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Abstract

A new stress-based mixed variational formulation for the Navier-Stokes equations with constant
density and variable viscosity depending on the magnitude of the strain tensor, is proposed and
analyzed in this work. Our approach is a natural extension of a technique applied in a recent paper
by some of the authors to the same boundary value problem but with a viscosity that depends
nonlinearly on the gradient of velocity instead of the strain tensor. In the present case, and besides
remarking that the strain-dependence for the viscosity yields a physically more meaningful model,
we notice that in order to handle this nonlinearity we now need to incorporate not only the strain
itself but also the vorticity as auxiliary unknowns. Furthermore, similarly as in that previous work,
and aiming to deal with a suitable space for the velocity, the variational formulation is augmented
with Galerkin type terms arising from the constitutive and equilibrium equations, the relations
defining the two additional unknowns, and the Dirichlet boundary condition. In this way, and
since the resulting augmented scheme can be rewritten as a fixed point operator equation, the
classical Schauder and Banach theorems together with monotone operators theory are applied to
derive the well-posedness of the continuous and associated discrete schemes. In particular, we show
that arbitrary finite element subspaces can be utilized for the latter, and then we derive optimal
a priori error estimates along with the corresponding rates of convergence. Next, a reliable and
efficient residual-based a posteriori error estimator on arbitrary polygonal and polyhedral regions is
proposed. The main tools employed include Raviart-Thomas and Clément interpolation operators,
inverse and discrete inequalities, and the localization technique based on triangle-bubble and edge-
bubble functions. Finally, several numerical essays illustrating the good performance of the method,
confirming the reliability and efficiency of the a posteriori error estimator, and showing the desired
behaviour of the adaptive algorithm, are reported.
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cepción; by Universidad del B́ıo-B́ıo through DIUBB project 120808 GI/EF.
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1 Introduction

The development of mixed finite element techniques for quasi-Newtonian fluids whose viscosity is a
nonlinear function of the state variables, such as blood, polymers, and molten metals, among others,
has gained considerable attention in the last few years. For instance, a mixed finite element method for
the Navier-Stokes equations with a viscosity depending nonlinearly on the magnitude of the gradient
of velocity, was introduced and analyzed recently in [5]. The approach there makes use of the same
modified pseudostress tensor employed in [6], which, similarly to the one from [20], involves the
diffusive and convective terms, and the pressure. The latter unknown is then eliminated thanks to
an equivalent statement implied by the incompressibility condition. In addition, in order to handle
the nonlinear viscosity, and following [20] and [15], the gradient of velocity is incorporated as an
auxiliary unknown. Furthermore, since the velocity actually lives in a smaller space than expected, the
variational formulation is augmented with suitable Galerkin type terms arising from the constitutive
and equilibrium equations, the relation defining the aforementioned additional unknown, and the
Dirichlet boundary condition. Moreover, the resulting augmented scheme can be rewritten as a fixed
point equation, and therefore the well-known Schauder and Banach theorems, combined with classical
results on monotone operators, are applied to prove the well-posedness of the continuous and discrete
systems. In particular, the unique solvability of the Galerkin schemes does not require any discrete
inf-sup conditions, and hence arbitrary finite element subspaces of the respective continuous spaces
can be employed in [5]. For a complete bibliographic discussion on the wide variety of dual-mixed
methods for Newtonian and Non-Newtonian incompressible flows, and particularly for the Navier-
Stokes equations, including pseudostress-based, stress-based, least-squares, augmented, stabilized, and
other related formulations, we refer to the Introduction of [5].

On the other hand, it is well known that standard Galerkin procedures such as finite element and
mixed finite element methods inevitably lose accuracy when they are applied to nonlinear problems
on quasi-uniform discretizations. This fact is usually due to the lack of previous knowledge on how
to mesh the domains in these cases, and hence adaptive algorithms that are based on a posteriori
error estimates are normally employed to overcome this difficulty. In this regard, a residual-based a
posteriori error analysis for the model and method from [5] has been developed in the recent work
[18]. More precisely, the technique proposed in [17] and [10] for a class of nonlinear problems in
fluid mechanics is adapted in [18] to derive reliable and efficient residual-based a posteriori error
estimators for the augmented mixed formulation introduced in [5] of the Navier-Stokes equations with
viscosity depending on the gradient of velocity. In fact, the strategy in [18] begins with a global
inf-sup condition for the linearization arising from the use of the Gâteaux derivatives of the nonlinear
terms of the formulation. The rest of the analysis includes a suitable handling of the corresponding
convective term of the Navier-Stokes equations, the introduction of continuous and discrete Helmholtz’s
decompositions, and the application of the local approximation properties of the Raviart-Thomas and
Clément interpolation operators, inverse inequalities, and the localization technique based on triangle-
bubble and edge-bubble functions. For an extensive list of references on a posteriori error analysis
for linear and nonlinear problems, mainly in fluid mechanics, we refer to the Introduction of [18]. In
particular, we remark that most of the main ideas and associated techniques can be found in the early
works [2], [24] and the references therein.

In spite of the aforedescribed contributions (cf. [5] and [18]), we find it important to remark that a
physically more meaningful model for the Navier-Stokes equations arises from a viscosity depending
nonlinearly not on the full gradient of the velocity, but only on the symmetric part of it. According
to it, the purpose of the present paper is to additionally contribute in the direction of mixed finite
element methods for nonlinear problems in fluid mechanics, by extending the a priori and a posteriori
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error analyses developed in [5] and [18] to the Navier-Stokes equations with constant density and
variable viscosity depending on the magnitude of the strain tensor. The rest of this work is organized
as follows. Some preliminary notations, the nonlinear model of interest, and the definite unknowns to
be considered in the variational formulation are discussed in Section 2. In Section 3 we first derive the
augmented mixed variational formulation, which, differently from [5], and aiming to handle the new
nonlinearity, includes now the strain and vorticity tensors as auxiliary unknowns. Next, we introduce
and analyze the equivalent fixed point setting, and then we consider the particular case of homogeneous
Dirichlet boundary conditions, for which one of the augmented equations is no longer needed. The
section ends with the solvability analysis, mainly via the Schauder and Banach theorems and assuming
sufficiently small data, of the corresponding fixed point operator equations. In turn, in Section 4 we
study the associated Galerkin scheme by employing a discrete version of the fixed point strategy
developed in Section 3. Similarly as for [5] we remark that no discrete inf-sup conditions are required
here for the discrete analysis, and hence arbitrary finite element subspaces can be employed as well.
In addition, the a priori error estimate and the corresponding rates of convergence for a particular
choice of discrete subspaces are also deduced in Section 4 under a similar assumption on the size of
the data. Furthermore, in Section 5 we derive a reliable and efficient residual-based a posteriori error
estimator for our augmented mixed formulation on arbitrary polygonal and polyhedral regions of R2

and R3, respectively. We provide most of the details for the 3D case, whereas the main aspects of the
2D case, being analogous, are simply summarized at the end of that Section. We remark that Raviart-
Thomas and Clément interpolation operators, inverse and discrete inequalities, and the localization
technique based on triangle-bubble and edge-bubble functions constitute the main tools employed.
Finally, in Section 6 we collect several numerical examples illustrating the good performance of the
augmented mixed finite element method, confirming the theoretical rates of convergence, providing
the expected bounded ranges for the effectivity indexes of the a posteriori error estimator in 2D and
3D, and showing the satisfactory behaviour of the corresponding adaptive refinement strategy.

2 The model problem

2.1 Preliminaries

Let us denote by Ω ⊆ Rn, n ∈ {2, 3}, a given bounded domain with polyhedral boundary Γ, and
denote by ν the outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue
spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖ · ‖s,Ω and seminorm | · |s,Ω. In particular, H1/2(Γ)
is the space of traces of functions of H1(Ω) and H−1/2(Γ) denotes its dual. By M and M we will denote
the corresponding vectorial and tensorial counterparts of the generic scalar functional space M, and
‖ · ‖, with no subscripts, will stand for the natural norm of either an element or an operator in any
product functional space. In turn, for any vector fields v = (vi)i=1,n and w = (wi)i=1,n, we set the
gradient, divergence, and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=

n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n .

In addition, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr(τ ) I ,
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where I stands for the identity tensor in R := Rn×n. Furthermore, we recall that

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

equipped with the usual norm

‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω ,

is a standard Hilbert space in the realm of mixed problems. Finally, in what follows , | · | denotes the
Euclidean norm in R := Rn.

We use C, with or without subscripts, bars, tildes or hats, to mean generic positive constants
independent of the discretization parameters, which may take different values at different places.

2.2 The Navier-Stokes equations with variable viscosity

We consider the Navier-Stokes equations with constant density and variable viscosity, that is

−div
(
µ(|e(u)|) e(u)

)
+ (∇u)u + ∇p = f in Ω ,

divu = 0 in Ω ,

u = g on Γ ,

(2.1)

where the unknowns are the velocity u and the pressure p of a fluid occupying the region Ω, and

e(u) :=
1

2

{
∇u+

(
∇u
)t}

stands for the strain tensor of small deformations. In turn, the given data

are a function µ : R+ −→ R describing the nonlinear viscosity, a volume force f ∈ L2(Ω), and the
boundary velocity g ∈ H1/2(Γ). Note, according to the incompressibility of the fluid, that g must
satisfy the compatibility condition ∫

Γ
g · ν = 0 , (2.2)

and that uniqueness of a pressure solution of (2.1) is ensured in the space

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

We also remark that, following a more realistic assumption, the nonlinear function µ depends now on
the magnitude of e(u) instead of that of ∇u as it was in [5]. To this respect, and similarly as in [5],
in what follows we assume that µ is of class C1, and that there exist constants µ1, µ2 > 0, such that

µ1 ≤ µ(s) ≤ µ2 and µ1 ≤ µ(s) + s µ′(s) ≤ µ2 ∀ s ≥ 0 , (2.3)

which, according to the result provided by [19, Theorem 3.8], imply Lipschitz-continuity and strong
monotonicity of the nonlinear operator induced by µ. A classical example of nonlinear functions µ is
given by the well-known Carreau law in fluid mechanics

µ(s) := α0 + α1(1 + s2)(β−2)/2 ∀ s ≥ 0 , (2.4)

where α0, α1 > 0 and β ∈ [1, 2]. It is easy to check that (2.4) satisfies the assumptions (2.3) with
(µ1, µ2) =

(
α0, α0 + α1

)
.
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Next, proceeding similarly as in [5] (see also [6] and [8]), that is defining now the tensor

σ := µ
(
|e(u)|

)
e(u) − (u⊗ u) − p I in Ω , (2.5)

using the incompressibility and the foregoing equation to eliminate the pressure, introducing the
auxiliary unknowns

t := e(u) and ρ := ∇u − e(u) ,

which denote the strain and the vorticity, respectively, and recalling that σ must be symmetric, we
arrive at the following system of equations with unknowns t, u, σ, and ρ

∇u = t + ρ in Ω ,

µ(|t|) t − (u⊗ u)d = σd in Ω ,

−divσ = f in Ω ,

u = g on Γ ,

σ = σt in Ω ,∫
Ω

tr
(
σ + u⊗ u

)
= 0 .

(2.6)

We notice here that the incompressibility of the fluid is implicitly present in the new constitutive
equation relating σ and u (second equation of (2.6)). In turn, the fact that the pressure must belong
to L2

0(Ω) is guaranteed by the equivalent statement given by the last equation of (2.6). Indeed, it is
easy to see by applying trace to (2.5) that

p = − 1

n
tr
(
σ + u⊗ u

)
in Ω . (2.7)

3 The continuous formulation

3.1 The augmented mixed formulation

We now proceed as in [5] to derive a weak formulation of (2.6). We begin by recalling (see e.g. [4],
[13]) that there holds

H(div; Ω) = H0(div; Ω) ⊕ R I , (3.1)

where

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫
Ω

tr(ζ) = 0

}
.

In particular, decomposing σ in (2.6) as σ = σ0 + c I, with σ0 ∈ H0(div; Ω), we deduce from (3.1)
and the last equation in (2.6) that c is given explicitly in terms of u as

c = − 1

n |Ω|

∫
Ω

tr(u⊗ u) . (3.2)

In this way, since σd = σd
0 and divσ = divσ0, throughout the rest of the paper we rename σ0 as

σ ∈ H0(div; Ω) and realize that the second, third, and fifth equations of (2.6) remain unchanged. In
addition, thanks to the incompressibility condition and the first equation of (2.6), we can look for the
unknown t in the space

L2
tr(Ω) :=

{
s ∈ L2(Ω) : tr s = 0

}
,
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whereas the vorticity ρ lives in

L2
skew(Ω) :=

{
η ∈ L2(Ω) : η = −ηt

}
.

Thus, proceeding similarly as in [5], that is noticing first that it suffices to test the first equation of
(2.6) against τ ∈ H0(div; Ω), using the Dirichlet condition for u, denoting by 〈 · , · 〉 the duality pairing
between H−1/2(Γ) and H1/2(Γ), realizing that the constitutive equation given by the second equation
of (2.6) needs to be tested only with s ∈ L2

tr(Ω), and then imposing weakly the equilibrium equation
and the symmetry of σ, we arrive, at first instance, at the following weak formulation of (2.6): Find
(t,σ,ρ) ∈ L2

tr(Ω)×H0(div; Ω)× L2
skew(Ω), and u in a suitable space, such that∫

Ω
µ(|t|) t : s −

∫
Ω
σd : s −

∫
Ω

(u⊗ u)d : s = 0 ∀ s ∈ L2
tr(Ω) ,∫

Ω
τ d : t +

∫
Ω
u · div τ +

∫
Ω
ρ : τ = 〈τν, g〉 ∀ τ ∈ H0(div; Ω) ,

−
∫

Ω
v · divσ −

∫
Ω
η : σ =

∫
Ω
f · v ∀ (v,η) ∈ L2(Ω)× L2

skew(Ω) .

(3.3)

We continue our analysis by observing, exactly as we did in [5], that by applying Cauchy-Schwarz and
Hölder inequalities, and then employing the compact (and hence continuous) injection ic of H1(Ω)
into L4(Ω) (see Rellich-Kondrachov compactness Theorem in [1, Theorem 6.3] or [23, Theorem 1.3.5]),
that the third term in the first row of the foregoing system suggests to look for the unknown u in
H1(Ω) and to restrict the set of corresponding test functions v to the same space. Consequently,
and in order to be able to analyze the present variational formulation of (2.6), we now augment (3.3)
through the incorporation of the following redundant Galerkin terms:

κ1

∫
Ω

{
σd − µ(|t|) t + (u⊗ u)d

}
: τ d = 0 ∀ τ ∈ H0(div; Ω) ,

κ2

∫
Ω

divσ · div τ = −κ2

∫
Ω
f · div τ ∀ τ ∈ H0(div; Ω) ,

κ3

∫
Ω

{
e(u) − t

}
: e(v) = 0 ∀v ∈ H1(Ω) ,

κ4

∫
Ω

(
ρ −

{
∇u − e(u)

})
: η = 0 ∀η ∈ L2

skew(Ω) ,

κ5

∫
Γ
u · v = κ5

∫
Γ
g · v ∀v ∈ H1(Ω) ,

(3.4)

where κ1, κ2, κ3, κ4, and κ5 are positive parameters to be specified later. We have thus arrived at
the following augmented mixed formulation: Find ~t := (t,σ,u,ρ) ∈ H := L2

tr(Ω) × H0(div; Ω) ×
H1(Ω)× L2

skew(Ω) such that[(
A + Bu

)
(~t) , ~s

]
=
[
F , ~s

]
∀~s := (s, τ ,v,η) ∈ H , (3.5)

where
[
·, ·
]

stands for the duality pairing between H′ and H, A : H −→ H′ is the nonlinear operator

[
A
(
~t
)
, ~s
]

:=

∫
Ω
µ(|t|) t : s −

∫
Ω
σd : s +

∫
Ω
τ d : t +

∫
Ω
u · div τ −

∫
Ω
v · divσ

+

∫
Ω
ρ : τ −

∫
Ω
η : σ + κ1

∫
Ω

{
σd − µ(|t|) t

}
: τ d + κ2

∫
Ω

divσ · div τ

+ κ3

∫
Ω

{
e(u)− t

}
: e(v) + κ4

∫
Ω

(
ρ −

{
∇u − e(u)

})
: η + κ5

∫
Γ
u · v ,

(3.6)

6



F : H −→ R is the bounded linear functional[
F , ~s

]
:= 〈τ ν, g〉 +

∫
Ω
f ·
{
v − κ2 div τ

}
+ κ5

∫
Γ
g · v , (3.7)

and for each z ∈ H1(Ω), Bz : H −→ H′ is the bounded linear operator[
Bz(~t) , ~s

]
:=

∫
Ω

(z ⊗ u)d :
{
κ1 τ

d − s
}
, (3.8)

for all ~t := (t,σ,u,ρ), ~s := (s, τ ,v,η) ∈ H.

The boundedness properties of F and Bz will be confirmed in the following section, where we
introduce our fixed-point approach to study the well-posedness of (3.5).

3.2 A fixed point approach

We begin by defining the operator T : H1(Ω) −→ H1(Ω) by

T(z) := u ∀ z ∈ H1(Ω) ,

where u is the third component of the unique solution (to be confirmed below) of the nonlinear
problem: Find ~t := (t,σ,u,ρ) ∈ H such that[(

A + Bz
)
(~t) , ~s

]
=
[
F , ~s

]
∀~s := (s, τ ,v,η) ∈ H . (3.9)

It follows that our augmented mixed formulation (3.5) can be rewritten, equivalently, as the fixed
point problem: Find u ∈ H1(Ω) such that

T(u) = u .

The following useful inequalities will be employed below to analyze the well-posedness of (3.9) and
a particular case of it to be considered below in Section 3.3.

Lemma 3.1 There exists c1(Ω) > 0 such that

c1(Ω) ‖τ 0‖20,Ω ≤ ‖τ d‖20,Ω + ‖div τ‖20,Ω ∀τ = τ 0 + cI ∈ H(div; Ω) .

Proof. See [4, Proposition 3.1, Chapter IV]. �

Lemma 3.2 There holds

‖e(v)‖20,Ω ≥
1

2
|v|21,Ω ∀v ∈ H1

0(Ω) .

Proof. See [21, Theorem 10.1]. �

Lemma 3.3 There exists κ0 > 0 such that

‖e(v)‖20,Ω + ‖v‖20,Γ ≥ κ0 ‖v‖21,Ω ∀v ∈ H1(Ω) .

Proof. See [12, Lemma 3.1 and inequality (3.9)]. �

Note that Lemmas 3.2 and 3.3 correspond to the Korn first inequality and a modified Korn inequal-
ity, respectively. In turn, we also need to recall from [19] that, under the assumptions given by (2.3),
the nonlinear operator induced by µ is Lipschitz-continuous and strongly monotone. More precisely,
we have the following result.
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Lemma 3.4 Let Lµ := max
{
µ2, 2µ2 − µ1

}
, where µ1 and µ2 are the bounds of µ given in (2.3).

Then for each r, s ∈ L2(Ω) there holds

‖µ(|r|) r − µ(|s|) s‖0,Ω ≤ Lµ ‖r − s‖0,Ω , (3.10)

and ∫
Ω

{
µ(|r|) r − µ(|s|) s

}
:
(
r − s

)
≥ µ1 ‖r − s‖20,Ω . (3.11)

Proof. See [19, Theorem 3.8] for details. �

The following lemma provides sufficient conditions under which the operator T is well-defined.

Lemma 3.5 Assume that κ1 ∈
(

0,
2δµ1

Lµ

)
, κ3 ∈

(
0, 2δ̃

(
µ1 −

κ1 Lµ
2δ

))
, κ4 ∈

(
0, 2δ̂ κ0 β(Ω)

)
, and

κ2, κ5 > 0, with δ ∈
(

0,
2

Lµ

)
, δ̃, δ̂ ∈ (0, 2), and β(Ω) := min

{
κ3

(
1 − δ̃

2

)
, κ5

}
. Then, there exists

ε0 > 0 such that for each ε ∈ (0, ε0), problem (3.9) has a unique solution ~t := (t,σ,u,ρ) ∈ H for
each z ∈ H1(Ω) such that ‖z‖1,Ω ≤ ε. Moreover, there exists a constant cT > 0, independent of z
and the data f and g, such that there holds

‖T(z)‖1,Ω = ‖u‖1,Ω ≤ ‖~t‖ ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
. (3.12)

Proof. We proceed similarly as in the proof of [5, Lemma 3.4]. In fact, given z ∈ H1(Ω), we first deduce
from (3.6), using the Cauchy-Schwarz inequality, the Lipschitz-continuity of the operator induced by
µ (cf. (3.10) in Lemma 3.4), and the trace operator γ0 : H1(Ω) −→ L2(Γ), that there exists a positive
constant LA, depending on Lµ, the parameters κi, i ∈ {1, ..., 5}, and ‖γ0‖, such that[

A(~t)−A(~r) , ~s
]
≤ LA ‖~t− ~r‖ ‖~s‖ (3.13)

for all ~t, ~r, ~s ∈ H. In turn, recalling that ic denotes the continuous injection of H1(Ω) into L4(Ω),
it readily follows (3.8), by applying Cauchy-Schwarz and Hölder inequalities, that∣∣∣ [Bz(~t) , ~s

] ∣∣∣ ≤ ‖ic‖2 (κ2
1 + 1

)1/2 ‖z‖1,Ω ‖~t‖ ‖~s‖ ∀ ~t, ~s ∈ H , (3.14)

which, thanks to the linearity of Bz, and together with (3.13), proves that the operator A + Bz is

Lipschitz-continuous with constant LA +‖ic‖2
(
κ2

1 + 1
)1/2 ‖z‖1,Ω. Next, it is also clear from (3.6) that

for each ~r := (r, ζ,w, ξ), ~s := (s, τ ,v,η) ∈ H there holds[
A(~r)−A(~s) , ~r − ~s

]
=

∫
Ω

{
µ(|r|) r − µ(|s|) s

}
:
(
r − s

)
+ κ1 ‖(ζ − τ )d‖20,Ω

−κ1

∫
Ω

{
µ(|r|) r − µ(|s|) s

}
: (ζ − τ )d + κ2 ‖div(ζ − τ )‖20,Ω + κ3 ‖e

(
w − v

)
‖20,Ω

−κ3

∫
Ω

(r − s) : e
(
w − v

)
+ κ4 ‖ξ − η‖20,Ω + κ5 ‖w − v‖20,Γ

−κ4

∫
Ω

{
∇(w − v)− e(w − v)

}
: (ξ − η) ,

which, using the Cauchy-Schwarz and Young inequalities, the Lipschitz-continuity and strong mono-
tonicity properties of the operator induced by µ (cf. (3.10) and (3.11)), and the fact that

‖∇(w − v)− e(w − v)‖20,Ω = |w − v|21,Ω − ‖e(w − v)‖20,Ω ,
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yields for any δ, δ̃, δ̂ > 0

[
A(~r)−A(~s), ~r − ~s

]
≥
{(

µ1 −
κ1 Lµ

2δ

)
− κ3

2δ̃

}
‖r − s‖20,Ω + κ1

(
1− Lµ δ

2

)
‖(ζ − τ )d‖20,Ω

+ κ2 ‖div(ζ − τ )‖20,Ω +

{
κ3

(
1− δ̃

2

)
+
κ4

2δ̂

}
‖e
(
w − v

)
‖20,Ω + κ5 ‖w − v‖20,Γ

+ κ4

(
1− δ̂

2

)
‖ξ − η‖20,Ω −

κ4

2δ̂
|w − v|21,Ω .

(3.15)

Then, discarding the expression
κ4

2δ̂
multiplying ‖e

(
w−v

)
‖20,Ω, and according to the hypotheses on δ,

κ1, δ̃, κ3, δ̂, κ4, κ2, and κ5, and applying Lemmas 3.1 and 3.3, we can define the positive constants

α0(Ω) :=

(
µ1 −

κ1 Lµ
2δ

)
− κ3

2δ̃
, α1(Ω) := min

{
κ1

(
1− Lµ δ

2

)
,
κ2

2

}
,

α2(Ω) := min
{
α1(Ω) c1(Ω) ,

κ2

2

}
, α3(Ω) := κ0 β(Ω) − κ4

2δ̂
, and α4(Ω) := κ4

(
1− δ̂

2

)
,

which allow us to deduce from (3.15) that[
A(~r)−A(~s) , ~r − ~s

]
≥ α(Ω) ‖~r − ~s‖2 ∀ ~r, ~s ∈ H , (3.16)

where
α(Ω) := min

{
α0(Ω) , α2(Ω) , α3(Ω) , α4(Ω)

}
is the strong monotonicity constant of A. Moreover, by combining (3.14) and (3.16), we obtain as in
the proof of [5, Lemma 3.4] that

[(
A + Bz

)
(~r)−

(
A + Bz

)
(~s) , ~r − ~s

]
≥ α(Ω)

2
‖~r − ~s‖2 ∀~r, ~s ∈ H , (3.17)

provided ‖z‖1,Ω ≤ ε0, with

ε0 :=
α(Ω)

2 ‖ic‖2 (κ2
1 + 1)1/2

, (3.18)

which confirms the strong monotonicity of the nonlinear operator A + Bz. On the other hand, it
follows from (3.7), by using Cauchy-Schwarz’s inequality and the trace theorems in H(div; Ω) and
H1(Ω), that F ∈ H′ with

‖F‖ ≤ MT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
,

where MT := max
{

(1 +κ2
2)1/2 , κ5 ‖γ0‖

}
. Consequently, a straightforward application of [22, Theo-

rem 3.3.23], which establishes the bijectivity of Lipschitz-continuous and strongly monotone operators,
implies that there exists a unique solution ~t ∈ H of (3.9). Finally, applying (3.17) and performing

simple algebraic manipulations, we derive (3.12) with the positive constant cT :=
2MT

α(Ω)
. �

We now observe that the constant α(Ω) yielding the strong monotonicity of A+Bz can be maximized
by taking the parameters δ, κ1, δ̃, κ3, δ̂, and κ4 as the middle points of their feasible ranges, and by
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choosing κ2 and κ5 so that they maximize the minima defining α1(Ω) and β(Ω), respectively. More
precisely, we simply take

δ =
1

Lµ
, κ1 =

δ µ1

Lµ
=
µ1

L2
µ

, δ̃ = 1 , κ3 = δ̃
(
µ1 −

κ1 Lµ
2δ

)
=
µ1

2
,

κ2 = 2κ1

(
1− Lµ δ

2

)
= κ1 =

µ1

L2
µ

, κ5 = κ3

(
1− δ̃

2

)
=
κ3

2
=
µ1

4
,

δ̂ = 1 , and κ4 = δ̂ κ0 β(Ω) = κ0 κ5 =
κ0 µ1

4
,

(3.19)

which yields

α0(Ω) =
µ1

4
, α1(Ω) =

µ1

2L2
µ

, α2(Ω) = min
{
c1(Ω), 1

} µ1

2L2
µ

, α3(Ω) = α4(Ω) =
κ0 µ1

8
,

and hence

α(Ω) = min

{
µ1

4
,
κ0 µ1

8
, min

{
c1(Ω), 1

} µ1

2L2
µ

}
.

Note that the values of the stabilization parameters κi, i ∈ {1, ..., 5}, given in (3.19), are all explicitly
computable in terms of the constants µ1 and µ2 (cf. (2.3)), except κ4, which depends on the usually
unknown constant κ0 appearing in the Korn-type inequality given by Lemma 3.3. According to this,
the aforementioned explicit parameters in (3.19) together with an heuristic choice for κ0 (and hence

for κ4 =
κ0 µ1

4
) will be employed below in Section 6 for the corresponding numerical experiments.

3.3 The case of a homogeneous Dirichlet boundary condition

We now address the particular case of a homogeneous Dirichlet condition for the velocity u on the
boundary Γ. Since u lives now in H1

0(Ω), we realize that the last equation of (3.4) is not needed
anymore, which means that only four stabilization parameters are required, and hence our resulting
augmented mixed formulation becomes: Find ~t := (t,σ,u,ρ) ∈ H0 := L2

tr(Ω) × H0(div; Ω) ×
H1

0(Ω)× L2
skew(Ω) such that[(

A + Bu
)
(~t) , ~s

]
=
[
F , ~s

]
∀~s := (s, τ ,v,η) ∈ H0 , (3.20)

where the nonlinear operator A : H0 −→ H′0 is defined by

[
A
(
~t
)
, ~s
]

:=

∫
Ω
µ(|t|) t : s −

∫
Ω
σd : s +

∫
Ω
τ d : t +

∫
Ω
u · div τ −

∫
Ω
v · divσ

+

∫
Ω
ρ : τ −

∫
Ω
η : σ + κ1

∫
Ω

{
σd − µ(|t|) t

}
: τ d + κ2

∫
Ω

divσ · div τ

+ κ3

∫
Ω

{
e(u)− t

}
: e(v) + κ4

∫
Ω

(
ρ −

{
∇u − e(u)

})
: η ,

the bounded linear functional F : H0 −→ R corresponds to[
F , ~s

]
:=

∫
Ω
f ·
{
v − κ2 div τ

}

10



and the operator Bz is given, as before, by (3.8). In turn, the associated fixed-point operator is given
now by T0 : H1

0(Ω) −→ H1
0(Ω), where

T0(z) := u ∀ z ∈ H1
0(Ω) ,

and u is the third component of the unique solution (to be confirmed below) of the nonlinear problem:
Find ~t := (t,σ,u,ρ) ∈ H0 such that[(

A + Bz
)
(~t) , ~s

]
=
[
F , ~s

]
∀~s := (s, τ ,v,η) ∈ H0 . (3.21)

In this way, and similarly as in Section 3.2, our augmented mixed formulation (3.20) can be rewritten,
equivalently, as the fixed point problem: Find u ∈ H1

0(Ω) such that

T0(u) = u .

The analogue of Lemma 3.5, which will make use now of the first Korn inequality (cf. Lemma 3.2)
instead of Lemma 3.3, is established as follows.

Lemma 3.6 Assume that κ1 ∈
(

0,
2δµ1

Lµ

)
, κ3 ∈

(
0, 2δ̃

(
µ1 −

κ1 Lµ
2δ

))
, κ4 ∈

(
0, 2 δ̂ κ3

(
1− δ̃

2

))
,

and κ2 > 0, with δ ∈
(

0,
2

Lµ

)
, and δ̃, δ̂ ∈ (0, 2). Then, there exists ε0 > 0 such that for each

ε ∈ (0, ε0), problem (3.21) has a unique solution ~t := (t,σ,u,ρ) ∈ H0 for each z ∈ H1
0(Ω) such that

‖z‖1,Ω ≤ ε. Moreover, there holds

‖T0(z)‖1,Ω = ‖u‖1,Ω ≤ ‖~t‖ ≤
2 (1 + κ2

2)1/2

α(Ω)
‖f‖0,Ω .

Proof. Since most of the details are either similar or almost verbatim to those provided in the proof of
Lemma 3.5, we just concentrate here in the main difference of the analysis, which has to do with the
strong monotonicity of the nonlinear operator A. In other words, our starting point here is inequality
(3.15), which in the present case, and after applying Lemma 3.2, leads to

[
A(~r)−A(~s), ~r − ~s

]
≥
{(

µ1 −
κ1 Lµ

2δ

)
− κ3

2δ̃

}
‖r − s‖20,Ω + κ1

(
1− Lµ δ

2

)
‖(ζ − τ )d‖20,Ω

+ κ2 ‖div(ζ − τ )‖20,Ω +

{
κ3

2

(
1− δ̃

2

)
− κ4

4δ̂

}
|w − v|21,Ω + κ4

(
1− δ̂

2

)
‖ξ − η‖20,Ω .

Then, according to the hypotheses on δ, κ1, δ̃, κ3, δ̂, κ4, and κ2, and applying Lemma 3.1, we can
define the positive constants

α0(Ω) :=

(
µ1 −

κ1 Lµ
2δ

)
− κ3

2δ̃
, α1(Ω) := min

{
κ1

(
1− Lµ δ

2

)
,
κ2

2

}
,

α2(Ω) := min
{
α1(Ω) c1(Ω) ,

κ2

2

}
, α3(Ω) :=

κ3

2

(
1− δ̃

2

)
− κ4

4δ̂
, and α4(Ω) := κ4

(
1− δ̂

2

)
,

which, combined with the foregoing inequality, implies[
A(~r)−A(~s) , ~r − ~s

]
≥ α(Ω) ‖~r − ~s‖2 ∀ ~r, ~s ∈ H ,
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where
α(Ω) := min

{
α0(Ω) , α2(Ω) , cp α3(Ω) , α4(Ω)

}
(3.22)

and cp is the positive constant provided by Poincare’s inequality. The rest proceeds exactly as in the
proof of Lemma 3.5. In particular, the constant ε0 is given by (3.18) but with α(Ω) defined now by
(3.22). We omit further details. �

We end this section by remarking, as in Section 3.2, that α(Ω) is maximized by taking the parameters
δ, κ1, δ̃, κ3, δ̂, and κ4 as the middle points of their feasible ranges, and by choosing κ2 so that it
maximizes α1(Ω). The above means that we simply take

δ =
1

Lµ
, κ1 =

δ µ1

Lµ
=
µ1

L2
µ

, δ̃ = 1 , κ3 = δ̃
(
µ1 −

κ1 Lµ
2δ

)
=
µ1

2
,

κ2 = 2κ1

(
1− Lµ δ

2

)
= κ1 =

µ1

L2
µ

, δ̂ = 1 , and κ4 = δ̂ κ3

(
1− δ̃

2

)
=
κ3

2
=
µ1

4
,

(3.23)

which yields

α0(Ω) =
µ1

4
, α1(Ω) =

µ1

2L2
µ

, α2(Ω) = min
{
c1(Ω), 1

} µ1

2L2
µ

, α3(Ω) =
µ1

16
, α4(Ω) =

µ1

8
,

and hence

α(Ω) = min

{
min

{
c1(Ω), 1

} µ1

2L2
µ

, cp
µ1

16
,
µ1

8

}
.

The explicit parameters defined in (3.23) will be employed below in Section 5 for the corresponding
numerical experiments with homogeneous Dirichlet boundary conditions for the velocity u.

3.4 Solvability analysis of the fixed point equations

We now aim to establish the existence of unique fixed points of the operators T and T0. Actually,
in what follows we just concentrate in the analysis of T since the one of T0 is completely analogous.
Moreover, since the approach follows very closely the ideas developed in [5], we simplify the presen-
tation as much as possible and frequently refer to the results in that work. The same remarks apply
for the subsequent sections.

In order to prove the existence of a unique fixed point of the operator T, it suffices to verify the
hypotheses of the classical Banach’s fixed point theorem, whose statement is recalled in what follows.

Theorem 3.7 Let W be a closed subset of a Banach space X, and let T : W → W be a contraction
mapping. Then T has a unique fixed point.

We begin the analysis with the following straightforward consequence of Lemma 3.5.

Lemma 3.8 Let ε ∈ (0, ε0), with ε0 given by (3.18) (cf. proof of Lemma 3.5), let Wε be the closed

ball defined by Wε :=
{
z ∈ H1(Ω) : ‖z‖1,Ω ≤ ε

}
, and assume that the data satisfy

cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ ε , (3.24)

with cT given at the end of the proof of Lemma 3.5. Then there holds T(Wε) ⊆ Wε.
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In turn, the following lemma establishes a key estimate to derive next the required continuity
property of the operator T.

Lemma 3.9 Let ε ∈ (0, ε0), with ε0 given by (3.18), and let Wε :=
{
z ∈ H1(Ω) : ‖z‖1,Ω ≤ ε

}
.

Then there exists a positive constant CT :=
2 (κ2

1 + 1)1/2 ‖ic‖
α(Ω)

, such that

‖T(z)−T(z̃)‖1,Ω ≤ CT ‖T(z̃)‖1,Ω ‖z − z̃‖L4(Ω) ∀ z, z̃ ∈Wε . (3.25)

Proof. It follows as in the proof of [5, Lemma 3.7]. �

The main result of this section is stated next.

Theorem 3.10 Suppose that the parameters κi, i ∈ {1, ..., 5}, satisfy the conditions required by

Lemma 3.5. In addition, given ε ∈ (0, ε0), with ε0 defined by (3.18), we let Wε :=
{
z ∈ H1(Ω) :

‖z‖1,Ω ≤ ε
}

, and assume that the data satisfy (3.24) (cf. Lemma 3.8). Then, the augmented mixed

formulation (3.5) has a unique solution ~t := (t,σ,u,ρ) ∈ H with u ∈Wε, and there holds

‖~t‖ ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
, (3.26)

with cT given at the end of the proof of Lemma 3.5.

Proof. We proceed similarly as in the proof of [5, Theorem 3.9] and make use of the classical Banach’s
fixed point Theorem to prove that the mapping T has a unique fixed point in Wε. In fact, given
ε ∈ (0, ε0), we first notice, using (3.25) and the continuity of ic : H1(Ω) −→ L4(Ω), that

‖T(z)−T(z̃)‖1,Ω ≤ CT ‖ic‖ ‖T(z̃)‖1,Ω ‖z − z̃‖1,Ω ∀ z, z̃ ∈Wε .

Next, due to the definitions of the constants ε0 (cf. (3.18)) and CT (cf. Lemma 3.9), we obtain

‖T(z)−T(z̃)‖1,Ω ≤
2 (κ2

1 + 1)1/2 ‖ic‖2

α(Ω)
‖T(z̃)‖1,Ω ‖z − z̃‖1,Ω =

1

ε0
‖T(z̃)‖1,Ω ‖z − z̃‖1,Ω ,

which, according to (3.12) and our assumption (3.24), yields

‖T(z)−T(z̃)‖1,Ω ≤
1

ε0
cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
‖z − z̃‖1,Ω ≤

ε

ε0
‖z − z̃‖1,Ω

for all z, z̃ ∈ Wε. This inequality proves that actually, under the hypothesis (3.24), the operator
T : Wε −→Wε becomes a contraction, and hence it has a unique fixed point. �

4 The Galerkin scheme

In this section we introduce and study the Galerkin scheme of the augmented mixed formulation
(3.5). We analyze its solvability by employing a discrete version of the fixed point strategy developed
in Section 3.4. Finally, we derive the corresponding Céa estimate of our Galerkin scheme. We begin
by introducing arbitrary finite dimensional subspaces Hth, Hσh , Hu

h , and Hρh of the continuous spaces
L2
tr(Ω), H0(div; Ω), H1(Ω) and L2

skew(Ω), respectively. As usual, h denotes the size of a regular
triangulation Th of Ω made up of triangles T (when n = 2) or tetrahedra T (when n = 3) of diameter
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hT , that is h := max
{
hT : T ∈ Th

}
. Then, the Galerkin scheme associated with our problem

(3.5) reads: Find ~th := (th,σh,uh,ρh) ∈ Hh := Hth ×Hσh ×Hu
h ×Hρh such that[(

A + Buh

)
(~th) , ~sh

]
=
[
F , ~sh

]
∀~sh := (sh, τ h,vh,ηh) ∈ Hh . (4.1)

Next, analogously to the continuous case, we introduce the discrete version of T:

Th : Hu
h −→ Hu

h by Th(zh) := uh ∀ zh ∈ Hu
h ,

where uh is the third component of the unique solution (to be confirmed below) of the discrete
nonlinear problem: Find ~th := (th,σh,uh,ρh) ∈ Hh such that[(

A + Bzh
)
(~th) , ~sh

]
=
[
F , ~sh

]
∀~sh := (sh, τ h,vh,ηh) ∈ Hh . (4.2)

Then, similarly as for the continuous case, we rewrite our Galerkin scheme (4.1) as the fixed point
equation: Find uh ∈ Hu

h such that
Th(uh) = uh .

We continue our analysis by observing, exactly as we did in [5], that the arguments employed in
the proof of Lemma 3.5 can also be applied to the present discrete setting. In particular, for each
zh ∈ Hu

h the nonlinear operator A + Bzh : Hh −→ H′h becomes Lipschitz-continuous as well with

constant LA+‖ic‖2
(
κ2

1+1
)1/2 ‖zh‖1,Ω. Moreover, under the same feasible ranges stipulated in Lemma

3.5 for the stabilization parameters and the given zh ∈ Hu
h (instead of z ∈ H1(Ω)), one finds that

A + Bzh : Hh −→ H′h becomes strongly monotone with the same constant
α(Ω)

2
provided in (3.17).

Consequently, the classical result on the bijectivity of monotone operators given by [22, Theorem
3.3.23] implies now the following lemma.

Lemma 4.1 Assume that κ1 ∈
(

0,
2δµ1

Lµ

)
, κ3 ∈

(
0, 2δ̃

(
µ1 −

κ1 Lµ
2δ

))
, κ4 ∈

(
0, 2δ̂ κ0 β(Ω)

)
, and

κ2, κ5 > 0, with δ ∈
(

0,
2

Lµ

)
, δ̃, δ̂ ∈ (0, 2), and β(Ω) := min

{
κ3

(
1 − δ̃

2

)
, κ5

}
. Then, for each

ε ∈ (0, ε0), with ε0 given by (3.18), and for each zh ∈ Hu
h such that ‖zh‖1,Ω ≤ ε, problem (4.2) has a

unique solution ~th := (th,σh,uh,ρh) ∈ Hh. Moreover, with the same constant cT > 0 from Lemma
3.5, which is independent of zh and the data f and g, there holds

‖Th(zh)‖1,Ω = ‖uh‖1,Ω ≤ ‖~th‖ ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
. (4.3)

Now, analogously to the continuous case, we are able to derive the following main result concerning
the Galerkin scheme (4.1).

Theorem 4.2 Suppose that the parameters κi, i ∈ {1, ..., 5}, satisfy the conditions required by Lemma

4.1. In addition, given ε ∈ (0, ε0), with ε0 defined by (3.18), we let W h
ε :=

{
zh ∈ Hu

h : ‖zh‖1,Ω ≤ ε
}

,

and assume that the data satisfy (3.24) (cf. Lemma 3.8), that is

cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ ε , (4.4)

with cT given at the end of the proof of Lemma 3.5. Then, (4.1) has a unique solution ~th :=
(th,σh,uh,ρh) ∈ Hh with uh ∈W h

ε , and there holds

‖~th‖ ≤ cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
. (4.5)
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Proof. We first observe, thanks to (4.3), that the assumption (4.4) guarantees that Th(W h
ε ) ⊆ W h

ε .
Then, employing exactly the same arguments utilized in the proof of Theorem 3.10, we deduce that
Th : W h

ε −→ W h
ε is also a contraction. Hence, applying the Banach fixed point Theorem we obtain

that there exists a unique fixed point for Th, or equivalently, there exists a unique solution to (4.1).
In turn, the a priori estimate (4.5) follows directly from (4.3). �

Now we establish the corresponding Céa estimate of our Galerkin scheme (4.1). This result is
established in the following theorem.

Theorem 4.3 Let ~t ∈ H and ~th ∈ Hh be the unique solutions of the continuous and discrete problems
(3.5) and (4.1), respectively. In addition, given ε ∈ (0, ε0), with ε0 defined by (3.18), we assume that
the data f and g satisfy

cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ ε

2
, (4.6)

with cT given at the end of the proof of Lemma 3.5. Then, there exits a positive constant C, depending
only on LA and α(Ω), such that

‖~t−~th‖ ≤ C dist(~t,Hh) . (4.7)

Proof. In order to simplify the subsequent analysis, we define e~t := ~t − ~th. As usual, given any
~rh := (rh, ζh,wh, ξh) ∈ Hh, we decompose this error as

e~t = ξ~t + χ~t = (~t− ~rh) + (~rh −~th). (4.8)

First, from (3.5) and (4.1) we easily get the Galerkin orthogonality property

[A(~t)−A(~th),~sh] + [Bu(~t)−Buh
(~th),~sh] = 0 ∀~sh ∈ Hh,

and adding and subtracting Bu(~th) and A(~rh), we obtain

[A(~rh)−A(~th),~sh] + [Bu(~t−~th),~sh] = −[A(~t)−A(~rh),~sh] − [Bu−uh
(~th),~sh].

Hence, proceeding similarly with Bzh(~th) on the right hand side, and using the decomposition (4.8),
we find that

[A(~rh)−A(~th),~sh] + [Bu(χ~t),~sh] = − [A(~t)−A(~rh),~sh] − [Bu(ξ~t),~sh]

− [Bu−zh(~th),~sh] − [Bzh−uh
(~th),~sh] .

In particular, for ~sh = χ~t, using that u ∈ Wε, and applying the strong monotonicity of the form on
the left hand side, and the Lipschitz continuity of A and B on the right hand side, we deduce that

α(Ω)

2
‖χ~t‖

2 ≤ LA‖ξ~t‖‖χ~t‖+ ‖ic‖2(κ2
1 + 1)1/2‖u‖1,Ω‖ξ~t‖‖χ~t‖

+‖ic‖2(κ2
1 + 1)1/2‖u− zh‖1,Ω‖~th‖‖χ~t‖ + ‖ic‖2(κ2

1 + 1)1/2‖zh − uh‖1,Ω‖~th‖‖χ~t‖ ,

so that, using that ‖zh − uh‖1,Ω ≤ ‖χ~t‖ and ‖u− zh‖1,Ω ≤ ‖ξ~t‖, we arrive at

α(Ω)

2
‖χ~t‖

2 ≤
(
LA + ‖ic‖2(κ2

1 + 1)1/2‖u‖1,Ω + ‖ic‖2(κ2
1 + 1)1/2‖~th‖

)
‖ξ~t‖‖χ~t‖

+ ‖ic‖2(κ2
1 + 1)1/2‖~th‖‖χ~t‖

2 .
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But, since ‖~th‖ ≤ cT
{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ ε/2 and ‖u‖1,Ω ≤ ε/2, we conclude that(

α(Ω)

2
− ε

2
‖ic‖2(κ2

1 + 1)1/2

)
‖χ~t‖ ≤

(
LA + ε‖ic‖2(κ2

1 + 1)1/2
)
‖ξ~t‖,

which, together with the fact that ε ∈ (0, ε0), with ε0 defined in (3.18), and the triangle inequality,
finish the proof. �

An alternative way to prove the previous theorem is to use a Strang-type lemma as it was done in
[5, Lemma 4.3, Theorem 4.4]. Now, with the help of the previous theorem, we estimate the error for
the postprocessed pressure. In fact, according to the equation (2.7), and (3.2), we define our discrete
approximation of the pressure as

ph := − 1

n
tr
{
σh + chI + (uh ⊗ uh)

}
in Ω , with ch := − 1

n |Ω|

∫
Ω

tr(uh ⊗ uh) ,

which yields

p− ph =
1

n
tr
{(
σh − σ

)
+
(
uh ⊗ uh − u⊗ u

)}
+ (ch − c) ,

and thus, applying the Cauchy-Schwarz inequality, we first deduce that

‖p− ph‖0,Ω ≤ Ĉ
{
‖σ − σh‖0,Ω + ‖uh ⊗ uh − u⊗ u‖0,Ω + |c− ch|

}
,

where Ĉ > 0 depends on n and |Ω|. Next, bearing in mind the expression for c given by (3.2),
decomposing

uh ⊗ uh − u⊗ u =
(
uh − u

)
⊗ uh + u⊗

(
uh − u

)
,

and employing the triangle and Hölder inequalities, the compact embedding ic : H1(Ω) −→ L4(Ω),
and the a priori bounds for ‖u‖1,Ω and ‖uh‖1,Ω (cf. (3.26) in Theorem 3.10 and (4.5) in Theorem
4.2), we conclude from the foregoing equations that there exists a constant C > 0, independent of h,
but depending on n, |Ω|, ‖ic‖, and the data f and g, such that

‖p− ph‖0,Ω ≤ C
{
‖σ − σh‖div;Ω + ‖u− uh‖1,Ω

}
. (4.9)

We now specify a concrete example of finite element subspaces for our Galerkin scheme (4.1). In
what follows, given an integer k ≥ 0 and a set S ⊆ R := Rn, Pk(S) denotes the space of polynomial
functions on S of degree ≤ k. In addition, according to the notation described in Section 2.1, we set
Pk(S) := [Pk(S)]n and Pk(S) := [Pk(S)]n×n. Similarly, C(Ω) = [C(Ω)]n and C(S) := [C(S)]n×n .
We start defining the corresponding local Raviart-Thomas spaces of order k as

RTk(T ) := Pk(T ) ⊕ Pk(T )x ∀T ∈ Th ,

where x is a generic vector in Rn. Then, we introduce examples of specific finite element subspaces
Hth, Hσh , Hu

h , and Hρh approximating the unknowns t, σ, u and ρ as follows:

Hth :=
{
sh ∈ L2

tr(Ω) : sh

∣∣∣
T
∈ Pk(T ) ∀T ∈ Th

}
, (4.10)

Hσh :=
{
τ h ∈ H0(div; Ω) : ct τ

∣∣∣
T
∈ RTk(T ) , ∀ c ∈ Rn ∀T ∈ Th

}
, (4.11)

Hu
h :=

{
vh ∈ C(Ω) : vh

∣∣∣
T
∈ Pk+1(T ) ∀T ∈ Th

}
, (4.12)
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Hρh :=
{
ηh ∈ L2

skew(Ω) : ηh

∣∣∣
T
∈ Pk(T ) ∀T ∈ Th

}
. (4.13)

The approximation properties of the above finite element subspaces are as follows (cf. [4], [13]):

(APth) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each
r ∈ Hs(Ω) ∩ L2

tr(Ω), there holds

dist(r,Hth) ≤ C hs ‖r‖s,Ω .

(APσh ) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each
ζ ∈ Hs(Ω) ∩ H0(div; Ω) with div ζ ∈ Hs(Ω), there holds

dist(ζ,Hσh ) ≤ C hs
{
‖ζ‖s,Ω + ‖div ζ‖s,Ω

}
.

(APuh ) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each
w ∈ Hs+1(Ω), there holds

dist(w,Hu
h ) ≤ C hs ‖w‖s+1,Ω .

(APρh) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each
η ∈ Hs(Ω) ∩ L2

skew(Ω), there holds

dist(η,Hρh) ≤ C hs ‖η‖s,Ω .

As a consequence of the above we can establish the convergence result of our Galerkin scheme (4.1)
for this particular choice of spaces. We notice here that the main assumption (3.24) on the data
guaranteeing the well-posedness of the continuous and discrete schemes follows from (4.6), and hence
it suffices to assume the latter only.

Theorem 4.4 Besides the hypotheses of Lemma 4.1 (or Lemma 3.5) and Theorem 4.3, assume that
there exists s > 0 such that t ∈ Hs(Ω), σ ∈ Hs(Ω), divσ ∈ Hs(Ω), u ∈ Hs+1(Ω), and ρ ∈ Hs(Ω),
and that the finite element subspaces are defined by (4.10) – (4.13). Then, there exists C > 0,
independent of h, such that for each h > 0 there holds

‖~t−~th‖ + ‖p− ph‖0,Ω ≤ C hmin{s,k+1}
{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s+1,Ω + ‖ρ‖s,Ω

}
.

Proof. It follows from the Céa estimate (4.7), the upper bound given by (4.9), and the approximation
properties (APth), (APσh ), (APuh ) and (APρh) . �

5 A posteriori error analysis

In this section we derive a reliable and efficient residual-based a posteriori error estimate for (4.1),
with the discrete spaces introduced in Section 4 for n = 3. After that, we introduce our approach in
the two-dimensional case and stand out the differences between the estimator obtained for n = 3 and
n = 2. We first recall that the curl of a three dimensional vector field v := (v1, v2, v3) is the vector

curlv = ∇× v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
.
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Then, given a tensor function τ := (τij)3×3, the operator curl denotes the operator curl acting along
each row of τ , that is, curl τ is the 3× 3 tensor whose rows are given by

curl τ :=


curl(τ11, τ12, τ13)

curl(τ21, τ22, τ23)

curl(τ31, τ32, τ33)

 .

Having defined curl, we now introduce the Sobolev space

H(curl; Ω) := {w ∈ L2(Ω) : curlw ∈ L2(Ω)}.

In addition, we denote by τ × ν the 3× 3 tensor whose rows are given by the tangential trace of each
row of τ , that is,

τ × ν :=


(τ11, τ12, τ13)× ν

(τ21, τ22, τ23)× ν

(τ31, τ32, τ33)× ν

 .

Furthermore, we denote by Eh the set of all faces e of Th, subdivided as follows:

Eh = Eh(Ω) ∪ Eh(Γ) ,

where Eh(Ω) := { e ∈ Eh : e ⊆ Ω } and Eh(Γ) := { e ∈ Eh : e ⊆ Γ }. In turn, for each T ∈ Th we
let E(T ) be the set of faces of T . As usual, he stands for the diameter of a given e ∈ Eh. Also for
each face e ∈ Eh we fix a unit normal νe to e. Then, given τ ∈ H(curl; Ω) and e ∈ Eh(Ω), we let
[[ τ ×νe ]] := (τ |T ′−τ |T ′′)|e×νe, where T ′ and T ′′ are elements of Th having e as a common face. From
now on, when no confusion arises, we will simply write ν instead of νe.

Now, let ~t := (t,σ,u,ρ) ∈ H and ~th := (th,σh,uh,ρh) ∈ Hh be the unique solutions of the
continuous and discrete problems (3.5) and (4.1), respectively. Then, we introduce the global a
posteriori error estimator

Θ :=

∑
T∈Th

Θ2
T


1/2

, (5.1)

where for each T ∈ Th we set:

Θ2
T := h2

T ‖curl(th + ρh)‖20,T + ‖σd
h − µ(|th|) th + (uh ⊗ uh)d‖20,T

+ ‖σh − σt
h‖20,T + ‖f − Ph(f)‖20,T + ‖f + div(σh)‖20,T

+ ‖e(uh)− th‖20,T + ‖ρh −∇uh + e(uh)‖20,T

+
∑

e∈E(T )∩Eh(Ω)

he ‖ [[ (th + ρh)× ν ]] ‖20,e +
∑

e∈E(T )∩Eh(Γ)

‖g − uh‖20,e

+
∑

e∈E(T )∩Eh(Γ)

he ‖(∇g − th − ρh)× ν‖20,e ,

(5.2)

where Ph is the L2(Ω)-orthogonal projector onto Hth. Note that the above definition requires that
∇g × ν|e ∈ L2(e) for each e ∈ Eh(Γ), which is fixed below by assuming that g ∈ H1(Γ).

The main result of this section is stated as follows.
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Theorem 5.1 Let ~t ∈ H and ~th ∈ Hh be the unique solutions of the continuous and discrete problems
(3.5) and (4.1), respectively, and assume that g ∈ H1(Γ). Then, there exist Crel > 0 and Ceff > 0,
independent of h, such that

CeffΘ ≤ ‖~t−~th‖ ≤ CrefΘ. (5.3)

The efficiency of Θ (lower bound in (5.3)) is proved in Section 5.2, whereas the corresponding
reliability estimate (upper bound in (5.3)) is proved next in Section 5.1.

5.1 Reliability of the a posteriori error estimator

In order to prove the reliability of our a posteriori error estimator, we follow the strategy proposed
originally in [10], and then used in [18], which is based on a linearization technique that involves the
Gâteaux derivatives of the nonlinear terms of the formulation. More precisely, proceeding similarly as
in [18], we begin with the following result.

Lemma 5.2 Let ~t ∈ H and ~th ∈ Hh be the unique solutions of the continuous and discrete problems
(3.5) and (4.1), respectively. In addition, given ε ∈ (0, ε0), with ε0 defined by (3.18) (cf. proof of
Lemma 3.5), we assume that the data f and g satisfy

cT

{
‖f‖0,Ω + ‖g‖0,Γ + ‖g‖1/2,Γ

}
≤ ε

2
, (5.4)

with cT given at the end of the proof of Lemma 3.5. Then, there exists a constant C > 0, independent
of h, such that

‖~t−~th‖ ≤ C‖R‖ ,

where
R(~s) := R1(s) + R2(τ ) + R3(v) + R4(η) ∀~s := (s, τ ,v,η) ∈ H ,

and R1(s), R2(τ ), R3(v), R4(η) are defined by

R1(s) :=

∫
Ω

{
σd
h − µ(|th|) th + (uh ⊗ uh)d

}
: s ,

R2(τ ) := 〈τν, g〉 −
∫

Ω
uh · div τ −

∫
Ω
th : τ d − κ2

∫
Ω

{
f + divσh

}
· divτ

−
∫

Ω
ρh : τ − κ1

∫
Ω

{
σd
h − µ(|th|) th + (uh ⊗ uh)d

}
: τ d ,

R3(v) :=

∫
Ω

{
f + divσh

}
· v − κ3

∫
Ω

{
e(uh)− th

}
: e(v) + κ5

∫
Γ

{
g − uh

}
· v ,

R4(η) :=
1

2

∫
Ω

{
σh − σt

h

}
: η − κ4

∫
Ω

(
ρh −

{
∇uh − e(uh)

})
: η .

(5.5)

Furthermore, there holds
R(~sh) = 0 ∀~sh ∈ Hh . (5.6)

Proof. First, following the ideas introduced in [18], we note that the operator A (cf. (3.6)) can be
split into linear and non-linear terms:

[A(~t) ,~s] = [A1(t) , s] − κ1 [A1(t) , τ d] + [A2(~t) ,~s] ,
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where

[A1(t) , s] :=

∫
Ω
µ(|t|) t : s ,

[A2(~t) ,~s] := −
∫

Ω
σd : s +

∫
Ω
τ d : t +

∫
Ω
u · div τ −

∫
Ω
v · divσ

+

∫
Ω
ρ : τ −

∫
Ω
η : σ + κ1

∫
Ω
σd : τ d

+ κ2

∫
Ω

divσ · div τ + κ3

∫
Ω

{
e(u)− t

}
: e(v)

+ κ4

∫
Ω

(
ρ −

{
∇u − e(u)

})
: η + κ5

∫
Γ
u · v .

Next, since µ is of class C1 and satisfies the assumptions (2.3), minor modifications of the proof of [10,
Lemma 5.1] allow to show that the nonlinear operator A1 is Gâteaux differentiable. This means that
for each r ∈ L2

tr(Ω) there exists a bounded linear operator DA1(r) : L2
tr(Ω)→ L2

tr(Ω)′ such that

DA1(r)(t) := lim
ε→0

A1(r + εt)−A1(r)

ε
∀ t ∈ L2

tr(Ω) .

Notice that for each r ∈ L2
tr(Ω), DA1(r) can be considered as a bilinear form satisfying

DA1(r)(t, s) := DA1(r)(t)(s) ∀ t, s ∈ L2
tr(Ω) .

In addition, it is easy to prove, using (2.3), that DA1(r) becomes both uniformly bounded and elliptic
with constants Lµ and µ1, respectively, that is

|DA1(r)(t, s)| ≤ Lµ‖t‖0,Ω‖s‖0,Ω (5.7)

and
|DA1(r)(s, s)| ≥ µ1‖s‖20,Ω , (5.8)

for all r , t , s ∈ L2
tr(Ω) (see, for instance, [10, Lemma 5.1]). Then, given r ∈ L2

tr(Ω), we introduce
the linear operator

[Ã(~t) ,~s] := DA1(r)(t, s) − κ1DA1(r)(t, τ d) + [A2(~t) ,~s] ∀~t, ~s ∈ H ,

so that, using (5.7), (5.8), and the same arguments showing the strong monotonicity of [A(~t) , (~s)], we
deduce the ellipticity of Ã

[Ã(~s) ,~s] ≥ α(Ω)‖~s‖2 ∀~s ∈ H . (5.9)

It readily follows that

[(Ã + Bw)(~s) ,~s] ≥ α(Ω)

2
‖~s‖2 , (5.10)

for all ~s ∈ H and for all w ∈ H1(Ω) such that ‖w‖1,Ω ≤ ε ∈ (0, ε0) , with ε0 defined by (3.18), which
yields the inf-sup condition

α(Ω)

2
‖~r‖ ≤ sup

~s∈H
~s 6=0

[(Ã + Bw)(~r),~s]

‖~s‖
∀~r ∈ H .
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Hence, taking in particular w = u and ~r = ~t−~th, we deduce from the foregoing inequality that

α(Ω)

2
‖~t−~th‖ ≤ sup

~s∈H
~s 6=0

[(Ã + Bu)(~t−~th),~s]

‖~s‖
. (5.11)

On the other hand, using the Mean Value Theorem, we can assert that there exists a convex combi-
nation rh of t and th such that

DA1(rh)(t− th, s) = [A1(t) , s] − [A1(th) , s] ∀s ∈ L2
tr(Ω) , (5.12)

so that using now rh in the definition of Ã, we can write

[Ã(~t) ,~s] = DA1(rh)(t, s) − κ1DA1(rh)(t, τ d) + [A2(~t) ,~s] ∀~t, ~s ∈ H .

The foregoing equality and (5.12) imply that

[(Ã + Bu)(~t−~th) ,~s] = [Ã(~t)− Ã(~th) ,~s] + [Bu(~t−~th) ,~s]

= [A(~t)−A(~th) ,~s] + [Bu(~t−~th) ,~s]

= [(A + Bu)(~t) ,~s] − [(A + Bu)(~th) ,~s]

=
[
F , ~s

]
− [(A + Bu)(~th) ,~s] ,

and therefore, the inf–sup condition (5.11) becomes

α(Ω)

2
‖~t−~th‖ ≤ sup

~s∈H
~s 6=0

[(R̃(~t−~th),~s]

‖~s‖
,

where
[R̃(~t−~th),~s] :=

[
F , ~s

]
− [(A + Buh

)(~th) ,~s] + [Buh−u(~th) ,~s] .

Next, using that ∣∣∣ [Buh−u(~th) , ~s
] ∣∣∣ ≤ ‖ic‖2 (κ2

1 + 1
)1/2 ‖uh − u‖1,Ω ‖~th‖ ‖~s‖ ,

and having in mind (4.5) and (5.4), we find that(
α(Ω)

2
−
ε‖ic‖2

(
κ2

1 + 1
)1/2

2

)
‖~t−~th‖ ≤ sup

~s∈H
~s 6=0

[
F , ~s

]
− [(A + Buh

)(~th) ,~s]

‖~s‖
.

This estimate together with the fact that ε ∈ (0, ε0), with ε0 defined in (3.18), allow us to conclude
that

α(Ω)

4
‖~t−~th‖ ≤ sup

~s∈H
~s 6=0

[
F , ~s

]
− [(A + Buh

)(~th) ,~s]

‖~s‖
= sup

~s∈H
~s 6=0

R(~s)

‖~s‖
, (5.13)

with
R(~s) := R1(s) + R2(τ ) + R3(v) + R4(η) ,
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where R1, R2, R3 and R4 are defined in (5.5). Finally, (5.6) is a straightforward consequence of (4.1).
�

We end this section by remarking that the supremum in (5.13) can be bounded in terms of Ri,
i = 1, · · · , 4 as follows:

α(Ω)

4
‖~t−~th‖ ≤

{
‖R1‖L2

tr(Ω)′ + ‖R2‖H0(div;Ω)′ + ‖R3‖H1(Ω)′ + ‖R4‖L2
skew(Ω)′

}
, (5.14)

and thus, the derivation of the upper bound in (5.3) is completed by providing suitable upper bounds
for each one of the terms on the right hand side of (5.14). To this respect, we first observe that direct
applications of the Cauchy-Schwarz inequality give the corresponding estimates for the functionals
R1, R3 and R4. Finally, the derivation of the upper bound for ‖R2‖H0(div;Ω)′ makes use of a stable
Helmholtz decomposition for H0(div; Ω) which has been recently proved for n = 3 in [14, Lemma 4.3]
(see also [11, Theorem 3.1]), the Raviart–Thomas interpolation operator (see [4, 13]), the classical
Clément interpolator ([7]), and the local approximation properties of them. This estimate follows
basically from slight modifications of the proofs of [18, Theorem 3.7] and [18, Lemmas 3.8 and 3.9]. In
this regard, we just comment that within the process of bounding ‖R2‖H0(div;Ω)′ it also appears the
local term h2

T ‖∇uh−th−ρh‖20,T , which being dominated by ‖e(uh)−th‖20,T + ‖ρh−∇uh+e(uh)‖20,T ,

is then omitted from the final definition of Θ2
T (cf. (5.2)). Further details on all the reliability estimates

can be found in the aforementioned bibliography.

5.2 Efficiency of the a posteriori error estimator

We now aim to prove the efficiency of Θ, that is, the lower bound in (5.3). First we deal with the zero
order terms appearing in the definition of ΘT , for which we begin with the local estimates provided
by the following lemma.

Lemma 5.3 There hold

‖f + div(σh)‖0,T ≤ ‖σ − σh‖div,T ∀T ∈ Th ,
‖σh − σt

h‖0,T ≤ 2 ‖σ − σh‖0,T ∀T ∈ Th ,

and there exist positive constants C1, C2, independent of h, such that

‖e(uh)− th‖20,T ≤ C1

{
‖u− uh‖21,T + ‖t− th‖20,T

}
∀T ∈ Th ,

and
‖ρh −∇uh + e(uh)‖20,T ≤ C2

{
‖ρ − ρh‖20,T + ‖u − uh‖21,T

}
∀T ∈ Th .

Proof. These inequalities follow by using the relations f = −div(σ), σ = σt, e(u) = t, and
ρ = ∇u− e(u), respectively. We omit further details. �

We continue with the following non-local estimates.

Lemma 5.4 There exists C3, C4 > 0, independent of h, such that there hold∑
e∈Eh(Γ)

‖g − uh‖20,e ≤ C3 ‖u− uh‖21,Ω ,

and

‖σd
h − µ(|th|) th + (uh ⊗ uh)d‖20,Ω ≤ C4

{
‖σ − σh‖20,Ω + ‖t− th‖20,Ω + ‖u− uh‖21,Ω

}
.
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Proof. The first estimate follows from the fact that g = u on Γ and the trace inequality, whereas
the second one is a straightforward consequence of the constitutive relation σd = µ(|t|)t − (u ⊗ u)d

in Ω, the Lipschitz-continuity of the nonlinear operator induced by µ (cf. (3.10) in Lemma 3.4), a
convenient decomposition of u⊗u−uh⊗uh, and the continuity of the injection ic : H1(Ω)→ L4(Ω).

�

The derivation of the upper bounds of the remaining terms defining the a posteriori error indicator
Θ2
T proceeds similarly to [18], but adapting the results to the three-dimensional case by using some

recent results from [14] and applying inverse inequalities and the localization technique based on
element-bubble and edge-bubble functions. These estimates are summarized in the following three
lemmas.

Lemma 5.5 There exist positive constants C5, C6, independent of h, such that

a) h2
T ‖curl(th + ρh)‖20,T ≤ C5

{
‖t − th‖20,T + ‖ρ − ρh‖20,T

}
∀T ∈ Th,

b) he ‖ [[ (th + ρh)× ν ]] ‖20,e ≤ C6

{
‖t− th‖20,ωe

+ ‖ρ− ρh‖20,ωe

}
∀ e ∈ Eh(Ω),

where ωe := ∪ {T ′ ∈ Th : e ∈ E(T ′)}.

Proof. We refer to [14, Lemmas 4.9 and 4.10] for the proofs of a) and b). �

Lemma 5.6 Assume that g is piecewise polynomial. Then, there exists C7 > 0, independent of h,
such that

he ‖(∇g − th − ρh)× ν‖20,e ≤ C7

{
‖t− th‖20,Te + ‖ρ− ρh‖20,Te

}
∀ e ∈ Eh(Γ) ,

where Te is the tetrahedron of Th having e as a face.

Proof. It follows from a slight modification of the proof of [14, Lemma 4.13]. �

Lemma 5.7 There exists C8 > 0, independent of h, such that

‖f − Ph(f)‖0,T ≤ C8 ‖σ − σh‖div,T ∀T ∈ Th .

Proof. It suffices to see that ‖f −Ph(f)‖20,T = ‖Ph(divσ)−divσ‖20,T , add and subtract Ph(divσh),
and then apply continuity of the operator Ph. �

We end this section by remarking that the required efficiency of the a posteriori error estimator Θ
follows straightforwardly from Lemmas 5.3 – 5.7.

5.3 Two dimensional case

In what follows we briefly discuss about the a posteriori error estimator in the two dimensional case.
We start by introducing some notations. For each T ∈ Th we let E(T ) be the set of edges of T and we
denote by Eh the set of all edges of Th, subdivided as in the three dimensional case:

Eh = Eh(Ω) ∪ Eh(Γ) ,
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where Eh(Ω) := { e ∈ Eh : e ⊆ Ω } and Eh(Γ) := { e ∈ Eh : e ⊆ Γ }. In what follows, he stands for
the length of a given edge e ∈ Eh. Now, let v ∈ L2(Ω) such that v|T ∈ C(T ) for each T ∈ Th. Then,
given e ∈ Eh(Ω), we denote by [[ v ]] the jump of v across e, that is [[ v ]] := (v|T ′)|e − (v|T ′′)|e, where T ′

and T ′′ are the triangles of Th having e as an edge. Also, we fix a unit normal vector νe := (n1, n2)t

to the edge e (its particular orientation is not relevant) and let se := (−n2, n1)t be the corresponding
fixed unit tangential vector along e. Hence, given v ∈ L2(Ω) and τ ∈ L2(Ω) such that v|T ∈ C(T )
and τ |T ∈ C(T ), respectively, for each T ∈ Th, we let [[v · se ]] and [[ τ se ]] be the tangential jumps of
v and τ , across e, that is [[v · se ]] := {(v|T ′)|e − (v|T ′′)|e} · se and [[ τ se ]] := {(τ |T ′)|e − (τ |T ′′)|e} se,
respectively. From now on, when no confusion arises, we will simply write s and ν instead of se and
νe, respectively. Finally, for sufficiently smooth tensor fields τ := (τij)2×2, we let

curl τ :=


∂τ12

∂x1
− ∂τ11

∂x2

∂τ22

∂x1
− ∂τ21

∂x2

 .

Now, let ~t := (t,σ,u,ρ) ∈ H and ~th := (th,σh,uh,ρh) ∈ Hh be the unique solutions of the
continuous and discrete problems (3.5) and (4.1), respectively. Then, we introduce the global a
posteriori error estimator

Θ̂ :=

∑
T∈Th

Θ̂2
T


1/2

, (5.15)

where for each T ∈ Th:

Θ̂2
T := h2

T ‖curl(th + ρh)‖20,T + ‖σd
h − µ(|th|) th + (uh ⊗ uh)d‖20,T

+‖σh − σt
h‖20,T + ‖f − Ph(f)‖20,T + ‖f + div(σh)‖20,T

+ ‖e(uh)− th‖20,T + ‖ρh −∇uh + e(uh)‖20,T

+
∑

e∈E(T )∩Eh(Ω)

he ‖ [[ (th + ρh)s ]] ‖20,e +
∑

e∈E(T )∩Eh(Γ)

‖g − uh‖20,e

+
∑

e∈E(T )∩Eh(Γ)

he

∥∥∥∥dgds − (th + ρh)s

∥∥∥∥2

0,e

.

The reliability of Θ̂ can be proved similarly as in the three dimensional case, that is, by using
a global inf-sup condition for a linearization of the problem, Helmholtz’s decomposition and local
approximation properties of interpolation operators. Indeed, if we compare the definitions of Θ (cf.
(5.1)) and Θ̂ we observe that most of the terms are exactly the same in both cases. In turn, in order
to prove the efficiency of Θ̂ it suffices to control the new terms, which is the purpose of the following
two lemmas.

Lemma 5.8 There exist positive constants C1, C2, independent of h, such that

a) h2
T ‖curl(th + ρh)‖20,T ≤ C1

{
‖t − th‖20,T + ‖ρ − ρh‖20,T

}
∀T ∈ Th,

b) he ‖ [[ (th + ρh) s ]] ‖20,e ≤ C2

{
‖t− th‖20,ωe

+ ‖ρ− ρh‖20,ωe

}
∀ e ∈ Eh(Ω),

where ωe := ∪ {T ′ ∈ Th : e ∈ E(T ′)}.
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Proof. For a) we refer to [3, Lemma 4.3] (see also [18, Lemma 3.15] or [16, Lemma 4.9]). Similarly,
for b) we refer to [3, Lemma 4.4] (see also[18, Lemma 3.15] or [16, Lemma 4.10]). �

Lemma 5.9 Assume that g is piecewise polynomial. Then, there exists C3 > 0, independent of h,
such that

he

∥∥∥∥dgds − (th + ρh)s

∥∥∥∥2

0,e

≤ C3

{
‖t− th‖20,Te + ‖ρ− ρh‖20,Te

}
∀ e ∈ Eh(Γ) ,

where Te is the triangle of Th having e as an edge.

Proof. The proof follows from a slight modifications of the proof of [16, Lemma 4.15]. �

Therefore, the main result in the 2D case is stated as follows.

Theorem 5.10 Let~t ∈ H and~th ∈ Hh be the unique solutions of the continuous and discrete problems
(3.5) and (4.1), respectively, and assume that g ∈ H1(Γ). Then, there exist Ĉrel > 0 and Ĉeff > 0,
independent of h, such that

ĈeffΘ̂ ≤ ‖~t−~th‖ ≤ ĈrefΘ̂.

6 Numerical results

Test 1. Our first example serves to illustrate the accuracy of the mixed finite element method
(as predicted by Theorem 4.4), and also to assess the practical performance of the method in a 3D
computation. We construct the following analytical solution to (2.1) and (2.6)

u =

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 , t = e(u), ρ = ∇u− e(u),

p = x3
1 − x3

2 − x3
3, σ = µ(|t|)e(u)− (u⊗ u)− pI,

defined on the box Ω = (0, 1) × (0, 1) × (−1, 1), and where the viscosity is specified by (2.4) with
α0 = 2 and α1 = β = 1. The manufactured velocity is divergence free and it is used to apply the
Dirichlet datum on Γ. It also satisfies the boundary compatibility condition

∫
Γ u·ν = 0. Moreover, the

proposed pressure has zero mean value in Ω, implying that the last equation in (2.6) is fulfilled. The
stabilization constants are chosen according to (3.19), leading to κ1 = κ2 = 0.0555, κ3 = 1, κ5 = 0.5,
and as κ4 depends on the (unknown) Korn constant, we simply take κ4 = κ5. An experimental
convergence analysis is performed, focusing on the lowest-order scheme (with k = 0). Six steps of
uniform mesh refinement were applied to an initial structured tetrahedral mesh, and on each nested
mesh we denote computed errors and convergence rates as

e(t) = ‖t− th‖0,Ω, e(σ) = ‖σ − σh‖0,div, e(u) = ‖u− uh‖1,Ω,

e(ρ) = ‖ρ− ρh‖0,Ω, r(·) = −2 log(e(·)/ê(·))[log(N/N̂)]−1,

where e, ê stand for errors generated by methods on meshes having N, N̂ degrees of freedom, respec-
tively. These errors are tabulated by number of degrees of freedom and meshsize in Table 1. Each
individual error exhibits a clear O(h) rate of convergence, as expected from the a priori error estimates
stated in Theorem 4.4. The last column of the table confirms that a maximum of six Picard iterations
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D.o.f. h e(t) r(t) e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) iter

270 1.4142 4.2007 – 42.5310 – 8.1726 – 2.3254 – 6
1887 0.7071 2.6383 0.6710 24.4819 0.7967 5.4160 0.5935 1.8920 0.2975 5

14211 0.3535 1.4840 0.8300 13.9391 0.8125 3.1370 0.7878 1.1008 0.7813 6
74322 0.2020 0.8804 0.9330 8.1546 0.9580 1.8845 0.9106 0.6505 0.9398 6

285090 0.1285 0.5683 0.9682 5.2564 0.9715 1.2177 0.9660 0.4143 0.9983 5
871875 0.0883 0.3930 0.9845 3.6869 0.9465 0.8416 0.9859 0.2843 1.0046 6

2741364 0.0524 0.2472 0.9937 2.2198 0.9687 0.5129 0.9803 0.1822 1.0175 6

Table 1: Test 1. Experimental convergence and fixed-point iteration count for the approximation of
the Navier-Stokes equations with nonlinear viscosity.

are required to achieve a prescribed tolerance of 1E-6. All linear systems arising after fixed point lin-
earization are solved with the unsymmetric multi-frontal direct solver for sparse matrices UMFPACK.
Computed solutions are shown in Figure 1.

Test 2. Our next example assesses the accuracy of the proposed scheme along with the properties
of the adaptive error estimator (5.15) (specialized for the 2D case). The domain is conformed by a
rectangle (0, 1.5) × (0, 1) with an pear-shaped hole inside. The viscosity is also given by (2.4) with
α0 = 1, α1 = 0.1, and β = 1, and the forcing and boundary terms f , g are chosen such that the exact
solution to (2.6) is given by

u =

(
1− exp(λx1) cos(2πx2)
λ
2π exp(λx1) sin(2πx2)

)
, t = e(u), ρ = ∇u− e(u),

p =
1− exp(2λx1)

2(x1 − a)2 + 2(x2 − b)2
, σ = µ(|t|)e(u)− (u⊗ u)− pI,

with the parameter λ = 0.5 −
√

0.25 + 4π2, and (a, b) = (3/4, 1/2) is a point located within the
hole in the domain, and close to the interior of Ω. The stabilization parameters take the values
κ1 = κ2 = 0.6944, κ3 = 0.5, κ4 = κ5 = 0.25. Due to the singularity of the pressure (and therefore
the Cauchy stress) at (a, b) we expect sub-optimal convergence of the method under uniform mesh
refinement, and so we apply an adaptive algorithm. The nonlinear system is linearized with a fixed
point strategy (stopped when the L2−norm of the total residual attains the tolerance 1E-6), and in this
case the subsequent linear systems were solved with the direct solver MUMPS. After computing locally
the estimator using (5.15), we proceed to mark elements for refinement using the Dörfler marking,
which consists in marking sufficiently many elements so that they represent a given fraction of the
total estimated error (cf. [9]). A remeshing method is then applied, targeting the equidistribution of
the local error indicators in the updated mesh.

In Figure 2 we report on the convergence history of the method (in its lowest-order configuration)
following both a uniform refinement, and successive mesh adaptation according to the algorithm de-
scribed above. First, we notice a slightly larger Picard iteration count for this example (in comparison
with the results in Table 1). Secondly, we also observe a loss of optimality in the convergence rates
under uniform mesh refinement, especially for the vorticity. In addition, the effectivity index (com-
puted as eff(θ̂) := e/θ̂, where e denotes the total error) oscillates around 0.7 in the case of uniform

26



Figure 1: Test 1. Iso-surfaces of Euclidean norm of the approximate strain tensor (top left), Euclidean
norm of the Cauchy stress (top middle), postprocessed pressure (top right), approximate velocity
components and computed streamlines (center row), and vorticity components (bottom row).

refinement. This is remediated by the adaptive algorithm, which restores optimal convergence rates
for all fields and a much more steady effectivity index. One can also notice that the method using
adaptive mesh refinement outperforms the uniformly refined scheme by almost two orders of mag-
nitude (in the sense of needed degrees of freedom to attain a given error). The initial coarse mesh,
together with triangulations obtained after two and four adaptive steps are displayed in Figure 3. We
observe meshes heavily refined in the neighbourhood of (a, b) and near to the left wall. Finally, we
present the computed numerical solutions in Figure 4, exhibiting well-resolved profiles for all fields.

Test 3. The third example focuses on the driven cavity flow problem on the unit cube. The external
body force is zero, and the three-dimensional flow patterns are determined by the boundary conditions
only: an unidirectional Dirichlet velocity is set on the top lid u = g = (1, 0, 0)T , and no-slip velocities
u = 0 are imposed elsewhere on Γ. The viscosity is again taken as the Carreau law (2.4) with
α0 = 0.005, α1 = 0.01 and β = 1. An initially coarse tetrahedral mesh of 1058 elements and 332
vertices was generated, and the proposed numerical scheme was used to solve the model problem,
now via Newton linearization steps (with a fixed tolerance of 1E-8 on the residuals). After this first

27



N

er
ro
r

103 104 105

100

101

102

Ch

e(t) uniform
e(σ) uniform
e(t) adaptive
e(σ) adaptive

N

er
ro
r

103 104 105

10−1

100

101

Ch

e(u) uniform
e(ρ) uniform
e(u) adaptive
e(ρ) adaptive

N
103 104 105

0

1

2

3

4

5

6

7

8

Fixed point iterations - uniform

Fixed point iterations - adaptive

eff - uniform

eff - adaptive

Figure 2: Test 2. Individual error history vs. the number of degrees of freedom. Errors for strain
and stress (left), velocity and vorticity (middle), and Picard iteration count with effectivity indexes
(right) for two runs using uniform and adaptive mesh refinement according to the a posteriori error
estimator (5.15).

Figure 3: Test 2. Initial and intermediate triangulations obtained after a few steps of mesh adaptation
according to the a posteriori error estimator (5.15).

initial solve, we use an adaptive mesh refinement algorithm marking elements for refinement according
to the locally computable error indicator (5.1), re-generating the mesh, and then solving again the
discrete nonlinear problem until reaching the convergence of the Newton iterations. For this example
the linear systems were solved with a BiCGStab method with left Schur complement preconditioning.
Five steps of adaptive mesh refinement were applied (with a maximum Newton iteration count of 6),
and the approximate solutions computed on a mesh with 13685 elements are portrayed in Figure 5.
We observe smooth vorticity and strain profiles, and from the velocity streamlines we can evidence
the formation of the typical asymmetric vortex parallel to the x1 − x3 plane. In Figure 6 we present
examples of three adapted meshes resulting from adaptive refinement guided by the a posteriori error
estimator (5.1), after one, three, and five adaptive steps. An agglomeration of tetrahedra is observed
near the top corners of the domain, where the Dirichlet datum is discontinuous, and where the stress
is concentrated.
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Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de Concepción, Chile. available at
http://www.ci2ma.udec.cl/publicaciones/prepublicaciones.

[12] Gatica, G.N., An augmented mixed finite element method for linear elasticity with non-
homogeneous Dirichlet conditions. Electron. Trans. Numer. Anal. 26 (2007), 421-438.

[13] Gatica, G.N., A Simple Introduction to the Mixed Finite Element Method: Theory and Appli-
cations. Springer Briefs in Mathematics. Springer, Cham, 2014.

[14] Gatica, G.N., Gatica, L.F. and Sequeira, F., A priori and a posteriori error analyses of
a pseudostress-based mixed formulation for linear elasticity. Comput. Math. Appl. 71 (2016), no.
2, 585–614.
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