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A priori and a posteriori error analysis of an augmented
mixed-FEM for the Navier-Stokes-Brinkman problem

Luis F. Gatica, Ricardo Oyarzúa,
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Abstract

We introduce and analyze an augmented mixed finite element method for the Navier-Stokes-
Brinkman problem. We employ a technique previously applied to the stationary Navier-
Stokes equation, which consists of the introduction of a modified pseudostress tensor relat-
ing the gradient of the velocity and the pressure with the convective term, and propose a
pseudostress-velocity formulation for the model problem. Since the convective term forces
the velocity to live in a smaller space than usual, we augment the variational formulation with
suitable Galerkin type terms. The resulting augmented scheme is then written equivalently
as a fixed point equation, so that the well-known Banach fixed point theorem, combined
with the Lax-Milgram lemma, are applied to prove the unique solvability of the continuous
and discrete systems. We point out that no discrete inf-sup conditions are required for the
solvability analysis, and hence, in particular for the Galerkin scheme, arbitrary finite ele-
ment subspaces of the respective continuous spaces can be utilized. For instance, given an
integer k ≥ 0, the Raviart-Thomas spaces of order k and continuous piecewise polynomials
of degree ≤ k + 1 constitute feasible choices of discrete spaces for the pseudostress and the
velocity, respectively, yielding optimal convergence. In addition, we derive a reliable and
efficient residual-based a posteriori error estimator for the augmented mixed method. The
proof of reliability makes use of a global inf-sup condition, a Helmholtz decomposition, and
local approximation properties of the Clément interpolant and Raviart-Thomas operator.
On the other hand, inverse inequalities, the localization technique based on element-bubble
and edge-bubble functions, approximation properties of the L2-orthogonal projector, and
known results from previous works, are the main tools for proving the efficiency of the esti-
mator. Finally, some numerical results illustrating the performance of the augmented mixed
method, confirming the theoretical rate of convergence and properties of the estimator, and
showing the behaviour of the associated adaptive algorithms, are reported.
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1 Introduction

The devising of appropriate numerical methods to simulate fluid flows in porous media has
gained considerably attention during the last decades due to its diverse applications in different
applied sciences, such as petroleum, agricultural, and biomedical engineering, to name a few.
This area of research is also of great importance in the designing and manufacturing of several
industrial pieces involving filtration (see e.g.[13, 37]). Depending on the phenomenon, different
mathematical models may be used to obtain accurate and suitable results. For instance, one
of the most studied approaches is the Stokes-Darcy model (or Navier-Stokes-Darcy model),
which consists of a coupled system of equations where the Stokes (or Navier-Stokes) and Darcy
equations, both set in disjoint domains, are coupled through a common interface by a mass
conservation condition, balance of normal forces, and the so called Beaver–Joseph–Safmann law
(see e.g. [16, 31]). The other widely accepted model in the community is the Brinkman equation
([3, 4]). This model, which is more suitable for mixture of materials, consists roughly speaking,
of a combination of the Stokes and Darcy equations in a common domain. In the literature can
be also found several generalizations of the aforementioned models, including nonlinear problems
such as the Forchheimer and the Navier-Stokes-Brinkman (NSB) models. Precisely, in this paper
we are interested in introducing a new pseudostress-based finite element method for the latter.

In the context of fluid flow problems, the idea of introducing a pseudostress tensor as a further
unknown allows, on the one hand, besides the original unknowns, to obtain direct approximations
of several variables of interest, and on the other hand, to unify the analysis for Newtonian and
non-Newtonian flows (see for instance [7, 5, 18, 26, 30, 36]). In particular, the method proposed
in [7], which has been already extended to the Navier-Stokes problem with variable viscosity
[6], to the Boussinesq problem [12], and to the Navier-Stokes/Darcy problem with variable
viscosity [11], is the first Raviart-Thomas-based mixed method for the Navier-Stokes problem
providing optimal convergence for all the unknowns (see e.g. [5, 18, 36] for previous results).
This optimal convergence is attained thanks to an augmentation procedure consisting in the
introduction of residual terms arising from the constitutive and equilibrium equations (see,
e.g., [20, 19, 21, 23] for more details on this procedure of augmentation). Now, specifically for
the Brinkman problem, the first contribution in proposing and analyzing a pseudostress-based
method is [26]. This work, which was later extended to the Brinkman problem with variable
viscosity in [27], provides an optimal convergent Raviart-Thomas-based method for the model
problem, where the pseudostress is the only unknown of the resulting formulation. The velocity,
along with the pressure, can be easily recovered through a simple post processing procedure.

Concerning our problem of interest, in [38] has been recently studied a primal finite element
method for a NSB model with nonselenoidal velocity and inhomogeneous Dirichlet boundary
condition. This non-Darcian model (see also [34]), which describes the behaviour of a fluid flow
with high velocity through complex geometries with relative large pores, has diverse applications
in the design of complex engineering systems, such as wind farms with closely placed turbines
and porous breakwaters, like rubble-mound breakwaters in ports and coastal areas. Considering
discontinuous parameters, due to the complexity of the phenomena’s geometry, in [38] it is
proved well-posedness of the continuous and discrete formulations, as well as the corresponding
optimal convergence, by means of a suitable smallness assumption on the data.

In this paper we attempt to contribute to the development of new numerical methods for
porous media flows problems, and propose and analyze an augmented mixed method for the
NSB model studied in [38] considering, for the sake of simplicity, constants parameters. More
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precisely, we adopt the methodology developed in [7] and, by introducing an auxiliary unknown
relating the gradient of the velocity and the pressure with the convective term (pseudostress
tensor), and then eliminating the pressure from the system, we propose and analyze a con-
forming augmented pseudostress-velocity mixed method for the NSB model, providing optimal
convergence when considering Raviart-Thomas elements of order k ≥ 0 for the pseudostress and
continuous piecewise polynomial elements of degree k + 1 for the velocity.

On the other hand, it is well known that in order to guarantee a good convergence behaviour
of most finite element solutions, specially under the eventual presence of boundary layers and
singularities, one usually needs to apply an adaptive algorithm based on a posteriori error
estimates. These are represented by global quantities Θ that are expressed in terms of local
indicators ΘT defined on each element T of a given triangulation Th. The estimator Θ is said to
be efficient (resp. reliable) if there exists Ceff > 0 (resp. Crel > 0), independent of the meshsizes,
such that

CeffΘ + h.o.t. ≤ ‖error‖ ≤ CrelΘ + h.o.t.,

where h.o.t. is a generic expression denoting one or several terms of higher order. According to
the above, and with the purpose of complementing our contribution, we apply the techniques
developed in [8, 9, 25, 32, 33] and derive a reliable and efficient residual-based a posteriori error
estimator for our augmented mixed method.

The rest of this work is organized as follows. In Section 2 we introduce the model problem
and derive the augmented mixed variational formulation. In Section 3 we analyze the well-
posedness of the continuous problem by means of a fixed-point argument. Next, in Section 4
we define the Galerkin scheme considering generic finite dimensional subspaces and provide its
unique solvability together with the corresponding Cea’s estimate. A specific choice of finite
element subspaces is introduced in Section 4.3. In Section 5 we employ a global continuous inf-
sup condition, a Helmholtz decomposition, the local approximation properties of the Clément
and Raviart-Thomas operators and derive a reliable and efficient residual-based a posteriori error
estimator. Finally, several numerical results, illustrating the performance of the proposed mixed
finite element method, confirming the reliability and efficiency of the a posteriori estimators,
and showing the good behaviour of the associated adaptive algorithms, are provided in Section
6.

We end this section by introducing some definitions and fixing some notations. Given the
vector fields v = (vi)i=1,n and w = (wi)i=1,n, with n ∈ {2, 3}, we set the gradient, divergence,
and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=
n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n.

In addition, for any tensor field τ := (τij)i,j=1,n and ζ := (ζij)i,j=1,n, we let

div τ = (div (τi1, · · · , τin))1≤i≤n ,

and define the transpose, the trace, the tensor inner product, and the deviatoric tensor, respec-
tively, as

τ t := (τji)i,j=1,n, tr (τ ) :=

n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr (τ )I,
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where I is the identity matrix in Rn×n. In what follows, when no confusion arises, | · | will denote
the Euclidean norm in Rn or Rn×n. Moreover, given an integer k ≥ 0 and a set S ⊆ Rn, Pk(S)
denotes the space of polynomial functions on S of degree ≤ k. In addition, we set Pk(S) :=
[Pk(S)]n and Pk(S) := [Pk(S)]n×n.

In the sequel, we will utilize standard simplified terminology for Sobolev spaces and norms.
In particular, if O is a domain, Γ is an open or closed Lipschitz curve (respectively surface in
R3), and s ∈ R, we define

Hs(O) := [Hs(O)]n, Hs(O) := [Hs(O)]n×n, and Hs(Γ) := [Hs(Γ)]n.

However, when s = 0 we usually write L2(O),L2(O), and L2(Γ) instead of H0(O),H0(O), and
H0(Γ), respectively. The corresponding norms are denoted by ‖ · ‖s,O for Hs(O), Hs(O) and
Hs(O), and ‖ · ‖s,Γ for Hs(Γ) and Hs(Γ). For s ≥ 0, we write | · |s,O for the Hs-seminorm. In
addition, we recall that

H(div ;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is a standard Hilbert space in the realm of mixed problems (see, e.g. [2, 22]). The space of
matrix valued functions whose rows belong to H(div ;O) will be denoted by H(div ;O). Note
that if τ ∈ H(div ;O), then div τ ∈ L2(O) and τn ∈ H−1/2(∂O), where n denotes the outward
unit vector normal to the boundary ∂O. Note also that H(div ;O) can be characterized as the
space of matrix valued functions τ such that ctτ ∈ H(div ;O) for any constant column vector
c. The norms of H(div ;O) and H(div ;O) are denoted by ‖ · ‖div ;O and ‖ · ‖div ;O, respectively.
In addition, we have the following decomposition:

H(div ;O) = H0(div ;O) ⊕ P0(O) I , (1.1)

where

H0(div ;O) :=

{
τ ∈ H(div ;O) :

∫
O

tr τ = 0

}
. (1.2)

More precisely, each τ ∈ H(div ;O) can be decomposed uniquely as:

τ = τ 0 + c I , with τ 0 ∈ H0(div ;O) and c :=
1

n |O|

∫
O

tr τ ∈ R . (1.3)

For the sake of simplicity, in what follows we will use the notation

(u, v)Ω :=

∫
Ω
uv, (u,v)Ω :=

∫
Ω

u · v, (u,v)Γ :=

∫
Γ

u · v and (σ, τ )Ω :=

∫
Ω
σ : τ .

Finally, throughout the rest of the paper, we employ 0 to denote a generic null vector (including
the null functional and operator), and use C and c, with or without subscripts, bars, tildes or
hats, to denote generic constants independent of the discretization parameters, which may take
different values at different places.

2 Continuous problem

In this section we introduce the model problem, rewrite it as a first order set of equations, and
derive and analyze the corresponding weak formulation.
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2.1 The model problem

Let Ω be a bounded and simply connected open polyhedral domain in Rn, n ∈ {2, 3} with
boundary Γ := ∂Ω and denote by n the unit outward normal on Γ. In this work we are
interested in deriving and analyzing an augmented mixed formulation for the Navier-Stokes-
Brinkman problem consisting in finding a velocity vector field u, and a pressure scalar field p,
satisfying the set of partial differential equations:

αu− ν∆u + (u · ∇)u +∇p = f in Ω,

div u = g in Ω,

u = uD on Γ,∫
Ω
p = 0,

(2.1)

where ν > 0 is the dynamic fluid viscosity, α > 0 is the fluid viscosity divided by the permeability,
and f and g are given data representing external body forces and sources and/or sinks in Ω,
respectively. Notice that, according to the nonselenoidal condition div u = g, the data uD and
g must satisfy the compatibility condition

〈n,uD〉Γ − (g, 1)Ω = 0, (2.2)

where 〈·, ·〉Γ stands for the duality pairing between H−1/2(Γ) and H1/2(Γ) with respect to the
L2(Γ)-inner product.

In order to derive our weak formulation, we first rewrite (2.1) as an equivalent first-order set
of equations. To that end we introduce the pseudostress tensor

σ := ν∇u − p I − u⊗ u in Ω, (2.3)

and observe that the nonselenoidal condition div u = tr (∇u) = g in Ω, implies

div (u⊗ u) = (u · ∇) u + g u in Ω and tr (σ) = νg − np− tr (u⊗ u) in Ω. (2.4)

In particular, from the second equation in (2.4) we observe that the pressure p can be written
in terms of the velocity u and the tensor σ, as

p := − 1

n
(tr (σ) + tr (u⊗ u)− ν g) in Ω. (2.5)

Then, eliminating the pressure p from the system, and proceeding similarly as in [7], we observe
that (2.1) can be rewritten equivalently as the following first-order set of equations

ν∇u− (u⊗ u)d − ν

n
g I = σd in Ω,

αu− g u− div σ = f in Ω,

u = uD on Γ,

(tr (σ) + tr (u⊗ u), 1)Ω = ν (g, 1)Ω.

(2.6)

Notice that the pressure p can be easily computed as a postprocess of the solution by using
(2.5). Notice also that further variables of interest, such as such the shear stress tensor σ̃ =
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ν (∇u + (∇u)t) − p I, the velocity gradient ∇u and the vorticity ω := 1
2 (∇u − (∇u)t), can be

easily computed, respectively, as follows

σ̃ = σd + (u⊗ u)d + σt + u⊗ u +
ν

n
g I,

∇u =
1

ν

(
σd + (u⊗ u)d +

ν

n
g I
)
,

ω =
1

2 ν
(σ − σt).

(2.7)

2.2 The augmented mixed variational problem

In this section we proceed analogously to [7] and derive our weak formulation for (2.1). To do
that we first test the first equation of (2.1) with arbitrary τ ∈ H(div ; Ω) integrate by parts,
utilize the Dirichlet boundary condition u = uD on Γ and the identity σd : τ = σd : τ d, to
obtain

(σd, τ d)Ω + ν (u,div τ )Ω + (u⊗ u, τ d)Ω = −ν
n

(g, tr (τ ))Ω + ν 〈τ n,uD〉Γ . (2.8)

In addition, differently from [7], with the purpose of avoiding the incorporation of new terms in
the resulting variational equation, instead of incorporating the equilibrium equation weakly, we
proceed similarly as in [26] and replace the identity

u =
1

α
(gu + f + divσ) (2.9)

in the second term of (2.8), to obtain, consequently, the variational problem: Find σ ∈ H(div ; Ω)
and u in a suitable space (to be specified below), such that (tr (σ) + tr (u⊗u), 1)Ω = ν (g, 1)Ω,
and

(σd, τ d)Ω +
ν

α
(divσ,div τ )Ω +

ν

α
(gu,div τ )Ω + (u⊗ u, τ d)Ω

= − ν
α

(f ,div τ )Ω −
ν

n
(g, tr (τ ))Ω + ν 〈τ n,uD〉Γ ,

(2.10)

for all τ ∈ H(div ; Ω).
Notice that the term (u⊗ u, τ d)Ω in (2.10) requires the velocity u to live in a smaller space

than L2(Ω). In fact, by applying the Cauchy–Schwarz and Hölder inequalities and then the
continuous injection ic of H1(Ω) into L4(Ω), we find that

|(u⊗w, rd)Ω| ≤ ‖u‖L4(Ω)‖w‖L4(Ω)‖r‖0,Ω ≤ ‖ic‖2‖u‖1,Ω‖w‖1,Ω‖r‖0,Ω

for all u,w ∈ H1(Ω) and r ∈ L2(Ω). According to this, we propose to look for the unknown
u ∈ H1(Ω). Notice also from (2.10) that the lack of a test function in the space where u
lives (now in H1(Ω)), makes the well-posedness analysis of (2.10) non-viable. Then, in order
to be able to carry out the existence and uniqueness analysis of (2.10) we propose to enrich
our formulation with the following residual terms arising from the constitutive equation (first
equation of (2.6)) and the Dirichlet boundary condition:

κ1

(
ν∇u − (u⊗ u)d − σd,∇v

)
Ω

= κ1
ν

n
(g,div v)Ω, (2.11)

κ2 (u,v)Γ = κ2 (uD,v)Γ , (2.12)
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for all v ∈ H1(Ω), where κ1, κ2 are positive parameters to be specified later. Therefore,
from (2.10), (2.11) and (2.12) we arrive at the variational problem: Find φ := (σ,u) ∈ X :=
H(div ; Ω)×H1(Ω), such that (tr (σ) + tr (u⊗ u), 1)Ω = ν (g, 1)Ω, and

A(φ,ψ) + Cu(φ,ψ) = F(ψ) ∀ ψ = (τ ,v) ∈ X, (2.13)

where, the product space X is endowed with the norm

‖ψ‖2X := ‖τ‖2div ;Ω + ‖v‖21,Ω ∀ ψ = (τ ,v) ∈ X,

and given z ∈ H1(Ω), the forms A : X×X→ R, Cz : X×X→ R, and the functional F : X→ R

are defined as

A(φ,ψ) := (σd, τ d)Ω +
ν

α
(gu,div τ )Ω +

ν

α
(divσ,div τ )Ω

+ν κ1 (∇u,∇v)Ω − κ1 (σd,∇v)Ω + κ2 (u,v)Γ

Cz(φ,ψ) := (u⊗ z, τ d)Ω − κ1 ((u⊗ z)d,∇v)Ω,

(2.14)

for all φ = (σ,u), ψ = (τ ,v) in X, and

F(ψ) = − ν
α

(f ,div τ )Ω −
ν

n
(g, tr (τ ))Ω + ν 〈τ n,uD〉Γ

+
κ1 ν

n
(g,div v)Ω + κ2 (uD,v)Γ, ∀ψ = (τ ,v) ∈ X.

(2.15)

3 Analysis of the continuous problem

Before beginning with the well-posedness analysis of (2.13), let us assume for a moment that
(2.13) posses a solution φ := (σ,u) ∈ X. Then defining the tensor

σ0 := σ +
1

n |Ω|
((tr (u⊗ u), 1)Ω − ν (g, 1)Ω) I, (3.1)

we observe that σ0 ∈ H0(div ; Ω), if and only if,

(tr (σ) + tr (u⊗ u), 1)Ω = ν (g, 1)Ω. (3.2)

Then, similarly to [7], after simple computations it can be proved that if (3.2) holds, then φ
0

:=

(σ0,u) ∈ X0 := H0(div ; Ω) ×H1(Ω) is a solution to the problem: Find φ
0

:= (σ0,u) ∈ X0,
such that

A(φ
0
,ψ) + Cu(φ

0
,ψ) = F(ψ) ∀ ψ = (τ ,v) ∈ X0. (3.3)

Even more, problems (2.13) and (3.3) are equivalent. This result, which is similar to [7, Lemma
2.2], is established now.

Lemma 3.1 Problems (2.13) and (3.3) are equivalent in the following sense:
(i) If φ = (σ,u) ∈ X is a solution of (2.13) satisfying (3.2), then φ

0
= (σ0,u), with σ0 defined

by (3.1), is a solution of (3.3).
(ii) If φ

0
= (σ0,u) is a solution of (3.3), and σ is defined by the relation (3.1), then φ = (σ,u),

is a solution of (2.13).
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Proof. The proof follows straightforwardly by applying the same arguments utilized in the proof
of [7, Lemma 2.2]. We omit further details. �

As a consequence of the previous lemma, in what follows we focus on analyzing problem
(3.3). To that end we first review the stability properties of the forms and functional involved.

3.1 Stability

We start the analysis by establishing the continuity of the forms A, Cz, and the functional F.
First, for the continuity of A we recall the following estimate, which is a direct consequence of
the well known generalized Poincaré inequality (see e.g. [14] or Chapter I in [22]),

Cp ‖v‖21,Ω ≤ |v|21,Ω + ‖v‖20,Γ ≤ C̃p ‖v‖21,Ω ∀ v ∈ H1(Ω), (3.4)

with Cp and C̃p, only depending on Ω. Then, from (3.4), the Hölder’s inequality, the continuous
injection ic of H1(Ω) into L4(Ω), and the fact that ‖σd

0‖0,Ω ≤ ‖σ0‖0,Ω, it is not difficult to see
that

|A(φ,ψ)| ≤ CA‖φ‖X‖ψ‖X, (3.5)

for all φ, ψ ∈ X with CA = 2 max
{(

1 + ν
α

)
, ‖ic‖ να ‖g‖L4(Ω) , κ1, C̃p max{νκ1, κ2}

}
> 0.

Next, for Cz we apply the Cauchy–Schwarz and Hölder inequalities, and the continuous
injection ic of H1(Ω) into L4(Ω), to easily obtain

|Cz(φ,ψ)| ≤ (1 + κ2
1)1/2 ‖z‖L4(Ω) ‖u‖L4(Ω) ‖ψ‖X

≤ (1 + κ2
1)1/2 ‖ic‖2 ‖z‖1,Ω ‖u‖1,Ω ‖ψ‖X

≤ CC ‖z‖1,Ω ‖φ‖X ‖ψ‖X,

(3.6)

for all z ∈ H1(Ω), and for all φ = (σ,u), ψ = (τ ,v) ∈ X, where CC := (1 + κ2
1)1/2 ‖ic‖2.

Finally, for F we apply again Hölder’s inequality, the trace inequality ‖v‖0,Γ ≤ CΓ‖v‖1,Ω, the
continuity of the normal trace | 〈τn,uD〉Γ | ≤ ‖τ‖div ;Ω‖uD‖1/2,Γ, and the fact that ‖div v‖20,Ω ≤
n‖v‖21,Ω and ‖tr (τ )‖20,Ω ≤ n‖τ‖20,Ω, to obtain

|F(ψ)| ≤ ν

α
‖f‖0,Ω ‖div τ‖0,Ω +

ν

n
‖g‖0,Ω ‖tr (τ )‖0,Ω + ν ‖τ‖div ;Ω ‖uD‖1/2,Γ

+
κ1 ν

n
‖g‖0,Ω ‖div v‖0,Ω + κ2CΓ ‖uD‖0,Γ‖v‖1,Ω,

≤ CF(‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖1/2,Γ + ‖uD‖0,Γ)‖ψ‖X (3.7)

for all ψ = (τ ,v) ∈ X, with

CF =
√

2 max

{
ν

α
,
ν√
n

(1 + κ2
1), ν, CΓκ2

}
.

Let us now recall the following well known inequality. For its proof we refer to Lemma 3.1
in [1] or chapter IV in [2].

Cd ‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div τ‖20,Ω ∀ τ ∈ H0(div ; Ω), (3.8)
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with Cd only depending on Ω. Owing to the inequality above, and proceeding analogously to
[7, Lemma 3.1], it can be proved the ellipticity of A.

Lemma 3.2 Assume that 0 < κ1 < 2ν, κ2 > 0. Assume further that g ∈ L4(Ω) and satisfies

‖g‖2L4(Ω) ≤
Cpα

ν‖ic‖2
min

{κ1

2
(2ν − κ1), κ2

}
. (3.9)

Then there exists αA > 0, such that

A(ψ,ψ) ≥ αA‖ψ‖2X ∀ ψ ∈ X0. (3.10)

Proof. Given ψ := (τ ,v) ∈ X, we utilize the continuous injection ic of H1(Ω) into L4(Ω), and
the Hölder’s inequality, to obtain

A(ψ,ψ) = ‖τ d‖0,Ω +
ν

α
(g v,div τ )Ω +

ν

α
‖div τ‖20,Ω + ν κ1 |v|21,Ω − κ1 (τ d,∇v)Ω + κ2 ‖v‖20,Γ

≥ ‖τ d‖20,Ω −
(√

να−1 ‖ic‖ ‖g‖L4(Ω) ‖v‖1,Ω
) (√

να−1 ‖div τ‖0,Ω
)

+
ν

α
‖div τ‖20,Ω

+ ν κ1 ‖∇v‖20,Ω −
(
‖τ d‖0,Ω

) (
κ1 ‖∇v‖0,Ω

)
+ κ2 ‖v‖20,Γ

≥ 1

2
‖τ d‖20,Ω +

ν

2α
‖div τ‖20,Ω +

κ1

2
(2 ν − κ1) ‖∇v‖20,Ω + κ2 ‖v‖20,Γ

− ν

2α
‖ic‖2 ‖g‖2L4(Ω) ‖v‖

2
1,Ω ,

which together to the estimates (3.4), (3.8) and assumption (3.9), implies (3.10) with

αA =
1

2
min

{
Cd min

{
1,

ν

2α

}
,
ν

2α
,Cp min

{κ1

2
(2ν − κ1), κ2

}}
.

�

3.2 Existence and uniqueness of solution

In this section we prove the well-posedness of problem (3.3) by means of a fixed-point strategy.
More precisely, in what follows we rewrite problem (3.3) as an equivalent fixed-point problem
and apply the Banach’s fixed point theorem to conclude the desired unique solvability.

We begin by introducing the bounded set

K :=

{
z ∈ H1(Ω) : ‖z‖1,Ω ≤

2CF

αA

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)}
, (3.11)

and the mapping
J : K→ K, z→ J (z) = u, (3.12)

where u ∈ H1(Ω) is the second component of φ
0

= (σ0,u) ∈ X0, satisfying

A(φ
0
,ψ) + Cz(φ

0
,ψ) = F(ψ) ∀ ψ ∈ X0. (3.13)

9



It is clear that φ
0
∈ X0 is a solution to (3.3), if and only if, J (u) = u. Accordingly, to prove

the well-posedness of problem (2.13), it suffices prove that J has a unique fixed point in K.
Before continuing, we first need to verify that J is a well defined operator. This result is

established now under a sufficiently small data assumption.

Lemma 3.3 Assume that the assumptions of Lemma 3.2 hold. Assume further that

4CCCF

α2
A

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
≤ 1 (3.14)

with CC and CF being the continuity constants of C and F, respectively (cf. (3.6) and (3.7)).
Then, given z ∈ K, there exists a unique u ∈ K such that J (z) = u.

Proof. Let z ∈ K. We first notice that, owing to assumption (3.14), there holds

‖z‖1,Ω ≤
2CF

αA

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
≤ αA

2CC
. (3.15)

In turn, from inequalities (3.6) and (3.10), we easily obtain

A(ψ,ψ) + Cz(ψ,ψ) ≥ A(ψ,ψ) − |Cz(ψ,ψ)| ∀ ψ ∈ X0,

≥
(
αA − CC ‖z‖1,Ω

)
‖ψ‖2X ∀ ψ ∈ X0.

(3.16)

Then, combining (3.15) and (3.16), it readily follows that

A(ψ,ψ) + Cz(ψ,ψ) ≥ αA

2
‖ψ‖2X ψ ∈ X0, (3.17)

which implies that the bilinear form A(·, ·) + Cz(·, ·) is elliptic on X0. Therefore, applying
Lax-Milgram lemma we obtain that there exists a unique φ

0
= (σ0,u) ∈ X0 satisfying (3.13),

or equivalently, there exists a unique u ∈ H1(Ω), such that J (z) = u. In addition, from (3.7),
(3.13) and (3.17), it is easy to see that

αA

2
‖φ

0
‖2X ≤ A(φ

0
,φ

0
) + Cz(φ

0
,φ

0
) = F(φ

0
)

≤ CF

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
‖φ

0
‖X,

from which

‖u‖1,Ω ≤ ‖φ0
‖X ≤

2CF

αA

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
,

which implies that u belongs to K and concludes the proof. �

We are now in position of establishing the main result of this section, namely, the well-
posedness of problem (3.3).

Theorem 3.4 Let f ∈ L2(Ω), g ∈ L4(Ω) and uD ∈ H1/2(Γ). Assume that hypotheses of Lemma
3.2 hold. Assume further that

4CCCF

α2
A

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
≤ 1

2
. (3.18)
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Then, there exists a unique φ
0
∈ X0 solution to (3.3). In addition, the solution φ

0
satisfies the

a priori estimate

‖φ
0
‖X ≤

2CF

αA

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
. (3.19)

Proof. First, let us observe that assumption (3.18) clearly implies (3.14). Consequently, from
Lemma 3.3 it follows that operator J is well defined.

Now, since the solvability of problem (3.3) is equivalent to the existence and uniqueness of a
fixed point to J , to conclude the required solvability it suffices to prove that J is a contraction
mapping and apply the classical Banach’s fixed point theorem.

Let z1, z2, u1, u2 ∈ K, such that u1 = J (z1) and u2 = J (z2), and let σ1 , σ2 ∈ H0(div ; Ω),
such that φ

1
= (σ1,u1) ∈ X0 and φ

2
= (σ2,u2) ∈ X0 satisfy

A(φ
i
,ψ) + Czi(φi,ψ) = F(ψ) ∀ ψ ∈ X0, i = 1, 2. (3.20)

Notice that for i = 1, 2, the bilinear forms A(·, ·) + Czi(·, ·) are elliptic on X0 and the pairs
φ
i

= (σi,ui) satisfy the estimates

‖φ
i
‖X ≤

2CF

αA

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
. (3.21)

In turn, from (3.20) we readily obtain

A(φ
1
− φ

2
,ψ) + Cz1(φ

1
,ψ)−Cz2(φ

2
,ψ) = 0 ∀ ψ ∈ X0,

from which, after adding and subtracting suitable terms, and since φ
1
− φ

2
∈ X0, we arrive at

A(φ
1
− φ

2
,φ

1
− φ

2
) + Cz2(φ

1
− φ

2
,φ

1
− φ

2
) = −Cz1−z2(φ

1
,φ

1
− φ

2
). (3.22)

Then, utilizing the ellipticity of A(·, ·) + Cz2(·, ·) (cf. (3.17)), the continuity of C (cf. (3.6)) and
the estimate (3.21), from (3.22) we get

‖φ
1
− φ

2
‖X ≤

2CC

αA
‖φ

1
‖X ‖ζ1

− ζ
2
‖X

≤ 4CCCF

α2
A

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
‖ζ

1
− ζ

2
‖X, (3.23)

which together to assumption (3.18) implies that J is a contraction mapping. In this way,
applying the Banach’s fixed point theorem we straightforwardly obtain the existence unique
solvability of problem (2.13).

Finally, since u belongs to K, by applying the same steps at the end of the proof of Lemma
3.3 we can easily obtain that φ

0
satisfies (3.19), which concludes the proof. �

We conclude this section by establishing the well-posedness of problem (2.13).

Corollary 3.5 Let f ∈ L2(Ω), g ∈ L4(Ω) and uD ∈ H1/2(Γ). Assume that hypotheses of
Theorem 3.4 hold. Then, there exists a unique φ ∈ X solution to (2.13). In addition, the
solution φ satisfies the a priori estimate

‖φ‖X ≤
23/2CF

αA

(
‖f‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
+
√

2

(
2CF

αA
+ ν
√
n|Ω|

)
‖g‖0,Ω. (3.24)
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Proof. It is clear that the existence and uniqueness of solution of problem (2.13) follows
straightforwardly from Lemma 3.1 and Theorem 3.4. Now for the estimate (3.24), let c =

1
n |Ω| ((tr (u⊗ u), 1)Ω − ν (g, 1)Ω), and let φ = (σ0 − cI,u) ∈ X be the solution of (2.13), with

φ
0

= (σ0,u) ∈ X0 being the solution of (3.3). After simple computations it is easy to see that

|c| ≤ 1

n|Ω|1/2
‖u‖0,Ω + ν|Ω|1/2‖g‖0,Ω and ‖σ0 + cI‖2div ;Ω = ‖σ0‖2div ;Ω + n|Ω|c2,

and both combined imply

‖σ0 + cI‖2div ;Ω ≤ ‖φ0
‖2X + 2nν2|Ω|2‖g‖20,Ω.

The latter inequality and estimate (3.19) imply (3.24). �

4 The Galerkin scheme

In this section we introduce and analyze the Galerkin scheme associated to problem (3.3). We
notice in advance that most of the details are omitted since the analysis of the corresponding
discrete problem follows straightforwardly by adapting the fixed-point strategy introduced and
analyzed in Section 3.

4.1 Discrete problem

We start by considering the generic finite dimensional subspaces

Hh(div ; Ω) ⊆ H(div ; Ω), H1
h(Ω) ⊆ H1(Ω), (4.1)

the discrete spaces

Hh :=
{
τ h ∈ H(div ; Ω) : ctτ h ∈ Hh(div ; Ω) ∀ c ∈ Rn

}
,

Hh,0 := Hh ∩H0(div ; Ω),

H1
h := [H1

h(Ω)]n,

(4.2)

and the global discrete spaces

Xh := Hh ×H1
h and Xh,0 := Hh,0 ×H1

h.

Hereafter, h stands for the size of a regular triangulation Th of Ω̄ made up of triangles K (when
n = 2) or tetrahedra (when n = 3) of diameter hK , defined as h := max {hK : K ∈ Th}. In
addition, in order to have meaningful subspace Hh,0, we need to be able to eliminate multiples
of the identity matrix from Hh. This request is certainly satisfied if we assume that:

[P0(Ω)]n×n ⊆ Hh. (4.3)

In this way, the Galerkin scheme of (3.3) reads: Find φ
h,0

= (σh,0,uh) ∈ Xh, such that

A(φ
h,0
,ψ

h
) + Cuh

(φ
h,0
,ψ

h
) = F(ψ

h
) ∀ ψ

h
:= (τ h,vh) ∈ Xh,0. (4.4)

12



As for the continuous case, it is not difficult to see that problem (4.4) is equivalent to the
discrete version of (2.13): Find φ

h
= (σh,uh) ∈ Xh, such that (tr (σh) + tr (uh ⊗ uh), 1)Ω =

ν (g, 1)Ω, and

A(φ
h
,ψ

h
) + Cuh

(φ
h
,ψ

h
) = F(ψ

h
) ∀ ψ

h
:= (τ h,vh) ∈ Xh, (4.5)

through the relation:

σh = σh,0 −
1

n |Ω|
(tr (uh ⊗ uh)− ν (g, 1)Ω, 1)ΩI. (4.6)

This result, which is analogous to Lemma 3.1, is established now.

Lemma 4.1 If φ
h

= (σh,uh) is a solution of (4.5), then φ
h,0

= (σh,0,uh), with σh,0 defined

through (4.6) is a solution of (4.4). Conversely, if φ
h,0

= (σh,0,uh) is a solution of (4.4), then

φ
h

= (σh,uh), with σh given by the relation (4.6) is a solution of (4.5).

According to the latter result, after computing the solution of problem (4.4) one can easily
recover the solution of problem by using the formula (4.6).

4.2 Well-posedness of the discrete problem

In this section we address the solvability analysis of problem (4.4) by adapting the fixed-point
strategy introduced and analyzed in Section 3.2. We start by observing that the boundedness
of the forms A, Cz, and the functional F, namely (3.5), (3.6) and (3.7), are clearly inherited
from the continuous case. In turn, the ellipticity of A on Xh,0, whose proof is almost verbatim
to that of the corresponding continuous estimate provided by Lemma 3.2, holds with the same
constant αA > 0.

Lemma 4.2 Assume that the assumptions of Lemma 3.2 hold. Then there exists αA > 0, such
that

A(ψ
h
,ψ

h
) ≥ αA‖ψh‖

2
X ∀ ψ

h
∈ Xh,0. (4.7)

Now, similarly to the continuous case, let us define the bounded finite dimensional set

Kh :=

{
zh ∈ H1

h : ‖zh‖1,Ω ≤
2CF

αA

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)}
, (4.8)

and the mapping
Jh : Kh → Kh, zh → Jh(zh) = uh, (4.9)

where uh ∈ H1
h is the second component of φ

h,0
= (σh,0,uh) ∈ Xh,0, satisfying

A(φ
h,0
,ψ

h
) + Czh(φ

h,0
,ψ

h
) = F(ψ

h
) ∀ ψ ∈ Xh,0. (4.10)

As for the continuous case, it can be proved that Jh is well defined. The proof of this result is
analogous to that of its continuous counterpart given by Lemma 3.3.
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Lemma 4.3 Assume that the assumptions of Lemma 3.2 hold. Assume further that

4CCCF

α2
A

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
≤ 1 (4.11)

with CC and CF being the continuity constants of C and F, respectively (cf. (3.6) and (3.7)).
Then, given zh ∈ Kh, there exists a unique uh ∈ Kh such that Jh(zh) = uh.

Proof. Given zh ∈ Kh, it suffices to see that the following estimate holds

A(ψ
h
,ψ

h
) + Czh(ψ

h
,ψ

h
) ≥ αA

2
‖ψ

h
‖2X, ∀ ψ

h
∈ Xh,0, (4.12)

which implies that A(·, ·) + Czh(·, ·) is elliptic on Xh,0, and repeat the steps of the proof of
Lemma 3.3. �

Let us now establish the well-posedness of problem (4.5).

Theorem 4.4 Let f ∈ L2(Ω), g ∈ L4(Ω) and uD ∈ H1/2(Γ). Assume that hypotheses of Lemma
3.2 hold. Assume further that

4CCCF

α2
A

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
≤ 1

2
. (4.13)

Then, there exists a unique φ
h,0
∈ Xh,0 solution to (3.3). In addition, the solution φ

h,0
satisfies

the a priori estimate

‖φ
h,0
‖X ≤

2CF

αA

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
. (4.14)

Proof. Analogously to the continuous case, it readily follows that φ
h,0

= (σh,0,uh) ∈ Xh,0 is a

solution to (4.4), if and only if, Jh(uh) = uh. As a result, to prove the well-posedness of problem
(2.13), it suffices to repeat the arguments utilized in the proof of Theorem 3.4 and prove that
Jh has a unique fixed point in Kh by means of the Banach fixed point theorem. In addition,
analogously to the continuous case, to derive the estimate (4.14) we simply notice that uh ∈ Kh

and apply the same arguments employed at the end of the proof of Lemma 3.3. �

Finally, we provide the well-posedness of problem (4.5). Its proof is analogous to the proof
of Corollary 3.5.

Corollary 4.5 Let f ∈ L2(Ω), g ∈ L4(Ω) and uD ∈ H1/2(Γ). Assume that hypotheses of
Theorem 3.4 hold. Then, there exists a unique φ

h
∈ Xh solution to (4.5). In addition, the

solution φ satisfies the a priori estimate

‖φ
h
‖X ≤

23/2CF

αA

(
‖f‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
+
√

2

(
2CF

αA
+ ν
√
n|Ω|

)
‖g‖0,Ω. (4.15)
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4.3 A particular choice of discrete spaces

For each integer k ≥ 0 and for each K ∈ Th, we define the local Raviart-Thomas space of order
k (see, for instance [2]):

RTk(K) := [Pk(K)]n + Pk(K)x,

where x := (x1, . . . , xn)t is a generic vector of Rn. Then, we specify the discrete spaces in (4.1)
by:

Hh(div ; Ω) := {τ ∈ H(div ; Ω) : τ |K ∈ RTk(K), ∀K ∈ Th} ,

H1
h(Ω) :=

{
v ∈ C(Ω̄) : v|K ∈ Pk+1(K), ∀K ∈ Th

}
.

(4.16)

It is well known that these subspaces satisfy the following approximation properties (see, e.g.
[2], [14], [24]):

For each s > 0 and for each τ ∈ Hs(Ω), with div τ ∈ Hs(Ω), there exists τh ∈ Hh, such
that

‖τ − τh‖div ,Ω ≤ C hmin{s,k+1} {‖τ‖s,Ω + ‖div τ‖s,Ω} . (4.17)

For each s > 0 and for each v ∈ Hs+1(Ω) there exists vh ∈ H1
h(Ω) such that

‖v − vh‖1,Ω ≤ C hmin{s,k+1} ‖v‖s+1,Ω. (4.18)

4.4 A priori error analysis

In this section, we carry out the error analysis for our Galerkin scheme (4.4). We first deduce the
corresponding Céa estimate by considering the generic finite dimensional subspaces (4.2), and
then we apply it to derive the theoretical rates of convergence when using the specific discrete
spaces provided in Section 4.3. We begin with the Céa estimate. For its proof we proceed
similarly to the proof of [7, Theorem 4.6].

Theorem 4.6 Let f ∈ L2(Ω), g ∈ L4(Ω) and uD ∈ H1/2(Γ) and assume that hypotheses of
Theorem 3.4 hold. Let φ

0
:= (σ0,u) ∈ X and φ

h,0
:= (σh,0,uh) ∈ Xh be the unique solutions of

the continuous and discrete problems (3.3) and (4.4). Then, there exists Ccea > 0, independent
of h, such that

‖φ
0
− φ

h,0
‖X ≤ Ccea inf

ψ
h
∈Xh,0

‖φ
0
−ψ

h
‖X. (4.19)

Proof. For the sake of simplicity, in what follows we drop the subscript 0 from the global
solutions φ

0
and φ

h,0
.

Let φ = (σ0,u) ∈ X0 and φ
h

= (σh,0,uh) ∈ Xh,0 be the unique solutions of problems (3.3)

and (4.4), respectively, and let eφ = φ−φ
h

= (σ0−σh,0,u−uh). Given ψ̂
h

:= (τ̂ h, v̂h) ∈ Xh,0,
let us decompose this error into

eφ = ξφ + χφ = (φ− ψ̂
h
) + (ψ̂

h
− φ

h
) = (σ0 − τ̂ h,u− v̂h) + (τ̂ h − σh,0, v̂h − uh). (4.20)

Then, from (2.13) and (4.5), it is not difficult to see that

A(eφ,ψh) + [Cu(φ,ψ
h
)−Cuh

(φ
h
,ψ

h
)] = 0 ∀ ψ

h
∈ Xh,0, (4.21)
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which, after a simple computation, implies

A(eφ,ψh) + [Cuh
(eφ,ψh) + Cu−uh

(φ,ψ
h
)] = 0 ∀ ψ

h
∈ Xh,0,

or equivalently

A(χφ,ψh) + Cuh
(χφ,ψh) = −A(ξφ,ψh) − Cu−v̂h

(φ,ψ
h
) −Cv̂h−uh

(φ,ψ
h
)

−Cuh
(ξφ,ψh),

for all ψ
h
∈ Xh,0. In particular, for ψ

h
= χφ, from (4.12), and the continuity of A and C, we

obtain
αA

2
‖χφ‖X ≤ CA‖ξφ‖X + CC‖φ‖X‖u− v̂h‖1,Ω + CC ‖uh‖1,Ω‖ξφ‖X

+CC ‖v̂h − uh‖1,Ω ‖φ‖X

≤ (CA + CC‖φ‖X + CC‖uh‖1,Ω)‖ξφ‖X + CC‖χφ‖X‖φ‖X.

Then, since φ satisfies (3.19) and uh belongs to Kh, from the inequality above, we readily see
that

αA

2

(
1− 4CFCC

α2
A

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

))
‖χφ‖X

≤
(
CA +

4CFCC

αA

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

))
‖ξφ‖X,

which together to (3.18), implies

αA

4
‖χφ‖X ≤

(
CA +

1

2

)
‖ξφ‖X. (4.22)

Therefore, from (4.20), (4.22) and the triangle inequality we obtain that there exists Ccea > 0,
independent of h, such that

‖φ− φ
h
‖X = ‖eφ‖X ≤ ‖χφ‖X + ‖ξφ‖X ≤ Ccea ‖ξφ‖X = Ccea ‖φ− ψ̂h‖X,

for all ψ̂
h
∈ Xh,0, which concludes the proof. �

Now, we provide the rate of convergence of our Galerkin scheme with the specific finite
element subspaces introduced in Section 4.3.

Theorem 4.7 In addition to the hypotheses of Theorem 4.6, assume that σ0 ∈ Hs(Ω), divσ0 ∈
Hs(Ω), and u ∈ Hs+1(Ω), for some s > 0 and that the finite element subspaces Hh,0 and H1

h

are defined using (4.16). Then there exists Crate > 0, independent of h, such that

‖φ
0
− φ

h,0
‖X ≤ Crateh

min{s,k+1} {‖σ0‖s,Ω + ‖divσ0‖s,Ω + ‖u‖s+1,Ω} (4.23)

Proof. The result is a straightforward application of Theorem 4.6, and properties (4.17) and
(4.18). �

We complete our a priori error analysis with the following result providing the rate of con-
vergence for the error ‖σ − σh‖div ;Ω, with σ ∈ H(div ; Ω) and σh ∈ Hh defined by (3.1) and
(4.6), respectively.
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Corollary 4.8 Let φ
0

:= (σ0,u) ∈ X0 and φ
h,0

:= (σh,0,uh) ∈ Xh,0 be the unique solutions

of the continuous and discrete problems (3.3) and (4.4), respectively. Assume that σ0 ∈ Hs(Ω),
divσ0 ∈ Hs(Ω), and u ∈ Hs+1(Ω), for some s > 0 and that the finite element subspaces Hh

and H1
h are defined using (4.16). Let σ ∈ H(div ; Ω) and σh ∈ Hh defined by (3.1) and (4.6),

respectively. Then there exists C̃ > 0, independent of h, such that

‖σ − σh‖div ;Ω ≤ C̃hmin{s,k+1} {‖σ0‖s,Ω + ‖divσ0‖s,Ω + ‖u‖s+1,Ω} (4.24)

Proof. Using the definition of σ and σh given by (3.1) and (4.6), respectively, the result is a
straightforward application of Theorem 4.7. �

Remark 4.9 Provided the solution (σh,0,uh) ∈ Xh,0 of problem (4.4), and after simple com-
putations, it is not difficult to see that the pressure can be approximated through the following
formula

ph := − 1

n
(tr (σh,0) + tr (uh ⊗ uh)− ν g) +

1

n|Ω|
(tr (uh ⊗ uh)− νg, 1)Ω in Ω. (4.25)

Moreover, using the identities (2.5) and (3.1), and the estimate (4.23) it is easy to prove that
the following estimate holds

‖p− ph‖0,Ω ≤ C̃hmin{s,k+1} {‖σ0‖s,Ω + ‖divσ0‖s,Ω + ‖u‖s+1,Ω} , (4.26)

with C > 0 independent of h.

5 A residual-based a posteriori error estimate

In this section, we derive and analyze a reliable and efficient residual-based a posteriori error
estimate for our discrete problem (4.4), with the discrete spaces introduced in Section 4. We
restrict our analysis to the two-dimensional case since the extension to three dimensions should
be quite straightforward.

We begin by introducing some standard notations. For each K ∈ Th, we let E(K) be the
set of edges of K, and we denoted by Eh the set of all edges of the triangulation Th. Then we
write Eh := Eh(Ω) ∪ Eh(Γ), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}.
In what follows, he stands for the diameter of a given edge e. Also, for each edge e ∈ Eh we
fix a unit normal vector ne := (n1, n2)t to the edge e (its particular orientation is not relevant)
and let te := (−n2, n1)t be the corresponding fixed and tangential vector along e. Then, given
τ ∈ L2(Ω), such that τ

∣∣
K
∈ [C(K)]2×2, for each K ∈ Th, we let [τ te] be the tangential jump

across e of τ , that is, [τ te] :=
{

(τ
∣∣
K′

)
∣∣∣
e
− (τ

∣∣
K′′

)
∣∣∣
e

}
te, where K ′ and K ′′ are the triangles of

Th having e as an edge. From now on, when no confusion arises, we will simply write n and
t instead of ne and te, respectively. Finally, for sufficiently smooth vector and tensor fields
v := (v1, v2)t and τ := (τij)2×2, respectively, we let:

curl v :=


∂v1

∂x2
−∂v1

∂x1

∂v2

∂x2
−∂v2

∂x1

 and rot τ :=

(
∂τ12

∂x1
− ∂τ11

∂x2
,
∂τ22

∂x1
− ∂τ21

∂x2

)t

.

17



Now, let φ := (σ0,u) ∈ X and φ
h

:= (σh,0,uh) ∈ Xh be the unique solutions of the continuous
and discrete problems (2.13) and (4.5), respectively. Then, we introduce the global a posteriori
error estimator

Θ :=

∑
K∈Th

Θ2
K


1/2

(5.1)

where for each K ∈ Th:

Θ2
K = (1 + h2

K)
∥∥∥ν

2
g I + σd

h,0 + (uh ⊗ uh)d − ν∇uh

∥∥∥2

0,K

+ ‖f + g uh + divσh,0 − αuh‖20,K + h2
K

∥∥∥rot
(ν

2
g I + σd

h,0 + (uh ⊗ uh)d
)∥∥∥2

0,K

+
∑

e∈E(K)∩Eh(Ω)

he

∥∥∥[(ν
2
g I + σd

h,0 + (uh ⊗ uh)d
)

t
]∥∥∥2

0,e

+
∑

e∈E(K)∩Eh(Γ)

(
he

∥∥∥(ν
2
gI + σd

h + (uh,0 ⊗ uh)d
)

t− ν u′D

∥∥∥2

0,e
+ (1 + he) ‖uD − uh‖20,e

)
with (·)′ denoting the tangential derivative along Γ. Note that the term u′D requires that
uD ∈ H1(Γ), while the terms∥∥∥rot

(ν
2
g I + σd

h,0 + (uh ⊗ uh)d
)∥∥∥

0,K
and

∥∥∥[(ν
2
g I + σd

h,0 + (uh ⊗ uh)d
)
· t
]∥∥∥

0,e

are well defined if g
∣∣
K
∈ H1(K), ∀ K ∈ Th.

5.1 Reliability of the a posteriori error estimator

In this section we prove the reliability of the a posteriori error estimator given by (5.1). This
result is established now whose proof will be addressed in several steps.

Theorem 5.1 Let f ∈ L2(Ω), g ∈ L4(Ω) and uD ∈ H1/2(Γ). Assume that hypotheses of Lemma
3.2 hold. Assume further that

4CCCF

α2
A

(
‖f‖0,Ω + ‖g‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
≤ 1

2
. (5.2)

Then, there exists Crel > 0, independent of h, such that

‖σ0 − σh,0‖div ;Ω + ‖u− uh‖1,Ω ≤ Crel Θ (5.3)

We begin by recalling from the proof of Lemma 3.3 that if z ∈ K, then the bilinear form
A(·, ·) + Cz(·, ·) is elliptic on X0 with ellipticity constant αA

2 , which certainly implies that

αA

2
‖ψ‖2X ≤ sup

ψ∈X0\{0}

A(ζ,ψ) + Cz(ζ,ψ)

‖ψ‖X
, ∀ ζ ∈ X0.

In particular, taking z = u ∈ K and ζ = φ
0
− φ

h,0
= (σ0 − σh,0,u− uh) ∈ X0 in the estimate

above, we obtain

‖(σ0 − σh,0,u− uh)‖X ≤
2

αA
sup

(τ ,v)∈X0\{0}

{
R(τ ,v) + B(τ ,v)

‖(τ ,v)‖X

}
, (5.4)
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where R : X0 → R and B : X0 → R are the functional defined by

R(τ ,v) := F(τ ,v)−A(φ
h,0
, (τ ,v))−Cuh

(φ
h,0
, (τ ,v))

and
B(τ ,v) := −Cu−uh

((φ
h,0
, (τ ,v)).

Let us observe that from the continuity of C (cf. (3.6)), we can obtain the following upper
bound for B:

|B(τ ,v)| ≤ CC‖u− uh‖1,Ω‖φh,0‖X‖(τ ,v)‖X ≤ CC‖φ0
− φ

h,0
‖X‖φh,0‖X‖(τ ,v)‖X,

which together to (4.14) and assumption (5.2), implies

sup
(τ ,v)∈X0\{0}

{
B(τ ,v)

‖(τ ,v)‖X

}
≤ αA

4
‖φ

0
− φ

h,0
‖X =

αA

4
‖(σ0 − σh,0,u− uh)‖X.

In this way, from the latter inequality and (5.4), we easily obtain

‖(σ0 − σh,0,u− uh)‖X ≤
4

αA
sup

(τ ,v)∈X0\{0}

{
R(τ ,v)

‖(τ ,v)‖X

}
. (5.5)

In turn, according to the definitions of the forms A,Cz and the functional F (cf. (2.14)), we
find after a simple computation that for any (τ ,v) ∈ X0, there holds

R(τ ,v) := R1(τ ) +R2(v)

where

R1(τ ) = − ν
α

(f + g uh + divσh,0,div τ )Ω −
(ν

2
g I + σd

h,0 + (uh ⊗ uh)d, τ
)

Ω
+ ν 〈τ n,uD〉Γ

(5.6)

and

R2(v) = κ1

(ν
2
g I + σd

h,0 + (uh ⊗ uh)d − ν∇uh,∇v
)

Ω
+ κ2 (uD − uh,v)Γ. (5.7)

In this way, the supremum (5.5) can be bounded in terms of R1 and R2, which yields

‖(σ0 − σh,0,u− uh)‖X ≤
4

αA

{
‖R1‖(H0(div ;Ω))′ + ‖R2‖(H1(Ω))′

}
. (5.8)

As a consequence of the above, the derivation of the upper bound in (5.3) is completed by
providing suitable upper bounds for R1 and R2. We begin by establishing the corresponding
estimate for R2.

Lemma 5.2 There exists C1 > 0 independent of h, such that

||R2||(H1(Ω))′ ≤ C1

{ ∑
K∈Th

(∥∥∥ν
2
g I + σd

h,0 + (uh ⊗ uh)d − ν∇uh

∥∥∥2

0,K

+
∑

e∈E(K)∩Eh(Γ)

||uD − uh||20,e
)}1/2 (5.9)
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Proof. Let v ∈ H1(Ω). From the definition of R2 and the Cauchy-Schwarz inequality it readily
follows that

|R2(v)| ≤ max{κ1, κ2}
(∥∥∥ν2 g I + σd

h,0 + (uh ⊗ uh)d − ν∇uh

∥∥∥2

0,Ω

+ ‖uD − uh‖20,Γ
)1/2 (

‖∇v‖20,Ω + ‖v‖20,Γ
)1/2

,

which together to (3.4) clearly implies (5.9), with C1 = C̃
1/2
p max{κ1, κ2} > 0. �

Next, to derive the corresponding upper bound for R1 we first notice that, after adding and
subtracting αuh in the first term of R1 (cf. (5.6)), this functional can be rewritten as

R1(τ ) = R1
1(τ ) + R2

1(τ ), (5.10)

with
R1

1(τ ) := − ν
α

(f + g uh − αuh + divσh,0,div τ )Ω

and
R2

1(τ ) :=
(
−ν

2
g I− σd

h,0 − (uh ⊗ uh)d, τ
)

Ω
− ν (div τ ,uh)Ω + ν 〈τ n,uD〉Γ .

In addition, we will require two well–known approximation operators: the Raviart-Thomas
interpolator (see e.g. [2, 24]) and the Clément operator onto the space of continuous piecewise
linear functions [15].

The Raviart-Thomas interpolation operator Πk
h : H1(Ω) → Hh(div ; Ω) (cf. (4.16)), is given

by the conditions

Πk
hτ ∈ Hh(div ; Ω) and

∫
e

Πk
hτ · n =

∫
e
τ · n ∀ edge e of T . (5.11)

As a consequence of (5.11), there holds

div (Πk
hτ) = Ph(div τ) , (5.12)

where Ph, is the L2(Ω)-orthogonal projector onto the piecewise polynomials functions of degree
≤ k on Ω. In what follows we will utilize a tensor version of Πk

h, say Πk
h : H1(Ω) → Hh(Ω),

which is defined row-wise by Πk
h. The local approximation properties of Πk

h (and hence of Πk
h)

are stated as follows (see e.g. [2, 24] for details): there exist constants ĉ1, ĉ2 > 0, independent
of h, such that for all τ ∈ H1(Ω) there hold

‖τ −Πk
hτ‖0,K ≤ ĉ1 hK ‖τ‖1,K ∀K ∈ Th ,

and
‖τ · n−Πk

hτ · n‖0,e ≤ ĉ2 h
1/2
e ‖τ‖1,Ke ∀ edge e of Th ,

where Ke is a triangle of Th containing e on its boundary.

The Clément operator Ih : H1(Ω) → Yh approximates optimally non–smooth functions by
continuous piecewise linear functions:

Yh := {v ∈ C(Ω̄) : v|K ∈ P1(K) ∀K ∈ Th}.
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It is well known that Ih satisfies the following approximation properties (see [15] for details):
there exist constants ĉ3, ĉ4 > 0, independent of h, such that for all v ∈ H1(Ω) there hold

‖v − Ihv‖0,K ≤ ĉ3 hK ‖v‖1,∆(K) ∀K ∈ Th ,

and
‖v − Ihv‖0,e ≤ ĉ4 h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh ,

where

∆(K) := ∪{K ′ ∈ Th : K ′ ∩K 6= ∅} and ∆(e) := ∪{K ′ ∈ Th : K ′ ∩ e 6= ∅} .

In what follows we will utilize a vector version of Ih, say Ih : H1(Ω)→ Yh×Yh, which is defined
row-wise by Ih.

We are now in position of establishing the corresponding estimate for R1.

Lemma 5.3 There exists C2, independents of h, such that

||R1||(H0(div ;Ω))′ ≤ C2

{ ∑
K∈Th

(
h2
K

∥∥∥ν
2
g I + σd

h,0 + (uh ⊗ uh)d − ν∇uh

∥∥∥2

0,K

+ ||f + g uh + divσh,0 − αuh||20,K

+ h2
K

∥∥∥rot
(ν

2
g I + σd

h,0 + (uh ⊗ uh)d
)∥∥∥2

0,K

+
∑

e∈E(K)∩Eh(Ω)

he

∥∥∥[(ν
2
g I + σd

h,0 + (uh ⊗ uh)d
)

t
]∥∥∥2

0,e

+
∑

e∈E(K)∩Eh(Γ)

he

(∥∥∥(ν
2
g I + σd

h,0 + (uh ⊗ uh)d
)

t− ν u′D

∥∥∥2

0,e

+ ‖uD − uh‖20,e
))}1/2

(5.13)

Proof. Let τ ∈ H0(div ; Ω). First, by applying [32, Lemma 3.3] we know that there exist
η ∈ H1(Ω) and φ ∈ H1(Ω) satisfying the following Helmholtz decomposition

τ = η + curlφ in Ω. (5.14)

Moreover, we know that this decomposition is stable, namely

‖η‖1,Ω + ‖φ‖1,Ω ≤ C‖τ‖div ;Ω, (5.15)

with C > 0 independent of h.
Now, let τ h = Πk

h(η) + curl(Ih(φ)) − cI ∈ Hh,0, with c = 1
2|Ω|

∫
Ω tr

(
Πk
h(η) + curl(Ih(φ))

)
.

It is clear from the definition of R1 and the compatibility condition (2.2), that

R1(τ h) = 0 and R1(I) = 0,
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which implies

R1(τ ) = R1(τ − τ h) = R1
1(η −Πk

h(η)) +R2
1(η −Πk

h(η)) +R2
1(curl(φ− Ih(φ))). (5.16)

In this way, to obtain the desired estimate it suffices to bound each term on the right hand side
of (5.16).

First, employing the Cauchy-Schwarz inequality and the continuity of Πk
h (see [24, Lemma

4.4]), we easily obtain

|R1
1(η −Πk

h(η))| ≤ C ‖f + g uh + divσh,0 − αuh‖0,Ω ‖η‖1,Ω

= C

{ ∑
K∈Th

‖f + g uh + divσh,0 − αuh‖20,K

}1/2

‖η‖1,Ω.
(5.17)

In turn, proceeding analogously as in the proof of lemmas 5.3 and 5.4 in [29], that is, integrating
by parts locally and utilizing the local approximation properties of the Raviart-Thomas and
Clément operators, we can easily deduce that

|R2
1(η −Πk

h(η))| ≤ C

{ ∑
K∈Th

(
h2
K

∥∥∥ν
2
g I + σd

h,0 + (uh ⊗ uh)d − ν∇uh

∥∥∥2

0,K

+he ‖uD − uh‖20,e

)}1/2

‖η‖1,Ω,

(5.18)

and

|R2
1(curl(φ− Ih(φ)))| ≤ C

{ ∑
K∈Th

(
h2
K

∥∥∥rot
(ν

2
gI + σd

h,0 + (uh ⊗ uh)d
)∥∥∥2

0,K

+
∑

e∈E(K)∩Eh(Γ)

he

∥∥∥(ν
2
gI + σd

h,0 + (uh ⊗ uh)d
)

t− νu′D
∥∥∥2

0,e

+
∑

e∈E(K)∩Eh(Ω)

he

∥∥∥[(ν
2
gI + σd

h,0 + (uh ⊗ uh)d
)

t
]∥∥∥2

0,e

)}1/2

‖φ‖1,Ω.

(5.19)
In this way from the identities (5.14), (5.16) and the estimates (5.15), (5.17), (5.18) and (5.19),
it readily follows that (5.13) holds, which concludes the proof. �

We end this section by noticing that the reliability estimate (5.3) follows straightforwardly
from lemmas 5.2 and 5.3.

5.2 Efficiency of the a posteriori a error estimator

The main result of this section is stated next.

Theorem 5.4 There exists Ceff > 0, independent of h, such that

Ceff Θ ≤ ‖σ0 − σh,0‖div ;Ω + ‖u− uh‖1,Ω + h.o.t. (5.20)

where h.o.t. stands, eventually, for terms of higher order.
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In order to prove the efficiency of the a posteriori error estimator, in what follows we bound
each term defining Θ in terms of local or global errors. We remark in advance that most of the
results to be deduced in this section are derived by employing estimates already available in the
literature. In particular, in the sequel we adapt the results from [8, 9, 10, 32, 33] to prove the
efficiency of our estimator Θ. We begin with the following lemma providing the estimates for
the zero-order terms appearing in the definition of ΘK .

Lemma 5.5 There exists C1 and C2, independents of h, such that:∥∥∥ν
2
g I + σd

h,0 + (uh ⊗ uh)d − ν∇uh

∥∥∥
0,K
≤ C1 (‖σ0 − σh,0‖0,K + ‖u− uh‖1,Ω) , (5.21)

‖f + g uh + divσh,0 − αuh‖0,K ≤ C2 (‖σ0 − σh,0‖div ;K + ‖u− uh‖1,K) , (5.22)

for all K ∈ Th.

Proof. Similarly to the proof of [33, Theorem 3.12] we first observe that

‖uh ⊗ uh − u⊗ u‖20,K ≤ 2
{
‖uh‖2L4(Ω) + ‖u‖2L4(Ω)

}
‖u− uh‖2L4(Ω),

which together to the continuity of the injection ic : H1(Ω)→ L4(Ω), hypothesis (5.2), the fact
that u ∈ K (cf. (3.11)) and uh ∈ Kh (cf. (4.8)), and the definition of CC (cf. (3.6)), implies

‖uh ⊗ uh − u⊗ u‖20,K ≤ 2‖ic‖4
{
‖uh‖21,Ω + ‖u‖21,Ω

}
‖u−uh‖21,Ω ≤

α2
A

4(1 + κ1)
‖u−uh‖21,Ω. (5.23)

Then, the estimate (5.21) follows from (5.23), the triangle inequality and the first equation of
(2.6). In turn, the estimate (5.22) readily follows from the second equation of (2.6) and the
triangle inequality. �

Now, we provide the upper bound for the residual term involving the Dirichlet datum. Its
proof is a direct consequence of the well known trace inequality. We omit further details.

Lemma 5.6 There exists C3 > 0, independents of h, such that:

‖uD − uh‖0,e ≤ C3 ‖u− uh‖1,Ω ∀ e ∈ E(Γ). (5.24)

Finally, since the datum g ∈ L4(Ω) is not necessarily a polynomial function, for the remaining
terms we proceed analogously to [10] and apply the results from [8, 9].

Lemma 5.7 There exists C4 > 0, independents of h, such that:

hK

∥∥∥rot
(ν

2
g I + σd

h,0 + (uh ⊗ uh)d
)∥∥∥

0,K
≤ C4 (‖σ0 − σh,0‖0,K + ‖u− uh‖1,Ω)+h.o.t., (5.25)

for all K ∈ Th.

Proof. By using the first equation of (2.6) and estimate (5.23), the result follows similarly to
the proof of [10, Lemma 6.10]. We omit further details. �
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Lemma 5.8 There exists C5 > 0, independents of h, such that:

h1/2
e

∥∥∥[(ν
2
g I + σd

h,0 + (uh ⊗ uh)d
)

t
]∥∥∥

0,e

≤ C5

 ∑
K⊆ωe

‖σ0 − σh,0‖0,K + ‖u− uh‖1,Ω

+ h.o.t., ∀ e ∈ Eh(Ω), (5.26)

where ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}.

Proof. The proof follows from the first equation of (2.6), estimate (5.23), and a slight modifica-
tion of the proof of [10, Lemma 6.10]. We omit further details. �

Lemma 5.9 There exists C6 > 0, independents of h, such that:

h1/2
e

∥∥∥(ν
2
g I + σd

h,0 + (uh ⊗ uh)d
)

t− ν u′D

∥∥∥
0,e

≤ C6 (‖σ0 − σh,0‖0,Ke + ‖u− uh‖1,Ω) + h.o.t. ∀ e ∈ E(Γ),

where Ke is a generic triangle having e as an edge.

Proof. Again, the proof follows from the first equation of (2.6), estimate (5.23), and a slight
modification of the proof of [10, Lemma 6.10] (see also [30, Lemma 4.15]). We omit further
details. �

We end this section by observing that the efficiency estimate (5.20) follows straightforwardly
from the Lemmas 5.5–5.9.

5.3 Three dimensional case

In what follows we briefly discuss about the a posteriori error estimator in the three dimensional
case. To that end we first introduce some notations.

Given v a sufficiently smooth vector field, we let

curl v := ∇× v,

and given a tensor field τ = (τij)3×3, we define

curl τ :=

 curl (τ11, τ12, τ13)
curl (τ21, τ22, τ23)
curl (τ31, τ32, τ33)

 .

On the other hand, given K ∈ Th, we let E(K) be the set of its faces, and let Eh be the set
of all the faces of the triangulation Th. Then, we write Eh = Eh(Ω) ∪ Eh(Γ), where Eh(Ω) :=
{e ∈ Eh : e ⊂ Ω} and Eh(Γ) := {e ∈ Eh : e ⊂ Γ}. The faces of the tetrahedrons of Th are
denoted by e and their corresponding diameters by he. Also for each face e ∈ Eh we fix a unit
normal ne to e. In addition, if v is a sufficiently smooth vector field, and e ∈ Eh(Ω), we let
[[ v×ne ]] := (v|K′ − v|K′′) |e×ne, where K ′ and K ′′ are the elements of Th having e as a common
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face. As in the previous section, from now on, when no confusion arises, we simple write n
instead of ne. In addition, τ × n stands for the 3× 3 tensor given by

τ × n :=

 (τ11, τ12, τ13)× n
(τ21, τ22, τ23)× n
(τ31, τ32, τ33)× n

 ,

and set

[[ τ × n ]] :=

 [[ (τ11, τ12, τ13)× n ]]
[[ (τ21, τ22, τ23)× n ]]
[[ (τ31, τ32, τ33)× n ]]

 .

Now, let (σ0,u) ∈ X0 and (σh,0,uh) ∈ Xh,0 be the respective unique solutions of (3.3) and
(4.4) . Then we define the global a posteriori error estimator

Θ̂ :=

∑
K∈Th

Θ̂2
K


1/2

,

where for each K ∈ Th:

Θ̂2
K = (1 + h2

K)
∥∥∥ν

3
g I + σd

h,0 + (uh ⊗ uh)d − ν∇uh

∥∥∥2

0,K

+ ‖f + g uh + divσh,0 − αuh‖20,K + h2
K

∥∥∥curl
(ν

3
g I + σd

h,0 + (uh ⊗ uh)d
)∥∥∥2

0,K

+
∑

e∈E(K)∩Eh(Ω)

he

∥∥∥[(ν
3
g I + σd

h,0 + (uh ⊗ uh)d
)
× n

]∥∥∥2

0,e

+
∑

e∈E(K)∩Eh(Γ)

(
he

∥∥∥(ν
3
gI + σd

h,0 + (uh ⊗ uh)d
)
× n− ν∇uD × n

∥∥∥2

0,e

+(1 + he) ‖uD − uh‖20,e
)

The reliability of this estimator can be proved essentially by using the same arguments employed
for the 2D case. In particular, analogously to the 2D case, here it is needed a stable Helmholtz
decomposition for H(div ; Ω). This result is a direct consequence of the following lemma. For
its proof we refer the reader to [25, Theorem 3.1].

Lemma 5.10 For each v ∈ H(div ; Ω) there exist z ∈ H2(Ω) and χ ∈ [H1(Ω)]3, such that there
hold v = ∇z + curlχ in Ω, and

‖z‖2,Ω + ‖χ‖1,Ω ≤ C‖v‖div ;Ω ,

where C is a positive constant independent of v.

Finally, to prove the efficiency of the 3D estimator it suffices to control the new terms since
the analysis of the rest of the terms is straightforward. The following lemma provides these
desired estimates, where, for the sake of simplicity, we assume that uD and g are piecewise
polynomials.
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Lemma 5.11 There exist positive constants Ci , i ∈ {1, 2, 3}, independent of h, ν, η and α,
such that

a) hK

∥∥∥curl(
ν

3
g I + σd

h,0 + (uh ⊗ uh)d)
∥∥∥

0,T
≤ C1 (‖σ0 −σh,0‖0,K + ‖u− uh‖1,Ω) ∀K ∈

Th,

b) h1/2
e

∥∥∥[(ν
3
g I + σd

h,0 + (uh ⊗ uh)d
)
× n

]∥∥∥
0,e
≤ C2 (‖σ0−σh,0‖0,ωe+‖u−uh‖1,Ω) ∀ e ∈

Eh(Ω),

c) There exists C3 > 0, independent of h, such that

h1/2
e

∥∥∥(ν
3
gI + σd

h,0 + (uh ⊗ uh)d
)
× n− ν∇uD × n

∥∥∥
0,e
≤ C3(‖σ0−σh,0‖0,Ke+‖u−uh‖1,Ω),

where Ke is the triangle of Th having e as an edge.

Proof. First, a) follows straightforwardly from [28, Lemma 4.9] and (5.23). Similarly, b) follows
from [28, Lemma 4.10] and (5.23). Finally, the proof of c) follows from (5.23) a slight modification
of the proof of [28, Lemma 4.13]. �

6 Numerical results

In this section we present two numerical examples, illustrating the performance of the mixed
finite element scheme (4.5), confirming the reliability and efficiency of the a posteriori error esti-
mator Θ derived in Section 5, and showing the behaviour of the associated adaptive algorithm.
Our implementation is based on a FreeFem++ code (see [35]), in conjunction with the direct
linear solver UMFPACK (see [17]).

In what follows, N stands for the total number of degrees of freedom defining Xh,0. Denoting
by (σ,u) ∈ X0 and (σh,0,u) ∈ Xh,0, the respective solutions of (3.3) and (4.4), and by ph the
post-processed discrete pressure given by (4.25), we define the individual errors as

e(σ0) := ‖σ0 − σh,0‖div ;Ω, e(u) := ‖u− uh‖1,Ω, and e(p) := ‖p− ph‖0,Ω.

In addition, denoting by e(σ0, u) := {e(σ0)2 + (e(u))}1/2 the total error, the effectivity index
with respect to Θ (cf. (5.1)) is given by

eff(Θ) := e(σ0, u)/Θ.

Furthermore, we define the experimental rates of convergence as

r(σ0) :=
log(e(σ0)/e′(σ0))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
,

r(p) :=
log(e(p)/e′(p))

log(h/h′)
, r(σ0,u) :=

log(e(σ0,u)/e′(σ,u))

log(h/h′)
,

where h and h′ are two consecutive meshsizes with errors e and e′. However, when the adaptive
algorithm is applied (see details below), the expression log(h/h′) appearing in the computation
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of the above rates is replaced by −1
2 log(N/N ′), where N and N ′ denote the corresponding

degrees of freedom of each triangulation.

The examples to be considered in this section are described next. In all the cases the
nonlinear system is solved by applying a Newton method (stopped when the L2–norm of the
total residual attains the tolerance 1E-6). Example 1 is used to illustrate the performance of
the two dimensional mixed finite element scheme under a quasi-uniform refinement, and to test
the behaviour of the iterative method when ‖g‖L4(Ω) increases, whereas Example 2 is utilized
to assess the accuracy of the proposed scheme along with the properties of the adaptive error
estimator Θ defined in (5.1). For the later we apply the following adaptive procedure from [39]:

1) Start with a coarse mesh Th.

2) Solve the discrete problem (4.5) for the current mesh Th.

3) Compute ΘT for each triangle T ∈ Th.

4) Check the stopping criterion and decide whether to finish or go to next step.

5) Use blue-green refinement on those T ′ ∈ Th whose indicator ΘT ′ satisfies

ΘT ′ ≥
1

2
max
T∈Th

{ΘT : T ∈ Th } .

6) Define the resulting mesh as the current meshe Th, and go to step 2.

In Example 1 we choose the domain Ω := (0, 1)2, the parameters ν = 1, α = 1, (κ1, κ2) =
(ν, ν2/2) (according to the assumptions of Lemma 3.2), and take f , g and uD so that the exact
solution is given by the smooth functions

u(x1, x2) :=

 π ex1 cos(πx2) + ex2 sin(πx1) + λx1
2

−π ex2 cos(πx1)− ex1 sin(πx2) + λx2
2

 ,

p(x1, x2) := ex1+x2 cos(πx1)− 1− e2

π2 + 1
,

where λ is a real parameter. It is not difficult to see that ‖g‖L4(Ω) = |λ|, so that condition (3.9)
becomes

|λ|2 ≤ Cp
2‖ic‖2

.

In Table 6.1 below we summarize the convergence history obtained for this example, consid-
ering λ = 10, a sequence of quasi-uniform triangulations and RT0 − P1 (table at the top) and
RT1−P2 (table at the bottom) approximations. We observe there that the rates of convergence
O(h) and O(h2) predicted by Theorem 4.7 (when s = 1 and s = 2, respectively) are attained in
both cases for all the unknowns. Next, in order to test the real influence of hypothesis (3.9) on
our method, in Table 6.2 we illustrate the behaviour of the iterative method for different values
of λ. We observe there that when λ = 500, for the first three meshes the iterative method takes
more than 200 iterations to converge, reason why this information is not reported in those cases.
This behaviour shows that the performance of the method is clearly influenced by hypothesis
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(3.9). However, it is also important to remark that for values of λ not greater than 10, and for
those meshes where the iterative method converges, the number of iterations remains reasonably
bounded. Exact and computed solutions, considering the RT0 − P1 approximation, are shown
in Figure 6.1 for λ = 10 and N = 6214575.

In our second example we assess the capability of our adaptive algorithm to capturing
the presence of high gradients and singularities of the solution. To that end we consider the
parameters ν = α = 1, (κ1, κ2) = (1, 1/2), the domain as the non-convex L–shaped region
Ω = (−1, 1)2\[0, 1]2, and take f , g and uD so that the exact solution is given by the functions

u(x1, x2) :=

− cos(πx1) sin(πx2) + x1
2

cos(πx2) sin(πx1) + x2
2

 ,

p(x1, x2) :=
1− x1

(0.01− x1)2 + (0.01− x2)2
− l,

where l ∈ R is a constant chosen in such a way (p, 1)Ω = 0. Notice that p has high gradients
around the origin and div u = 1. In Table 6.3 we present the convergence history of the method
(in its lowest-order configuration), considering firstly a quasi-uniform refinement (table at the
top) and secondly an adaptive refinement (table at the bottom). We observe there that the
errors of the adaptive procedure decrease faster than those obtained by the quasi-uniform one,
which is confirmed by the global experimental rates of convergence provided there. This fact
is also illustrated in Figure 6.2 where we display the total errors e(σ0,u) vs. the degrees of
freedom N for both refinements. As shown by the values of r(σ0,u), the adaptive method is
able to keep the quasi-optimal rate of convergence O(h) for the total error. Furthermore, the
effectivity indexes remain bounded from above and below, which confirms the reliability and
efficiency of Θ. Intermediate meshes obtained with the adaptive refinements are displayed in
Figure 6.3. Note that the method is able to recognize the region with high gradients.
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RT0 −P1 scheme with quasi-uniform refinement

N h e(σ0) r(σ0) e(u) r(u) e(p) r(p)

683 0.1901 19.3727 – 2.7597 – 3.3330 –
2539 0.1025 9.8414 1.0316 1.2952 1.1523 1.5895 1.1278
9883 0.0490 4.8180 1.0511 0.6137 1.0990 0.7609 1.0841
39059 0.0268 2.4470 0.9860 0.3090 0.9988 0.3852 0.9906
157043 0.0140 1.2077 1.0150 0.1523 1.0166 0.1870 1.0385
621475 0.0078 0.6079 0.9980 0.0744 1.0415 0.0944 0.9946

RT1 −P2 scheme with quasi-uniform refinement

N h e(σ0) r(σ0) e(u) r(u) e(p) r(p)

571 0.3727 5.7921 – 0.7352 – 2.4682 –
2287 0.1901 1.3191 2.1977 0.1895 2.0136 0.5277 2.2915
8687 0.1025 0.3284 2.2532 0.0377 2.6153 0.1194 2.4085
34199 0.0490 0.0783 1.9418 0.0087 1.9838 0.0290 1.9168
135931 0.0268 0.0206 2.0595 0.0022 2.1167 0.0076 2.0682
548107 0.0140 0.0050 2.3300 0.0005 2.3463 0.0019 2.3203

Table 6.1: Example 1: convergence history for the RT0 − P1 (table at the top) and RT1 − P2

approximations of the two dimensional version of the Navier-Stokes-Brinkman problem (2.13)
under quasi-uniform refinement

λ h = 0.1901 h = 0.1025 h = 0.0490 h = 0.0256 h = 0.0140

1 4 4 4 4 4

10 5 4 4 4 4

100 – 6 5 5 5

250 – – 6 6 5

500 – – – 5 5

Table 6.2: Example 1: convergence behaviour of the iterative method with respect to the pa-
rameter λ
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method for the Navier-Stokes/Darcy coupled problem with nonlinear viscosity, Journal of
Numerical Mathematics, to appear.

[12] E. Colmenares, G. N. Gatica and R. Oyarzúa Analysis of an augmented mixed-
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de Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de Concepción, Chile.

[26] G.N. Gatica, L.F. Gatica and A. Márquez, Analysis of a pseudostress-based mixed
finite element method for the Brinkman model of porous media flow. Numerische Mathe-
matik, vol 126, 4, pp. 635-677, (2014).

[27] G.N. Gatica, L.F. Gatica and F. Sequeira, Analysis of an augmented pseudostress-
based mixed formulation for a nonlinear Brinkman model of porous media flow, Computer
Methods in Applied Mechanics and Engineering, vol. 289, 1, pp. 104-130, (2015).

[28] G.N. Gatica, L.F. Gatica and F. Sequeira, A priori and a posteriori error analyses
of a pseudostress-based mixed formulation for linear elasticity. Comput. Math. Appl., vol.
71, no. 2, pp. 585-614, (2016).

33



[29] G.N. Gatica, A. Márquez and W. Rudolph, A priori and a posteriori error analyses
of augmented twofold saddle point formulations for nonlinear elasticity problems. Computer
Methods in Applied Mechanics and Engineering, vol. 264, 1, pp. 23-48, (2013).

[30] G.N. Gatica, A. Márquez and M.A. Sánchez, Analysis of a velocity-pressure–
pseudostress formulation for the stationary Stokes equations. Computer Methods in Applied
Mechanics and Engineering, 199, no. 17-20, pp. 1064–1079, (2010).
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