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FLUX IDENTIFICATION FOR SCALAR CONSERVATION LAWS

MODELLING SEDIMENTATION IN VESSELS WITH VARYING

CROSS-SECTIONAL AREA

RAIMUND BÜRGERA, JULIO CAREAGAB, AND STEFAN DIEHLC

Abstract. A method is presented for the identification of a non-convex flux

function of a hyperbolic scalar conservation law that models sedimentation

of solid particles in a liquid. While all previous identification methods are
based on data obtained from settling tests in cylindrical vessels, the novel

approach is based on the richer solution behaviour produced in a vessel with

downward-decreasing cross-sectional area. Except for the initial homogeneous
concentration, the data given for the present inverse problem are the location

of the decline of the supernatant-suspension interface as a function of time.
The inverse problem is solved by utilizing the construction of solutions of the

direct problem by the method of characteristics. In theory, the entire flux

function can be estimated from only one batch-settling experiment, and the
solution is given by parametric and explicit formulas for the flux function.

The method is tested on synthetic data (for example, generated by numerical

simulations with a known flux) and on published experimental data.

1. Introduction

1.1. Scope. We are interested in the identification of the nonlinear flux function
f(φ) = v(φ)φ appearing in a conservation law of the form

∂φ

∂t
− ∂f(φ)

∂x
= 0, (1.1)

where t is time and x the spatial coordinate. The partial differential equation
(PDE) (1.1) arises as continuum model of diverse phenomena such as two-phase
flow and traffic flow. The focus here is on sedimentation of small particles in a
liquid, where φ is the volume fraction of the solids and v the (normalized) velocity
of the solid phase. This velocity is given by some nonlinear constitutive function
depending on the suspension under study; e.g. [11, 25,31,36, 41]. The solution of a
hyperbolic equation like (1.1) along with initial data generally contains discontinu-
ities (shock waves and contact discontinuities). By solving the inverse problem, we
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mean determining the constitutive function v(φ), or equivalently, the flux function
f(φ), by observing the solution φ(x, t) of (1.1) or, as is the topic of this work, a
slightly more complicated equation.

In applications, practical circumstances lay constraints on the mathematical for-
mulation of a suitable inverse problem, which is often ill-conditioned or ill-posed,
unless one or several sufficiently varied solutions of the direct problem are available
and can be measured accurately. In the industrial process of continuous sedimen-
tation of suspensions in mineral processing and wastewater treatment, the material
properties vary with time and simple tests for identification need to be made regu-
larly. There are many publications on controlled batch sedimentation experiments
and the identification of the flux function; see Section 1.2. All of these consider
a vessel with a constant cross-sectional area. We here present a novel identifi-
cation method motivated by the following background. Inspired by the work of
Anestis [1], we solved in [6] the batch sedimentation problem for a vessel where the
cross-sectional area A(x) increases with height x. In dimensionless variables, the
direct problem is the following, where x = 0 is the bottom of the vessel:

∂

∂t

(
A(x)φ

)
− ∂

∂x

(
A(x)f(φ)

)
= 0 for 0 < x < 1, t > 0, (1.2a)

φ(x, 0) = φ0 for 0 < x < 1, (1.2b)

φ(0+, t) = φmax and φ(1−, t) = 0 for t > 0. (1.2c)

This model captures the hindered settling phenomenon where the particles set-
tle and liquid is squeezed upwards. The widely used constitutive assumption by
Kynch [34] states that the hindered settling velocity is a function of the local con-
centration φ only; v = v(φ) ≥ 0. The flux function f(φ) = v(φ)φ is assumed to
have one inflection point φinfl ∈ (0, φmax), where φmax is the maximum packing
concentration at which v(φmax) = 0. The solution of (1.2) has a discontinuity
x = h(t) separating clear liquid above from the suspension below. Since this inter-
face is clearly visible, its movement is easily captured. The inverse problem can be
formulated as follows:

Given φ0 > 0 and the interface trajectory [tstart, tend] 3 t 7→ h(t),
find the portion of the flux function φ 7→ f(φ) corresponding to the
interval of φ-values adjacent to that trajectory.

(IP)

The φ-values of the solution of (1.2) adjacent to the interface are not known;
however, we utilize that they increase with time from φ0 already from t = 0. The
solution of (IP) is a parametric formula for a portion of f , which depends on φ0,
h and h′. Starting from measured data, one has to fit a height function h̄ to the
data, and the estimated flux f̄ depends on h̄ and its derivative. The solution of
(IP) can also be given by an explicit flux function; however, there is a restriction
on the fitting function to the (transformed) data; for example, a function made
up of piecewise cubic polynomials works. In the case of a vessel with vertex at
the bottom x = 0, the flux f(φ) can be identified for all φ ∈ [φ0, φmax]. This is
much more than what can be obtained from a standard batch test in a cylindrical
vessel. In that case, at most the flux values of {φ0} ∪ [φ∗0, φmax] can be obtained,
where φ∗0 > φinfl; see [8, 18, 34]. This advantage of settling in a vessel with A′ > 0
is also illustrated in Figure 1. In other words, the solution of (1.2) is richer when
A′ > 0 than when A′ ≡ 0. In the case that f has the unfavourable property that
the solution of (1.2) contains a discontinuity created initially from the bottom and
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Figure 1. Schematic illustration (obtained from numerical sim-
ulations) of the information provided by the trajectory of the
suspension-supernate interface for settling in a cylinder (top) and
in a cone (bottom). The volume fraction just below the interface
x = h(t) is denoted by φh(t). In the cylindrical case shown, only
the pairs (φ0, f(φ0)) and (φmax, f(φmax)) are involved, where φ0

and φmax are the initial and maximum concentration, respectively.
Under appropriate conditions, the (curved) trajectory in the coni-
cal case provides information on the portion of the flux plot marked
in red, where φh(ti) denotes the φ-value adjacent to the trajectory
at t = ti, i = 1, . . . , 5.

which intersects the upper one x = h(t), then f cannot be identified all the way up
to φmax. In such a case, an additional settling test in a cylindrical vessel (A′ ≡ 0)
can yield f(φ) for an interval [φ∗0, φmax], where φ∗0 > φinfl; see [8].

Given discrete in time measurements of the discontinuity x = h(t) in a vessel with
a vertex at the bottom, we show how these are used in a quadratic programming
problem, whose solution is substituted into an explicit formula for the identified
portion of the flux function.

Conical vessels are frequently used both for laboratory sedimentation tests [5,
37,40,43,45] and as industrial deep cone thickeners [24,30,44,46].

1.2. Related work. Inverse problems for scalar conservation laws of type (1.1)
(i.e. A′ ≡ 0), where (a portion of) the flux function f is identified without any
assumed parametric form, have been handled in various ways.

James and Sepúlveda [29] minimize a nonstandard cost functional containing
the difference between observed data and the solution of (1.1) at a fixed time
point. This is done via an adjoint equation obtained from a formal computation
of the gradient of the cost function, although the latter may not be differentiable.
Although the nonuniqueness of identifying f when the direct problem contains
discontinuities is still an unresolved issue, the method has been used with some
success in the application to sedimentation [3, 12].

Kang and Tanuma [32] assume that f is convex and that the initial data are such
that a single shock wave is formed for large times. The latter is true for our batch
sedimentation problem, but f often has (at least) one inflection point. Fernández-
Berdaguer and Savioli [23,42] identify the flux function via a least-squares technique
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in functional spaces. However, they need to start with a continuous solution of the
direct problem for small times, which is not the case in batch sedimentation. Castro
and Zuazua [9] formulate the identification problem as an optimal control problem,
prove the existence of minimizers and introduce an optimization strategy to obtain
a numerical approximate flux also when the solution of the direct problem contains
discontinuities.

The approach by Holden et al. [26] is based on the explicit construction of ap-
proximate solutions of the scalar equation ut+(k(x)f(u))x = 0 by the front tracking
method [27]. The cases dealt with are when k ≡ 1 and f is identified and when
f is known and a piecewise constant function k(x) is identified. The latter case has
applications in traffic flow, for example, finding a discontinuity of k(x) corresponds
to detecting where in a tunnel an accident has occurred by observing the density of
traffic at both tunnel ends. In their other case when f is unknown, many solutions
need to be observed, each having a finite number of simple shock or rarefaction
waves due to suitably chosen initial data. The result is a continuous and piecewise
affine approximate function of f . Their methods are difficult to apply to the prob-
lem of sedimentation; partly because many experiments have to be performed and
partly since it is required that each initial data contain a specific discontinuity.

The identification method presented in [21] also produces a piecewise affine ap-
proximate flux function f given lots of accurate data points in time and space of
the concentration from one experiment (i.e., one initial datum) [17].

For the specific problem of determining the flux function of gravity sedimenta-
tion from laboratory batch tests in cylindrical vessels, various methods have been
presented. The most common one is to perform several standard batch settling
experiments, each with a constant initial datum φ0. If φ0 < φinfl, then the upper
discontinuity declines initially along a straight line with the velocity v(φ0), and
hence one point of the flux, f(φ0) = v(φ0)φ0 is obtained; e.g. [14, 16,28,33,35].

The early graphical method by Kynch [34], where the flux function can be identi-
fied in an interval [φ∗0, φmax] of high concentrations above the inflection point of f ,
has been used widely. The graphical method was put in explicit formulas for f
in [18] and developed to an advanced identification method in [8], and we refer to
those papers for more references on the graphical method and other treatments
with formulas. An experimental method for determining other parts of f based
on fluidization was advanced in [38]. To estimate the concave part of the flux
function including its maximum, a new experiment, where the initial data contain
a discontinuity, was introduced in [18]. The methodology was further developed
in [4, 8].

During a standard batch sedimentation experiment, only a subset of the volume
fractions are present – at most {φ0} ∪ [φ∗0, φmax]. However, other parts of the flux
function are important during transient behaviour in the industrial continuously
operated clarifier-thickener units mentioned above. For the simulation and control
of such processes, the part of the flux function including the maximum point is of
importance; see [19,20,22].

1.3. Outline of the paper. The direct problem is treated in Section 2 where
properties needed to solve (IP) are described. The assumptions behind the formu-
lation (1.2) are given in Section 2.1 and the properties of the solution in the case
p > 0 are reviewed from [6] in Section 2.2. In Section 2.3, the solution of (1.2) in
the special case p = 0 is given for the first time. The theoretical solution of (IP)



FLUX IDENTIFICATION FOR SCALAR CONSERVATION LAWS 5

(when the function t 7→ h(t) is given) is expounded in Section 3 for the two cases
that f is given in parametric form (Section 3.1) and, alternatively, as an explicit
function (Section 3.2). An explicit expression for f in the special case of expo-
nentially widening cross-sectional area (p > 0, q = 0) is given in Section 3.3. For
given discrete data points as measurements of the function t 7→ h(t), the fitting
of piecewise cubic polynomials to transformed data, so that the formula for the
explicit solution can be used, is presented in Section 4. For ease of reference, the
two variants of methods of identification are summarized in Section 5. Eventu-
ally, Section 6 contains examples with synthetic and experimental data, and some
conclusions are collected in Section 7.

2. Sedimentation in a vessel with varying cross-sectional area: the
direct problem

2.1. Assumptions and non-dimensionalization. The governing mass balance
equation in dimensional form for the concentration of solids C = C(x̃, t̃) is, for time
t̃ and height x̃,

∂

∂t̃

(
Ã(x̃)C

)
− ∂

∂x̃

(
Ã(x̃)f̃(C)

)
= 0 for 0 < x̃ < H and t̃ > 0, (2.1)

where H is the height of the suspension and Ã ∈ C1[0, H] is the cross-sectional area.
The unknown is the concentration of solids C = φ%s, where φ is the solids volume
fraction and %s the solids density, which is assumed to be constant. Hence, there
exists a maximum volume fraction φmax ≤ 1. The solid-fluid flux function, also
called drift flux or Kynch batch flux [34] can be written f̃(C) = f̃(φ%s) = ṽ(φ)φ%s

with ṽ(φ) := v∞v(φ), where v∞ is the settling velocity of a single particle and
v(φ) is a dimensionless constitutive function that satisfies v(0) = 1 and v(φmax) =
0. Hence, f(φ) := v(φ)φ is the dimensionless flux function, which we assume is
unimodal and satisfies 0 ≤ f ∈ C1[0, φmax] and f(0) = f(φmax) = 0. We let φ̂
denote the maximum point of f and assume that there exists at most one inflection
point φinfl ∈ (φ̂, φmax]. Then v(φ) = f(φ)/φ satisfies v′(φ) < 0 for 0 < φ < φmax;
see [6].

Defining the variables x := x̃/H, t := t̃v∞/H, and A(x) := Ã(x̃)/Ã(H), we get
from (2.1) the dimensionless hyperbolic PDE (1.2a). In regions of the x-t-plane
where the solution is smooth, (1.2a) can be written as

∂φ

∂t
− f ′(φ)

∂φ

∂x
=
A′(x)

A(x)
f(φ),

and one can use the method of characteristics (cf., e.g., [27]) to obtain the solution
in regions where the solution is smooth.

We require that across each smooth curve of discontinuity x = xd(t), the values
φ± := φ(xd(t)±, t) satisfy the jump condition (also known as Rankine-Hugoniot
condition; and which is a consequence of the conservation of mass)

−x′d(t) = S(φ+, φ−) :=

{(
f(φ+)− f(φ−)

)
/(φ+ − φ−) if φ+ 6= φ−,

f ′(φ) if φ+ = φ− =: φ,
(2.2)

and the jump entropy condition

S(u, φ−) ≥ S(φ+, φ−) for all u between φ+ and φ−. (2.3)

The solution of (1.2) exists and is unique [39].
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The construction of solutions by the method of characteristics is based on the
following operations [2, 10]:

φ∗ := sup
{
u > φ : S(φ, u) ≤ S(φ, v) ∀v ∈ (φ, u]

}
for φ ∈ [0, φinfl],

φ∗∗ := inf
{
u < φ : u∗ = φ

}
for φ ∈ [φinfl, φmax].

In [6], we solved problem (1.2) assuming that A(x) > 0 satisfies

A′(x)

A(x)
=

1

p+ qx
, A(1) = 1 ⇔ A(x) =

(
p+ qx

p+ q

)1/q

for 0 ≤ x ≤ 1, (2.4)

in the main case p, q > 0 and the limit case p > 0 and q → 0+. Since A(x) > 0, we
thus have A′(x) > 0. The limit case of (2.4) as q → 0+ is A(x) = e(x−1)/p, since
(1 + qx/p)1/q → ex/p. Hence, the well-known case of a constant cross-sectional area
(A ≡ 1) is obtained for q = 0 and p → ∞. On the other hand, for p > 0, we can
let q → ∞ in (2.4) to also obtain A(x) → 1. The particular value q = 1/2 means
that A(x) grows quadratically with the height x, i.e., the radius grows affinely, so
that the vessel is part of a cone. A vessel with a vertex corresponds to p = 0.

In dimensional variables, the area functions are

Ã(x̃) =


Ã(H)

(
p+ qx̃/H

p+ q

)1/q

if p ≥ 0, q > 0,

Ã(H)e(x̃−H)/(pH) if p > 0 and q = 0.

(2.5)

In the case q > 0 we have

Ã(0) = Ã(H)

(
p

p+ q

)1/q

⇔ p =
qÃ(0)q

Ã(H)
q − Ã(0)q

.

Hence, p = 0 is equivalent to Ã(0) = 0, which means that the vessel has a vertex
at the bottom x = 0. This case is included for the direct problem in Section 2.3
and for (IP) in Section 3. Note that the factor Ã(H) in (2.5) does not influence the
solution of (1.2). Hence, the only measurement needed of a vessel with a vertex at
x = 0 (i.e., the case p = 0) is its height H.

The solutions described below and shown in Figures 2–4 are computed with the
flux function

f(φ) = φ(e−rVφ − e−rVφmax), (2.6)

where rV is a parameter. (We have for simplicity skipped the constant 1/(1 −
e−rVφmax) that implies v(0) = 1.)

2.2. Properties of solutions of (1.2) in the case p > 0. We here review some
facts of the solutions of (1.2) from [6], where all details can be found. There
are qualitatively different solutions depending on the initial value φ0 in relation
to properties of the flux function f . For a given f , three main cases can be dis-
tinguished: Case L if φ0 ∈ (0, φ∗∗max], Case M if φ0 ∈ (φ∗∗max, φinfl) and Case H if
φ0 ∈ [φinfl, φmax). Figure 2 shows the solution in Case M, which has the richest
structure of the three cases, with the presence of two discontinuities x = h(t), t > 0,
and x = b(t), 0 < t < t2. In region I, the solution is defined by characteristics from
the initial datum. This region exists up to the time point t2.5. In regions IIa and
IIb, the characteristics are all concave and emanate from the bottom discontinuity
and the origin, respectively. Near the origin (x, t) = (0, 0), there is a time point t1
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Figure 2. (a) Graph of the flux function (2.6) with rV = 5,
φmax = 1, φ∗∗max = 0.0398, φ̂ = 0.196 and φinfl = 0.4. Solution of
(1.2) shown in 2D (b) and 3D (c) in a conical vessel with p = 1/6,
q = 1/2, initial value φ0 = 0.12. Characteristics are shown by thin
curves (except for the vertical blue lines representing the disconti-
nuities in the 3D plot).

(not marked in the figure) before which the bottom discontinuity is a shock wave
(characteristics enter it from both sides with positive angles) and after which it is a
contact discontinuity (characteristics are tangential at least on one side). This local
feature of the solution is however not essential for the inverse problem. The time
point t3 := sup{t > 0 : φh(t) < φmax} is finite if and only if f ′(φmax) < 0, which
is the case shown in Figure 2 (a). Then t3 < ∞ holds and the solution for t ≥ t3
consists of the two steady states φ = 0 and φ = φmax above and below x = h(t3),
respectively. If f ′(φmax) = 0, then region III is empty.

We denote the solution values along the discontinuities by

φh(t) := φ
(
h(t)−, t)

)
, φb(t) := φ

(
b(t)+, t)

)
and φ−b (t) := φ

(
b(t)−, t)

)
,

and define the following functions for 0 < φ < φmax:

I(φ) =I(φ;φ0) :=

∫ φ

φ0

dΦ

f(Φ)1+q
,

Q(φ) :=f(φ)qI(φ), P (φ) := f ′(φ)I(φ) +
1

qf(φ)q
.

If 0 < φ0 ≤ φinfl and q > 0, we also define

G(ϕ) := S(ϕ,ϕ−) +
1

qQ(ϕ)
, ϕ ∈ (φ0, φinfl], (2.7)

where ϕ and ϕ− := ϕ−(ϕ) satisfy the entropy condition (2.3).
The following lemma and theorem are proved in [6].
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Lemma 2.1. If q = 0, then Q′(φ) > 0 for φ ∈ [φ0, φmax). Assume that q > 0.

(i) If φ0 ≥ φinfl (Case H), then P (φinfl) > 0 and Q′(φ) > 0 for φ ∈ (φ0, φmax).
(ii) If φ0 < φinfl (Case L or M), then either P (φinfl) > 0 and Q′(φ) > 0 for

φ ∈ [φ0, φmax), or P (φinfl) ≤ 0 and the following holds: There exists a
unique zero φcr of Q′ (the φ-value of conglomerating characteristics) in the

interval (max(φ0, φ̂), φinfl] such that Q′(φ) > 0 for φ ∈ [φ0, φcr), and there
exists a unique zero φG ∈ (φ0, φcr) of G with G(φ) ≷ 0⇔ φ ≶ φG.

Theorem 2.1. Assume that A(x) is given by (2.4) with p, q > 0 or p > 0 and
q → 0+. Then the entropy solution φ = φ(x, t) of (1.2) is piecewise smooth and
has the following properties:

(i) The solution in region I is given by

φ(x, t) = Q−1
(
ψ(x, t)

)
, where ψ(x, t) :=

t

p+ qx
. (2.8)

For q > 0, (2.8) is equivalent to

x =
t

qQ(φ)
− p

q
; (2.9)

hence, φ is constant on straight lines in the x-t-plane which all intersect
the x-axis at x = −p/q < 0.

(ii) A shock wave x = h(t), 0 ≤ t ≤ t2.5, originates from the top and satisfies

h′(t) = −v(φh(t)), (2.10)

φh(t) = Q−1
(
ψ(h(t), t)

)
, (2.11)

φ′h(t) > 0, h′(t) < 0, h′′(t) > 0. (2.12)

(iii) A discontinuity x = b(t) rises from the bottom if and only if 0 < φ0 < φinfl

(Cases L or M). It satisfies b′(t) > 0 and b′′(t) > 0 for 0 ≤ t < t2.
If P (φinfl) > 0, then either b(t) meets the upper discontinuity at t = t2
with φb(t2) ≤ φinfl, or b(t2) < h(t2) and the solution is continuous at
(x, t) = (b(t2), t2) and φ(x, t) = φinfl, i.e., the bottom discontinuity ceases to
exist at time t2. If P (φinfl) ≤ 0, then x = b(t) meets the upper discontinuity
at t = t2, i.e., b(t2) = h(t2), and there exists a constant φG such that
φb(t) < φG < φcr for 0 ≤ t < t2.

(iv) Region IIa is empty if φinfl < φ0 < φmax (Case H). Otherwise, the solu-
tion in region IIa satisfies φ > φinfl and is described by strictly concave
characteristics emanating tangentially from x = b(t) for t1 ≤ t ≤ t2.

(v) Region IIb is empty if φ0 ≤ φ∗∗max (Case L). Otherwise region IIb is filled with
a fan of concave characteristics emanating from the origin (x, t) = (0, 0)
with initial values in the interval (φ∗0, φmax) if φ∗∗max < φ0 < φinfl (Case M),
and in (φ0, φmax) if φinfl ≤ φ0 < φmax (Case H).

2.3. Properties of solutions of (1.2) in the case p = 0 and q > 0. When
p = 0, we have A(0) = 0, i.e., the vessel has a vertex at the bottom x = 0. This
case is not covered in [6]; however, it is highly interesting for the inverse problem
for the following theoretical reason (in addition to the practical one that full conical
vessels are often used). In Section 3, we present a solution of (IP) corresponding
to the part of the upper discontinuity x = h(t) above region I; see Figure 2. We
have no identification method for values of φh(t) arising after the endpoint t2.5 of
region I, unless t2.5 = t3. The time point t2.5 can be detected by a discontinuity of
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Figure 3. The upper discontinuity x = h(t) for q = 1/2 and
different values of p. The marked time points t2.5 (.) and t3 (/)
are different for p > 0 and coincide as p = 0 (�).

h′ in the case the bottom discontinuity x = b(t) meets the upper one. Otherwise,
h′ is continuous at t2.5 and this time point cannot be detected for general p, q > 0.
However, as p→ 0+, the time points t2.5 and t3 converge to the same value (proved
below); see Figure 3.

Letting p → 0+ in the proof of Theorem 2.1 (which can be found in [6]) is
not entirely straightforward. For p > 0, the solution φ(x, t) is continuous in a
neighbourhood of the t-axis, except near (x, t) = (0, 0) where a discontinuity can
be created, having initially the volume fraction φ0 above. As p→ 0+, a singularity
arises at the origin even if no discontinuity is created; all values of the interval
[φ0, φmax] can be found in every neighbourhood of (x, t) = (0, 0) so that the limit
lim(x,t)→(0,0) φ(x, t) (restricted to region I) does not exist. The volume fraction
above a possible discontinuity depends on the properties of the flux f . The two
subcases that may appear when p = 0 are shown in Figure 4 and given by the
following theorem.

Theorem 2.2. The entropy solution φ = φ(x, t) of (1.2), where A(x) is given
by (2.4) with p = 0 and q > 0, is piecewise smooth and satisfies (i) and (ii) of
Theorem 2.1. In particular, (2.8) gives that the solution in region I is constant on
straight lines through the origin. If f ′(φmax) < 0, then t3 < ∞ and the solution is
constant φ ≡ φmax in region III, which is bounded by the upper shock wave x = h(t)
and the line x = `(t) := −f ′(φmax)t. If f ′(φmax) = 0, then region III is empty.

(i) (Cases L, M or H). If P (φinfl) > 0, then the solution is continuous in
0 ≤ x ≤ h(t), t > 0, and the line x = `(t), 0 < t < t3, separates regions I
and III; hence, t2 = t2.5 = t3.

(ii) (Cases L or M). If P (φinfl) ≤ 0, then there is a contact discontinuity x =
b(t), which is a straight line originating from the bottom, having the constant
solution value φG above it, where φG is defined in Lemma 2.1 (ii). If
φG < φ∗∗, then the value below x = b(t) is φmax and region IIa is empty.
Otherwise the value below x = b(t) is φ∗G. The discontinuity intersects
x = h(t) at t = t2 = t2.5. The jump in φh(t−2 ) = φG up to φh(t+2 ) = φ∗G
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x

t

1

φ0

0

III
I

x = ℓ(t)
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15

0
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1

0
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1

x
t

φ
(x
,
t)

(c) (d)
x

t

1

φ0

0
III

IIa

I

x = b(t)

x = ℓ(t)

x = h(t)

φmax

φ = 0

0

0.5

1

1.5

2

0

0.5

1

0

0.5

1

x
t

φ
(x
,
t)

Figure 4. Solutions of (1.2) obtained by the method of charac-
teristics for a full conical vessel with p = 0 and q = 1/2 in the two
cases of Theorem 2.2. Case (i): Plots (a) and (b) show a contin-
uous solution below x = h(t) with φ0 = 0.1 (Case M). Case (ii):
Plots (c) and (d) with two discontinuities with φ0 = 0.0025
(Case L).

implies a jump in h′(t) at t = t2. Furthermore, in region IIa, the solution
of (1.2) satisfies φ > φ∗G > φ∗cr ≥ φinfl and is described by strictly concave
characteristics emanating tangentially from the bottom discontinuity x =
b(t) for 0 ≤ t ≤ t2. Theorem 2.1 (v) holds in this subcase.

Proof. Most of the statements are direct consequences of setting p = 0 in the proof
of Theorem 2.1; see [6]. The new ingredient to prove in case (ii) is that the bottom
discontinuity is a straight line with constant φ-values on both sides. For a curve
x = b(t), b(0) = 0, to satisfy both the jump and entropy conditions (2.2) and (2.3),
and with the solution φ given by (2.8) in region I above it, the following ODE
should be satisfied for φb(t) for t > 0; see Case L of [6]:

φ′b(t) =
t

Q′(φb(t))qb(t)2
G
(
φb(t)

)
.
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This equation has φb(t) ≡ φG, t > 0, as a constant solution. We construct the
entropy-satisfying solution by first defining the function

b(t) :=
t

qQ(φG)
= −S

(
φG,min(φmax, φ

∗
G)
)
t, (2.13)

where the last equality follows from the fact that φG is the zero of G; see (2.7). In
region I, let the solution φ be given by (2.8) with p = 0 in the region b(t) < x < h(t),
t > 0. Just above x = b(t), the solution φ is constant equal to φG by (2.9)
(with p = 0). Letting x = b(t) be a discontinuity with the value min(φmax, φ

∗
G)

just below, the entropy condition is satisfied by (2.13). If φG < φ∗∗max, then the
solution is φ ≡ φmax for 0 < x < b(t), t > 0, and region IIa is empty. Otherwise,
φ ≡ φ∗G holds just below the line x = b(t). At each point of this line, characteristics
emanate tangentially defining the solution in region IIa as in the case of the proof
of Theorem 2.1 (see [6]). �

3. Theoretical solution of the inverse problem

3.1. Parametric formulas in the case p ≥ 0 and q > 0. The upper shock wave
x = h(t), 0 ≤ t < t2.5, satisfies (2.10) and (2.11), where the latter can be written as

ψ
(
h(t), t

)
= f(φh)qI(φh). (3.1)

These two equations define the functions h and φh for given flux function f . Assume
now that h and its derivative are known and let the two equations define φh and f .
The following theorem states that a part of f can be obtained with an explicit
parametrization.

Theorem 3.1. Assume that A(x) is given by (2.4) with p ≥ 0 and q > 0, and that
φ0 and the upper shock wave x = h(t), 0 ≤ t < t2.5, are known. Then the inverse
problem (IP) has the following parametrized solution:(

φ, f(φ)
)

= φ0
(p+ q)1+1/q

(p+ qh(t))1/q(p+ qη(t))

(
1,−h′(t)

)
, 0 ≤ t ≤ t2.5, (3.2)

where η(t) := h(t)− th′(t).

Proof. The idea is to differentiate both (2.10) and (3.1) so that four equations are
obtained. These are then used to get an equation without f and f ′, only φh, h and
their derivatives should appear. First, (2.10) gives

f(φh) = −h′φh, f ′(φh)φ′h = −h′′φh − h′φ′h. (3.3)

Differentiating (3.1), we get

d

dt
ψ(h(t), t) =

(
qf(φh)qf ′(φh)I(φh) + 1

) φ′h
f(φh)

.

Inserting I = ψ/fq (from (3.1)) and using (3.3) to eliminate f and f ′ we get

d

dt
ψ(h(t), t) =

(
qψ(h, t)

(
−h′′φh

φ′h
− h′

)
+ 1

)
φ′h
−h′φh

.

This identity can be rewritten as follows:

φ′h
φh

= g(t), with g(t) :=
1

qh′ψ(h, t)− 1

(
h′

d

dt

(
ψ(h, t)

)
− qψ(h, t)h′′

)
, (3.4)
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where qψ(h, t)h′ − 1 < 0 since h′ < 0. Defining the integral

G(t) :=

∫ t

0

g(s) ds,

we may express the solution of (3.4) as φh = φ0 exp(G(t)). Hence, by (3.3) a
parametrized solution of (IP) can be written as(

φ, f(φ)
)

= φ0 exp
(
G(t)

)(
1,−h′(t)

)
. (3.5)

Since, by (2.12) and (3.4), G′(t) = g(t) = φ′h/φh > 0, the first component of (3.5)
gives formally t = G−1(log(φ/φ0)) and hence the following formally explicit solution
of the inverse problem:

f(φ) = −φh′
(
G−1

(
log

φ

φ0

))
, φ0 ≤ φ ≤ φh(t2.5). (3.6)

We now compute G(t). Noting that

h′
d

dt

(
ψ(h, t)

)
=

d

dt

(
h′ψ(h, t)

)
− h′′ψ(h, t),

we can write

g(t) =
1

1− qh′ψ(h, t)

(
− d

dt

(
h′ψ(h, t)

)
+ h′′ψ(h, t) + qh′′ψ(h, t)

)
=: g1(t) + g2(t),

where the first term can be written by means of η(t) := h(t)− th′(t) as

g1(t) =
−(d/dt)(h′ψ(h, t))

1− qh′ψ(h, t)
=

1

q

d

dt
log
(
1− qh′ψ(h, t)

)
=

1

q

d

dt
log

p+ qη(t)

p+ qh(t)

and the second term as follows, by noting that η′(t) = −th′′(t):

g2(t) =
(1 + q)h′′ψ(h, t)

1− qh′ψ(h, t)
= −(1 + q)

η′(t)

p+ qη(t)
= −1 + q

q

d

dt
log
(
p+ qη(t)

)
.

Hence, we get

G(t) =

∫ t

0

(
g1(s) + g2(s)

)
ds

=

∫ t

0

(
−1

q

d

ds
log(p+ qh(s))− d

ds
log
(
p+ qη(s)

))
ds

= −1

q
log

p+ qh(t)

p+ q
− log

p+ qη(t)

p+ q
= log

(p+ q)1+1/q

(p+ qh(t))1/q(p+ qη(t))
. (3.7)

Inserting this into (3.5) yields (3.2). �

Remark 3.1. The special case when A ≡ 1 is obtained as p > 0 and q →∞, which
is easiest calculated from (3.7). One gets G(t) → − log η(t), so that φh = φ0/η(t),
which is in accordance with [8, 18]. In fact, when A is constant, the solution in
the region corresponding to I and IIb is described by straight-line characteristics
along which φ is constant. In region IIb they all intersect at the origin and form a
rarefaction wave. In particular for region I, where φ ≡ φ0 holds, we have by (2.10)
for the upper shock wave: −h′(t) = v(φ0), so that η′(t) = −th′′(t) = 0. Hence, η(t)
is constant and η(t) = η(0) = h(0) = 1.
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3.2. Explicit formulas in the case p ≥ 0 and q > 0. We will here derive an
explicit representation of the flux function f(φ) for φ = φh(t), 0 ≤ t ≤ t2.5 in terms
of h and h′. The idea is to solve for t the first component of (3.2), which is

φ =
φp

(p+ qh(t))1/q
(
p+ qη(t))

where φp := φ0(p+ q)1+1/q, (3.8)

and substitute the resulting expression of φ into the second component of (3.2).
We first define and calculate

s(t) :=
(
p+ qh(t)

)1+1/q
, (3.9)

s′(t) =(q + 1)h′(t)
(
p+ qh(t)

)1/q
,

s′′(t) =(q + 1)h′′(t)
(
p+ qh(t)

)1/q
+ (q + 1)h′(t)2

(
p+ qh(t)

)1/q−1
,

and see that the following properties (cf. (2.12)) are carried over to s for 0 ≤ t < t2.5:

h′(t) < 0, h′′(t) > 0 ⇔ s′(t) < 0, s′′(t) > 0. (3.10)

The denominator of (3.8) can be written as

0 <
(
p+ qh(t)

)1/q(
p+ qh(t)− qth′(t)

)
=
(
p+ qh(t)

)1/q+1 − qth′(t)
(
p+ qh(t)

)1/q
= s(t)− qt

q + 1
s′(t) =: σ(t). (3.11)

Since σ′(t) = (s′(t)− qts′′(t))/(q+ 1) < 0 by (3.10), the inverse σ−1 of σ exists and
we have proved the following theorem.

Theorem 3.2. Assume that A(x) is given by (2.4) with p ≥ 0, q > 0, and that
φ0 and the upper shock wave x = h(t), 0 ≤ t < t2.5, are known. Then the inverse
problem (IP) has the following explicit solution:

f(φ) = −φh′
(
σ−1

(
φp
φ

))
, φ0 ≤ φ ≤ φh(t2.5), (3.12)

where s(t) := (p+ qh(t))1/q+1 and σ(t) := s(t)− qts′(t)/(q + 1).

3.3. The exponential case: p > 0 and q = 0. This case means that the vessel
has an exponentially increasing cross-sectional area A(x) = e(x−1)/p. We have
ψ = t/p and get from the proof of Theorem 3.1

G(t) = −
∫ t

0

h′(s)
1

p
ds =

1− h(t)

p
.

The function G is clearly invertible and we get the relation G−1(y) = h−1(1− py).
Hence, (3.5) and (3.6) give both a parametric and an explicit representation:

φ = φ0 exp

(
1− h(t)

p

)
⇔ h(t) = 1− p log

φ

φ0
,

f(φ) = −φh′
(
h−1

(
1− p log

φ

φ0

))
. (3.13)

We remark that letting p → ∞ we only get φ = φ0, which is the solution in
region I in the case of a constant cross-sectional area.

For an exponentially increasing area, it is thus possible to obtain an explicit
representation of a portion of the flux function with (3.13) by fitting to data an
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explicitly invertible function h̄ that approximates h. The procedure for this is
described in Section 4 for the common conical vessel shape (q = 1/2).

4. Solution of the inverse problem by curve fitting to data

4.1. Fitting functions to data. To use the explicit representation of f (3.12),
one must be able to find an explicit expression for σ−1; hence, we need a simple
expression for σ that can be inverted. The corresponding function s can be obtained
from the definition of σ (3.11); one gets, for some t0 > 0,

s(t) = t1+1/q

(
s(t0)

t
1+1/q
0

− q + 1

q

∫ t

t0

σ(τ)

τ2+1/q
dτ

)
. (4.1)

For example, letting σ = σ̄ be a second-order polynomial, we obtain from (4.1)

s̄(t) = c3t
1+1/q + c2t

2 + c1t+ c0 (4.2)

for some constants ci, i = 0, . . . , 3. These constants can be determined by the given
measured height data, i.e., one should fit the function, see (3.9),

h̄(t) =
1

q

(
s̄(t)q/(q+1) − p

)
=

1

q

((
c3t

1+1/q + c2t
2 + c1t+ c0

)q/(q+1) − p
)
.

This is a nonlinear function of the coefficients. An alternative way is to first trans-
form the height data hi to si = (p+qhi)

1+1/q and directly determine the coefficients
ci, i = 0, . . . , 3, which appear linearly in the expression (4.2) for s̄. We will do the
latter below. To demonstrate the method with simplified coefficients, we let q = 1/2
in the next subsection, which means that s̄ is a cubic polynomial.

4.2. Fitting piecewise cubic polynomials to transformed data. For simplic-
ity, we set in this section q = 1/2, which means that the vessel is a (truncated)
cone. To use the explicit formula (3.12), we will approximate s by a function
s̄, which is obtained by a fit to correspondingly transformed data via (3.9), i.e.,
si = (p+ hi/2)3, for each height data hi. This is done by solving an optimization
problem; see Section 4.3. Then we define σ̄(t) := s̄(t)− ts̄′(t)/3, show that it has
an explicit inverse and use (3.12) to obtain an estimation f̄ of f . We will below
represent s̄ by piecewise highly regular functions with lower regularity at the fitting
points. Similarly can be done for the parametric formula (3.8), which requires a
fitted function h̄(t) directly to the data. The following theorem follows directly
from (3.8) and (3.12).

Theorem 4.1. If s̄ ∈ Ck[0, t2.5], for some k ≥ 2, then the identified flux function
defined by (3.12) satisfies f̄ ∈ Ck−1[φ0, φh(t2.5)]. The analogue statement holds
for (3.8); h̄ ∈ Ck[0, t2.5] implies f̄ ∈ Ck−1[φ0, φh(t2.5)].

Assume that we are given N pairs of data points that represent the curved
discontinuity h in the interval [0, t2.5]:

(tj , xj), j = 1, . . . , j2, . . . , j3, . . . , jn, . . . , N. (4.3)

Let j1 := 1 and jn+1 := N . For each j the respective observed value of the s-curve
is defined by

(tj , zj) :=
(
tj , (p+ xj/2)3

)
, j = 1, . . . , j2, . . . , j3, . . . , jn, . . . , N. (4.4)
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The number of data points belonging to each interval (tji , tji+1
] is Ni := ji+1 − ji,

so that N = 1 +
∑n
i=1Ni. We would like to fit smooth functions s̄i, i = 1, . . . , n

close to these data such that the graph of

s̄(t) :=

n∑
i=1

s̄i(t)χi(t) for t1 < t ≤ tN , where χi(t) =

{
1 if tji < t ≤ tji+1

,

0 otherwise,

(4.5)

is an estimation of the curve s. The goal is to substitute (4.5) into (3.12) to
obtain an explicit formula for a portion of the batch settling flux function f̄ . Then
each function si should be chosen such that σ̄i(t) := s̄i(t)− ts̄′i(t)/3 is invertible
explicitly. As was shown in Section 4.1, a cubic polynomial is suitable. We get

s̄i(t) = ait
3 + bit

2 + cit+ di, s̄′i(t) = 3ait
2 + 2bit+ ci,

s̄′′i (t) = 6ait+ 2bi, σ̄i(t) =
bi
3
t2 +

2ci
3
t+ di.

Hence, each σ̄i is a second-order polynomial. Note that exactly the same σ̄i is
obtained for a second-order polynomial s̄i (set ai = 0); hence, this is a worse
alternative from a fitting point of view.

An explicit representation of the inverse of σ̄(t) := s̄(t)− ts̄′(t)/3 requires some
preparation. We have s̄i ∈ C∞, i = 1, 2, . . . , n, and to obtain s̄ ∈ C2[t1, tN ] we
impose the following continuity constraints at the fitting points:

s̄i−1(tji) = s̄i(tji), i = 2, . . . , n, (4.6)

s̄′i−1(tji) = s̄′i(tji), i = 2, . . . , n, (4.7)

s̄′′i−1(tji) = s̄′′i (tji), i = 2, . . . , n. (4.8)

These constitute 3(n − 1) equations of the 4n parameters. To obtain a unique
solution of a least-squares minimization problem (see Theorem 4.2 in Section 4.3),
it turns out that in each interval (tji , tji+1 ], there should be at least as many data
points as parameters, i.e., ji+1 − ji ≥ 4, which implies that the total number N of
data points should satisfy

N = jn+1 = 1 +

n∑
i=1

(ji+1 − ji) ≥ 1 + 4n.

In accordance with (3.10), we require

s̄′i(t) < 0, tji ≤ t ≤ tji+1
, i = 1, . . . , n, (4.9)

s̄′′i (t) = 6ait+ 2bi > 0, tji ≤ t ≤ tji+1
, i = 1, . . . , n. (4.10)

Because of the continuity constraint (4.7) and the convexity condition (4.10), we can
conclude that s̄′ is increasing. Hence, (4.9) can be replaced by the single constraint

s̄′n(tN ) = 3ant
2
N + 2bntN + cn < 0. (4.11)

To obtain simple constraints in the minimization problem, we assume that

ai < 0 and bi > 0, i = 1, . . . , n. (4.12)

Then all functions s′′i (t) are decreasing. By virtue of the continuity constraints
(4.8), we can replace all constraints (4.10) by the single one

s̄′′n(tN ) = 6antN + 2bn > 0. (4.13)
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Furthermore, we now get the same expression for the inverses of all σi. Since
σ̄′i(t) = 2s′i(t)/3 − ts′′i (t)/3 < 0 (by (3.10)), the left branch of the parabola should
be used for the inverse, which is

σ̄−1
i (y) = −

ci +
√
c2i − 3bi(di − y)

bi
. (4.14)

Hence, with y = φp/φ, t = σ̄−1
i (y), h̄i(t) := 2(s̄

1/3
i (t)− p) and

h̄′i(t) =
d

dt
2
(
s̄i(t)

1/3 − p
)

=
2s̄′i(t)

3s̄i(t)2/3
=

2(3ait
2 + 2bit+ ci)

3(ait3 + bit2 + cit+ di)2/3
, (4.15)

the explicit representation of f̄ , restricted to the values of φ corresponding to the
interval (tji , tji+1

], is given by (3.12).
To obtain the estimation f̄ corresponding to the entire interval [φ0, φh(t2.5)], we

see that the continuity constraints (4.6)–(4.7) imply that, for t1 < t ≤ tN ,

σ̄(t) := s̄(t)− t

3
s̄′(t) =

n∑
i=1

(
s̄i(t)−

t

3
s̄′i(t)

)
χi(t) =

n∑
i=1

σ̄i(t)χi(t).

The inverse of σ̄ can be written as a sum of the inverses of all σ̄i by means of
transformed characteristic functions χi. Since σ̄ is decreasing, it maps the interval
(tji , tji+1

] to the interval [σ̄(tji+1
), σ̄(tji)). Because of the argument of σ−1 in (3.12),

the corresponding interval for φ is

σ̄(tji+1) ≤ φp
φ
< σ̄(tji) ⇔ φp

σ̄(tji)
< φ ≤ φp

σ̄(tji+1
)
.

Consequently, to express the inverse of σ̄ we define the characteristic functions

ζi(φ) =

1 if
φp

σ̄(tji)
< φ ≤ φp

σ̄(tji+1)
,

0 otherwise,
i = 1, . . . , n.

Finally, (3.12) yields the following explicit formula for the estimated portion f̄ of f :

f̄(φ) = −φ
n∑
i=1

h̄′i

(
σ̄−1
i

(
φp
φ

))
ζi(φ),

φp
σ̄(t1)

< φ ≤ φp
σ̄(tN )

. (4.16)

4.3. The quadratic-programming problem. To the given N data points (4.3)
and their transformed values (4.4), we determine the parameters ai, bi, ci and di as
the unique solution of a least-squares minimization problem with constraints. We
define pi := (ai, bi, ci, di)

T and the following vectors:

p :=


p1

p2
...
pn

 , zi :=


zji
zji+1

...
zji+1−1

 , z :=


z1

...
zn
zN

 .
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Then one can write s̄i(t) = pT
i q(t) = q(t)Tpi, where q(t)T := (t3, t2, t, 1). Defining

also the matrices

Qi :=


q(tji)

T

q(tji+1)T

...
q(tji+1−1)T

 , Q :=



Q1 0 · · · 0

0 Q2

...
...

. . .

0 · · · Qn

0 · · · q(tN )T

 ,

we can express the objective function J of the minimization problem in the same
way as in [8] for the values of zj instead xj , namely:

J(p) := (Qp− z)T(Qp− z) = pTQTQp− 2zTQp + zTz. (4.17)

We note that the size of Q is N × 4n and the Hessian of J has the size 4n× 4n. To
express the equality constraints (4.6)–(4.8) in standard matrix form, we define

Ri :=

 q(tji)
T

q′(tji)
T

q′′(tji)
T

 , R :=


R2 −R2 0 · · · 0
0 R3 −R3 · · · 0
...

. . .
. . .

...
0 · · · 0 Rn −Rn

 .

Then the equality constraints (4.6)–(4.8) are equivalent to Ri(pi−1 − pi) = 0 for
i = 2, . . . , n, or more compactly, Rp = 0. For the inequality constraints, we let
ε > 0 be a small number and 1m×n denote an m×n matrix full of ones. We define

e1 :=


1
0
0
0

 , e2 :=


0
1
0
0

 , Ii :=


eT
i 0 · · · 0

0 eT
i

...
...

. . . 0
0 · · · 0 eT

i


n×4n

,

M :=


I1

−I2(
01×4(n−1) q′(tN )T

)(
01×4(n−1) −q′′(tN )T

)
 , b := −ε

12n×1

0
0


Then the inequality constraints Mp ≤ b imply (4.11)–(4.13). For data points
(4.4) representing the curved s, the parameters p are determined by the following
quadratic programming problem:

minimize J(p) = (Qp− z)T(Qp− z)

subject to Rp = 0, Mp ≤ b.
(QP)

Theorem 4.2. Given the (transformed) data points (4.4). If the number of data
points Ni = ji+1 − ji on each interval (tji , tji+1 ] satisfies Ni ≥ 4, then (QP) has a
unique solution p. Moreover, the estimated part of the flux function f̄ , explicitly
given by (3.12), depends continuously on the data points.

Proof. The uniqueness of the solution of (QP) is obtained by proving that the
Hessian ∇2J = QTQ is positive definite. To this end, we can consider the calcu-
lations in (4.17) with z = 0 and temporarily let p be an arbitrary vector. Then
pTQTQp ≥ 0 holds, with equality if and only if

q(tk)Tpi = 0, k = ji, . . . , ji+1 − 1, i = 1, . . . , n, and q(tN )Tpn = 0.
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Hence, each of the third-order polynomial s̄i(t) has Ni ≥ 4 distinct roots tk which
by the fundamental theorem of algebra is possible only if pi = 0. The existence of
a solution of (QP) is proved by finding a feasible point of the constraints. A such
is given by the following parameters:

ai = −1, bi = 3tN , ci = −3t2N , di = t3N , i = 1, . . . , n,

which correspond to the identical polynomials s̄i(t) = (tN − t)3 for all i. They
satisfy clearly the constraints (4.11)–(4.13). It is well known (cf. [13, 15]) that the
unique minimum p depends continuously on the matrices of (QP), hence on the
data points (4.3). �

5. Summaries of the identification methods

We summarize here the two identification methods in the special case p = 0,
which means that the vessel has a vertex. This case implies that one can identify
the end time point of necessary measurements that can be used in the methods;
see Theorem 2.2 and Figure 4.

5.1. Identification of the flux function on parametric form.

0. Assume that the given data are the initial datum φ0 and the data points
(tj , xj), j = 1, . . . , N , see (4.3), that represent the shock wave h(t).

1. Fit a function h̄(t) to the data points (tj , xj) with any method.
2. Set η̄(t) := h̄(t) − th̄′(t). Then the identified (portion of) flux function is

given by the parametrization (3.2), which for p = 0 is(
φ, f̄(φ)

)
= φ0

1

h̄(t)1/q η̄(t)

(
1,−h̄′(t)

)
, 0 ≤ t ≤ t2.5.

5.2. Identification of the flux function as an explicit expression. We confine
to q = 1/2, i.e., a conical vessel. The case for general q > 0 is similar; see Section 4.1.

0. Assume that the given data are the initial datum φ0 and the data points
(tj , xj), j = 1, . . . , N , see (4.3), that represent the shock wave h(t).

1. Transform the data points to (tj , zj) = (tj , (xj/2)3), j = 1, . . . , N .
2. Fit the function s̄(t) given by (4.5) of piecewise cubic polynomials s̄i(t) =
ait

3 + bit
2 + cit + di, i = 1, . . . , n, by solving the optimization problem

(QP), where the number of data points Ni in each subinterval should satisfy
Ni ≥ 4.

3. Define σ̄−1
i (t) by (4.14) and h̄′i(t) by (4.15) for i = 1, . . . , n.

4. The identified flux function f̄(φ) is given by the explicit formula (4.16).

6. Estimation from synthetic and published real data

It is only the part of the upper discontinuity x = h(t), 0 < t < t2.5, above region I
that can be used for the identification of f . In the general case for p > 0, it is only
possible to detect t2.5 when the bottom discontinuity intersects the upper one and
there is a jump in the derivative h′. However, in the most common case when the
vessel has a vertex, A(0) = 0 and p = 0 hold. Then Theorem 2.2 implies that t2.5
can be detected, either by a jump in the derivative of h′, or as the time point after
which the solution is stationary. We therefore limit ourselves to the case p = 0 and
q = 1/2, which is a full conical vessel.
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Figure 5. Example 1. (a)–(b) Upper discontinuity (dashed
black), data points without noise (blue stars) and fitted curve (solid
red) obtained with 5 subintervals corresponding to h and s, respec-
tively. (c)–(f) Known flux function (dashed black) and estimated
(solid red) for 10, 20 and 40 subintervals, respectively.

6.1. Example 1. Synthetic data with hardly any noise are produced by a numer-
ical approximation of the curve x = h(t), 0 ≤ t ≤ t3, using the Runge-Kutta
fourth-order method for the ODEs (2.10)–(2.11), h(0) = 1, φh(0) = φ0 = 0.1, and
with the flux function f(φ) = φ(e−5φ − e−5). To create some examples, we use
different number of data points from the approximate ODE solution hODE, namely
(xj , tj) = (hODE(tj), tj), j = 1, . . . , N , where N−1 is divisible by 4 and (N−1)/4 is
the number of subintervals. The N data points have been chosen (almost) equidis-
tantly along the φ-axis by using the injective relation to time given by the first
component of (3.8). Figure 5 shows the results of the identification procedure of
Section 5.2 with an explicit flux function. With 5 subintervals, plots (a) and (b)
show the data points and the fitted curves h̄ and s̄, where the coefficients of s̄



20 BÜRGER, CAREAGA, AND DIEHL

t

x

0 5 10 15
0

0.2

0.4

0.6

0.8

1

(a)

0

2

4

x 10
4

0

0.5

1

0

0.2

0.4

0.6

0.8

x
t

φ
(x
,t
)

(b)

0 2 4 6 8 10 12 14

0.5

0.6

0.7

0.8

0.9

1

t

h
(t
)

(c)

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

φ

f
(φ
)

(d)

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

φ

f
(φ
)

(e)

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

φ

f
(φ
)

(f)

Figure 6. Example 2. (a) Isoconcentration curves of a numerical
solution of (1.2a)–(1.2c) shown in (b) obtained with a Godunov
approximation. (c) Data points (blue stars) and resulting h-curve
of the optimization for n = 5 subintervals (solid red). (d)–(f)
Known flux function (dashed black) and identified (solid red) for
5, 10 and 15 subintervals, respectively.

are obtained as the solution of the quadratic programming problem (QP). The
identified flux function, together with the known one, is plotted in (c). The same
procedure gives the identified fluxes shown in (d)–(f) for 10, 20 and 40 subinter-
vals. The more subintervals, and larger N , the visually better is the identification
of f ; however, there are several inflection points created, at least for low N . Apart
from these inflection points, the flux function is identified and we conclude that the
identification procedure with cubic splines works.

6.2. Example 2. With the same flux function as in Example 1, we produce syn-
thetic data by means of a numerical solution of the direct problem (1.2) by using
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a finite difference scheme with Godunov’s numerical flux; cf. [7]. The numerical
solution is obtained with a division of the vessel height into 100 spatial cells; see
Figure 6 (a) and (b). The upper discontinuity is then approximated by a piecewise
affine function interpolating 103 data points chosen at the uppermost spatial cell
such that φ ≥ 0.9φ0 = 0.09. From the interpolating curve, 4n+ 1 = 21 data points
are taken for the identification procedure with n = 5 subintervals. The identifi-
cation procedure of Section 5.2 is used. The optimization procedure of Section 4
results in the h-curve shown in (c). The identified fluxes are shown in plots (d)–(f)
for 5, 10 and 15 subintervals, respectively.

In this example, the identification of the flux function does not improve much
with the number of data points N used. It seems that the errors in the synthetic
data are either smoothed out or amplified at different locations of the flux curve.
For small times, the curve x = h(t) declines fast and the corresponding φ-values just
below the interface lie near the maximum point of f . Unfortunately, the relatively
small errors in data are amplified resulting in the oscillations near the maximum
point shown in Figure 6 (d)–(f).

6.3. Example 3. We use the experimental data of White and Verdone [45, Fig-
ure 11], who measured the height of the supernatant-suspension discontinuity dur-
ing the settling of magnesium hydroxide Mg(OH)2 in water. Three tests with
different concentrations were reported in partly a cylindrical vessel and partly a
full cone; see Figure 7 (a). The density of Mg(OH)2 is %s = 2344.6 kg/m3, so
the three initial concentrations C0 = 50, 60 and 70 g/l correspond to the volume
fractions φ0 = C0/%s = 0.0213, 0.0256 and 0.0299, respectively. Unfortunately,
the experiments were not performed to steady state. Our identification procedure
applied to three data sets of the cone, working with dimensional variables, yields
three slightly different estimated parts of flux functions to which one can fit a final
single flux function. The latter can then be used for numerical simulation (as in
Example 2) which can be compared to the results of the three experiments made
in the cylindrical vessel.

It turns out that the parametric formula (3.2) yields closer estimations of the
three cone data sets. To each data set we fit the decreasing and strictly convex
function

h̄(t) =
a

t+ b
+ ct+ d.

For example, the data for C0 = 50 g/l gave the coefficients a = 0.7621, b = 1.2984,
c = 0.02146 and d = 0.4111. The resulted three h-curves are shown in Figure 7 (b).
Plot (c) shows the estimated three parts of flux functions with the parametric
formulas (3.2). To these three curves, we fitted a final flux of the form

f̃(C) =
e1−C/%s − 1

e− 1

v0C

1 + (C/C̄)n
(6.1)

with the parameters v0 = 3.5784× 10−4 m/s, C̄ = 49.570 g/l and n = 2.6227. This

flux function satisfies f̃(0) = f̃(%s) = 0 and is used for the numerical simulation of
batch settling in a cylindrical vessel with the three initial concentrations C0 = 50, 60
and 70 g/l. The simulation results are plotted in Figure 7 (d)–(f) together with the
corresponding cylindrical data. Initially, the agreements between the simulations
and the data are good. The differences seen for later times have probably several
causes, such as sensitive identification method, non-complete data sets, polydisperse
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Figure 7. (a) Experimental data of sedimentation of Mg(OH)2

in water in a conical and cylindrical vessel; from White and Ver-
done [45, Figure 11]. (b) Fitted h-curves to cone data. (c) Iden-
tified portions of flux function for each data set (coloured) and

fitted flux function f̃(C) (6.1). (d)–(f) Simulated batch tests in

cylindrical vessel with f̃(C) and cylinder data points from (a).

sedimentation (certain width of the size distribution of particles) and compressive
effects at higher concentrations.

7. Conclusions

A new identification method for the flux function of hindered settling of particles
in a liquid has been presented. The initial homogeneous concentration φ0 and
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detailed measurements of the declining supernatant-suspension discontinuity x =
h(t) are the inputs for the inverse problem (IP) of identifying the nonlinear flux
function of the scalar hyperbolic problem (1.2). The solution of (IP) is found by
utilizing the constructed solutions of (1.2) by the method of characteristics for
hyperbolic PDEs in qualitatively different cases. The solution of (IP) is presented
in two version in Theorems 3.1 (parametric) and 3.2 (explicit expression).

Another new result of this work is Theorem 2.2, which states the unique entropy
solution of the direct problem (1.2) in the case of a vessel with a vertex at the
bottom. A full cone is the most common type of vessel with varying cross-sectional
are used in industry for batch sedimentation tests. In addition, this is of particular
advantage for (IP), since the end time point of data collection can then be detected
from only observing the shock wave x = h(t) (see Section 2.3).

Theoretically, only one batch experiment is needed and almost the entire flux
function can be identified, namely for the interval [φ0, φmax]. The identified flux
function f̄ can be represented accurately with parametric formulas after fitting
of a function h̄(t) to data (Theorem 3.1). As an appealing alternative, f̄ can be
expressed by an explicit function (Theorem 3.2); however, the method is slightly
less flexible, since the function fitted to transformed data s̄(t) is limited to certain
expressions, each leading to a transformed function σ̄(t) having an explicit inverse.
Fortunately, a function s̄(t) consisting of piecewise cubic polynomials is possible.
Application of the method, which includes the optimization problem of Section 4, to
synthetic data (i.e., produced by a known flux) with hardly any noise demonstrates
it success (Section 6). However, larger errors of the data imply that the method to
identify an explicit flux function introduces several inflection points of the identified
flux function, despite this only has one such (for synthetic data). From the limited
real data sets from literature, we found that the parametric formulas for the flux
function (Theorem 3.1) gave better results, which we present in Section 6.3.

The huge interest in flux identification that has lead to the previous methods
referred to in Section 1.2 are all confined to cylindrical vessels. The advantages
of the presented method are that only one experiment is needed and that this
experiment is easy to perform. Previous methods (cylindrical vessels) are either
easy to perform (standard batch test), resulting at the best to one point below the
inflection point φinfl of the flux curve and a subinterval of [φinfl, φmax]; or difficult
to perform and require special equipment (batch test with high concentration on
top of clear liquid), but can estimate some of the concave part of the flux [4, 8,
18]. The advantages of these previous methods are that the concavity/convexity
of the flux function below/above the inflection point is naturally built into those
identification methods, which also preserve the C2 regularity of the function fitted to
data over to the identified flux f̄ . The new method satisfies only s̄ ∈ C2 ⇒ f̄ ∈ C1

(Theorem 4.1). Further development of the new method to account for convexity
preservation is needed. Other shortcomings of the presented method is that it
relies on a one-dimensional model, taking no wall effects into account (except for
the varying cross-sectional area).
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2016-36 Jessika Camaño, Ricardo Oyarzúa, Ricardo Ruiz-Baier, Giordano Tierra:
Error analysis of an augmented mixed method for the Navier-Stokes problem with mixed
boundary conditions

2016-37 Eligio Colmenares, Gabriel N. Gatica, Ricardo Oyarzúa: A posteriori error
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