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Abstract

The Lax-Wendro↵ time discretization is an alternative method to the popular total variation diminishing
Runge-Kutta time discretization of discontinuous Galerkin schemes for the numerical solution of hyper-
bolic conservation laws. The resulting fully discrete schemes are known as LWDG and RKDG methods,
respectively. Although LWDG methods are in general more compact and e�cient than RKDG methods of
comparable order of accuracy, the formulation of LWDG methods involves the successive computation of
exact flux derivatives. This procedure allows to construct schemes of arbitrary formal order of accuracy
in space and time. A new approximation procedure avoids the computation of exact flux derivatives.
The resulting approximate LWDG schemes, addressed as ALDWG schemes, are easier to implement than
their original LWDG versions. Numerical results for the scalar and system cases in one and two space
dimensions indicate that ALWDG methods are more e�cient in terms of error reduction per CPU time
than LWDG method of the same order of accuracy. Moreover, increasing the order of accuracy leads to
substantial reductions of numerical error and gains in e�ciency for solutions that vary smoothly.

Keywords: Discontinuous Galerkin scheme, Lax-Wendro↵ time discretization, systems of conservation
laws
2000 MSC: 76S05, 65M08, 65M60, 65M12

1. Introduction

1.1. Scope

We are interested in high-order accurate numerical schemes for systems of conservation laws
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in d space dimensions, where t is time, x is spatial position, u = (u
1

, . . . , u
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)T is the sought vector of
unknowns, and f
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(u), . . . , f
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(u))T is the given flux vector in the j-th coordinate direction,
j = 1, . . . , d. We assume that (1.1) is posed along with an initial condition
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(x), x 2 ⌦. (1.2)

One particular case is that of an initial value problem for scalar conservation law
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It is well known that solutions of (1.1), (1.2) or (1.3) are in general discontinuous, which may occur even
if the initial datum is smooth whenever the flux vector is a nonlinear function.

It is the purpose of this work to propose an approximation procedure for the Lax-Wendro↵ discon-
tinuous Galerkin (LWDG) schemes applied to (1.1), (1.2) that were originally proposed by Qiu et al.
[13]. The Lax-Wendro↵ time discretization is an alternative to the popular total variation diminishing
Runge-Kutta time discretization of the discontinuous Galerkin scheme to solve hyperbolic conservation
laws, resulting in the so-called RKDG method. As remarked in [13], the LWDG method is more com-
pact and cost-e�cient than the RKDG version of corresponding order of accuracy for certain problems,
including the two-dimensional Euler system of compressible gas dynamics, when nonlinear limiters are
applied. However, LWDG methods require the successive computation of exact flux derivatives or flux
Jacobians in the case of systems. This is found to be a major drawback of LWDG methods even though
they outperform RKDG methods in e�ciency. We overcome this di�culty through an approximation
procedure for the flux derivative or flux Jacobians, which is the main novelty of this proposed work. We
abbreviate our method as ALWDG for approximate Lax-Wendro↵ discontinuous Galerkin scheme.

The approximation procedure is primarily motivated by recent results by Zoŕıo et al. [25] that are
obtained in the finite-di↵erence setup. For the finite di↵erence method it is su�cient to compute the ap-
proximate flux derivatives essentially at grid points, whereas the finite-volume-based DG method requires
to compute the approximate derivatives in each cell. This di�culty is resolved by choosing the central
di↵erencing on non-uniform grids, which are essentially the available quadrature points in each cell. In
the original LWDG scheme apart from the flux derivatives it involves the computation of the derivatives
of approximated discontinuous Galerkin (DG) solution in each cell, which is found to be expensive. In our
method we do not have to compute these higher derivatives, which in turn saves a considerable amount
of CPU time as we see in the later discussions. With the proposed procedure, the original LWDG scheme
is likely to become more practicable in usage.

1.2. Related work

Lax-Wendro↵-type schemes have been widely used as an alternative to the Runge-Kutta-type time
discretizations in the context of hyperbolic conservation laws. The original contribution [11] was a second-
order scheme in that was extended for arbitrarily high order for a wide range of spatial schemes by several
authors. Among others, this technique has been used in the case of Shu-Osher finite-di↵erence spatial
schemes by Qiu and Shu [14] and for discontinuous Galerkin schemes by Qiu et al. [13], followed by
further improvements [8, 12]. See, e.g., [3, 4, 5, 6, 7] for details on standard RKDG schemes.

Lax-Wendro↵-type schemes outperform Runge-Kutta-type schemes, in the sense that they only need
one upwind phase for each time step, regardless of the accuracy order of the scheme, unlike the Runge-
Kutta schemes, which need as many upwind phases as the number of stages of the scheme. Further-
more, this number increases nonlinearly with the order of the scheme. However, the implementation
of Lax-Wendro↵-type schemes may be complicated due to the necessity to compute the high-order par-
tial derivative terms associated with systems of equations, since these expressions usually become very
large and may require symbolic manipulation software to compute them, which ultimately yields severe
performance drawbacks.

In order to overcome the aforementioned issue, Zoŕıo et al. [25] propose a technique based on the
approximation of the high-order terms to a suitable order of accuracy order instead of computing the
exact symbolic expression of the high order terms. This approximation is applied in [25] to Shu-Osher
finite-di↵erence schemes [19, 20]. It yields a more e�cient and easy-to-implement scheme, where no
symbolic computation is required to handle the high-order terms and no additional high-order terms
have to be computed for di↵erent equations, namely, for di↵erent fluxes.

Furthermore, we note that the so-called TVD RK3 ODE solver achieves third-order accuracy with
low storage requirements and a large CFL condition (see [19]). In contrast to this, for orders higher than
three the stability properties are not so favorable, forcing either a smaller CFL restriction or inclusion of
additional stages in the algorithm which essentially leads to loss in e�ciency (for detailed discussion see
[2]). These well-known di�culties underline the importance of the proposed ALWDG method.
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1.3. Outline of the paper

The remainder of the paper is organized as follows. In Section 2 we briefly review the LWDG schemes.
Specifically, after introducing preliminaries (Section 2.1), we develop in Section 2.2 the basic DG dis-
cretization for the scalar, one-dimensional problem (1.3). The key di�culty, namely the approximate
integration over each spatial cell of a quantity that involves the unknown as well as its time derivatives, is
handled in Section 2.3. This issue is resolved by approximating spatial derivatives through central di↵er-
ences defined on the non-uniform spatial grid defined by the nodes of the underlying quadrature formula
(Section 2.4). In Section 3, which is at the core of this paper, we describe the new ALWDG method as a
new time discretization of the DG scheme based in using an approximate Lax-Wendro↵ technique. The
critical ingredient consists in generating approximations to higher time derivatives of the flux that are of
certain determined orders of accuracy. This is done in Sections 3.1, 3.2 and 3.3 to generate schemes that
are of third, fourth, and fifth order of accuracy, respectively. We then outline how to construct schemes
of an arbitrary order of accuracy R. To this end we first recall, in Section 3.4, how central di↵erence
coe�cients for a scheme of arbitrarily high order are obtained, and then, in Section 3.5, develop a time
scheme of general order of accuracy (generalizing the treatment of Section 3.1–3.3). In Section 3.6 we ad-
dress the extensions of the new method to systems of conservation laws and to several space dimensions,
respectively, and summarize the ALWDG schemes in Section 3.7 for ease of reference. Section 4 is devoted
to the presentation of numerical examples. It starts with a brief discussion of the CFL condition and
the nonlinear limiters required for the implementation of LWDG and ALWDG schemes with non-smooth
solutions (Section 4.1). We then consider, in Section 4.2, three examples with a smooth solution that
allow us to verify whether the numerical schemes indeed have the advertised orders of accuracy. This is
done in Examples 1, 2, 3, 4 and 3 for the one-dimensional inviscid Burgers equation, a one-dimensional
equation with exponential flux, the one-dimensional Euler equations of gas dynamics, the two-dimensional
inviscid Burgers equation, and a two-dimensional equation with exponential flux, respectively. On the
other hand, we consider in Section 4.3 more realistic scenarios of equations (1.1) or (1.3), namely test
cases that involve the formation of shocks. These include a scalar, one-dimensional Buckley-Leverett
problem (Example 6), the one-dimensional Euler equations of gas dynamics (Examples 7 and 8), and the
two-dimensional Euler equations of gas dynamics (Example 9). Finally, in Section 5 some conclusions
are drawn.

2. Lax-Wendro↵-discontinuous Galerkin (LWDG) schemes

2.1. Preliminaries

Let us consider first initial value problem for a scalar conservation law (1.3), assuming that ⌦ = [0, 1].
We divide the domain ⌦ into cells I
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2.2. Discontinuous Galerkin discretization

Assume now that u is a smooth solution of (1.3). Then
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We denote by indices x, t, xx etc., partial derivatives. Then the Taylor expansion of u(x, t) yields

u(x, t+�t) = u(x, t)��tf(u)
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Now choosing j = 0, 1, 2, . . . , k in the above expression we obtain the following:
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Since we have an orthogonal basis (2.3), the matrix A is diagonal and invertible, therefore the coe�cients
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at time t
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The DG scheme is now complete provided we know how to deal with the function F and the numerical flux
F̂

i+1/2

. A choice for the numerical flux is the Lax-Friedrichs flux (LF) or the so-called local Lax-Friedrichs
flux (LLF). Both are defined by
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where for LF flux, the constant  = max
u

|f 0(u)| is taken as an upper bound on |f 0(u)| over the whole
range of u in the scalar case, or as a bound on the spectral radius of the Jacobian for the system case.
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in the scalar case or by evaluating or estimating the corresponding spectral radii in the system case. The
expression for F̂

i�1/2

follows in a similar way. Note that the scheme possesses a spatial order of accuracy
O(hk+1) when we use piecewise polynomials from P

k, i.e., of maximal degree k.
In two dimensions we use the polynomial space based on Legendre polynomials. In the reference
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[�1, 1]. For further details about the implementation in two dimensions we refer to [4].

2.3. Flux approximation
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Note that in fact we here need to compute F (uh(x, tn)) only at the quadrature points.
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So far we have discussed a third-order in time LWDG discretization, and (2.9) indicates that it is
quite complicated. So to avoid this long expression for F (uh(x, tn)), we may replace the time derivatives
@

m

f(uh(x, tn))/@tm by a recurrence approximation of the form
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where ⌫ specifies the order of accuracy in time.

2.4. Central di↵erence approximations on non-uniform grids

To evaluate the term f̃
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we need to compute successive derivatives of the flux functions or Jacobians
in the case of system of equations. In our proposed scheme we resolve this additional di�culty through
an approximation of the expression f̃
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using central di↵erencing primarily motivated by [25]. However,
in contrast to [25] we utilize central di↵erencing on non-uniform grids which we recall in the following
lines. If we are given a function ' : I ! R and {x
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3. Approximate Lax-Wendro↵ discontinuous Galerkin (ALWDG) schemes

Let us denote by I

i

as the i

th cell of the DG discretization. The primary goal is to approximate the
following terms arising in (2.10):
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where ũ(0)
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correspond to the polynomial DG solution and the approximation of u
t

in the cell I
i

,
respectively. We write

f

t

⇡ f̃

t

:=
1

2�t

⇣
f

�
ũ

(0)

n

(x) +�tũ

(1)

n

(x)
�� f

�
ũ

(0)

n

(x)��tũ

(1)

n

(x)
�⌘

.

In order to evaluate ũ

(1)

n

, we can use the expression

u

t

= �f(u)
x

(= �f

0(u)u
x

) (3.1)

and compute the exact term

ũ

(1)

n

(x) = u

t

(x, t
n

) for x 2 I

i

. (3.2)

In fact, we could use an approximation as well, which we see later. Now we consider the second term
f(u)

tt

. We use the following central di↵erence again:

f

tt

:= f(u)
tt

(x, t
n

) =
1

�t

2

⇣
f

�
u(x, t

n

+�t)
�� 2f

�
u(x, t

n

)
�
+ f

�
u(x, t

n

��t)
�⌘

+O(h2)

=
1

�t

2


f

✓
u(x, t

n

) +�tu

t

(x, t
n

) +
�t

2

2
u

i

tt

(x, t
n

)

◆
� 2f

�
u(x, t

n

)
�

+ f

✓
u(x, t

n

)��tu

t

(x, t
n

) +
�t

2

2
u

tt

(x, t
n

)

◆�
+O(h2)

=
1

�t

2


f

✓
ũ

(0)

n

(x) +�tũ

(1)

n

(x) +
�t

2

2
ũ

(2)

n

(x)

◆
� 2f

�
ũ

(0)

n

(x)
�

+ f

✓
ũ

(0)

n

(x)��tũ

(1)

n

(x) +
�t

2

2
ũ

(2)

n

(x)

◆�
+O(h2),

so that we arrive at the following approximation of f
tt

:

f

tt

⇡ f̃

tt

(x, t
n

) :=
1

�t

2


f

✓
ũ

(0)

n

(x) +�tũ

(1)

n

(x) +
�t

2

2
ũ

(2)

n

(x)

◆
� 2f

�
ũ

(0)

n

(x)
�

+ f

✓
ũ

(0)

n

(x)��tũ

(1)

n

(x) +
�t

2

2
ũ

(2)

n

(x)

◆�
,

(3.3)

where ũ

(2)

n

(x) is an approximation of u
tt

(x, t
n

), which we evaluate using the following central di↵erence:

u

tt

(x, t
n

) = ��f(u(x, t
n

))
t

�
x

⇡ ��f̃
t

(x)
�
x

. (3.4)

Note that we only need to compute ũ

(2)

n

(x
q

), where x

q

are the quadrature points in the cell I
i

. Since we
usually use non-equidistant Gauss or Gauss-Lobatto quadrature points, we need to compute the central
di↵erencing on non-uniform grids. On non-uniform grids we have

�
f̃

t

(x
q

)
�
x

= ↵f̃

t

(x
q�1

) + �f̃

t

(x
q

) + �f̃

t

(x
q+1

) +O(h2),

where ↵, � and � are given in (2.12), so from (3.4) we get the approximation

u

tt

(x
q

, t

n

) ⇡ ũ

(2)

n

(x
q

) = ��↵f̃
t

(x
q�1

) + �f̃

t

(x
q

) + �f̃

t

(x
q+1

)
�
.

We need to consider the boundary points of the cell I
i

as we deal with the Gauss-Lobatto quadrature
points. Therefore to compute ũ(2)

n

(x) at the boundary we can use a two-step forward or two-step backward
approximation. Now the method is complete for the third-order scheme.

Remark 3.1. If the third derivative d3f/du3 vanishes, i.e., f is a polynomial of degree less or equal 2,
then it is easy to see that the approximation f̃

t

of f(u)
t

coincides with the exact derivative f(u)
t

. In
that case the term F (u) = f(u) + (�t/2)f(u)

t

is the same for both the approximate and exact versions.
Consequently, the second-order versions of both ALWDG and LWDG schemes essentially are the same.
As an example, we observe this in the case of inviscid Burgers equation (Examples 1 and 4 in Section 4).
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3.2. Fourth-order scheme

To obtain fourth-order accuracy in time we need to approximate the terms f

t

, f
tt

and f

ttt

in (2.10)
to the respective accuracies O(�t

3), O(�t

2) and f

ttt

= O(�t). Therefore we begin with a fourth-order
approximation of f

t

:

f

t

:= f(u)
t

(x, t
n

) =
1

12�t

⇣
�f

�
u(x, t

n

+ 2�t)
�
+ 8f

�
u(x, t

n

+�t)
�

� 8f
�
u(x, t

n

��t)
�
+ f

�
u(x, t

n

� 2�t)
�⌘

+O(h4)

=
1

12�t

��'

1

n,2�t

(x) + 8'1

n,�t

(x)� 8'1

n,��t

(x) + '

1

n,�2�t

(x)
�
+O(h4),

where we define

'

1

n,�

(x) := f

�
ũ

(0)

n

(x) + �ũ

(1)

n

(x)
�
. (3.5)

As in the third-order case here we can compute ũ

(1)

n

by (3.1), (3.2). Consequently, for the fourth-order
scheme we utilize the following approximation of f

t

:

f

t

⇡ f̃

t

(x, t
n

) :=
1

12�t

��'

1

n,2�t

(x) + 8'1

n,�t

(x)� 8'1

n,��t

(x) + '

1

n,�2�t

(x)
�
. (3.6)

Moreover, since the order of approximation in f

tt

only needs to be O(�t

2), we may approximate f

tt

by (3.3) (as for the third-order scheme). Next, in order to approximate f(u)
ttt

(x, t
n

) we note that

f

ttt

:= f(u)
ttt

(x, t
n

) =
1

2�t

3

⇣
f

�
u(x, t

n

+ 2�t)
�� 2f

�
u(x, t

n

+�t)
�

+ 2f
�
u(x, t

n

��t)
�� f

�
u(x, t

n

� 2�t)
�⌘

+O(h2)

=
1

2�t

3

�
'

3

n,2�t

(x)� 2'3

n,�t

(x) + 2'3

n,��t

(x)� '

3

n,�2�t

(x)
�
+O(h2),

where we define

'

3

n,�

(x) := f

✓
ũ

(0)

n

(x) + �ũ

(1)

n

(x) +
�

2

2!
ũ

(2)

n

(x) +
�

3

3!
ũ

(3)

n

(x)

◆
. (3.7)

Thus, the approximation of f
ttt

for the fourth-order scheme is now given by

f

ttt

⇡ f̃

ttt

(x, t
n

) :=
1

2�t

3

�
'

3

n,2�t

(x)� 2'3

n,�t

(x) + 2'3

n,��t

(x)� '

3

n,�2�t

(x)
�
. (3.8)

Here ũ

(3)

n

(x) is an approximation of u
ttt

(x, t
n

), which we evaluate using a central di↵erencing for

u

ttt

(x, t
n

) = ��f(u(x, t
n

))
tt

�
x

⇡ ��f̃
tt

(x)
�
x

.

Note that we only need to compute ũ(3)

n

(x
q

), where x
q

are the quadrature points in the cell I
i

. Once again,
since we usually use non-equidistant Gauss or Gauss-Lobatto quadrature points, we need to compute the
central di↵erencing on non-uniform grids. We have

�
f̃

tt

(x
q

)
�
x

= ↵f̃

tt

(x
q�1

) + �f̃

tt

(x
q

) + �f̃

tt

(x
q+1

) +O(h2),

where ↵, � and � are given in (2.12). This yields the approximation

u

ttt

(x
q

, t

n

) ⇡ ũ

(3)

n

(x
q

) := ��↵f̃
tt

(x
q�1

) + �f̃

tt

(x
q

) + �f̃

tt

(x
q+1

)
�
.

As for the third-order scheme, to compute ũ

(2)

n

(x) at the boundary we can use a two-step forward or
two-step backward approximation. Now the method is complete for the fourth-order scheme.
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3.3. Fifth-order scheme

To obtain fifth-order accuracy in time we need to approximate the terms f
t

, f
tt

, f
ttt

and f

tttt

arising in
(2.10) to the respective orders of accuracy O(�t

4), O(�t

3), O(�t

2), and O(�t). Since the approximation
f̃

t

of f
t

defined by (3.5), (3.6) for the fourth-order scheme does already have the required order of accuracy,
we use the same expression also for the fifth-order scheme. Next, we calculate that

f

tt

=
1

12�t

2

⇣
�f

�
u(x, t

n

+ 2�t)
�
+ 16f

�
u(x, t

n

+�t)
�� 30f

�
u(x, t

n

)
�

+ 16f
�
u(x, t

n

��t)
�� f

�
u(x, t

n

� 2�t)
�⌘

+O(h4)

=
1

12�t

2

��'

2

n,2�t

(x) + 16'2

n,�t

(x)� 30'2

n,0

(x) + 16'2

n,��t

(x)� '

2

n,�2�t

(x)
�
+O(h4),

where we define

'

2

n,�

(x) := f

✓
ũ

(0)

n

(x) + �ũ

(1)

n

(x) +
�

2

2!
ũ

(2)

n

(x)

◆
. (3.9)

Here ũ

(2)

n

(x) is an approximation of u
tt

(x, t
n

) that we evaluate using (3.4). Since a fourth-order approx-
imation of f

tx

on a non-uniform grid is given by
�
f̃

t

(x
q

)
�
x

= ↵f̃

t

(x
q�2

) + �f̃

t

(x
q�1

) + �f̃

t

(x
q

) + �f̃

t

(x
q+1

) +O(h4)

for the coe�cients

� =
h

1

h

2

h

3

(h
1

+ h

3

)(h
3

+ h

2

)
, � = � h

1

h

3

h

2

(h
3

+ h

2

)(h
1

� h

2

)
, ↵ =

��h

2

+ �h

3

� 1

h

1

, � = �↵� � � �,

h

1

= x

q

� x

q�2

, h

2

= x

q

� x

q�1

, h

3

= x

q+1

� x

q

,

we get the approximation

ũ

(2)

n

(x
q

) = ��↵f̃
t

(x
q�2

) + �f̃

t

(x
q�1

) + �f̃

t

(x
q

) + �f̃

t

(x
q+1

)
�

to be used in (3.9). Thus, we employ the following approximation of f
tt

within the fifth-order scheme:

f

tt

⇡ f̃

tt

(x, t
n

) :=
1

12�t

2

��'

2

n,2�t

(x) + 16'2

n,�t

(x)� 30'2

n,0

(x) + 16'2

n,��t

(x)� '

2

n,�2�t

(x)
�
.

Furthermore, we observe that the approximation f̃

ttt

of f
ttt

defined by (3.7), (3.8) for the fourth-order
scheme does already have the required order of accuracy, we use the same expression also for the fifth-order
scheme. Finally, the sought approximation of f

tttt

:= f(u)
tttt

(x, t
n

) is obtained from

f

tttt

=
1

�t

4

⇣
f

�
u(x, t

n

+ 2�t)
�� 4f

�
u(x, t

n

+�t)
�
+ 6f

�
u(x, t

n

)
�

� 4f
�
u(x, t

n

��t)
�
+ f

�
u(x, t

n

� 2�t)
�⌘

+O(h2)

=
1

�t

4

�
'

4

n,2�t

(x)� 4'4

n,�t

(x) + 6'4

n,0

(x)� 4'4

n,��t

(x) + '

4

n,�2�t

(x)
�
+O(h2),

where we define

'

4

n,�

(x) := f

✓
ũ

(0)

n

(x) + �ũ

(1)

n

(x) +
�

2

2!
ũ

(2)

n

(x) +
�

3

3!
ũ

(3)

n

(x) +
�

4

4!
ũ

(4)

n

(x)

◆
.

The quantity ũ

(4)

n

(x
q

) is defined by

ũ

(4)

n

(x
q

) := ��↵f̃
ttt

(x
q�1

) + �f̃

ttt

(x
q

) + �f̃

ttt

(x
q+1

)
�
,

where ↵, � and � are given in (2.12). We therefore arrive at the approximation

f̃

tttt

(x, t
n

) =
1

�t

4

�
'

4

n,2�t

(x)� 4'4

n,�t

(x) + 6'4

n,0

(x)� 4'4

n,��t

(x) + '

4

n,�2�t

(x)
�
.

The fifth-order scheme is now complete.
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3.4. Obtention of central di↵erence coe�cients for an arbitrarily high-order scheme

Assume that we wish to construct an R-th order accurate time scheme. Let r = dR/2e and then
consider p

2r

the 2r-th degree interpolating polynomial satisfying p

2r

(i�t) = u

i

, �r  i  r. Then p

2r

can be univocally determined and the s-th derivative in the central point, x = 0, can be written as

p

(s)

2r

(0) =
1

�t

s

rX

i=�r

�

i,s

u

i

for certain coe�cients �

i,s

, �r  i  r, which can be explicitly computed. Proposition 2 of [25] also
describes an alternative (and constructive as well) procedure to find these coe�cients.

3.5. Time scheme of general accuracy order

With all the aforementioned ingredients, the time scheme of generalized order R, assuming the spatial
accuracy is greater or equal than R, can be computed following the steps indicated below.

1. For k = 1, . . . , R� 1 we perform the steps 2 and 3 indicated below.
2. Assuming that the corresponding approximations of u(l) are known for 1  l  k, compute an

approximation of f (k) using the suitable central di↵erence operator, which can be explicitly obtained
as described in Section 3.4. The optimal required accuracy order in this case for such centered
di↵erence is 2dR�k

2

e, which can be expressed as follows:

f̃

(k)

x,n

=
1

�t

k

sX

l=0

�

k,dR�k
2 e

l

⇣
f

�
T

k

x,n

(l�t)
�
+ (�1)kf

�
T

k

x,n

(�l�t)
�⌘

with

s :=

�
k � 1

2

⌫
+

⇠
R� k

2

⇡
and T

k

x,n

(⇢) :=
kX

j=0

⇢

j

j!
ũ

(j)

x,n

⇡ u(x, t
n

+ ⇢),

where the coe�cients �

p,q

�s

, . . . ,�

p,q

s

can be computed as shown in Section 3.4 or by solving the
(2s+ 1)⇥ (2s+ 1) system of equations suggested in Proposition 2 of [25]:

sX

l=�s

�

p,q

l

l

r = �

p

r

p!, 0  r  2s, �

p

r

=

(
1 if r = p,

0 if r 6= p.

3. If k < R�1, we need to compute u(k+1), which is performed using that u(k+1) = �(f (k))
x

, where cen-
tral di↵erencing on non-uniform grids is used through the known Gauss or Gauss-Lobatto quadra-
ture points, provided the accuracy order of such operation is greater or equal than 2dR�k

2

e. To be
more precise, if x

q�s

, . . . , x

q+s+⇢

are the quadrature points of the current cell I
i

, with ⇢ 2 {�1, 0, 1},
u

(k+1)(x
q

) can be approximated through the expression

u

(k+1)(x
q

) ⇡ �
s+⇢X

k=�s

↵

k

f̃

(k)(x
q+k

),

where ↵�s

, . . . ,↵

s+⇢

are determined by solving the (N + 1) ⇥ (N + 1) (N = 2s + ⇢) system of
equations

s+⇢X

k=�s

↵

k

h

j

q+k

= �

1

j

, 0  j  N, h

p

= x

p

� x

q

.

4. Once f

(k) is computed for 1  k  R� 1, the term F (uh(x, tn)) is approximated by

F

�
u

h(x, tn)
� ⇡ f

�
u

h(x, tn)
�
+

⌫X

m=1

�t

m

(m+ 1)!
f̃

(m)

x,n

.
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One can prove that a general R-th order accurate ALWDG scheme is actually R-th order accurate
in terms of the global error. To prove the accuracy involving f(u)(r) it su�ces to use the techniques of
the proof of Proposition 1 in [25], corresponding to the finite-di↵erence case, taking into account that
the spatial variable remains static for the computation of the time derivative approximations. As for
the proof involving spatial derivatives, assuming the spatial accuracy is greater or equal than R, using
the approximations involving the spatial derivatives plus the results obtained in Proposition 1 of [25]
concludes our result.

3.6. System and multi-dimensional cases

In the case of a system of conservation laws (1.1) with m � 2 there are no additional di�culties for
the computation. Assume that we consider one space dimension (d = 1) and set f = f

1

. One can then
work in a component-wise manner by taking into account that by definition

@

n

f(u)

@t

n

=
@

n(f(u)
1

, . . . ,f(u)
m

)T

@t

n

=

✓
@

n

f

1

(u)

@t

n

, . . . ,

@

n

f

m

(u)

@t

n

◆
T

and that

@

n+1

u

@t

n+1

= � @

@x

✓
@

n

f(u)

@t

n

◆
,

which yields a component-wise relationship that allows one to reduce the procedure to the scalar case:

@

n+1

u

µ

@t

n+1

= � @

@x

✓
@

n

f(u)
µ

@t

n

◆
, 1  µ  m.

The extension to several space dimensions is straightforward by using the following relationship

u

(r+1) = (u
t

)(r) =
��r · f(u)�(r) = �r · �f(u)(r)�.

3.7. Summary

The LWDG method originally consists of two parts, the Lax-Wendro↵ time discretization of the
system of equations (1.1) followed by the DG approximation in space of the corresponding time discretized
equation (2.2). This is precisely a forward Euler time discretization of the discontinuous Galerkin scheme
with the modified flux function F given by (2.11). The modified flux function F involves the successive
time derivatives of the original flux function f(u) of (1.1). This could be computed explicitly as in LWDG
[13]. In the new ALWDG method we compute the time derivatives by the approximation explained in
Section 2. At each time step and as is usually done within LWDG or RKDG methods, we employ a
nonlinear limiter, which is essentially the TVB limiter, see [3, 5] for more details.

4. Numerical examples

4.1. CFL condition and limiters

In this section we present the results of our numerical experiments for the ALWDG, LWDG and
RKDG schemes. To be concise we mainly conduct simulations for P

1 and P

2 (see (2.1)) and in some
cases we include the results for P 3 and P

4 as well. We choose a uniform mesh in the 1D case and Cartesian
grids in the 2D case. As remarked in [13], the CFL number for the LWDG method is smaller than that
of the corresponding RKDG method. Nevertheless the CPU time for the LWDG scheme wins over that
of the RKDG scheme. We remark that the ALWDG method works satisfactorily under the same CFL
condition as the underlying LWDG scheme when nonlinear limiters are applied. For the 2D Euler system
of equations the ALWDG scheme is implemented with the same CFL numbers as that of [13], namely
0.2 and 0.12 for P 1 and P

2 respectively. Where ever not specified we have used the same CFL of LWDG
found in [13]. In two dimensions, the numerical integrations in the DG formulation are performed with
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Figure 1: (a, c) Example 1 (1D inviscid Burgers equation with smooth solution), (b, d) Example 2 (1D equation with

exponential flux with smooth solution, (c, f) Example 3 (1D Euler equations of gas dynamics, smooth solution, ⇢-component):

numerical solutions with N = 50 at time t = 2 obtained by the ALWDG and LWDG methods with (a, b, c) k = 1, (d, e, f)

k = 2.

Gauss quadrature rule on k+1 points for P k elements and in one dimension we have used Gauss-Lobatto
quadrature rule on k + 2 points. In the discontinuous test cases both in one two dimensions we apply a
TVB limiter, more details are available in [15, 17, 18, 21], and the TVB constant M is specified in the
description of examples. We have used the local Lax-Friedrichs (LLF) flux (2.7), (2.8) in all examples,
more details are available in [16]. All the schemes described in this work are implemented in C++ using
deal.II libraries [1]. In all examples, for 1D case we print the cell averages and for 2D case we plot the
whole cell polynomials.

4.2. Accuracy tests

We test the accuracy of the ALWDG method for nonlinear scalar equations and a system of equations
in both one and two dimensions. Results are compared with those of the LWDG scheme. In two
dimensions we limit our presentation to the scalar case. No limiters are employed for these accuracy
tests. To validate the accuracy results further, we provide graphical results as well, see Figures 1 and 2.
The computational e�ciency of ALWDG is compared with LWDG method and the results are listed in
Figure 3. CPU time is plotted against the L

1 error, where we use the same mesh size for both ALWDG
and LWDG. As we see in the results the ALWDG outperforms the LWDG in computational e�ciency
for these problems with smooth solutions.

Example 1: inviscid Burgers equation in one dimension

We conducted an accuracy test with the initial datum u

0

(x) = 0.2 sinx, assuming periodic boundary
conditions for the interval [0, 2⇡] and the solution is computed at time t = 2, see Figures 1 (a) and (c). Ta-
ble 1 shows the results obtained for ALWDG schemes of second to and fifth order. In light of Remark 3.1,
in this case the ALWDG and LWDG schemes produce the same numerical solutions.
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# # # #

cells dofs L1

error rate L1
error rate cells dofs L1

error rate L1
error rate

ALWDG, k = 1 ALWDG, k = 2

50 100 8.523927e-04 — 9.043832e-04 — 50 150 1.516174e-05 — 2.753776e-05 —

100 200 2.114508e-04 2.01 2.415103e-04 1.90 100 300 1.849973e-06 3.03 4.300787e-06 2.68

200 400 5.267018e-05 2.01 6.221746e-05 1.96 200 600 2.270759e-07 3.03 6.246012e-07 2.78

400 800 1.314472e-05 2.00 1.580492e-05 1.98 400 1200 2.803340e-08 3.02 8.543263e-08 2.87

800 1600 3.283470e-06 2.00 3.981910e-06 1.99 800 2400 3.473868e-09 3.01 1.129223e-08 2.92

1600 3200 2.050932e-07 2.00 9.993896e-07 1.99 1600 4800 4.313430e-10 3.01 1.461658e-09 2.95

3200 6400 2.051034e-07 2.00 2.503326e-07 2.00 3200 9600 5.373437e-11 3.00 1.868241e-10 2.97

ALWDG, k = 3 ALWDG, k = 4

25 100 4.861064e-06 - 1.195543e-05 - 10 50 1.344846e-05 — 2.741170e-05 —

50 200 3.172026e-07 3.94 8.961908e-07 3.74 20 100 8.562981e-07 3.97 1.355695e-06 4.34

100 400 1.956276e-08 4.02 6.704435e-08 3.74 40 200 2.667358e-08 5.00 9.273087e-08 3.87

200 800 1.210728e-09 4.01 4.644211e-09 3.85 80 400 8.741969e-10 4.93 3.233760e-09 4.84

400 1600 7.514776e-11 4.01 3.075426e-10 3.92 160 800 2.680772e-11 5.03 1.334094e-10 4.60

800 3200 4.693472e-12 4.00 1.978160e-11 3.96 320 1600 8.607957e-13 4.96 4.823554e-12 4.79

Table 1: Example 1 (1D inviscid Burgers equation, smooth solution): errors of numerical solutions produced by ALWDG

of orders 2, 3, 4 and 5 (corresponding to k = 1, 2, 3 and 4, respectively) computed up to the final time t = 2.0.

Example 2: scalar equation with exponential flux in one dimension

In Example 2 we choose the same interval and initial and boundary conditions as in Example 1 but
use the exponential flux f(u) = exp(u2), for which none of the ALWDG schemes coincides with its LWDG
version. The corresponding numerical solution at t = 2 is displayed in Figures 1 (b) and (d), and the
numerical errors are given in Table 2.

Example 3: Euler equations of gas dynamics in one space dimension

The one-dimensional Euler equations of gas dynamics are a case of (1.1) for d = 1 and m = 3, namely

@

@t

0

@
⇢

⇢v

E

1

A+
@

@x

0

@
⇢v

p+ ⇢v

2

(E + p)v

1

A = 0. (4.1)

Here ⇢, v, E, and p denote the density, velocity, total energy, and pressure of the gas, respectively, and
the system (4.1) is supplied with an equation of state E = E(⇢, p, v), for which we choose the usual
expression for a polytropic gas

E = E(p, ⇢, v) =
p

� � 1
+

1

2
⇢v

2

, � > 1, (4.2)

where � denotes the adiabatic constant that is chosen as � = 1.4 for air.
For the accuracy test (Example 3) we choose the domain ⌦ = [0, 2] along with periodic boundary

conditions, and impose the initial datum

u(x, 0) = u

0

(x) =
�
⇢

0

(x), ⇢
0

(x)v
0

(x), E(p
0

(x), ⇢
0

(x), v
0

(x)))T, (4.3)

where ⇢

0

(x) = 1 + 0.2 sin(⇡x), v

0

(x) = 1, p

0

(x) = 1.

The corresponding exact solution under periodic boundary conditions is ⇢(x, t) = ⇢

0

(x � t), v(x, t) = 1
and p(x, t) = 1. The results are tabulated in Table 3 and 4. Necessary details are indicated in the caption
of each table.
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# #

cells dofs L1

error rate L1
error rate L1

error rate L1
error rate

ALWDG, k = 1 LWDG, k = 1

50 100 2.128317e-03 - 6.962886e-03 - 2.128310e-03 - 6.962790e-03 -

100 200 5.066706e-04 2.07 2.179635e-03 1.68 5.066700e-04 2.07 2.179626e-03 1.68

200 400 1.248754e-04 2.02 6.249265e-04 1.80 1.248753e-04 2.02 6.249252e-04 1.80

400 800 3.108018e-05 2.01 1.678809e-04 1.90 3.108018e-05 2.01 1.678808e-04 1.90

800 1600 7.758670e-06 2.00 4.345228e-05 1.95 7.758670e-06 2.00 4.345226e-05 1.95

1600 3200 1.938548e-06 2.00 1.103856e-05 1.98 1.938548e-06 2.00 1.103856e-05 1.98

3200 6400 4.845149e-07 2.00 2.780704e-06 1.99 4.845149e-07 2.00 2.780704e-06 1.99

ALWDG, k = 2 LWDG, k = 2

50 150 1.188253e-04 - 5.995293e-04 - 1.188505e-04 - 5.971530e-04 -

100 300 1.985605e-05 2.58 1.556278e-04 1.95 1.985356e-05 2.58 1.554883e-04 1.94

200 600 2.478049e-06 3.00 2.422379e-05 2.68 2.478171e-06 3.00 2.421789e-05 2.68

400 1200 3.168454e-07 2.97 3.687378e-06 2.72 3.168485e-07 2.97 3.688288e-06 2.72

800 2400 3.943921e-08 3.01 5.512340e-07 2.74 3.943915e-08 3.01 5.512973e-07 2.74

1600 4800 4.910838e-09 3.01 7.883687e-08 2.81 4.910851e-09 3.01 7.883993e-08 2.81

3200 9600 6.081055e-10 3.01 1.075938e-08 2.87 6.081063e-10 3.01 1.075921e-08 2.87

Table 2: Example 2 (1D scalar equation with exponential flux and smooth solution): comparison of ALWDG with LWDG

for second and third-order descretization (k = 1 and k = 2, respectively), at simulated time t = 2.0.

Example 4: inviscid Burgers equation in two space dimensions

In order to draw the order of accuracy in the two dimensional set up, we consider the initial-value
problem for the nonlinear scalar Burgers-type eqution

u

t

+ (u2

/2)
x

+ (u2

/2)
y

= h(x, y, t), (x, y) 2 [�1, 1]2, t > 0; u(x, y, 0) = 1 + sin
�
⇡(x+ y)

�
,

where the source term h(x, y, t) is found from evaluating the left-hand side for the exact solution u(x, t) =
1 + sin(⇡(x+ y � 2t)). The solutions are computed up to time t = 0.5 in each iteration. The errors and
numerical order of accuracy for the LWDG and ALWDG scheme are the same for reasons similar to those
discussed for Example 1. For this reason we communicate in Table 5 only the errors obtained for the
ALWDG scheme with k = 1 and k = 2. As in the one dimensional case, the ALWDG scheme achieves
its expected order of accuracy with comparable errors for the same mesh. See Figures 2 (a) and (b) for
sample solutions on a coarse grid.

Example 5: two-dimensional equation with exponential fluxes

As an example of a numerical solution of a two-dimensional problem where the ALWDG method does
not produce the same results as the LWDG method, we consider in Example 5 the same scenario as in
Example 4 but employ the equation

u

t

+ (exp(u2))
x

+ (exp(u2))
y

= h(x, y, t), (x, y) 2 [�1, 1]2, t > 0; u(x, y, 0) = 0.2 sin
�
⇡(x+ y)

�
,

where the source term h(x, y, t) is found from evaluating the left-hand side for the exact solution u(x, t) =
0.2 sin(⇡(x+ y � 2t)). See Figures 2 (c) and (d) for sample solutions on a coarse grid.

4.3. Test cases with discontinuous solutions

We choose several examples of problems involving shock waves and test the performance of ALWDG
method and compare it with that of original LWDG method.

Example 6: Buckley-Leverett problem

We test the performance of ALWDG applied to a nonlinear Buckley-Leverett problem given by (1.3)
with

f(u) =
4u2

4u2 + (1� u)2
= 0, u

0

(x) =

(
1 if �1/2  x  0,

0 otherwise.
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#

h dofs L1

error rate L1
error rate L1

error rate L1
error rate

ALWDG, k = 1 LWDG, k = 1

0.1 40 1.210895e-03 — 2.094281e-03 — 1.210748e-03 — 2.094082e-03 —

0.05 80 2.936750e-04 2.04 5.751100e-04 1.86 2.433167e-04 2.05 5.750088e-04 1.86

0.025 160 7.270918e-05 2.01 1.494143e-04 1.94 7.268426e-05 2.01 1.494090e-04 1.94

0.0125 320 1.810735e-05 2.01 3.806637e-05 1.97 1.810034e-05 2.01 3.806518e-05 1.97

0.00625 640 4.519657e-06 2.00 9.605015e-06 1.99 4.517921e-06 2.00 9.604689e-06 1.99

0.003125 1280 1.129073e-06 2.00 2.412347e-06 1.99 1.128672e-06 2.00 2.412246e-06 1.99

ALWDG, k = 2 LWDG, k = 2

0.1 60 4.932893e-05 — 1.092809e-04 — 4.932893e-05 — 1.092809e-04 —

0.05 120 6.191884e-06 2.99 1.407323e-05 2.96 6.191884e-06 2.99 1.407323e-05 2.96

0.025 240 7.760543e-07 3.00 1.771498e-06 2.99 7.760543e-07 3.00 1.771498e-06 2.99

0.0125 480 9.587929e-08 3.02 2.208515e-07 3.00 9.587929e-08 3.02 2.208515e-07 3.00

0.00625 960 1.203892e-08 2.99 2.767148e-08 3.00 1.203892e-08 2.99 2.767146e-08 3.00

0.003125 1920 1.504556e-09 3.00 3.460747e-09 3.00 1.504558e-09 3.00 3.460733e-09 3.00

Table 3: Example 3 (1D Euler equations of gas dynamics, smooth solution): comparison of ALWDG with LWDG for second

and third order discretization (corresponding to k = 1 and k = 2, respectively), computed up to a final time t = 2.0.

# #

h dofs L1

error rate L1
error rate h dofs L1

error rate L1
error rate

ALWDG, k = 3 ALWDG, k = 4

0.1 80 5.438355e-07 - 1.606543e-06 — 0.2 50 3.893091e-07 — 1.217045e-06 —

0.05 160 3.409772e-08 4.00 1.000108e-07 4.01 0.1 100 1.275073e-08 4.93 4.021019e-08 4.92

0.025 320 2.133876e-09 4.00 6.248730e-09 4.00 0.05 200 4.055106e-10 4.97 1.273128e-09 4.98

0.0125 640 1.336286e-10 4.00 3.903649e-10 4.00 0.025 400 1.264587e-11 5.00 3.991241e-11 5.00

0.00625 1280 8.352168e-12 4.00 2.442269e-11 4.00 0.0125 800 3.997046e-13 4.98 1.262990e-12 4.98

Table 4: Example 3 (1D Euler equations of gas dynamics, smooth solution): numerical errors produced by ALWDG with

LWDG for fourth- and fifth-order discretization (corresponding to k = 3 and k = 4, respectively), computed up to a final

time t = 2.0.

The solution is computed up to time t = 0.4 with N = 80 number of cells. The corresponding solution
using the ALWDG and LWDG methods are compared in Figure 4. The exact solution is a mixture of
shock, rarefaction and contact discontinuity. The results obtained here indicate the robustness of our
proposed scheme.

Examples 7 and 8: Euler equations of gas dynamics in one space dimension (benchmark tests)

We compare the performance of ALWDG method with the LWDG method for two benchmark test
cases, namely the shock tube or Riemann problem for the Euler equations of gas dynamics (4.1), (4.2)
posed with the initial datum

�
⇢

0

(x), v
0

(x), p
0

(x)
�
=

(
(⇢

L

, v

L

, p

L

) if x < x

0

,

(⇢
R

, v

R

, p

R

) if x > x

0

,
where p

R

< p

L

. (4.4)

For a given equation of state (4.2), the solution of the shock tube problem (4.1), (4.2), (4.4) is a function
of (x � x

0

)/t and of the six constants involved in the data (4.4). It is supposed that a “diaphragm”
initially located at x = x

0

bursts at t = 0. Then a pressure discontinuity propagates to the right in the
low-pressure gas and an expansion fan (rarefaction wave) propagates to the left into the high-pressure gas.
In addition, a contact discontinuity separating the two gas regions propagates to the right in the tube [9].
Thus, we have three simple waves (from the left to the right, a rarefaction wave, a contact discontinuity,
and a shock) that separate regions of uniform conditions. The solution of this problem is described in
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(a) (b)

(c) (d)

Figure 2: Examples 4 and 5: (a, b) 2D inviscid Burgers equation and (c, d) 2D equation with exponential fluxes: approximate

solution computed at a resolution of 10 ⇥ 10 cells and time T = 0.5 using the ALWDG method with (a, c) k = 1, (b, d)

k = 2.

detail in [9]; the construction is summarized in the Appendix, where we also provide numerical values of
certain constants that arise in the test cases considered here, namely Lax’s test problem [10] in Example 7
and Sod’s shock tube problem [22] in Example 8.

For Lax’s test problem we utilize

(⇢
L

, v

L

, p

L

) = (0.445, 0.698, 3.52), (⇢
R

, v

R

, p

R

) = (0.5, 0, 0.571), x

0

= 0. (4.5)

The numerical domain for this test case is [�5, 5], and solution is computed at time t = 1.3. The initial
datum for Sod’s shock tube problem is given by (4.4) with

(⇢
L

, v

L

, p

L

) = (1, 0, 1), (⇢
R

, v

R

, p

R

) = (0.125, 0, 0.1), x

0

= 0.5. (4.6)

The numerical domain for this test problem is ⌦ = [0, 1], and we plot the solution at time t = 0.2.
The solutions are computed for 100 cells using TVB limiter with the parameter M=0.0. The results

are depicted in Figure 5 for Examples 7 and 8 combined. It is observed that the results corresponding
to ALWDG method agree very well with that of LWDG method. The corresponding errors are displayed
in Tables 7 and 8. Here we denote by e

⇢

, e
v

and e

p

the L

1 errors in the variables ⇢, v and p at a given
time, respectively, and define the total error e

tot

:= e

⇢

+ e

v

+ e

p

(utilizing that the three variables assume
values roughly in the same order of magnitude).

Example 9: Euler equations of gas dynamics in two space dimensions

In two space dimensions, the Euler equations of gas dynamics turn into a case of (1.1) for d =
2 and m = 4. The velocity of the gas is now v = (v

1

, v

2

)T, and the vector of unknowns becomes
u = (⇢, ⇢v

1

, ⇢v

2

E)T. The two flux vectors are f

1

(u) = (⇢v
1

, p + ⇢v

2

1

, ⇢v

1

v

2

, (E + p)v
1

)T and f

2

(u) =
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Figure 3: E�ciency plots (L

1

error versus CPU time, in log-log scale) (a) for Example 2 (1D scalar equation with exponential

flux and a smooth solution) at t = 2, (b) for Example 3 (1D Euler equations of gas dynamics with smooth solution, the

error is that of density) at t = 2, (c) for Example 5 (2D scalar equation with exponential fluxes and a smooth solution) at

t = 0.5. The notations ALWDG2 (LWDG2) and ALWDG3 (LWDG3) represent the second- and third-order versions of the

corresponding schemes, respectively.

# # #

cells dofs L1

error rate L1
error rate L1

error rate dofs L1
error rate

ALWDG, k = 1 ALWDG, k = 2

10⇥10 300 1.302100e-01 — 2.206497e-01 — 600 1.541243e-02 — 4.002485e-02 —

20⇥20 1200 3.187056e-02 2.03 6.054872e-02 1.87 2400 1.701997e-03 3.18 5.239857e-03 2.93

40⇥40 4800 7.935655e-03 2.01 2.049769e-02 1.56 9600 1.959470e-04 3.12 7.841781e-04 2.74

80⇥80 19200 1.979620e-03 2.00 6.004550e-03 1.77 38400 2.377506e-05 3.04 1.049010e-04 2.90

160⇥160 76800 4.952919e-04 2.00 1.666142e-03 1.85 153600 2.948301e-06 3.01 1.400828e-05 2.90

Table 5: Example 4 (inviscid Burgers equation in 2D): errors of numerical solutions produced by the ALWDG methods of

second and third order of accuracy (k = 1 and k = 2, respectively) on the numerical domain [�1, 1] ⇥ [�1, 1]. Errors are

computed at simulated time t = 0.5.

(⇢v
2

, ⇢v

1

v

2

, p + ⇢v

2

2

, (E + p)v
2

)T, where ⇢, E and p have the same meaning as before, and the system
u

t

+ f

1

(u)
x

+ f

2

(u)
y

= 0 is supplied with an equation of state E = E(⇢, p, v), for which we choose the
same expression (4.2) with � = 1.4 as in the one-dimensional case.

In this example we choose the double Mach reflection problem which was originally proposed by
Woodward and Colella in [24]. The solution consists of a Mach 10 planar shock wave in air which meets
a reflecting wall positioned at x = 1/6, y = 0 making an angle of 60� with the x-axis. This situation is
simulated in the rectangular domain ⌦ = [0, 4]⇥ [0, 1] with the initial condition

u

0

(x, y) =

(
u

1

if x  1

6

+ yp
3

,

u

2

if x >

1

6

+ yp
3

,
u

1

=

0

BB@

⇢

1

M

x

1

M

y

1

E

1

1

CCA =

0

BB@

8
57.1576766498

�33
563.5

1

CCA , u

2

=

0

BB@

⇢

2

M

x

2

M

y

2

E

2

1

CCA =

0

BB@

1.4
0
0
2.5

1

CCA .

We impose inflow boundary conditions, with values u

1

at the left side, {0} ⇥ [0, 1], outflow boundary
conditions both at [0, 1/6] ⇥ {0} and {4} ⇥ [0, 1], reflecting boundary conditions at [1/6, 4] ⇥ {0} and
inflow boundary conditions at the upper side, [0, 4]⇥ {1}. We run di↵erent simulations until t = 0.2 at a
resolution of 960⇥240 (for results on similar resolution we refer to [16]) cells using the proposed ALWDG
discretization and the standard RKDG method. To avoid excessive computation of flux derivatives in
LWDG we compare our results in the two dimensional Euler system with the standard RKDG method.
The non-linear TVB limiter is applied with the constant M = 100. The results are depicted in Figure 8
with zoomed plots of the turbulence zone in Figure 9. From those figures we could conclude that the
results obtained through ALWDG and RKDG schemes are comparable.
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Figure 4: Example 6 (1D Buckley-Leverett equation): numerical solutions with N = 80 at time t = 0.4 obtained by the

ALWDG and LWDG methods with (a) k = 1, (b) k = 2.

# #

cells dofs L1

error rate L1
error rate L1

error rate L1
error rate

ALWDG, k = 1 LWDG, k = 1

10⇥10 300 3.106529e-02 - 6.424697e-02 - 3.101791e-02 - 6.422473e-02 -

20⇥20 1200 7.969317e-03 1.96 1.664807e-02 1.95 7.966979e-03 1.96 1.664425e-02 1.95

40⇥40 4800 1.982683e-03 2.01 4.276733e-03 1.96 1.982437e-03 2.01 4.276326e-03 1.96

80⇥80 19200 4.937426e-04 2.01 1.072786e-03 2.00 4.937241e-04 2.01 1.072748e-03 2.00

160⇥160 76800 1.231599e-04 2.00 2.675799e-04 2.00 1.231579e-04 2.00 2.675751e-04 2.00

ALWDG, k = 2 LWDG, k = 2

10⇥10 600 2.183560e-03 - 6.750734e-03 - 2.176929e-03 - 6.741173e-03 -

20⇥20 2400 2.715918e-04 3.01 9.503800e-04 2.83 2.706085e-04 3.01 9.529422e-04 2.82

40⇥40 9600 3.330633e-05 3.03 1.247777e-04 2.93 3.336922e-05 3.02 1.252792e-04 2.93

80⇥80 38400 4.145475e-06 3.01 1.589636e-05 2.97 4.250308e-06 2.97 1.599551e-05 2.97

160⇥160 153600 5.229450e-07 2.99 1.987449e-06 3.00 5.716216e-07 2.89 2.021468e-06 2.98

Table 6: Example 5 (2D equation with exponential fluxes): errors of numerical solutions produced by the ALWDG methods

of second and third order of accuracy (k = 1 and k = 2, respectively) on the numerical domain [�1, 1]⇥ [�1, 1]. Errors are

computed at simulated time t = 0.5.

5. Conclusions

In this paper a technique involving an approximate Lax-Wendro↵-type procedure for discontinuous
Galerkin schemes, leading to so-called ALWDG schemes, as an alternative version of the exact procedure
defining LWDG schemes [13], has been presented. The basic motivation consists in the ease of imple-
mentation of ALWDG schemes that are based on high-order di↵erence approximations on non-uniform
grids in each cell. In particular, these approximations do not require a separate symbolic manipulation to
determine the higher derivatives of each flux. While one should expect that for a fixed discretization and
order, the ALWDG approximation should produce a larger error than the corresponding LWDG method,
it turns out in all numerical experiments (in the corresponding error tables and the plots of numerical
solutions that hardly di↵er) that the errors produced by the ALWDG and LWDG versions are practically
the same in comparable circumstances. Moreover, in all e�ciency plots in Figures 3 and 7 (except for
the simple cases of Figures 3 (a) and the k = 1 case of Figure 3 (c), where both are almost the same) the
traverse line corresponding to the ALWDG version lies below its LWDG counterpart, which means that
the ALWDG methods are in some cases comparable and in other cases consistently more e�cient (in the
usual terms of reduction of error per CPU time) than their LWDG versions (apart from the advantage
of ease of implementation), and therefore a serious alternative in themselves to RKDG discretizations.

The results shown in Figures 3 and 7 alert, furthermore, to the fact that the ALWDG methods share
properties that are well-known from LWDG schemes as far as the application to smooth or non-smooth
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#

h dofs e⇢ ev ep e
tot

rate e⇢ ev ep e
tot

rate

ALWDG, k = 1 LWDG, k = 1

1/3 60 3.266e-01 2.911e-01 3.703e-01 9.880e-01 — 3.272e-01 2.924e-01 3.712e-01 9.908e-01 —

1/6 120 2.110e-01 2.293e-01 2.671e-01 7.074e-01 0.48 2.108e-01 2.286e-01 2.663e-01 7.058e-01 0.49

1/12 240 1.106e-01 1.008e-01 1.315e-01 3.428e-01 1.04 1.106e-01 1.008e-01 1.316e-01 3.430e-01 1.04

1/24 480 6.326e-02 5.996e-02 7.949e-02 2.027e-01 0.76 6.337e-02 5.958e-02 7.915e-02 2.021e-01 0.76

1/48 960 3.328e-02 2.457e-02 4.143e-02 9.929e-02 1.03 3.324e-02 2.452e-02 4.137e-02 9.912e-02 1.03

1/96 1920 2.010e-02 1.625e-02 3.020e-02 6.655e-02 0.58 2.010e-02 1.625e-02 3.019e-02 6.653e-02 0.58

1/192 3840 1.182e-02 8.774e-03 2.204e-02 4.264e-02 0.64 1.182e-02 8.768e-03 2.204e-02 4.263e-02 0.64

ALWDG, k = 2 LWDG, k = 2

1/3 90 2.817e-01 4.479e-01 5.021e-01 1.232e00 — 2.746e-01 4.512e-01 5.026e-01 1.228e00 —

1/6 180 1.667e-01 2.386e-01 2.900e-01 6.953e-01 0.82 1.658e-01 2.373e-01 2.880e-01 6.911e-01 0.83

1/12 360 1.139e-01 1.363e-01 1.615e-01 4.118e-01 0.76 1.140e-01 1.364e-01 1.616e-01 4.120e-01 0.75

1/24 720 5.769e-02 5.421e-02 7.532e-02 1.872e-01 1.14 5.759e-02 5.412e-02 7.521e-02 1.869e-01 1.14

1/48 1440 3.245e-02 3.349e-02 4.881e-02 1.148e-01 0.71 3.244e-02 3.354e-02 4.882e-02 1.148e-01 0.70

1/96 2880 1.673e-02 1.466e-02 2.939e-02 6.078e-02 0.92 1.674e-02 1.470e-02 2.938e-02 6.081e-02 0.92

1/192 5760 1.007e-02 9.122e-03 2.265e-02 4.185e-02 0.54 1.007e-02 9.110e-03 2.263e-02 4.182e-02 0.54

Table 7: Example 7 (Lax’s problem; Euler equations in 1D, L

1

error): Comparison of ALWDG with LWDG for second and

third order, Lax’s test case. The TVB constant used is M = 10.

solution is concerned. Roughly speaking, we observe in the plots of Figure 3, corresponding to problems
with a smooth solution, that moving from k = 1 to k = 2 leads to smaller errors and a marked increase in
e�ciency. This contrasts with the results of Figure 7 that clearly indicate a loss in e�ciency by using a
third-order scheme instead of a second-order scheme. It seems pointless, and even counterproductive, to
increase the time accuracy in presence of discontinuities that downgrade the spatial accuracy to at most
first order. This behaviour is observed with finite di↵erence schemes as well [14]. However, in view of the
favorable results obtained for high-order ALWDG schemes with non-linear but smooth solutions, future
research should be directed to developing a hybrid time scheme being high order accurate in smooth
zones and first order accurate near discontinuities.

Appendix: Solution of the shock tube problem for the Euler equations of gas dynamics

We outline the exact solution of the shock tube or Riemann problem for the one-dimensional Euler
equations of gas dynamics (4.1), (4.2), (4.4) following [9, Sect. 16.6.3] (with a few corrections). That treat-
ment is su�cient to handle the two test cases considered herein; a broader (and more recent) exposition
of the solution of the shock tube problem is provided, for instance, in [23].

Consistently with [9] we denote by indices L, 5, 3, 2, and R, in the order of increasing (x� x

0

)/t, the
initial left state; the variable solution within the rarefaction wave; the solution between the rarefaction
wave and the contact discontinuity; between the contact discontinuity and the shock; and between the
shock and the initial right state, respectively. If � denotes the velocity of propagation of a jump and [[·]]
the di↵erence of values of a quantity adjacent to the jump, then the jump condition (Rankine-Hugoniot
condition) for (4.1) is

[[⇢v]] = �[[⇢]], [[⇢v2 + p]] = �[[⇢v]], [[(E + p)v]] = �[[⇢E]]. (A.1)

The result is as follows. We define the sound speed c = (�p/⇢)1/2 (c
1

etc., c

L

and c

R

are defined
analogously), the parameter ↵ = (�+1)/(��1), and the pressure ratio P = p

2

/p

R

, for which a nonlinear
equation needs to be solved. Then exploiting (A.1) we get

⇢

2

=
1 + ↵P

↵+ P

⇢

R

, v

2

=
P � 1

(1 + ↵P )1/2
1

(�(� � 1)/2)1/2
c

R

+ v

R

, � =
(P � 1)c2

R

�(v
2

� v

R

)
+ v

R

. (A.2)
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#

h dofs e⇢ ev ep e
tot

rate e⇢ ev ep e
tot

rate

ALWDG, k = 1 LWDG, k = 1

1/50 100 8.000e-03 1.274e-02 6.059e-03 2.680e-02 — 8.009e-03 1.272e-02 6.054e-03 2.678e-02 —

1/100 200 4.191e-03 7.255e-03 3.094e-03 1.454e-02 0.88 4.190e-03 7.260e-03 3.096e-03 1.455e-02 0.88

1/200 400 2.138e-03 3.651e-03 1.538e-03 7.327e-03 0.99 2.139e-03 3.652e-03 1.538e-03 7.329e-03 0.99

1/400 800 1.116e-03 1.869e-03 7.698e-04 3.755e-03 0.96 1.116e-03 1.869e-03 7.700e-04 3.756e-03 0.96

1/800 1600 5.946e-04 1.016e-03 3.960e-04 2.007e-03 0.90 5.945e-04 1.015e-03 3.958e-04 2.005e-03 0.91

1/1600 3200 3.049e-04 4.237e-04 1.875e-04 9.162e-04 1.13 3.049e-04 4.236e-04 1.875e-04 9.160e-04 1.13

1/3200 6400 1.679e-04 2.593e-04 9.983e-05 5.270e-04 0.80 1.679e-04 2.594e-04 9.986e-05 5.271e-04 0.80

ALWDG, k = 2 LWDG, k = 2

1/50 150 9.417e-03 1.839e-02 7.551e-03 3.535e-02 — 9.431e-03 1.847e-02 7.567e-03 3.547e-02 —

1/100 300 4.748e-03 9.269e-03 3.816e-03 1.783e-02 0.99 4.754e-03 9.292e-03 3.825e-03 1.787e-02 0.99

1/200 600 2.408e-03 4.741e-03 1.921e-03 9.070e-03 0.98 2.411e-03 4.753e-03 1.925e-03 9.089e-03 0.98

1/400 1200 1.226e-03 2.460e-03 9.715e-04 4.657e-03 0.96 1.227e-03 2.466e-03 9.737e-04 4.667e-03 0.96

1/800 2400 6.188e-04 1.125e-03 4.782e-04 2.222e-03 1.07 6.193e-04 1.127e-03 4.791e-04 2.225e-03 1.07

1/1600 4800 3.205e-04 6.271e-04 2.445e-04 1.192e-03 0.90 3.211e-04 6.290e-04 2.452e-04 1.195e-03 0.90

1/3200 9600 1.591e-04 2.807e-04 1.190e-04 5.588e-04 1.09 1.593e-04 2.813e-04 1.192e-04 5.597e-04 1.09

Table 8: Example 8 (Euler equations in 1D, L

1

error): Comparison of ALWDG with LWDG for second and third order,

Sod’s test case. The TVB constant used is M = 10.

On the other hand, across the contact discontinuity only ⇢ su↵ers a jump, so p

3

= p

2

and v

3

= v

2

=: V .
The value of ⇢

3

is obtained by considering that the rarefaction wave propagating to the left is formed by
characteristics moving at velocity v � c. Since the leftmost characteristic of that fan the entropy p/⇢

� is
constant and along the rightmost characteristic the Riemann invariant (� � 1)u/2+ c is constant, we get

⇢

3

= (p
3

/p

L

)1/�⇢
L

= (p
2

/p

L

)1/� ⇢
L

(A.3)

and the following equation that relates p
2

= p

3

and p

L

:

V � v

L

=
2c

L

� � 1


1�

✓
p

2

p

L

◆
(��1)/(2�)

�
. (A.4)

Since V is also defined by the second equation of (A.2), eliminating V between that equation and (A.4)
we obtain the following equation that can be solved iteratively for P in terms of p

L

/p

R

:

✓
2
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c

R

. (A.5)

Finally, a discussion of the characteristics that form the rarefaction fan reveals that region 5 corresponds
to those (x, t) for which

⇠

� := v

L

� c

L

<

x� x

0

t

<

� + 1

2
V � c

L

� � � 1

2
v

L

=: ⇠+, (A.6)

and the unknown functions are given by

v
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(x, t) =
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(A.7)

20



Approximate Lax-Wendro↵ discontinuous Galerkin methods Bürger, Kenettinkara and Zoŕıo
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Figure 5: Example 7 (1D Euler equations of gas dynamics, Lax’s test case): numerical solutions with N = 100 at t = 1.3

obtained by the ALWDG and LWDG methods with (a, b, c) k = 1, (d, e, f) k = 2. The value of the constant M associated

with the TVB limiter is M = 10.

Consequently, the solution is given by

(⇢, v, p)(x, t) =

8
>>>>>><

>>>>>>:
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(x, t)) (defined in (A.7)) for ⇠�t < x� x

0

 ⇠

+

t,

(⇢
L

, v

L

, p

L

) for x� x

0
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�
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(A.8)

(Equations (A.5), (A.6) and the equation for p
5

in (A.7) are unfortunately stated incorrectly in [9].)
Table 9 provides accurate values of the constants arising in the solution of Sod’s problem (4.6) and

of Lax’s problem (4.5) calculated from (A.2)–(A.6). In both cases, ↵ = 6.
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(a) (b)

(c) (d)

Figure 9: Example 9 (2D Euler equations of gas dynamics, double Mach reflection problem): contours of 30 steps are

printed, �x = �y = 1/240. Enlarged views of Figures 8 (a), (b), (c), and (d), respectively.
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