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Abstract

In this paper we introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the
linear Brinkman model of porous media flow in two and three dimensions, with non-homogeneous
Dirichlet boundary conditions. We consider a fully-mixed formulation in which the main unknowns
are given by the pseudostress, the velocity and the trace of the velocity, whereas the pressure is
easily recovered through a simple postprocessing. We show that the corresponding continuous and
discrete schemes are well-posed. In particular, we use the projection-based error analysis in order
to derive a priori error estimates. Furthermore, we develop a reliable and efficient residual-based
a posteriori error estimator, and propose the associated adaptive algorithm for our HDG approx-
imation. Finally, several numerical results illustrating the performance of the method, confirming
the theoretical properties of the estimator, and showing the expected behaviour of the adaptive
refinements are presented.

Key words: linear Brinkman model, hybridized discontinuous Galerkin method, a posteriori error
analysis, postprocessed techniques, high-order approximations

1 Introduction

The design and study of efficient numerical methods to solving the Brinkman model, which describes
the flow of a viscous fluid in a highly porous medium, has been increasing during the last few years
(see, e.g., [1, 2, 3, 4, 19, 21, 23, 30, 31, 32, 33, 36] and the references therein). The reason why it has
gained relevance on the part of the numerical analysis community is due to its various applications (see,
e.g. [30] and the references therein) including for instance, subsurface flow problems, heat and mass
transfer in pipes, liquid composite molding, the behavior and influence of osteonal structures, compu-
tational fuel cell dynamics, to name a few. This model is also encountered after time discretizations
of transient Stokes equations governing the motion of an incompressible fluid. Since we are mainly
interested in mixed variational formulations, we note that most of the variational formulations found
in the literature are based on the typical Stokes-type (also called primal-mixed) approach in which
the velocity and the pressure are kept as the main unknowns. Actually, up to the authors’ knowledge,
no stress-based or pseudostress-based approaches seemed to be available until the recent contribution
[21], where an alternative way of dealing with the mixed boundary conditions and the a priori and a
posteriori error analyses of a dual-mixed approach for the two-dimensional Brinkman problem were

∗This work of the first author was partially supported by Dirección de Investigación of the Universidad Católica de
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provided. Indeed, the pseudostress σ is the main unknown of the resulting saddle point problem in
[21], and the velocity and pressure are easily recovered in terms of σ through simple postprocessing
formulae. In addition, as it is usual for dual-mixed methods, the Dirichlet boundary condition for
the velocity becomes natural in this case, and the Neumann boundary condition, being essential, is
imposed weakly through the introduction of the trace of the velocity on that boundary as the associ-
ated Lagrange multiplier. In this way, the Babuška-Brezzi theory is applied first in [21] to establish
sufficient conditions for the well-posedness of the resulting continuous and discrete formulations. In
particular, a feasible choice of finite element subspaces is given by Raviart-Thomas elements of order
k ≥ 0 for the pseudostress, and continuous piecewise polynomials of degree k + 1 for the Lagrange
multiplier. Next, a reliable and efficient residual-based a posteriori error estimator is derived there.
Suitable auxiliary problems, the continuous inf-sup conditions satisfied by the bilinear forms involved,
a discrete Helmholtz decomposition, and the local approximation properties of the Raviart-Thomas
and Clément interpolation operators are the main tools for proving the reliability. In turn, Helmholtz’s
decomposition, inverse inequalities, and the localization technique based on triangle-bubble and edge-
bubble functions are employed to show the efficiency. Lately, a natural extension of the analysis and
results from [21] to a class of Brinkman models whose viscosity depends nonlinearly on the gradient
of the velocity, which is a characteristic feature of quasi-Newtonian Stokes flows, was developed in
[23]. A reliable and efficient residual-based a posteriori error estimator was also derived in [23] by
following basically the same approach from [21]. More recently, also proceeding as in [21], an a priori
error analysis of a mixed virtual element method (mixed-VEM) approach for the two-dimensional
Brinkman problem with non-homogeneous Dirichlet boundary conditions was developed in [4].

On the other hand, the hybridizable discontinuous Galerkin (HDG) method, introduced in [10] for
diffusion problems, is one of the several high-order discretization schemes that takes advantage from the
hybridization technique originally applied in [17] to the local discontinuous Galerkin (LDG) method
for time dependent convection-diffusion problems. The main advantages of HDG methods include
a substantial reduction of the globally coupled degrees of freedom, and the fact that convergence is
obtained even for the polynomial degree k = 0. Additionally, superconvergence element-by-element
postprocessing techniques can be also develop for this approach (see e.g. ([9, 13, 11]). In the context
of the Stokes-type equations, the hybridization for DG methods was initially introduced in [5] and
then analyzed in [34, 11]. Lately, an overview of the recent work by Cockburn and co-workers on the
devising of HDG methods for the Stokes equations of incompressible flow was provided in [16]. More
recently, a priori and a posteriori error analyses of augmented HDG method for a quasi-Newtonian
Stokes flow are developed in [27] (see also [26]), and in [28] the authors introduce and analyze a
HDG method for numerically solving the coupling of fluid flow with porous media flow, governing
by the Stokes and Darcy equations, respectively. Nevertheless, and up to our knowledge, there is
just the contribution [19] in the literature concerning HDG for Brinkman systems. Therein, two new
parameter-free superconvergent H(div)-conforming HDG methods are presented for the Brinkman
equations on both simplicial and rectangular meshes. The methods are based on a velocity gradient-
velocity-pressure formulation, which can be considered as a natural extension of theH(div)-conforming
HDG method for the Stokes flow from [14].

According to the above discussion, in this paper we are interested in applying the HDG approach
to the two and three dimensional lineal Brinkman problem with non-homogeneous Dirichlet boundary
conditions studied in [4], using the same velocity-pseudostress formulation from [22] (see also [4]) for
the corresponding a priori error analysis. Furthermore, a second contribution of this work corresponds
to the derivation of a reliable and efficient residual-based a posteriori error estimator for our problem.
Regarding this issue, it is important to remark here that the development of a posteriori error analysis
for HDG schemes is not as exhaustive as for conforming methods, which is confirmed by the scarce
literature on the subject. One of the first a posteriori error analysis of the HDG method for second-
order elliptic problems was presented in [18]. A postprocessing variable was used there in order
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to prove reliability and efficiency of the proposed local a posteriori error indicator. More recently,
an a posteriori error estimator for the HDG method applied to convection-diffusion equations with
dominant convection was introduced in [6]. No postprocessed solution was employed in that approach.
Other works dealing with the development of a posteriori error estimates for HDG schemes include
[27], where an element-by-element postprocessing formula for the pseudostress was used, in order to
provide reliability and efficiency of the a posteriori estimator. However, in spite of the aforementioned
papers, there is still no contribution available in the literature on the a posteriori error analysis of HDG
methods for Brinkman models. For all the reasons above, and as a first attempt in this regard, in this
paper we follow [27] and develop a reliable and efficient residual-based a posteriori error estimator,
and propose the associated adaptive algoritm for our HDG approximation of the linear Brinkman
problem.

The rest of this work is organized as follows. In Section 2 we introduce the boundary value problem
of interest, and analyze its pseudostress-velocity formulation. Next, in Section 3 we follow [26, 27]
to establish a hybridizable discontinuous Galerkin formulation, which involves the pseudostress, the
velocity, and the trace of the velocity as main unknowns. Also, in the same section, we show the unique
solvability of this HDG scheme, and establish the corresponding optimal a priori error estimates.
Therein, we use a projection whose design is inspired by the form of the numerical traces of the method,
which has the task of simplifying the corresponding study. Next, in Section 4 we derive a reliable and
efficient residual-based a posteriori error estimator. Similarly as in [18, 27], we use an element-by-
element postprocessing formula for the pseudostress, which allows us to prove reliability and efficiency
of the a posteriori estimator. Finally, several numerical results showing the good performance of the
method, confirming the reliability and efficiency of the estimator, and illustrating the behaviour of the
associated adaptive algorithm are reported in Section 5, even for k = 0, which is a polynomial degree
not fully covered by the theory.

We end the present section by describing the notational convention to be used below. Given a non-
null spaceH and n ∈ {2, 3}, we setH := Hn and H := Hn×n. Also, given τ := (τij), ζ := (ζij) ∈ Rn×n,
we write as usual

τ t := (τji) , tr(τ ) :=

n∑

i=1

τii , τd := τ − 1

n
tr(τ ) I , and τ : ζ :=

n∑

i,j=1

τijζij .

Furthermore, in what follows we utilize the standard terminology for Sobolev spaces and norms,
and use C to denote generic constants independent of the discretization parameters, which may take
different values at different places.

2 The continuous problem

Let Ω be a bounded and simply connected polygonal domain in Rn, n ∈ {2, 3}, with boundary Γ. Our
goal is to determine the velocity u, the pseudostress σ, and the pressure p of a steady flow occupying
the region Ω. In other words, given a volume force f ∈ L2(Ω) and a Dirichlet datum g ∈ H1/2(Γ), we
seek a tensor field σ, a vector field u and a scalar field p such that

σ = ν∇u− p I in Ω , αu− div(σ) = f in Ω ,

div(u) = 0 in Ω , u = g on Γ , and

∫

Ω
p = 0 ,

(2.1)

where ν > 0 is the dynamic viscosity, and α > 0 is a constant approximation of the viscosity divided
by the permeability. In addition, as required by the incompressibility condition, we assume from now
on that the datum g satisfies the compatibility condition

∫
Γ g · n = 0, where n stands for the unit
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outward normal at Γ. Furthermore, the incompressible condition also implies that the formulation
(2.1) can be rewritten as:

1

ν
σd = ∇u in Ω , αu− div(σ) = f in Ω ,

u = g on Γ , and

∫

Ω
tr(σ) = 0 ,

(2.2)

where, the pressure p can be obtained by the postprocessing formula

p = − 1

n
tr(σ) in Ω . (2.3)

Now, we test the first and second equations of (2.2) with τ ∈ H(div; Ω) and v ∈ L2(Ω), respectively.
Then, integrating by parts the expression

∫
Ω ∇u : τ , and using the Dirichlet boundary condition, we

obtain the variational formulation: Find (σ,u) ∈ H×Q such that

1

ν

∫

Ω
σd : τd +

∫

Ω
u · div(τ ) = 〈τn,g〉Γ ∀ τ ∈ H ,

∫

Ω
v · div(σ) − α

∫

Ω
u · v = −

∫

Ω
f · v ∀ v ∈ Q ,

(2.4)

where H := H0(div; Ω) :=
{
τ ∈ H(div; Ω) :

∫
Ω tr(τ ) = 0

}
, and Q := L2(Ω). The unique solvability

of (2.4) is established in the following result.

Theorem 2.1. Assume that f ∈ L2(Ω) and g ∈ H1/2(Γ). Then, there exists a unique solution
(σ,u) ∈ H×Q to (2.4). In addition, there exists C > 0 such that

‖σ‖div,Ω + ‖u‖0,Ω ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
. (2.5)

Proof. First, we derive an equivalent formulation for (2.4). Indeed, taking v := div(σ) − αu + f ∈
L2(Ω) in the second equation of (2.4), we deduce that

u =
1

α

{
f + div(σ)

}
in Ω . (2.6)

Next, replacing u in the first equation of (2.4) by (2.6) lead to the problem: Find σ ∈ H such that

1

ν

∫

Ω
σd : τ d +

1

α

∫

Ω
div(σ) · div(τ ) = − 1

α

∫

Ω
f · div(τ ) + 〈τn,g〉Γ ∀ τ ∈ H ,

which, is quite clear (see, e.g. [4, Section 2]) that there exists a unique solution σ ∈ H of the above
formulation (which is equivalent to (2.4)). In addition, we have that

‖σ‖div,Ω ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
. (2.7)

Finally, from (2.6) we know that ‖u‖0,Ω ≤ 1
α

{
‖f‖0,Ω + ‖σ‖div,Ω

}
, which along with (2.7), allows ut to

conclude (2.5) and complete the proof.

We end this section by noting from Theorem 2.1 that the bounded linear operator A : H ×Q →
H

′ ×Q′, obtained by adding the two equations of the left-hand side of (2.4), is an isomorphism. This
means, in particular, according to (2.5), that there exists C > 0, depending on Ω, ν and α, such that

‖A(ρ,w)‖H′×Q′ ≥ C ‖(ρ,w)‖H×Q ∀ (ρ,w) ∈ H×Q ,
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which can be written, equivalently, as a global inf-sup condition. More precisely, there exists a constant
C > 0 such that

C ‖(ρ,w)‖H×Q ≤ sup
(τ ,v)∈H×Q

(τ ,v) 6=0

1

ν

∫

Ω
ρd : τ d +

∫

Ω
w · div(τ ) +

∫

Ω
v · div(ρ) − α

∫

Ω
w · v

‖(τ ,v)‖H×Q

(2.8)

for all (ρ,w) ∈ H×Q. The purpose of (2.8) will become clear in the a posteriori error analysis given
below in Section 4.

3 The hybridizable discontinuous Galerkin method

We begin by introducing some preliminary notations. Let Th be a shape-regular triangulation of Ω
without the presence of hanging nodes, and let Eh be the set of faces F of Th. In addition, we let E i

h

and E∂
h be the set of interior and boundary faces, respectively, of Eh, and set ∂Th := ∪{∂T : T ∈ Th}.

Next, given a domain U ⊆ Rn and a surface G ⊆ Rn−1, we let (·, ·)U (resp. 〈·, ·〉G) be the usual L2, L2

and L
2 (resp. L2 and L2) inner products over U (resp. G). Then, we introduce the inner products:

(·, ·)Th :=
∑

T∈Th

(·, ·)T , 〈·, ·〉∂Th :=
∑

T∈Th

〈·, ·〉∂T , and 〈·, ·〉∂Th\Γ :=
∑

T∈Th

∑

F∈∂T\Γ

〈·, ·〉F .

On the other hand, let n+ and n− be the outward unit normal vectors on the boundaries of two
neighboring elements T+ and T−, respectively. We use τ± to denote the traces of τ on F := T

+∩T
−

from the interior of T±, where τ is a second-order tensorial function. Then, we define the jumps [[·]]
of tensor variables on each interior face as [[τn]] := τ+n+ + τ−n−. In addition, given an integer
ℓ ≥ 0, we denote by Pℓ(U) the space of polynomials defined in U of total degree at most ℓ. We recall
here, according to our notations (see the last paragraph of Section 1), that Pℓ(U) := [Pℓ(U)]n and
Pℓ(U) := [Pℓ(U)]n×n.

We are now ready to describe below the HDG method for the boundary value problem (2.2). To
this end, given an integer k ≥ 0, we introduce the finite dimensional discontinuous subspaces given by

Hh :=
{
τ ∈ L

2(Ω) : τ |T ∈ Pk(T ) ∀ T ∈ Th
}
,

Qh :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀ T ∈ Th

}
,

Mh :=
{
µ ∈ L2(E i

h) : µ|F ∈ Pk(F ) ∀ F ∈ E i
h

}
.

Next, we proceed exactly as in [11, 26] to derive the HDG formulation of (2.2). That is, testing the
equations in (2.2) with elements in the foregoing subspaces, integrating on each T ∈ Th by parts, and
introducing the numerical fluxes σ̂hn and ûh, we arrive at: Find (σh,uh,λh) ∈ Hh ×Qh ×Mh, such
that

1

ν
(σd

h, τ
d
h)Th + (uh,divh(τ h))Th − 〈τ hn, ûh〉∂Th = 0 ∀ τ h ∈ Hh ,

−(σh,∇hvh)Th + 〈σ̂hn,vh〉∂Th − α (uh,vh)Th = −(f,vh)Th ∀ vh ∈ Qh ,

〈σ̂hn,µh〉∂Th\Γ = 0 ∀ µh ∈ Mh ,

(tr(σh), 1)Ω = 0 ,

(3.1)
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where, the broken divergence operator divh is defined by divh(τ h) := div(τ h|T ) ∀T ∈ Th, ∀ τh ∈ Hh,
whereas the operator ∇h is given by ∇h(vh) := ∇(vh|T ) ∀T ∈ Th, ∀vh ∈ Qh. Furthermore, letting
P Γ be the L2(Γ)-projection onto the space of piecewise polynomials of degree less than or equals to k
on E∂

h , we set the numerical fluxes as

ûh :=

{
P Γ(g) on E∂

h ,

λh on E i
h ,

and σ̂hn := σhn − S(uh − ûh) on ∂Th , (3.2)

where, as is usual, S is an stabilization tensor. In particular, given F ∈ Eh, for now on we assume
that S|F is a symmetric and positive definite constant tensor.

Next, using the fact that

−(σh,∇hvh)Th = (vh,divh(σh))Th − 〈σhn,vh〉∂Th ,

and the numerical traces (3.2), our problem becomes: Find (σh,uh,λh) ∈ Hh ×Qh ×Mh such that

1

ν
(σd

h, τ
d
h)Th + (uh,divh(τ h))Th − 〈τ hn,λh〉∂Th\Γ = 〈τ hn,g〉Γ ,

(vh,divh(σh))Th − 〈S(uh − λh),vh〉∂Th\Γ
− 〈Suh,vh〉Γ − α (uh,vh)Th = −(f,vh)Th − 〈Sg,vh〉Γ ,

〈σhn,µh〉∂Th\Γ − 〈S(uh − λh),µh〉∂Th\Γ = 0 ,

(tr(σh), 1)Ω = 0 ,

(3.3)

for all (τ h,vh,µh) ∈ Hh ×Qh ×Mh. Then, the following theorem establishes the unique solvability
of the HDG scheme (3.3).

Theorem 3.1 (Solvability analysis). There exists a unique solution for the linear problem (3.3).

Proof. In what follows, we proceed as [28, Theorem 3.1]. Indeed, we use the fact that the existence
of the solution follows from its uniqueness. Thus, it suffices to show that when the right-hand sides
of (3.3) vanish, then σh, uh, and λh also vanish. According to the above discussion, we assume that
f = 0 and g = 0, and taking τh := σh, vh := −uh and µh := λh in (3.3), we can show that

1

ν
‖σd

h‖20,Ω + α‖uh‖20,Ω + 〈S(uh − λh),uh − λh〉∂Th\Γ + 〈Suh,uh〉Γ = 0 ,

which, using the properties of ν, α and S, it follows that

σd
h = 0 in Ω , uh = 0 in Ω , and uh = λh on E i

h . (3.4)

Now, using the last two identities of (3.4) we obtain that λh = 0 on E i
h. Thus, from the second

and third equations of (3.3), we deduce that divh(σh) = 0 in Ω and [[σhn]] = 0 on E i
h, respectively,

which together with σd
h = 0 in Ω implies that σh = c I in Ω, where c ∈ R. Finally, applying that

(tr(σh), 1)Ω = 0, we arrive to σh = 0 in Ω and completes the proof.

3.1 A priori error analysis

In this section we aim to derive the a priori error estimates for the HDG scheme (3.3) and the
continuous formulation (2.4). In order to do that, in the next result we establish the converse of the
derivation of (2.4).
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Lemma 3.1. Let (σ,u) ∈ H × Q be the unique solution of (2.4). Then, ∇u = 1
ν σ

d in Ω (which
implies that u ∈ H1(Ω)), u = g on Γ, and αu− div(σ) = f in Ω.

Proof. We begin by looking from the first equation of (2.4) that, in particular, yields

1

ν

∫

Ω
σd : τ +

∫

Ω
u · div(τ ) = 0 ∀ τ ∈ [C∞

0 (Ω)]n×n ,

which, establishes that ∇u = 1
ν σ

d in [D′(Ω)]n×n, and hence u ∈ H1(Ω). Next, going back to the first
equation of (2.4) and integrating the second term by parts, we get 〈τn,u− g〉Γ = 0 for all τ ∈ H,
which gives u = g on Γ. Finally, we show that αu− div(σ) = f in Ω from (2.6).

Now, given r ≥ 0, we define

Hr(Th) :=
{
v ∈ L2(Ω) : v|T ∈ Hr(T ) ∀ T ∈ Th

}
,

whence Hr(Th) and H
r(Th) denote the vectorial and tensorial versions of Hr(Th), respectively. Fur-

thermore, we recall from [28, Section IV.A] the projection operator Πh : H1(Th)×H1(Th) → Hh ×Qh

which, given (ρ,w) ∈ H
1(Th)×H1(Th), the values of Πh(ρ,w) := (Πρ,Πw) ∈ Hh×Qh on any T ∈ Th

are characterized by the following identities:

(Πρ, τ )T = (ρ, τ )T ∀ τ ∈ Pk−1(T ) ,

(Πw,v)T = (w,v)T ∀ v ∈ Pk−1(T ) , (3.5)

〈Πρn− SΠw,µ〉F = 〈ρn− Sw,µ〉F ∀ µ ∈ Pk(F ) , ∀ F ∈ ∂T ,

which, satisfies the approximation properties (see [28, Theorem 4.1]):

‖Πw −w‖0,T ≤ C
{
hℓw+1
T |w|ℓw+1,T + h

ℓρ+1
T |div(ρ)|ℓρ,T

}
, (3.6)

and
‖Πρ − ρ‖0,T ≤ C

{
h
ℓρ+1
T |ρ|ℓρ+1,T + hℓw+1

T |w|ℓw+1,T + h
ℓρ+1
T |div(ρ)|ℓρ,T

}
, (3.7)

for ℓρ, ℓw ∈ [0, k]. In what follows we assume that the solution (σ,u) of our problem (2.4) is regular
enough to apply Πh.

On the other hand, using Lemma 3.1 and the consistency in the numerical fluxes (cf. (3.2)) of the
HDG approximation, we note that the exact solution (σ, u, λ := u|Ei

h

), satisfies also (3.3). Hence,

after applying the definition of the projection Πh (cf. (3.5)), integrating by parts, and performing
simple algebraic manipulations, we find the error equations:

1

ν
((Eσ)d, τ d

h)Th + (Eu,divh(τh))Th − 〈τ hn,E
λ〉∂Th\Γ =

1

ν
(Πσ − σ, τ d

h)Th , (3.8a)

(vh,divh(E
σ))Th − 〈S(Eu − Eλ),vh〉∂Th\Γ
− 〈SEu,vh〉Γ − α (Eu,vh)Th = −α (Πu− u,vh)Th , (3.8b)

〈Eσn,µh〉∂Th\Γ − 〈S(Eu − Eλ),µh〉∂Th\Γ = 0 , (3.8c)

(tr(Eσ), 1)Ω = (tr(Πσ − σ), 1)Ω , (3.8d)

for all (τ h,vh,µh) ∈ Hh ×Qh ×Mh, where Eσ := Πσ −σh, E
u := Πu− uh and Eλ := PM (u)− λh,

are the approximation errors, with PM : L2(E i
h) → Mh the L2(E i

h)-orthogonal projection.

Our next goal is to provide upper estimates for the approximation errors. Thus, we begin by
determining estimates for ‖Eu‖0,Ω and ‖Eσ‖0,Ω in the following two lemmas.
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Lemma 3.2. There exists C > 0, independent of h, such that

‖(Eσ)d‖0,Ω + ‖Eu‖0,Ω + 〈S(Eu − Eλ),Eu − Eλ〉1/2∂Th\Γ
+ 〈SEu,Eu〉1/2Γ

≤ C
{
‖Πσ − σ‖0,Ω + ‖Πu− u‖0,Ω

}
.

Proof. First, we add the error equations (3.8a)-(3.8b)-(3.8c), with τ h := Eσ, vh := −Eu and µh :=
Eλ, to find that

1

ν
‖(Eσ)d‖20,Ω + α ‖Eu‖20,Ω + 〈S(Eu − Eλ),Eu − Eλ〉∂Th\Γ + 〈SEu,Eu〉Γ

=
1

ν
(Πσ − σ, (Eσ)d)Th + α (Πu− u,Eu)Th .

The result now follows by using the Cauchy-Schwarz and Young inequalities in the right-hand side of
the previous identity.

Lemma 3.3. There exists C > 0, independent of h, such that

‖Eσ‖0,Ω ≤ C
{
‖Πσ − σ‖0,Ω + ‖Πu− u‖0,Ω

}
.

Proof. We adapt the proofs of [11, Proposition 3.4] and [28, Lemma 4.5]. Indeed, from the identity
‖Eσ‖20,Ω = ‖(Eσ)d‖20,Ω + 1

n ‖tr(Eσ)‖20,Ω and Lemma 3.2, it is easy to see that we only need an upper

estimate for ‖tr(Eσ)‖0,Ω. Thus, using the fact that tr(Eσ)− 1
|Ω|(tr(E

σ), 1)Ω ∈ L2
0(Ω), and a well-known

continuous inf-sup condition (see, e.g. [29, Corollary 2.4 in Chapter I]), we establish that there exists
β > 0 such that

β

∥∥∥∥tr(Eσ)− 1

|Ω|(tr(E
σ), 1)Ω

∥∥∥∥
0,Ω

≤ sup
v∈H1

0(Ω)
v 6=0

(tr(Eσ),div(v))Th
‖v‖1,Ω

,

which, along with (3.8d), yield

‖tr(Eσ)‖0,Ω ≤ 1

β
sup

v∈H1
0(Ω)

v 6=0

(tr(Eσ),div(v))Th
‖v‖1,Ω

+ n1/2‖Πσ − σ‖0,Ω . (3.9)

Now, letting Pk
h : L2(Ω) → Qh be the L2(Ω)-orthogonal projector, it follows integrating by parts on

each T ∈ Th, using the fact that 1
n tr(Eσ)I = Eσ − (Eσ)d, and at the end incorporating the projectors

PM and Pk
h , that for all v ∈ H1

0(Ω) there hold

1

n
(tr(Eσ),div(v))Th = − 1

n
(∇htr(E

σ),v)Th +
1

n
〈v · n, tr(Eσ)〉∂Th\Γ

= − 1

n
(divh(tr(E

σ) I),v)Th +
1

n
〈(tr(Eσ) I)n,v〉∂Th\Γ

= (divh

(
(Eσ)d

)
,v)Th − (divh(E

σ),v)Th + 〈Eσn,v〉∂Th\Γ − 〈(Eσ)dn,v〉∂Th\Γ

= −((Eσ)d,∇v)Th − (Pk
h(v),divh(E

σ))Th + 〈Eσn,PM (v)〉∂Th\Γ .
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Next, employing the error equations (3.8b) and (3.8c) with vh := Pk
h(v) and µh := PM (v), respec-

tively, we deduce together with the foregoing equation that

1

n
(tr(Eσ),div(v))Th = −((Eσ)d,∇v)Th − 〈S(Eu − Eλ),Pk

h(v)−PM (v)〉∂Th\Γ
− 〈SEu,Pk

h(v)〉Γ − α (Eu,Pk
h(v))Th + α (Πu− u,Pk

h(v))Th

= −((Eσ)d,∇v)Th − 〈S(Eu − Eλ),Pk
h(v)− PM (v)〉∂Th\Γ − 〈SEu,Pk

h(v)〉Γ
− α (Eu,v)Th + α (Πu− u,Pk

h(v))Th

≤ ‖(Eσ)d‖0,Ω|v|1,Ω + 〈S(Eu − Eλ),Eu − Eλ〉1/2∂Th\Γ
〈S

(
Pk
h(v)− PM (v)

)
,Pk

h(v)− PM (v)〉1/2∂Th\Γ

+ 〈SEu,Eu〉1/2Γ 〈SPk
h(v),Pk

h (v)〉
1/2
Γ + α‖Eu‖0,Ω‖v‖0,Ω + α‖Πu− u‖0,Ω‖Pk

h(v)‖0,Ω

≤
{
‖(Eσ)d‖0,Ω + 〈S(Eu − Eλ),Eu − Eλ〉1/2∂Th\Γ

〈S
(
Pk
h(v)− PM (v)

)
,Pk

h(v)− PM (v)〉1/2∂Th\Γ

‖v‖1,Ω

+ 〈SEu,Eu〉1/2Γ

〈SPk
h(v),Pk

h (v)〉
1/2
Γ

‖v‖1,Ω
+ α‖Eu‖0,Ω + α‖Πu− u‖0,Ω

}
‖v‖1,Ω ∀ v ∈ H1

0(Ω) ,

where, in the last inequality, we applied the fact that ‖Pk
h(v)‖0,Ω ≤ ‖v‖0,Ω. Then, replacing back the

above identity into (3.9), yields

‖tr(Eσ)‖0,Ω ≤ n

β
(1 + α)

{
‖(Eσ)d‖0,Ω + ‖Eu‖0,Ω + ‖Πu− u‖0,Ω

}

+
n
√
2

β
Ψ(S)

{
〈S(Eu − Eλ),Eu − Eλ〉1/2∂Th\Γ

+ 〈SEu,Eu〉1/2Γ

}

+ n1/2 ‖Πσ − σ‖0,Ω ,

(3.10)

with

Ψ(S) := sup
v∈H1

0(Ω)
v 6=0

{
〈S

(
Pk
h(v)−PM (v)

)
,Pk

h(v)− PM (v)〉∂Th\Γ + 〈SPk
h(v),Pk

h(v)〉Γ
}1/2

‖v‖1,Ω
.

On the other hand, letting P k
F : L2(F ) → Pk(F ) be the L2(F )-orthogonal projector on each

F ∈ Eh, we know that PM (v)|F = P k
F (v) ∀ F ∈ E i

h and P k
F (v) = 0 ∀ F ∈ E∂

h , for each v ∈ H1
0(Ω).

Hence, we can write

Ψ(S) = sup
v∈H1

0(Ω)
v 6=0

{ ∑
T∈Th

∑
F∈∂T

〈S
(
Pk
h(v)− P k

F (v)
)
,Pk

h(v)− P k
F (v)〉F

}1/2

‖v‖1,Ω
,

and using the same arguments in the first part of the proof of [11, Proposition 3.9], it easy to see that
Ψ(S) is bounded by a constant depending on S. Finally, according to the above discussion, along with
Lemma 3.2, we complete the proof from (3.10).

It is important to remark here that no duality argument was required in order to get an estimate
for ‖Eu‖0,Ω, which is the main technique used in [11, 12, 15, 28]. However, it is because of this that we
can not show a superconvergence behaviour in the approximation of the trace variable λh, and then
we deduce an a priori error estimate for this variable, in similar way to [26, Theorem 4.2].
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Lemma 3.4. There exists C > 0, independent of h, such that

{ ∑

F∈Ei

h

hF ‖Eλ‖20,F

}1/2

≤ C
{
‖Eσ‖0,Ω + ‖Eu‖0,Ω

}
.

Proof. Notices that the error equation (3.8c) can be written as

∫

Ei

h

{
[[Eσn]]− 2S

(
{{Eu}} − Eλ

)}
· µh = 0 ∀ µh ∈ Mh ,

where, {{·}} stands for the usual mean function on E i
h. Hence, using that [[E

σn]]−2S({{Eu}}−Eλ) ∈ Mh

and the properties of S, we find that

Eλ = {{Eu}} − 1

2
S−1[[Eσn]] on E i

h .

Now, from the above identity, it follows

∑

F∈Ei

h

hF ‖Eλ‖20,F =
∑

F∈Ei

h

hF

∥∥∥∥{{Eu}} − 1

2
S−1[[Eσn]]

∥∥∥∥
2

0,F

≤ 1

2

∑

F∈Ei

h

hF

{
‖(Eu)+ − S−1(Eσ)+n+‖20,F + ‖(Eu)− − S−1(Eσ)−n−‖20,F

}

≤ C
∑

T∈Th

hT

{
‖Eu‖20,∂T + ‖Eσ‖20,∂T

}
,

where, C depends on S and the regularity of Th. Finally, applying a discrete-trace theorem and an
inverse inequality, we complete the proof.

As a consequence of the previous lemmas, now we are able to establish the a priori error estimates
for the HDG scheme (3.3).

Theorem 3.2. Let (σ,u) ∈ H×Q and (σh,uh) ∈ Hh×Qh be the unique solutions of (2.4) and (3.3),
respectively. In addition, let ûh be the numerical flux introduced in (3.2). Then, there exists C > 0,
independent of h, such that

‖σ − σh‖0,Ω + ‖u− uh‖0,Ω ≤ C
{
‖Πσ − σ‖0,Ω + ‖Πu− u‖0,Ω

}
,

and

{ ∑

F∈Eh

hF ‖u− ûh‖20,F

}1/2

≤ C
{
‖Πσ−σ‖0,Ω + ‖Πu−u‖0,Ω

}
+ C

{ ∑

F∈Eh

hF ‖P k
F (u)−u‖20,F

}1/2

.

Proof. The first estimate follows straightforwardly from the triangle inequality and Lemmas 3.2 and
3.3. On the other hand, using the definitions of ûh (cf. (3.2)), PM , P Γ and P k

F , along with the fact
that u = g on Γ (cf. Lemma 3.1), we find that

∑

F∈Eh

hF ‖u− ûh‖20,F ≤ 2
∑

F∈Ei

h

hF ‖Eλ‖20,F + 2
∑

F∈Eh

hF ‖P k
F (u)− u‖20,F .

Then, applying Lemma 3.4 into the above estimate, we complete the proof of the lemma.
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Moreover, the following theorem provides the corresponding theoretical rates of convergence.

Theorem 3.3. Let (σ,u) ∈ H×Q and (σh,uh) ∈ Hh×Qh be the unique solutions of (2.4) and (3.3),
respectively. In addition, let ûh be the numerical flux introduced in (3.2). Then, there exists C > 0,
independent of h, such that

‖σ − σh‖0,Ω + ‖u− uh‖0,Ω ≤ C
∑

T∈Th

h
min{ℓσ,ℓu}+1
T

{
|σ|ℓσ+1,T + |div(σ)|ℓσ ,T + |u|ℓu+1,T

}
,

and
{ ∑

F∈Eh

hF ‖u− ûh‖20,F

}1/2

≤ C
∑

T∈Th

h
min{ℓσ,ℓu}+1
T

{
|σ|ℓσ+1,T + |div(σ)|ℓσ,T + |u|ℓu+1,T

}

+ C
∑

F∈Eh

hℓu+1
F |u|ℓu+1/2,F .

for ℓσ, ℓu ∈ [0, k].

Proof. It follows from Theorem 3.2 and the approximation properties of Πh (cf. (3.6) and (3.7)), and
those of P k

F (see, e.g. [7]).

We end this section by recalling from (2.3) that p = − 1
n tr(σ) in Ω, which suggests to define a

postprocessed approximation of the pressure, given by

ph := − 1

n
tr(σh) in Ω , (3.11)

where, from the fact that

‖p− ph‖0,Ω ≤ 1

n
‖tr(σ − σh)‖0,Ω ≤ 1

n1/2
‖σ − σh‖0,Ω ,

and Theorem 3.3, we obtain an a priori error estimate for p and ph.

4 A posteriori error analysis

We now aim to develop a residual-based a posteriori error analysis for the HDG scheme (3.3). Here,
we remark that the techniques from [27, Section 5] is suitably adapted. We begin by introducing

additional notations. In what follows, for each F ∈ E i
h such that F = T

+ ∩ T
−
, we denote by

[[v ⊗ n]] := v+ ⊗ n+ + v− ⊗ n− the jumps of vector fields on F , with ⊗ denotes the usual dyadic
product. Similarly, for a tensor field τ , we let [[τ ×n]] := τ+×n+ + τ−×n− be the corresponding
tangential jump across F , where

τ × n :=

(
τ12n1 − τ11n2

τ22n1 − τ21n2

)
∈ R2 , and τ × n :=




(τ11, τ12, τ13)× n

(τ21, τ22, τ23)× n

(τ31, τ32, τ33)× n


 ∈ R3×3 ,

when n = 2 and n = 3, respectively. Furthermore, in three space dimensions the ith row of curl(τ ) is
nothing but curl(·) applied to the ith row of τ . In the two-dimensional case, given vector and tensor
valued fields v and τ , respectively, we let

curl(v) :=




∂x2
v1 −∂x1

v1

∂x2
v2 −∂x1

v2


 ∈ R2×2 and curl(τ ) :=




∂x1
τ12 − ∂x2

τ11

∂x1
τ22 − ∂x2

τ21


 ∈ R2.
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On the other hand, we recall from [27, Section 5.1] the postprocessed flux σ⋆
h for the variable σh

(see also [12, 13]), that is, we let σ⋆
h be the unique element in RTk(Th) such that

∫

T
σ⋆
h : τ h =

∫

T
σh : τ h ∀ τh ∈ Pk−1(T ) , ∀T ∈ Th ,

∫

F
σ⋆
hn · µh =

∫

F
σ̂hn · µh ∀µh ∈ Pk(F ) , ∀F ∈ ∂T , ∀T ∈ Th ,

(4.1)

where RTk(Th) is the global Raviart-Thomas subspace of degree k. It is important to observe here,
thanks to the third equation of (3.1), that σ⋆

h ∈ H(div; Ω). In addition, we let σ⋆
h,0 be the H0(div; Ω)-

component of σ⋆
h, which, from the first equation of (4.1) and the fact that (tr(σh), 1)Ω = 0, notice

that σ⋆
h = σ⋆

h,0 when k ≥ 1.

Finally, we introduce the subspace

Xh :=
{
q ∈ C(Ω) : q|T ∈ P1(T ) ∀ T ∈ Th

}
⊂ H1(Ω) ,

whence Xh and Xh denote the vectorial and tensorial versions of Xh, respectively.

4.1 Reliability of the a posteriori error estimator

We begin with the following preliminary estimate.

Lemma 4.1. Let (σ,u) ∈ H×Q and (σh,uh) ∈ Hh ×Qh be the unique solutions of (2.4) and (3.3),
respectively. Also, let σ⋆

h ∈ H(div; Ω) be the postprocessed flux defined by (4.1). Then, there exists
C > 0, independent of h, such that

‖σ − σh‖0,Ω + ‖u− uh‖0,Ω + ‖σ − σ⋆
h,0‖div,Ω ≤ C

{
‖σh − σ⋆

h,0‖0,Ω

+ ‖αuh − div(σ⋆
h,0)− f‖0,Ω + ‖R‖H′

}
,

(4.2)

where R ∈ H
′ is defined by

R(τ ) :=
1

ν
(σd

h, τ )Th + (uh,div(τ ))Th − 〈τn,g〉Γ ∀ τ ∈ H . (4.3)

In addition, when k ≥ 1, we have that R(τ h) = 0 for all τh ∈ (Xh + RT0(Th)) ∩H.

Proof. Firstly, adding and subtracting σ⋆
h,0, note that

‖σ−σh‖0,Ω + ‖u−uh‖0,Ω + ‖σ−σ⋆
h,0‖div,Ω ≤ ‖σh−σ⋆

h,0‖0,Ω + 2‖(σ−σ⋆
h,0,u−uh)‖H×Q . (4.4)

Next, we take (ρ,w) := (σ − σ⋆
h,0,u− uh) ∈ H×Q into (2.8), in order to find that

C ‖(σ − σ⋆
h,0,u− uh)‖H×Q ≤ sup

(τ ,v)∈H×Q

(τ ,v) 6=0

{
1
ν ((σ − σ⋆

h,0)
d, τ d)Th + (u− uh,div(τ ))Th

‖(τ ,v)‖H×Q

+
(v,div(σ − σ⋆

h,0))Th − α(u− uh,v)Th
‖(τ ,v)‖H×Q

}
,
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which, utilizing (2.4) and adding and subtracting σh, reduces to

C ‖(σ − σ⋆
h,0,u− uh)‖H×Q ≤ sup

(τ ,v)∈H×Q

(τ ,v) 6=0

{
〈τn,g〉Γ − 1

ν (σ
d
h, τ

d)Th − (uh,div(τ ))Th
‖(τ ,v)‖H×Q

+
1
ν ((σh − σ⋆

h,0)
d, τ d)Th + (αuh − div(σ⋆

h,0)− f,v)Th
‖(τ ,v)‖H×Q

}
.

Then, applying the Cauchy-Schwarz inequality it follows that

C ‖(σ − σ⋆
h,0,u− uh)‖H×Q ≤ 1

ν
‖σh − σ⋆

h,0‖0,Ω + ‖αuh − div(σ⋆
h,0)− f‖0,Ω + ‖R‖H′ ,

which, along with (4.4), imply (4.2). Finally, given τ h ∈ (Xh+RT0(Th))∩H, it follows that [[τ hn]] = 0

on E i
h and, when k ≥ 1, τ h ∈ Hh. Thus, from the first equation in (3.3), we deduce that

1

ν
(σd

h, τ h)Th + (uh,div(τ h))Th = 〈τ hn,g〉Γ ∀ τ h ∈ (Xh + RT0(Th)) ∩H ,

which, completes the proof of the lemma.

Our next goal is to bound ‖R‖H′ on the right-hand side of (4.2). For this end, we now introduce the
Clément interpolation operator Ih : H1(Ω) → Xh (see [8]), which satisfies the following approximation
properties: for each v ∈ H1(Ω) there holds

‖v − Ih(v)‖0,T ≤ C hT ‖v‖1,∆(T ) ∀ T ∈ Th , (4.5)

and
‖v − Ih(v)‖0,F ≤ C h

1/2
F ‖v‖1,∆(F ) ∀ F ∈ Eh , (4.6)

where ∆(T ) and ∆(F ) are the union of all elements intersecting with T and F , respectively. In addition,
we denote the vectorial and tensorial versions of Ih (both defined componentwise) by Ih : H1(Ω) → Xh

and Ih : H1(Ω) → Xh, respectively.

Next, given τ ∈ H we consider its Helmholtz decomposition (see, e.g. [21, Section 4.2] for details
in the two-dimensional case, and [20] in the three-dimensional case). That is, there exist z ∈ H2(Ω)
and ϕ ∈ H1(Ω) such that

τ = ζ + curl(ϕ) , (4.7)

where ζ := ∇z ∈ H
1(Ω) and there holds

‖ζ‖1,Ω + ‖ϕ‖1,Ω ≤ C ‖τ ‖div,Ω . (4.8)

Now, we define
τ h := ζh + curl(ϕh) + chI ∈ (Xh + RT0(Th)) ∩H ,

where ζh := Ih(ζ), ϕh := Ih(ϕ), and the constant ch is chosen so that (tr(τ h), 1)Ω = 0. Then, for
k ≥ 1, using the definition of τh, the decomposition (4.7), the fact that ch vanishes in the definition
of R (cf. (4.3)), and Lemma 4.1, we have that

R(τ ) = R(τ − τ h) = R1(ζ) + R2(ϕ) ∀ τ ∈ H , (4.9)

where

R1(ζ) := R(ζ − ζh) =
1

ν
(σd

h, ζ − ζh)Th + (uh,div(ζ − ζh))Th − 〈(ζ − ζh)n,g〉Γ ,

and

R2(ϕ) := R(curl(ϕ−ϕh)) =
1

ν
(σd

h, curl(ϕ−ϕh))Th − 〈curl(ϕ−ϕh)n,g〉Γ .

The following two lemmas provide suitable upper bounds for |R1(ζ)| and |R2(ϕ)|.
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Lemma 4.2. There exists C1 > 0, independent of h, such that

|R1(ζ)| ≤ C1

{ ∑

T∈Th

θ21,T

}1/2

‖τ‖div,Ω ,

where

θ21,T := h2T
∥∥ 1
ν σ

d
h −∇uh

∥∥2
0,T

+
∑

F∈∂T∩Ei

h

hF
∥∥[[uh ⊗ n]]

∥∥2
0,F

+
∑

F∈∂T∩E∂

h

hF
∥∥g− uh

∥∥2
0,F

.

Proof. First, using the fact that (ζ − ζh) ∈ H
1(Ω), it follows that (ζ − ζh) ∈ L

2(Eh), whence,
integrating by parts the second term in the definition of R1 on each T ∈ Th, we obtain that

R1(ζ) =
1

ν
(σd

h, ζ − ζh)Th +
∑

T∈Th

{
−
∫

T
∇uh : (ζ − ζh) +

∫

∂T
(ζ − ζh)n · uh

}
−

∫

Γ
(ζ − ζh)n · g ,

= ( 1ν σ
d
h −∇huh, ζ − ζh)Th +

∑

F∈Ei

h

∫

F
(ζ − ζh) : [[uh ⊗ n]] −

∫

Γ
(ζ − ζh)n · (g− uh) .

Then, applying the Cauchy-Schwarz inequality in each term of the above expression, along with the
estimates (4.5) and (4.6), the fact that the numbers of elements in ∆(T ) and ∆(F ) are bounded, and
the estimate (4.8), we conclude the proof of the lemma.

Lemma 4.3. Assume that g ∈ H1(Γ). Then there exists C2 > 0, independent of h, such that

|R2(ϕ)| ≤ C2

{ ∑

T∈Th

θ22,T

}1/2

‖τ‖div,Ω ,

where

θ22,T := h2T
∥∥curl( 1νσd

h)
∥∥2
0,T

+
∑

F∈∂T∩Ei

h

hF
∥∥[[ 1νσd

h ×n]]
∥∥2
0,F

+
∑

F∈∂T∩E∂

h

hF
∥∥(∇g− 1

νσ
d
h

)
× n

∥∥2
0,F

.

Proof. It follows analogously to the proof of [25, Lemma 4.3] (see also [24, Lemma 4.4]).

Now, we are ready to establish the main result of this section.

Theorem 4.1 (Reliability). Let (σ,u) ∈ H ×Q and (σh,uh) ∈ Hh ×Qh be the unique solutions of
(2.4) and (3.3), respectively, and suppose that g ∈ H1(Γ). In addition, let σ⋆

h ∈ H be the postprocessed
flux given by (4.1). Then, for k ≥ 1, there exists Crel > 0, independent of h, such that

‖σ − σh‖0,Ω + ‖u− uh‖0,Ω + ‖σ − σ⋆
h,0‖div,Ω ≤ Crelθ ,

where θ :=
{ ∑

T∈Th

θ2T

}1/2
, and for each T ∈ Th

θ2T :=
∥∥σh − σ⋆

h,0

∥∥2
0,T

+
∥∥αuh − div(σ⋆

h,0)− f
∥∥2
0,T

+ h2T
∥∥ 1
ν σ

d
h −∇uh

∥∥2
0,T

+ h2T
∥∥curl( 1νσd

h)
∥∥2
0,T

+
∑

F∈∂T∩Ei

h

hF

{∥∥[[ 1νσd
h × n]]

∥∥2
0,F

+
∥∥[[uh ⊗ n]]

∥∥2
0,F

}

+
∑

F∈∂T∩E∂

h

hF

{∥∥(∇g− 1
νσ

d
h

)
× n

∥∥2
0,F

+
∥∥g− uh

∥∥2
0,F

}
.

(4.10)
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Proof. From (4.9) and Lemmas 4.2 and 4.3, it follows that

‖R‖H′ ≤ C

{ ∑

T∈Th

(
θ21,T + θ22,T

)}1/2

,

which, together with (4.2), completes the proof.

4.2 Efficiency of the a posteriori error estimator

In this section we prove the efficiency of our a posteriori error estimator θ. That is, we derive suitable
upper bounds for the eight terms defining the local error indicator θ2T (cf. (4.10)). We begin by noting,
after adding and subtracting σ, that

‖σh − σ⋆
h,0‖20,T ≤ 2 ‖σ − σh‖20,T + 2 ‖σ − σ⋆

h,0‖20,T . (4.11)

Also, using the fact that f = αu− div(σ) (cf. Lemma 3.1), it follows that

‖αuh − div(σ⋆
h,0)− f‖20,T ≤ 2α2 ‖u− uh‖20,T + 2 ‖div(σ − σ⋆

h,0)‖20,T . (4.12)

Next, the estimates for the remaining six terms defining θ2T (cf. (4.10)), are given as follows.

Lemma 4.4. There exist C1, C2 > 0, independent of h, such that

h2T ‖curl( 1νσ
d
h)‖20,T ≤ C1 ‖σ − σh‖20,T ∀ T ∈ Th , (4.13)

and
hF

∥∥[[ 1νσd
h × n]]

∥∥2
0,F

≤ C2 ‖σ − σh‖20,ωF
∀ F ∈ E i

h , (4.14)

where ωF := ∪{T ∈ Th : F ∈ ∂T}.

Proof. As in the proof of [25, Lemma 4.11], it suffices to apply the general results stated in [25,
Lemmas 4.9 and 4.10] and [24, Lemmas 4.8 and 4.9].

Lemma 4.5. There exist C3, C4 > 0, independent of h, such that

h2T ‖ 1
ν σ

d
h −∇uh‖20,T ≤ C3

{
h2T ‖σ − σh‖20,T + ‖u− uh‖20,T

}
∀ T ∈ Th , (4.15)

and
hF

∥∥g− uh

∥∥2
0,F

≤ C4

{
h2T ‖σ − σh‖20,T + ‖u− uh‖20,T

}
∀ F ∈ E∂

h , (4.16)

where T is the element of Th having F on its boundary.

Proof. It follows analogously to the proofs of [25, Lemmas 4.13 and 4.14].

Lemma 4.6. Assume that g is piecewise polynomial. Then, there exists C5 > 0, independent of h,
such that

hF
∥∥(∇g− 1

νσ
d
h

)
× n

∥∥2
0,F

≤ C5 ‖σ − σh‖20,T ∀ F ∈ E∂
h , (4.17)

where T is the element of Th having F on its boundary.

Proof. It is a slight modification of the proof of [25, Lemma 4.15] (see also [24, Lemma 4.12]).
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Lemma 4.7. There exists C6 > 0, independent of h, such that

hF
∥∥[[uh ⊗ n]]

∥∥2
0,F

≤ C6

{
h2T ‖σ − σh‖20,ωF

+ ‖u− uh‖20,ωF

}
∀ F ∈ E i

h , (4.18)

where ωF := ∪{T ∈ Th : F ∈ ∂T}.

Proof. We adapt the proof of [25, Lemma 4.14]. Indeed, given F ∈ E i
h such that F = T

+ ∩ T
−

(i.e.
ωF = {T+, T−}), we know from Lemma 3.1 that [[u⊗ n]] = 0 on F . Thus, it follows

hF
∥∥[[uh ⊗n]]

∥∥2
0,F

= hF
∥∥[[(u− uh)⊗ n]]

∥∥2
0,F

≤ 2hF ‖(u+ − u+
h )⊗n+‖20,F + 2hF ‖(u− − u−

h )⊗ n−‖20,F

= 2
∑

T∈ωF

hF ‖(u− uh)⊗ n‖20,F ≤ 2
∑

T∈ωF

hF ‖u− uh‖20,F .

Next, applying a discrete-trace inequality (see, e.g. [25, eq. (4.34)]), adding and subtracting 1
ν σ

d
h,

and the fact that ∇u = 1
ν σ

d (cf. Lemma 3.1), we deduce that

hF
∥∥[[uh ⊗ n]]

∥∥2
0,F

≤ C
∑

T∈ωF

{
‖u− uh‖20,T + h2F ‖∇u−∇uh‖20,T

}

= C
∑

T∈ωF

{
‖u− uh‖20,T + h2F ‖ 1

ν σ
d − 1

ν σ
d
h +

1
ν σ

d
h −∇uh‖20,T

}

≤ C
∑

T∈ωF

{
‖u− uh‖20,T + h2T ‖σ − σh‖20,T + h2T ‖ 1

ν σ
d
h −∇uh‖20,T

}
.

Finally, using (4.15) in the previous estimate, we arrive to (4.18) and complete the proof.

We end this section by establishing the efficiency of our a posteriori indicator θ (cf. (4.10)).

Theorem 4.2 (Efficiency). Let (σ,u) ∈ H × Q and (σh,uh) ∈ Hh × Qh be the unique solutions of
(2.4) and (3.3), respectively, and suppose that g ∈ H1(Γ). In addition, let σ⋆

h ∈ H be the postprocessed
flux given by (4.1). Then, there exists Ceff > 0, independent of h, such that

Ceffθ + h.o.t. ≤ ‖σ − σh‖0,Ω + ‖u− uh‖0,Ω + ‖σ − σ⋆
h,0‖div,Ω , (4.19)

where h.o.t. stands for one or several terms of higher order.

Proof. It follows from estimates (4.11) up to (4.18), after summing up over T ∈ Th. In addition,
we remark here that the estimate (4.17) is valid when g is a piecewise polynomial. Otherwise, if g is
sufficiently smooth, then higher order terms (h.o.t.) would appear in (4.19).

5 Numerical results

In this section we present three numerical examples illustrating the good performance of our HDG
method (3.3), confirming the reliability and efficiency of the a posteriori error estimator θ, and showing
the behaviour of the associated adaptive algorithm. For all the computations below, we set S := I, and
consider polynomial degrees k ∈ {0, 1, 2, 3} in Example 1, and k ∈ {0, 1, 2} in Examples 2 and 3. In
addition, in what follows N denotes the total number of unknowns of (3.3), whereas Ncomp stands for
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the number of unknowns effectively employed in the computations (involved in the resolution of the
corresponding linear systems). More precisely, N is the total number of degrees of freedom defining
σh, uh, and λh. On the other hand, as is natural in the HDG implementations, we can reduce N to
Ncomp, where in the case of (3.3), Ncomp is the total number of degrees of freedom defining λh, plus
one constant for each T ∈ Th, which has the task of imposing the condition (tr(σh), 1)Ω = 0 (see [26,
Section 5] for details). In turn, the individual and total errors are defined by

e(σ) := ‖σ − σh‖0,Ω , e(u) := ‖u− uh‖0,Ω , e(λ) :=

{ ∑

F∈Eh

hF ‖u− ûh‖20,F

}1/2

,

e(p) := ‖p− ph‖0,Ω and e(σ,u) :=
{
[e(σ)]2 + [e(u)]2

}1/2
,

where ph is computed by the postprocessing formulae (3.11). Now, letting σ⋆
h ∈ H(div; Ω) be the

postprocessed flux defined by (4.1), the effectivity index with respect to θ is given by

eff(θ) :=
{
[e(σ,u)]2 + ‖σ − σ⋆

h,0‖2div,Ω
}1/2

/ θ ,

and the experimental rates of convergence are defined as

r(·) :=





log
(
e(·) / e′(·)

)

log(h/h′)
for the quasi-uniform algorithm,

log
(
e(·) / e′(·)

)

−1
2 log(N /N ′)

for the adaptive algorithm,

where e and e
′ denote the corresponding errors for two consecutive triangulations with sizes h and

h′, respectively. In addition, N and N ′ denote the corresponding total degrees of freedom of each
triangulation.

The numerical results presented below were obtained using a C++ code. The corresponding linear
systems arising from (3.3) are solved using the Conjugate Gradient method as the main solver. In
addition, for the adaptive 3D mesh generation (cf. Example 3), we use the software TetGen developed
in [35]. The examples to be considered in this section are described next. Example 1 is employed to
illustrate the performance of the HDG scheme (3.3) and to confirm the reliability and efficiency of the
a posteriori error estimator θ. Examples 2 and 3 are utilized to show the behaviour of the associated
adaptive algorithm, which applies the following procedure:

(1) Start with a coarse mesh Th.

(2) Solve the discrete problem (3.3) for the actual mesh Th.

(3) Compute θT (cf. (4.10)) for each triangle T ∈ Th.

(4) Evaluate stopping criterion and decide to finish or go to next step.

(5) Use red-green-blue procedure (cf. [37]) to refine each T ′ ∈ Th whose indicator θT ′ satisfies

θT ′ ≥ 1

2
max {θT : T ∈ Th} .

(6) Define the new mesh as actual mesh Th and go to step 2.
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In Example 1 we consider Ω := ]0, 1[2, ν = 0.1, α = 0.5, and choose the data f and g so that the
exact solution is given by

u(x) := curl
(
(x21 + x22) sin(2πx

2
1) cos(2πx

2
2)
)
,

and

p(x) :=

(
x21
9

+
x22
16

)
sin(πx1) sin(πx2) − 25(π2 − 4)

72π4
,

for all x := (x1, x2)
t ∈ Ω, where curl(q) := (∂yq,−∂xq)

t. In Table 5.1, we summarize the convergence
history of the HDG scheme (3.3) as applied to Example 1, for a sequence of quasi-uniform triangula-
tions of Ω. We notice there that the rate of convergence O(hk+1) predicted by Theorem 3.3 is attained
by all the unknowns. In this case, we can also observe the good behaviour of the a posteriori error
estimator θ, even for k = 0, which is a polynomial degree not guaranteed in the reliability of θ (cf.
Theorem 4.1). In fact, we see that the effectivity index eff(θ) remains always in the neighborhood of
0.31, 0.21, 0.14, and 0.10 for k ∈ {0, 1, 2, 3}, respectively, which illustrates the reliability and efficiency
result provided by Theorems 4.1 and 4.2.

k h N Ncomp e(σ) r(σ) e(u) r(u) e(λ) r(λ) e(p) r(p) e(σ,u) r(σ,u) eff(θ)
0.0500 14480 6481 1.79e-0 −− 7.55e-1 −− 1.57e-0 −− 8.40e-1 −− 1.95e-0 −− 0.3406
0.0250 57760 25761 9.45e-1 0.92 3.90e-1 0.95 7.89e-1 0.99 4.62e-1 0.86 1.02e-0 0.93 0.3244

0 0.0167 129840 57841 6.41e-1 0.96 2.63e-1 0.97 5.28e-1 0.99 3.17e-1 0.93 6.93e-1 0.96 0.3197
0.0125 230720 102721 4.85e-1 0.97 1.98e-1 0.98 3.97e-1 0.99 2.41e-1 0.95 5.23e-1 0.97 0.3175
0.0100 360400 160401 3.90e-1 0.98 1.59e-1 0.99 3.18e-1 0.99 1.95e-1 0.96 4.21e-1 0.98 0.3162
0.0500 38560 11361 1.09e-1 −− 5.69e-2 −− 9.85e-2 −− 3.83e-2 −− 1.23e-1 −− 0.2231
0.0250 153920 45121 2.75e-2 1.99 1.43e-2 1.99 2.44e-2 2.02 9.32e-3 2.04 3.10e-2 1.99 0.2184

1 0.0167 346080 101281 1.23e-2 1.99 6.39e-3 1.99 1.08e-2 2.01 4.10e-3 2.03 1.38e-2 1.99 0.2166
0.0125 615040 179841 6.90e-3 2.00 3.60e-3 2.00 6.05e-3 2.01 2.29e-3 2.02 7.78e-3 2.00 0.2157
0.0100 960800 280801 4.42e-3 2.00 2.30e-3 2.00 3.87e-3 2.01 1.46e-3 2.01 4.99e-3 2.00 0.2151
0.0500 72240 16241 5.26e-3 −− 2.77e-3 −− 5.24e-3 −− 1.69e-3 −− 5.94e-3 −− 0.1523
0.0250 288480 64481 6.60e-4 2.99 3.50e-4 2.98 6.44e-4 3.02 2.07e-4 3.03 7.47e-4 2.99 0.1489

2 0.0167 648720 144721 1.96e-4 3.00 1.04e-4 2.99 1.90e-4 3.01 6.09e-5 3.02 2.22e-4 3.00 0.1479
0.0125 1152960 256961 8.26e-5 3.00 4.39e-5 2.99 7.99e-5 3.01 2.56e-5 3.01 9.36e-5 3.00 0.1474
0.0100 1801200 401201 4.23e-5 3.00 2.25e-5 3.00 4.08e-5 3.01 1.31e-5 3.01 4.79e-5 3.00 0.1472
0.0500 115520 21121 2.03e-4 −− 1.06e-4 −− 2.08e-4 −− 6.26e-5 −− 2.29e-4 −− 0.1108
0.0250 461440 83841 1.28e-5 3.99 6.73e-6 3.98 1.30e-5 4.01 3.90e-6 4.00 1.45e-5 3.99 0.1091

3 0.0167 1037760 188161 2.53e-6 4.00 1.33e-6 3.99 2.56e-6 4.01 7.69e-7 4.01 2.86e-6 3.99 0.1085
0.0125 1844480 334081 8.02e-7 4.00 4.22e-7 4.00 8.08e-7 4.00 2.43e-7 4.01 9.06e-7 4.00 0.1082
0.0100 2881600 521601 3.29e-7 4.00 1.73e-7 4.00 3.31e-7 4.00 9.95e-8 4.00 3.71e-7 4.00 0.1081

Table 5.1: Example 1, quasi-uniform scheme.

Next, in Example 2 we consider the L-shaped domain Ω := ]−1, 1[2 \ [0, 1]2, ν = α = 1, and
choose f and g so that the exact solution is given for each x := (x1, x2)

t ∈ Ω by

u(x) :=

(
(x2 − 0.1)3

r
, −(x1 − 0.1)3

r

)t

,

and

p(x) :=
x2

x1 + 1.1
+

x1
x2 + 1.1

+
1

3
ln

(
21

11

)
,

where r :=
(
(x1 − 0.1)4 + (x2 − 0.1)4

)4/5
. Note that u is singular at (0.1, 0.1), and p is singular

along the lines x1 = −1.1 and x2 = −1.1. Hence, we should expect regions of high gradients around
the origin, which is the middle corner of the L, and along the lines x1 = −1 and x2 = −1. On
the other hand, in Tables 5.2 and 5.3, we provide the convergence history of the quasi-uniform and
adaptive schemes as applied to Examples 2. The stopping criterion corresponds to a maximum of
15 iterations. We observe here, as expected, that the errors of the adaptive methods decrease faster
than those obtained by the quasi-uniform ones. This fact is better illustrated in Figure 5.1, where we
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display the errors e(σ,u) vs. the degrees of freedom N for both refinements. Note that the effectivity
indices (even for k = 0) remain again bounded from above and below, which confirms the reliability
and efficiency of θ for the associated adaptive algorithm as well. Some intermediate meshes obtained
with this procedure are displayed in Figure 5.2. Notice here that the adapted meshes concentrate the
refinements around the origin and the lines x1 = −1 and x2 = −1, which means that the method is
in fact able to recognize the regions with high gradients of the solutions.

Finally, in Example 3 we consider the non-convex three dimensional domain

Ω := ]−1, 0[× ]−1, 1[× ]−1, 0[ ∪ ]0, 1[× ]−1, 0[× ]−1, 0[ ∪ ]−1, 0[× ]−1, 0[× ]0, 1[ ,

with ν = 0.5, α = 100, and choose the data f and g so that the exact solution is given for each
x := (x1, x2, x3)

t ∈ Ω by

u(x) :=

(
x2 − x3

r
,
x3 − x1

r
,
x1 − x2

r

)
t

,

and

p(x) := (x1 + 1) (x2 + 1) (x3 + 1) ex1+x2+x3 − e−3

4
(3e2 + 1) ,

where r :=
√

(x1 − 0.01)2 + (x2 − 0.01)2 + (x3 − 0.01)2. As in Example 2, here u is singular at
(0.01, 0.01, 0.01), and then we should expect regions of high gradients around the origin. Similar as
before, we present the convergence history for Example 3 in Tables 5.4 and 5.5, where, we see the
limited regularity of u in the rates of convergence. Now, the stopping criterion corresponds to a
maximum of 10 iterations, and we display the errors e(σ,u) vs. N , for both refinements, in Figure
5.3. There, for k = 0, we can appreciate that the errors of the adaptive scheme is not faster than the
quasi-uniform method, which could correspond to either a special feature of Example 3 or the fact
that k = 0 is not covered in Theorem 4.1. Some intermediate meshes obtained with this procedure are
displayed in Figure 5.4. Once again, we notice that the adapted meshes concentrate the refinements
around the regions with high gradients of the solutions.

We end this section by displaying, in Figures 5.5, 5.6 and 5.7, some components of the discrete
solutions for the three examples, in order to illustrate resolution of the HDG method (3.3).

k h N Ncomp e(σ) r(σ) e(u) r(u) e(λ) r(λ) e(p) r(p) e(σ,u) r(σ,u) eff(θ)
0.1414 5480 2481 2.07e-0 −− 8.78e-1 −− 2.40e-1 −− 7.12e-1 −− 2.25e-0 −− 0.9905
0.0566 33950 15201 9.42e-1 0.86 4.04e-1 0.85 9.61e-2 1.00 3.32e-1 0.83 1.02e-0 0.86 0.9907
0.0354 86720 38721 6.02e-1 0.95 2.60e-1 0.94 5.97e-2 1.01 2.09e-1 0.99 6.55e-1 0.95 0.9898

0 0.0257 163790 73041 4.41e-1 0.97 1.91e-1 0.97 4.33e-2 1.01 1.52e-1 0.99 4.81e-1 0.97 0.9893
0.0202 265160 118161 3.48e-1 0.98 1.51e-1 0.98 3.39e-2 1.01 1.20e-1 0.99 3.79e-1 0.98 0.9890
0.0166 390830 174081 2.87e-1 0.99 1.25e-1 0.99 2.79e-2 1.01 9.87e-2 0.99 3.13e-1 0.99 0.9888
0.0141 540800 240801 2.44e-1 0.99 1.06e-1 0.99 2.37e-2 1.01 8.39e-2 0.99 2.66e-1 0.99 0.9887
0.1414 14560 4361 7.19e-1 −− 2.46e-1 −− 5.07e-2 −− 2.35e-1 −− 7.60e-1 −− 0.9713
0.0566 90400 26651 1.54e-1 1.68 5.87e-2 1.56 8.50e-3 1.95 4.59e-2 1.78 1.65e-1 1.67 0.9815
0.0354 231040 67841 6.48e-2 1.84 2.47e-2 1.84 3.39e-3 1.96 1.92e-2 1.85 6.94e-2 1.84 0.9804

1 0.0257 436480 127931 3.50e-2 1.93 1.34e-2 1.93 1.80e-3 1.98 1.02e-2 2.00 3.75e-2 1.93 0.9805
0.0202 706720 206921 2.18e-2 1.96 8.35e-3 1.95 1.11e-3 1.99 6.25e-3 2.02 2.34e-2 1.96 0.9806
0.0166 1041760 304811 1.49e-2 1.97 5.70e-3 1.97 7.57e-4 2.00 4.22e-3 2.02 1.59e-2 1.97 0.9806
0.0141 1441600 421601 1.08e-2 1.98 4.13e-3 1.98 5.47e-4 2.00 3.04e-3 2.02 1.15e-2 1.98 0.9806
0.1414 27240 6241 2.41e-1 −− 7.80e-2 −− 1.47e-2 −− 6.37e-2 −− 2.53e-1 −− 0.9700
0.0566 169350 38101 3.23e-2 2.19 1.11e-2 2.12 1.19e-3 2.74 1.02e-2 2.00 3.42e-2 2.18 0.9631
0.0354 432960 96961 8.62e-3 2.81 2.93e-3 2.84 3.19e-4 2.80 2.72e-3 2.82 9.11e-3 2.82 0.9671

2 0.0257 818070 182821 3.45e-3 2.87 1.17e-3 2.87 1.26e-4 2.92 1.10e-3 2.85 3.65e-3 2.87 0.9682
0.0202 1324680 295681 1.71e-3 2.92 5.80e-4 2.92 6.18e-5 2.95 5.45e-4 2.90 1.80e-3 2.92 0.9685
0.0166 1952790 435541 9.62e-4 2.95 3.27e-4 2.95 3.47e-5 2.97 3.08e-4 2.94 1.02e-3 2.95 0.9685
0.0141 2702400 602401 5.94e-4 2.96 2.02e-4 2.96 2.14e-5 2.98 1.91e-4 2.96 6.28e-4 2.96 0.9685

Table 5.2: Example 2, quasi-uniform scheme.
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k h N Ncomp e(σ) r(σ) e(u) r(u) e(λ) r(λ) e(p) r(p) e(σ,u) r(σ,u) eff(θ)
0.1414 5480 2481 2.07e-0 −− 8.78e-1 −− 2.40e-1 −− 7.12e-1 −− 2.25e-0 −− 0.9905
0.1414 5570 2521 2.03e-0 2.14 8.07e-1 10.32 2.24e-1 8.23 7.70e-1 -9.76 2.19e-0 3.32 0.9861
0.1414 5718 2589 1.74e-0 11.76 7.08e-1 10.02 2.13e-1 4.02 7.11e-1 6.07 1.88e-0 11.52 0.9850
0.1414 6206 2807 1.54e-0 2.99 6.03e-1 3.91 1.90e-1 2.75 6.66e-1 1.62 1.66e-0 3.12 0.9844
0.1414 6810 3081 1.39e-0 2.29 5.62e-1 1.52 1.81e-1 1.04 6.25e-1 1.36 1.50e-0 2.19 0.9801
0.1414 7694 3475 1.29e-0 1.19 5.13e-1 1.50 1.77e-1 0.35 5.81e-1 1.20 1.39e-0 1.23 0.9756
0.1414 9544 4305 1.11e-0 1.36 4.52e-1 1.17 1.57e-1 1.11 5.16e-1 1.10 1.20e-0 1.33 0.9753

0 0.1414 13456 6057 9.44e-1 0.96 3.74e-1 1.11 1.43e-1 0.57 4.41e-1 0.92 1.02e-0 0.98 0.9706
0.1414 20528 9219 7.81e-1 0.90 3.07e-1 0.93 1.27e-1 0.56 3.70e-1 0.82 8.39e-1 0.90 0.9674
0.1414 32598 14614 6.56e-1 0.76 2.54e-1 0.82 1.10e-1 0.63 3.11e-1 0.75 7.03e-1 0.76 0.9629
0.1414 58320 26081 4.99e-1 0.94 1.93e-1 0.95 8.63e-2 0.82 2.38e-1 0.92 5.34e-1 0.94 0.9630
0.1414 89106 39817 4.03e-1 1.00 1.57e-1 0.96 7.08e-2 0.93 1.93e-1 0.99 4.33e-1 0.99 0.9637
0.1414 162650 72566 3.03e-1 0.95 1.16e-1 1.00 5.15e-2 1.06 1.47e-1 0.91 3.25e-1 0.95 0.9637
0.1000 257440 114771 2.43e-1 0.97 9.35e-2 0.95 4.14e-2 0.96 1.18e-1 0.96 2.60e-1 0.97 0.9632
0.1000 460856 205317 1.80e-1 1.03 6.97e-2 1.01 3.07e-2 1.02 8.71e-2 1.03 1.93e-1 1.03 0.9643
0.1414 14560 4361 7.19e-1 −− 2.46e-1 −− 5.07e-2 −− 2.35e-1 −− 7.60e-1 −− 0.9713
0.1414 14800 4431 5.00e-1 44.40 1.59e-1 53.09 3.94e-2 30.85 1.91e-1 25.37 5.25e-1 45.25 0.9841
0.1414 15192 4551 3.55e-1 26.33 1.22e-1 20.49 2.89e-2 23.71 1.28e-1 30.68 3.75e-1 25.75 0.9787
0.1414 15436 4625 3.13e-1 15.62 1.17e-1 5.59 2.47e-2 19.70 1.14e-1 13.90 3.34e-1 14.48 0.9653
0.1414 17076 5109 2.39e-1 5.36 9.03e-2 5.06 1.82e-2 6.04 9.95e-2 2.74 2.55e-1 5.33 0.9580
0.1414 18528 5541 1.98e-1 4.58 7.36e-2 5.02 1.47e-2 5.26 8.78e-2 3.09 2.11e-1 4.63 0.9442
0.1414 22372 6665 1.41e-1 3.64 5.20e-2 3.68 1.25e-2 1.70 6.13e-2 3.81 1.50e-1 3.65 0.9333

1 0.1414 26960 8023 1.11e-1 2.57 4.16e-2 2.39 1.11e-2 1.33 4.95e-2 2.29 1.18e-1 2.55 0.9241
0.1414 37476 11127 7.58e-2 2.29 2.89e-2 2.23 8.13e-3 1.87 3.39e-2 2.30 8.11e-2 2.28 0.9197
0.1414 46632 13823 6.01e-2 2.12 2.27e-2 2.20 7.24e-3 1.05 2.62e-2 2.36 6.43e-2 2.13 0.9098
0.1414 68048 20109 4.19e-2 1.91 1.61e-2 1.82 5.07e-3 1.89 1.83e-2 1.90 4.49e-2 1.90 0.9011
0.1414 108460 31995 2.72e-2 1.86 1.03e-2 1.90 3.38e-3 1.74 1.19e-2 1.84 2.91e-2 1.86 0.8976
0.1414 146872 43241 2.01e-2 2.00 7.71e-3 1.93 2.69e-3 1.51 8.69e-3 2.08 2.15e-2 1.99 0.8951
0.1414 228396 67101 1.27e-2 2.07 4.91e-3 2.05 1.74e-3 1.97 5.50e-3 2.07 1.36e-2 2.07 0.8956
0.1000 346306 101660 8.49e-3 1.93 3.27e-3 1.94 1.11e-3 2.15 3.70e-3 1.91 9.10e-3 1.93 0.8958
0.1414 27240 6241 2.41e-1 −− 7.80e-2 −− 1.47e-2 −− 6.37e-2 −− 2.53e-1 −− 0.9700
0.1414 27690 6341 1.54e-1 54.47 5.63e-2 39.80 6.19e-3 105.64 4.31e-2 47.65 1.64e-1 52.92 0.9790
0.1414 27882 6393 1.17e-1 80.93 4.69e-2 53.08 5.04e-3 59.88 4.24e-2 4.64 1.26e-1 77.36 0.9662
0.1414 28782 6593 7.94e-2 24.12 2.90e-2 30.30 4.34e-3 9.29 2.93e-2 23.18 8.46e-2 24.91 0.9332
0.1414 29058 6659 6.15e-2 53.49 2.36e-2 42.98 3.74e-3 31.33 2.30e-2 51.45 6.59e-2 52.20 0.9090
0.1414 31050 7111 4.44e-2 9.84 1.65e-2 10.72 2.67e-3 10.16 1.80e-2 7.26 4.74e-2 9.95 0.8964
0.1414 33576 7677 3.34e-2 7.30 1.17e-2 8.89 1.98e-3 7.70 1.50e-2 4.73 3.54e-2 7.48 0.8964

2 0.1414 38718 8829 2.07e-2 6.69 7.28e-3 6.63 1.36e-3 5.27 9.36e-3 6.63 2.20e-2 6.68 0.8809
0.1414 47664 10845 1.22e-2 5.10 4.39e-3 4.87 9.45e-4 3.49 5.37e-3 5.35 1.30e-2 5.08 0.8801
0.1414 56346 12807 9.06e-3 3.55 3.35e-3 3.22 7.22e-4 3.22 4.00e-3 3.52 9.66e-3 3.51 0.8758
0.1414 74136 16807 5.76e-3 3.31 2.06e-3 3.57 5.26e-4 2.31 2.63e-3 3.05 6.11e-3 3.34 0.8638
0.1414 94086 21287 4.14e-3 2.77 1.47e-3 2.85 4.11e-4 2.07 1.86e-3 2.94 4.39e-3 2.77 0.8457
0.1414 117960 26611 2.83e-3 3.36 1.03e-3 3.14 3.00e-4 2.77 1.29e-3 3.22 3.01e-3 3.33 0.8418
0.1414 164358 37029 1.73e-3 2.97 6.23e-4 3.02 1.77e-4 3.19 7.75e-4 3.07 1.84e-3 2.98 0.8469
0.1414 225408 50689 1.14e-3 2.66 4.05e-4 2.72 1.22e-4 2.37 5.08e-4 2.67 1.21e-3 2.67 0.8377

Table 5.3: Example 2, adaptive scheme.
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k h N Ncomp e(σ) r(σ) e(u) r(u) e(λ) r(λ) e(p) r(p) e(σ,u) r(σ,u) eff(θ)
0.4330 28512 11617 1.52e-0 −− 3.01e-1 −− 5.27e-1 −− 7.47e-1 −− 1.55e-0 −− 0.4642
0.2887 95256 38233 1.30e-0 0.40 2.07e-1 0.93 2.88e-1 1.49 6.52e-1 0.33 1.31e-0 0.41 0.5863
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0.1732 437400 173401 1.01e-0 0.54 1.34e-1 0.83 1.36e-1 1.49 5.20e-1 0.50 1.02e-0 0.54 0.6927

0
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0.4330 103968 31777 4.08e-1 −− 5.63e-2 −− 6.67e-2 −− 7.06e-2 −− 4.12e-1 −− 0.8626
0.2887 347976 104329 2.95e-1 0.80 4.18e-2 0.73 2.92e-2 2.04 5.02e-2 0.84 2.98e-1 0.80 0.9128
0.2165 821376 243841 2.29e-1 0.89 3.35e-2 0.78 1.65e-2 1.98 3.74e-2 1.02 2.31e-1 0.89 0.9184

1 0.1732 1600200 472201 1.84e-1 0.96 2.66e-2 1.04 1.02e-2 2.17 3.36e-2 0.49 1.86e-1 0.96 0.9019
0.1575 2127906 626539 1.68e-1 0.98 2.40e-2 1.05 8.33e-3 2.10 3.06e-2 0.96 1.70e-1 0.98 0.9033
0.1443 2760480 811297 1.54e-1 0.98 2.19e-2 1.05 7.03e-3 1.95 2.81e-2 0.99 1.56e-1 0.98 0.9304
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0.2165 1937664 475393 1.28e-1 1.07 1.75e-2 1.15 6.04e-3 2.14 2.39e-2 1.22 1.29e-1 1.08 0.8298

2 0.1732 3776400 920401 9.90e-2 1.14 1.22e-2 1.63 3.36e-3 2.63 2.00e-2 0.80 9.98e-2 1.15 0.8254
0.1575 5022468 1221133 8.83e-2 1.20 1.06e-2 1.46 2.68e-3 2.35 1.78e-2 1.24 8.90e-2 1.20 0.8313
0.1443 6516288 1581121 7.78e-2 1.46 9.39e-3 1.38 2.18e-3 2.41 1.60e-2 1.23 7.83e-2 1.46 0.8368
0.1332 8280324 2005693 7.16e-2 1.03 8.22e-3 1.67 1.79e-3 2.44 1.44e-2 1.27 7.21e-2 1.04 0.8432

Table 5.4: Example 3, quasi-uniform scheme.

k h N Ncomp e(σ) r(σ) e(u) r(u) e(λ) r(λ) e(p) r(p) e(σ,u) r(σ,u) eff(θ)
0.4330 28512 11617 1.52e-0 −− 3.01e-1 −− 5.27e-1 −− 7.47e-1 −− 1.55e-0 −− 0.4642
0.4330 31260 12737 1.46e-0 0.92 2.77e-1 1.79 4.75e-1 2.23 7.55e-1 -0.24 1.49e-0 0.95 0.4373
0.4330 33447 13637 1.43e-0 0.56 2.74e-1 0.40 4.74e-1 0.11 7.57e-1 -0.10 1.46e-0 0.56 0.3306
0.4330 35910 14648 1.42e-0 0.21 2.71e-1 0.23 4.70e-1 0.22 7.55e-1 0.08 1.45e-0 0.21 0.2721

0
0.4330 87501 35043 1.36e-0 0.09 2.02e-1 0.67 3.20e-1 0.86 7.51e-1 0.01 1.38e-0 0.11 0.3275
0.4330 237450 94880 1.19e-0 0.28 1.46e-1 0.66 1.85e-1 1.09 6.58e-1 0.26 1.20e-0 0.28 0.3655
0.3355 284337 113354 1.16e-0 0.27 1.33e-1 0.97 1.62e-1 1.49 6.46e-1 0.22 1.17e-0 0.28 0.3741
0.3021 577908 228351 1.03e-0 0.34 1.03e-1 0.72 1.10e-1 1.10 5.77e-1 0.32 1.03e-0 0.34 0.4132
0.2500 858816 338737 9.40e-1 0.45 8.97e-2 0.72 8.70e-2 1.16 5.30e-1 0.43 9.45e-1 0.45 0.4246
0.1958 1847256 726885 7.97e-1 0.43 7.09e-2 0.62 6.05e-2 0.95 4.50e-1 0.42 8.00e-1 0.43 0.4443
0.4330 103968 31777 4.08e-1 −− 5.63e-2 −− 6.67e-2 −− 7.06e-2 −− 4.12e-1 −− 0.8626
0.4330 111258 33991 2.46e-1 14.93 3.86e-2 11.18 4.29e-2 13.01 5.27e-2 8.64 2.49e-1 14.86 0.8537
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1
0.4330 136395 41644 1.22e-1 3.09 2.32e-2 1.84 3.88e-2 1.38 3.37e-2 1.29 1.24e-1 3.05 0.4827
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0.4330 323382 97031 5.95e-2 1.34 1.33e-2 1.26 2.14e-2 1.26 2.02e-2 0.65 6.10e-2 1.34 0.4618
0.4330 581649 173361 4.69e-2 0.81 9.28e-3 1.23 1.34e-2 1.59 1.83e-2 0.33 4.78e-2 0.83 0.4916
0.4330 893673 265519 3.38e-2 1.53 6.82e-3 1.43 8.72e-3 2.01 1.26e-2 1.76 3.45e-2 1.53 0.5161
0.4330 1376466 407421 2.41e-2 1.57 5.09e-3 1.36 5.92e-3 1.79 8.37e-3 1.88 2.46e-2 1.56 0.5210
0.4330 244800 62017 2.58e-1 −− 3.44e-2 −− 2.61e-2 −− 5.43e-2 −− 2.61e-1 −− 0.8116
0.4330 262458 66466 1.27e-1 20.50 1.57e-2 22.61 7.93e-3 34.24 2.68e-2 20.30 1.27e-1 20.54 0.8173
0.4330 281232 71317 4.05e-2 33.00 4.99e-3 33.10 6.18e-3 7.23 9.57e-3 29.78 4.08e-2 33.00 0.6177
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Figure 5.5: Example 1, some components of the approximate solutions (k = 2 and N = 2272302)
using the quasi-uniform scheme.
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Figure 5.6: Example 2, some components of the approximate solutions (k = 2 and N = 225408) for
the adaptive scheme.
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Figure 5.7: Example 3, iso-surfaces of some components of the approximate solutions (k = 1 and
N = 1376466) for the adaptive scheme.
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