u2‖

2
H1(Ω2)

. c1(u
e
1, u

e
1) + c2(u2, u2) +

1

2
〈β · nΩ1

ue1 , u
e
1〉Γ +

1

2
〈β · nΩ2

u2 , u2〉Γ

= c1(u
e
1, u

e
1) + c2(u2, u2) + d(ue, u2;u

e, u2)− 〈σ̂e , û〉Γ.

Relation (22) an also be written like

d(ue, u2;u
e, u2) = d(u, u2;u, u2) + 〈σ̂e − σ̂ , û〉Γ,

so that the previous bound beomes

‖û‖2
H

1/2
00

(Γ)
+ ‖u2‖

2
H1(Ω2)

. c1(u
e
1, u

e
1) + c2(u2, u2) + d(u, u2;u, u2)− 〈σ̂ , û〉Γ.

Now, realling the de�nitions of c1(·, ·) (see (9)) and the extension operator E (see (17)), inte-

gration by parts yields the expeted relation c1(u
e
1, u

e
1) = 〈σ̂e , û〉Γ. Therefore, ontinuing the

estimate,

‖û‖2
H

1/2
00

(Γ)
+ ‖u2‖

2
H1(Ω2)

. c2(u2, u2) + d(u, u2;u, u2) + 〈σ̂e − σ̂ , û〉Γ. (23)

The last term in (23) an be bounded by duality, the ontinuity of H−1/2(S) ∋ (σ̂e − σ̂) 7→
(σ̂e − σ̂)|Γ ∈ H−1/2(Γ), and relation (19). This gives

〈σ̂e − σ̂ , û〉Γ . ‖u− E trΓ(u)‖U1
‖û‖

H
1/2
00

(Γ)
. b(u,Θu)1/2‖(u, u2)‖U .

Combining this bound with (21) and (23), and applying Young's inequality, we �nd that

‖(u, u2)‖
2
U . κb(u,Θu) + c2(u2, u2) + d(u, u2;u, u2)

= b(u,Θκu) + c2(u2, u2) + d(u, u2;u, u2)

for a su�iently large onstant κ > 0. This proves the stated oerivity of a(·, ·).

4 Numerial experiments

In this setion we report on two numerial experiments. In both of them we hoose d = 2 and,

starting from a manufatured solution, we ompute the right-hand side funtion f . The solution
of the seond experiment does not satisfy the homogeneous Dirihlet boundary ondition. In

this ase, we use a standard approah and extend the inhomogeneous Dirihlet datum into the

domain and then shift the resulting terms to the right-hand side. As disrete trial spae we use

Uhp := P 0(T1)×
[
P 0(T1)

]2
× S1

D(S)× P 0(S)× S1
D(T2),

where T1 and S are a mesh and its skeleton in Ω1 and T2 is a mesh in Ω2. Throughout, we

use meshes T1 and T2 whih are ompatible on the interfae Γ (although this is not neessary in
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our analysis). In the de�nition of Uhp, P
k(T1) denotes the spae of T1-pieewise polynomials of

degree k, P 0(S) denotes the spae of pieewise onstant funtions on S, and S1
D(S) ⊂ H

1/2
D (S)

denotes the spae of pieewise a�ne and ontinuous funtions on S whih vanish on Γ1. The

spae S1
D(T2) ⊂ H1

D(Ω2) is the spae of pieewise a�ne, globally ontinuous funtions on T2
whih vanish on Γ2. The trial-to-test operator Θκ = κR−1B with R : V → V ′

being the

Riesz operator is approximated using the disrete Riesz operator Rhp : Vhp → V ′
hp with a �nite

dimensional spae Vhp ⊂ V , whih we hoose to be

Vhp := P 2(T1)×
[
P 2(T1)

]2
.

The resulting method is alled pratial DPG method, and was analyzed in [13℄. In the latter work,

it was shown that the additional disretization error of using Vhp instead of V does not degrade the

onvergene order. Throughout, we use κ = 1 and do not enounter di�ulties with this hoie.

Note that if (u1,σ, û, σ̂, u2) denotes the exat solution of (11) and (u1,hp,σhp, ûhp, σ̂hp, u2,hp) ∈
Uhp denotes the disrete solution (15), then by de�nition of the norm H1/2(S) it holds

‖û− ûhp‖H1/2(S) ≤ ‖u− IT1 ûhp‖H1(Ω1) =: err(û),

where IT1 ûhp ∈ S1
D(T1) is the nodal interpolant of ûhp with (IT1 ûhp)|S = ûhp. Likewise,

‖σ̂ − σ̂hp‖H−1/2(S) ≤ ‖σ − IT1σ̂hp‖H(div,Ω1) =: err(σ̂),

where IT1σ̂hp ∈ RT0(T1) is the lowest-order Raviart-Thomas interpolant of σ̂hp, i.e., (nT ·
IT1σ̂hp)|∂T = σ̂hp|∂T for any T ∈ T1. Furthermore, we plot the errors

err(u1) := ‖u1 − u1,hp‖L2(Ω1),

err(σ) := ‖σ − σhp‖L2(Ω1),

err(u2) := ‖u2 − u2,hp‖H1(Ω2),

as well as the so-alled energy error of the DPG part

err(u) := sup
v∈V

b(u− uhp,v)

‖v‖V
= ‖Θκ(u− uhp)‖V ,

f. (19). In both experiments, we use a sequene of meshes resulting from uniform mesh re�ne-

ments. The quasi-optimality result of Theorem 3 and well-known approximation results then

show that

‖u− uhp‖U1
+ ‖u2 − u2,hp‖H1(Ω2) = O(h) = O(N−1/2).

Here, N denotes the overall number of degrees of freedom of Uhp. Hene, err(·) = O(N−1/2) for
all of the errors de�ned above.
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4.1 Experiment 1

We hoose Ω1 := (0, 1) × (0, 1), Ω2 := (1, 2) × (0, 1) and use the exat solution

u(x, y) := x(2− x)y(1− y).

The remaining parameters in the equation (1) are hosen as α = id, β = (xy, 1)⊤, and γ =
1− sin(πx). In Figure 2 we plot the errors versus the degrees of freedom on a double logarithmi

sale. As expeted, all the errors behave like O(N−1/2), whih is plotted in blak without

markers. In Figure 3, we plot the error û − u2 on the oupling boundary Γ for the ase with

mesh width 1/32.
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Figure 2: Error plots for Experiment 1. The blak line without markers denotes O(N−1/2), and
N is the total number of degrees of freedom.

4.2 Experiment 2

We hoose Ω1 := (0.2, 0.7)× (0.2, 1.2) and Ω2 := (0.7, 1.2)× (0.2, 1.2) and use the exat solution

u(x, y) := arctan

(
1− |(x, y)|

ε

)
.

The remaining parameters in the equation 1 are hosen as α = ε · id, β = exp(x) (sin y, cos y),
γ = 0, and ε = 0.05. The exat solution u has a urved layer of moderate width inside Ω,
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Figure 3: The jump û− u2 on the interfae Γ in Experiment 1.

see Figure 4. In Figure 5 we plot the errors versus the degrees of freedom on a double logarithmi

sale. Again, as expeted, we obtain the onvergene order O(N−1/2). In Figure 6, we plot the

error û− u2 on the oupling boundary Γ, again for mesh width 1/32. Note that the layer of the
exat solution uts through Γ, and this is re�eted in Fig. 6.
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