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Abstract

HIV RNA viral load measures are often subjected to some upper and lower detection limits de-
pending on the quantification assays. Hence, the responses are either left or right censored. Moreover,
it is quite common to observe viral load measurements collected irregularly over time. A complica-
tion arises when these continuous repeated measures have a heavy-tailed behaviour. For such data
structures, we propose a robust nonlinear censored regression model based on the scale mixtures
of normal (SMN) distributions. To take into account the autocorrelation existing among irregularly
observed measures, a damped exponential correlation structure is considered. A stochastic approxi-
mation of the EM (SAEM) algorithm is developed to obtain the maximum likelihood estimates of the
model parameters. The main advantage of this new procedure allows us to estimate the parameters of
interest and evaluate the log-likelihood function in an easy and fast way. Furthermore, the standard
errors of the fixed effects and predictions of unobservable values of the response can be obtained as
a by-product. The practical utility of the proposed method is exemplified using both simulated and
real data.

Key words and phrases: Censored data, HIV viral load, SAEM Algorithm, longitudinal data, outliers.

1 Introduction

The study of models in which the variable of interest is subjected to certain threshold values below or
above which the measurements are not quantifiable has been the scope of the biomedical and biostatis-
tical literature in recent years. Particularly, this situation occurs commonly in the study of the human
immunodeficiency virus (HIV) behaviour, where the quantification of HIV-1 RNA viral load is done
using assays with different detection limits for monitoring the copy number of virus per millilitre of
plasma. Lower detection limits ranging from 400 to 500 RNA copies/mL are considered for standard
assays such as Amplicor HIV-1 monitor test 1.5 and Nuclisens HIV-1 QT assay (Antunes et al. 2003),
while the range is 50 to 100 RNA copies/mL for ultra-sensitive assays such as the TaqMan assay, version
1 and 2 (Swenson et al. 2014).

In practice, longitudinal data coming from follow-up studies (e.g. acquired immune deficiency syn-
drome - AIDS - studies) can be modelled using censored linear and nonlinear mixed effects models (see
for example Wu 2010, and references therein) and also regression models with a specific correlation
structures on the error term (Garay et al. 2014). Although it is quite common to consider a Gaussian
assumption for the random components of the model due mainly to the computational flexibility for pa-
rameter estimation (see Vaida and Liu 2009). From a practical viewpoint, such an assumption may not be
realistic. In this context, some recent works in censored models (Garay et al. 2014, 2015) have indicated
that likelihood-based inference can be seriously affected by the presence of atypical observations and/or
the misspecification of the parametric distributions for both random effects and errors. Consequently, in
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Figure 1: AIDS studies data. Individual profiles (in log10 scale) for HIV viral load at different follow-up
times (AIEDRP data upper left panel/UTI data lower left panel). Normal Q–Q plot for model residuals
obtained by fitting a censored (Gaussian) mixed effect model (AIEDRP data upper right panel/UTI data
lower right panel). Trajectories for some censored individuals are indicated in different colors.

situations where the inferential results are sensitive to the assumed distributions for the random compo-
nents of the model, it may be desirable to consider more flexible distributional assumptions, specifically,
a heavy-tailed class of distributions.

For example, Pinheiro et al. (2001) proposed the a multivariate Student’s-t linear mixed model (t-
LME). Lin and Lee (2006) and Lin and Lee (2007) developed some additional tools for the t-LME from
likelihood-based and Bayesian perspectives, respectively. It is important to stress that, from a Bayesian
point of view, Rosa et al. (2003) proposed the linear mixed model considering the normal/independent
(NI) class of distributions (NI-LME). In the case of univariate censored responses, Arellano-Valle et al.
(2012) and Massuia et al. (2015) proposed an extension of the normal censored regression (N-CR or
Tobit) model to the case where the error terms follow a univariate Student’s-t distribution. Lachos et al.
(2011) considered the use of the NI class in mixed effects models for longitudinal data with censored
responses and adopted a Bayesian treatment to carry out posterior inference, extending, in some sense,
the proposals of Samson et al. (2006), Vaida et al. (2007) and Vaida and Liu (2009).

From a likelihood-based perspective, a few alternatives have been proposed for longitudinal models
under censored responses and considering heavy-tailed distributions. Recently, Garay et al. (2014) and
Matos et al. (2013) utilized the Student’s-t distribution in the context of censored regression (t-CR)
and linear and non linear mixed effects (t-LMEC) models for censored responses respectively. They
considered exact EM algorithms for maximum likelihood (ML) estimation, relying on the mean and
variance of a truncated multivariate Student’s-t distribution.
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However, and from the frequentist point of view, the use of others heavy-tailed distributions has
not been explored in the context of censored longitudinal models. In this regard, the aim of this paper
is to consider the multivariate scale mixture of normal (SMN) distributions as the distribution of the
random error in the framework of the nonlinear censored regression (SMN-NCR) model for censored and
longitudinal data. Our contribution extends the recent works of Garay et al. (2014) and Garay et al. (2015)
since they used only the Student’s-t distribution which is a member of the SMN class. It is important
to stress that, for the estimation of the model parameters, we consider an stochastic approximation of
the EM algorithm, the so-called SAEM algorithm. This algorithm introduced by Delyon et al. (1999)
is generally more efficient than the EM (Dempster et al. 1977) and Monte Carlo EM (MCEM) (Wei
and Tanner 1990) algorithms because it does not need the computation of the two first moments of the
truncated multivariate SMN distributions, which requires high-dimensional numerical integration instead
of a very intensive computation step of Monte Carlo simulation to evaluate those complex integrals.
Moreover, Jank (2006) showed that the computational burden of SAEM is much smaller and reach the
convergence in just a fraction of the simulation size when compared to MCEM. This is because the
memory effect persists in the SAEM method, in which the previous simulations are considered in the
computation of the posterior ones. Note that, in the case of mixed effects models, Kuhn and Lavielle
(2005), Meza et al. (2012) and Lavielle and Mbogning (2014) showed a good efficiency of the SAEM
algorithm for ML estimation when the hypothesis of normality of the random components of the model
is not considered.

In order to evaluate the performance of our proposal, we consider the analysis of two AIDS case
studies. The first study evaluated the immune responses to HIV during acute infection, presenting about
22% of measurements lying above the limits of assay quantification (right-censored). The viral loads
was irregularly measured over time. The individual profiles (in log10 scale) of HIV viral load at different
follow-up times are displayed in Figure 1 (upper left panel). The corresponding figure also presents
the normal quantile-quantile (QQ) plot (on the upper right panel) for the HIV viral load after fitting
the Gaussian nonlinear censored mixed effect model represents that the normality assumption for the
within-subject errors might be inappropriate.

The second study contains the measurements of HIV-1 RNA measures after unstructured treatment
interruption (UTI) in 72 adolescents from US. UTI was defined as discontinuation of all antiretroviral
drugs for any period of time, after which treatment was resumed. The dataset presents about 7% of
observations below the detection limits of assay quantifications (left censored). Figure 1 (lower left
panel) presents the individual profiles of viral load at different follow-up times after UTI. In addition, a
normal QQ plot for the residuals (lower right panel) obtained by fitting a normal censored mixed effect
model is presented.

Since the outcome variables were recorded at irregular occasions in both studies, we consider a parsi-
monious damping exponential correlation (DEC) structure to address the within-subject autocorrelation.
This type of correlation structure, proposed by Muñoz et al. (1992), takes into account the autocorrelation
generated by the dependence among irregular occasions.

The paper is organized as follows. Section 2 provides some preliminaries of the SMN and truncated-
SMN distributions and a brief review of the SAEM algorithms. Section 3 proposes the SMN-NCR model
and shows how to compute the ML estimates through the SAEM algorithm. In Section 4, we formulate
analytically the empirical information matrix of model parameters. The issue concerning the prediction
of future observations is also discussed. In Section 5, our proposed techniques are compared with the
normality-based approach using simulated data and illustrated with the analysis of the AIDS case studies.
Section 6 concludes with a short discussion of issues raised by our methods and some possible directions
for a future research.
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2 Preliminaries

2.1 Scale mixture of normal distributions (SMN)

An element of the symmetric class of scale mixture of multivariate normal distributions (Andrews and
Mallows 1974; Lange and Sinsheimer 1993) is defined as the distribution of the p-variate random vector

y = µ+ κ(U)1/2Z, (1)

where µ is a location vector, Z is a normal random vector with mean vector 0, variance-covariance
matrix Σ, U is a positive random variable with cumulative distribution function (cdf) H(u | ν) and
probability density function (pdf) h(u|ν), independent of Z, where ν is a scalar or parameter vector
indexing the distribution of U and κ(U) is the weight function. Given U = u, y follows a multivariate
normal distribution with mean vector µ and variance-covariance matrix κ(u)Σ. Hence, the pdf of y is

SMNp(y | µ,Σ,ν) =

∫ ∞
0

φp(y;µ, κ(u)Σ)dH(u | ν),

where φp(.;µ,Σ) stands for the pdf of the p-variate normal distribution with mean vectorµ and covariate
matrix Σ. By convention, we shall write y ∼ SMNp(µ,Σ,ν). Three members of the scale mixture of
normal class of distributions are commonly used for robust estimation:

• The multivariate Student’s-t distribution, tp(µ,Σ, ν), where ν is called the degrees of freedom,
can be derived from the mixture model (1), arises when U is distributed as Gamma(ν/2, ν/2)
and κ(u) = 1/u, with ν > 0. The pdf of y takes the form of

Tp(y | µ,Σ, ν) =
Γ(p+ν2 )

Γ(ν2 )πp/2
ν−p/2|Σ|−1/2

(
1 +

d

ν

)−(p+ν)/2
, y ∈ Rp,

where Γ(·) is the standard gamma function and d = (y − µ)>Σ−1(y − µ) is the Mahalanobis
distance.

• The multivariate slash distribution, SLp(µ,Σ, ν), arises when κ(u) = 1/u and the distribution of
U is Beta(ν, 1), with u ∈ (0, 1) and ν > 0. Its pdf is given by

SLp(y | µ,Σ, ν) = ν

∫ 1

0
uν−1φp(y;µ, u−1Σ)du, y ∈ Rp.

• The multivariate contaminated normal distribution, CNp(µ,Σ, ν, γ), where ν, γ ∈ (0, 1). Here,
κ(u) = 1/u and U is a discrete random variable taking one of two states and has pdf given by

h(u | ν) = νI{γ}(u) + (1− ν)I{1}(u),

where ν = (ν, γ) and I{τ}(u) is the indicator function of the set τ whose value equals one if u ∈ τ
and zero elsewhere. The associated density is

CNp(y | µ,Σ,ν) = νφp(y;µ, γ−1Σ) + (1− ν)φp(y;µ,Σ).

The parameter ν can be interpreted as the proportion of outliers while γ may be interpreted as a
scale factor.

In what follows, let TSMNp(µ,Σ, ν;A) represents a p-variate truncated SMN distribution for SMNp(µ,Σ,ν)
lying within a right-truncated hyperplane A = {x = (x1, . . . , xp)

> | x1 ≤ a1, . . . , xp ≤ ap}. We say
that the p-dimensional vector X ∼ TSMNp(µ,Σ, ν;A), if its density is given by:

TSMNp(x | µ,Σ,ν;A) =
SMNp(x | µ,Σ,ν)∏p

r=1

∫ ar
−∞ SMNp(x | µ,Σ,ν)dx

I{A}(x) (2)

where the notation
∏p
r=1

∫ ar
−∞ =

∫ ar
−∞ . . .

∫ ar
−∞ stands for the abbreviation of multiple integrals.
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2.2 The SAEM algorithm

The EM algorithm, introduced by (Dempster et al. 1977), is powerful frequentist approach to estimate
parameters via ML when the data has missing/censored observations and/or latent variables. The main
features of EM algorithm is the ease of implementation and the stability of monotone convergence. Let
θ be the parameter vector and yc = (y>, q>) be the vector of complete data, i.e., the observed data y
and the missing/censored data (or the latent variables, depending on the situation) q. The EM algorithm
consists basically of two steps: the expectation (E-step) and the maximization (M-step). These steps
are performed iteratively in the complete likelihood function, `c(θ|yc), until it reaches the convergence.
Each iteration is performed as follows:

E-Step: Calculate the conditional expectation Q(θ | θ̂
(k)

) = E
[
`c(θ | yc) | y, θ̂

(k)
]
, where θ̂

(k)

is the estimate of θ at the k-th iteration.

M-Step: update θ(k) according to θ̂
(k+1)

= argmax
θ

Q(θ | θ̂
(k)

).

Although the EM algorithm is a powerful tool when the analytical expressions required by the E-
steps have a closed form, it becomes a problem when the analytical expressions cannot be evaluated.
To alleviate this difficulty, Wei and Tanner (1990) proposed the MCEM algorithm, where the E-step is
replaced by a Monte Carlo approximation based on a large number of independent simulations of the
latent variables. However, a large number of simulations are required, making the MCEM algorithm
computationally expensive.

As an alternative, Delyon et al. (1999) presented a stochastic approximation of the EM algorithm,
called the SAEM algorithm. In this procedure, at each iteration, the latent variables are successively
simulated by the conditional distribution and the unknown parameters are updated. According to Meza
et al. (2012), the SAEM algorithm at iteration k proceeds as follows:

E-Step:

1. Simulation-step:

(a) draw q(k,l) (l = 1, . . . ,m) from the conditional distribution f(q | y, θ̂
(k−1)

), or

(b) MCMC procedure: when random samples cannot be simulated directly from the conditional
distribution, draw q(k,l) (l = 1, . . . ,m) instead from the transition probability Π

θ̂
(k)(q(k−1), ·),

the sequence q(k) is a Markov Chain with transition kernels Π
θ̂

(k) .

2. Stochastic approximation: update Q(θ | θ̂
(k)

) according to

Q(θ | θ̂
(k)

) = Q(θ | θ̂
(k−1)

) + δk

[
1

m

m∑
l=1

`c(θ | q(k,l),y)−Q(θ | θ̂
(k−1)

)

]
, (3)

where `c(θ | yc) =
∑n

i=1 `i(θ | yc) is the complete log-likelihood function and δk is a smooth-
ness parameter, i.e., a decreasing sequence of positive numbers such that

∑∞
k=1 δk = ∞ and∑∞

k=1 δ
2
k <∞.

M-Step:

1. Maximization: update θ(k) according to

θ̂
(k+1)

= argmax
θ

Q(θ | θ̂
(k)

).
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When we need to perform (b) in the E-Step of the SAEM algorithm, this algorithm is called MCMC-
SAEM and was proposed by Kuhn and Lavielle (2004). As proposed by Galarza et al. (2015) we will
consider the following smoothing parameter

δk =

{
1, if 1 ≤ k ≤ cW ;
1

k−cW , if cW + 1 ≤ k ≤W, (4)

where W is the maximum number of iterations and c is a cut point (0 ≤ c ≤ 1) which determines
the percentage of the initial iterations. By Equation (3), we have that if the smoothing parameter δk is
equal to 1 for all k, the SAEM algorithm has “no memory” and it coincides with the MCEM algorithm.
While the SAEM has no memory, the algorithm will converge quickly (convergence in distribution) to a
solution neighborhood. However when the algorithm has memory it will converge slowly (almost sure
convergence) to the ML solution.

Note that, for the SAEM algorithm, the E-Step coincides with the MCEM algorithm, however a
small number of simulations m (suggested to be m ≤ 20) is necessary. This is possible because unlike
the traditional EM algorithm and its variants, the SAEM algorithm uses not only the current simulation
of the missing/censored/latent data at the iteration k denoted by (q(k,l)), l = 1, . . . ,m but some or all
previous simulations, where this “memory” property is set by the smoothing parameter δk.

3 Regression models for irregularly observed longitudinal data

3.1 The statistical model

Let y = (y>1 , . . . ,y
>
n )> denote the vector of observed continuous multivariate responses. Herein, yi

is a ni × 1 vector containing the observations for subject i measured at particular time points ti =
(ti1, . . . , tini). Formally, the nonlinear regression model is given by

yi = g(ϕi, ti) + εi, (5)

ϕi = Aiβ (6)

where g(ϕi, ti) = {g(ϕi, ti1), . . . ,g(ϕi, tini)}> is a nonlinear vector-valued differentiable function
of the parameter ϕi; Ai is a known design matrix of dimension r × p, possibly depending on some
covariate vector Xi; β is the p × 1 vector of fixed effects; and εi is the vector of random errors of
dimension (ni×1) with mean 0 and covariance matrix Ωi. Instead of the usual assumption of normality,
we replace the multivariate normal distribution by the scale mixture of multivariate normal distributions.
Therefore, it follows that

εi
ind.∼ SMNni(0,Ωi,ν), i = 1, . . . , n. (7)

The correlation structure of the error vector is assumed to be Ωi = σ2Ei, where the ni × ni matrix
Ei incorporates a time-dependence structure. Consequently, to capture the serial correlation among
irregularly observed longitudinal data, it is necessary to consider a parsimonious parameterization of the
matrix Ei. Following Muñoz et al. (1992), we adopt a DEC (damped exponential correlation) structure
for Ei, which is defined as:

Ei = Ei(φ, ti) =
[
φ
|tij−tik|φ2
1

]
, i = 1, . . . , n, j, k = 1, . . . , ni, (8)

where φ = (φ1, φ2)
>, the parameter φ1 describes the autocorrelation between observations separated

by the absolute length of two time points, and the parameter φ2 permits acceleration of the exponential
decay of the autocorrelation function, defining a continuous-time autoregressive model.

For practical reasons, the parameter space of φ1 and φ2 is confined within Φ = {(φ1, φ2) : 0 <
φ1 < 1, φ2 > 0}. It is important to stress that different values of the damping parameter φ2 produce a
variety of correlation structures for a given value of φ1 > 0, as follows:

1. if φ2 = 0, then Ei generates the compound symmetry (CS) correlation structure;
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2. when 0 < φ2 < 1, then Ei presents a decay rate between the compound symmetry structure and
the first-order AR (AR (1)) model;

3. if φ2 = 1, then Ei generates an AR(1) structure;

4. when φ2 > 1, Ei presents a decay rate faster than the AR(1) structure; and

5. if φ2 →∞, then Ei represents the first-order moving average model, MA(1).

A more detailed discussion of the DEC structure presenting more complex scenarios of the parameter
space Φ can be found in Muñoz et al. (1992).

Using the stochastic representation (1), the hierarchical representation (two-stages) of the linear re-
gression model defined in (6) - (8) is given by

yi | Ui = ui
ind.∼ Nni(g(ϕi, ti), κ(ui)Ωi),

Ui
iid.∼ h(ui | ν). (9)

For simplicity we will denote µi(β) = g(ϕi, ti).
Recall that we are interested in the case where left-censored observations can occur. That is, the

observations are of the form

yij ≤ Vij if Cij = 1,

yij = Vij if Cij = 0, (10)

where Vij represents the uncensored observation or limit of quantification and Cij is the censoring indi-
cator whose value equals one if censored observation and zero if uncensored observation. Consequently,
the observed data for the i-th subject is represented by (Vi,Ci). We have chosen to work with the left
censored case, but the results are easily extended to other censoring types. The formulations defined in
(6) – (10) will be called the SMN-NCR model.

3.2 The likelihood function

Frequentist inference on the parameter vector θ = (β>, σ2,φ>,ν>)> is based on the marginal distribu-
tion for yi, i = 1, . . . , n. For the SMN-NCR model with complete data, we have that, marginally,

yi
ind.∼ SMNni(µi(β),Ωi,ν), i = 1, . . . , n. (11)

For computing the marginal likelihood, the first step is to treat separately the observed and censored
components of yi. This procedure is described in Definition below.

Definition 1. Let y be partitioned as yi = vec(yoi ,y
c
i ) with dim(yoi ) = noi , dim(yci ) = nci and

noi + nci = ni, where vec(·) denotes the operator which stacks vectors or matrices of the same number of
columns and Cij = 0 for all elements in yoi , and 1 for all elements in yci . Let Vi, µi(β), and Ωi also be

partitioned as follows: Vi = vec(Vo
i ,V

c
i ), µi(β)> = (µoi (β),µci (β))>, and Ωi =

(
Ωoo
i Ωoc

i

Ωco
i Ωcc

i

)
.

Then, we have yi | ui ∼ Nni(µi(β), κ(ui)Ωi), where

yoi | ui ∼ Nnoi (µ
o
i (β), κ(ui)Ω

oo
i ) and yci | yoi , ui ∼ Nnci (µ

c·o
i , κ(ui)Si), (12)

with µc·oi = µci (β) + Ωco
i (Ωoo

i )−1(yoi − µoi (β)) and Si = Ωcc
i −Ωco

i (Ωoo
i )−1Ωoc

i .

Following Vaida and Liu (2009), we have the following definition to calculate the likelihood function.
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Definition 2. Let Φni(u; a,A) and φni(u; a,A) be the cdf (left tail) and pdf, respectively, of Nni(a,A)
computed at u. The likelihood function for the i-th subject is given by

Li(θ) = f(yoi | θ)f(yci ≤ Vc
i | yoi ,θ)

=

∫ ∞
0

f(yoi | ui,θ)f(yci ≤ Vc
i | ui,yoi ,θ)dH(ui)

=

∫ ∞
0

φnoi (y
o
i ;µ

o
i (β), κ(ui)Ω

oo
i )Φnci

(Vc
i ;µ

c·o
i , κ(ui)Si)dH(ui). (13)

The log-likelihood function for the observed data is given by `(θ|y) =
∑n

i=1{logLi} and can be
used to monitor the convergence of the SAEM algorithm.The likelihood function for particular cases of
the SMN-NCR model are given in following Proposition. The proof is given in Appendix A.

Proposition 1. The likelihood function for special elements of the SMN class are given by.

1. (normal) If U is degenerate in 1, i.e., P (U = 1) = 1, then

Li(θ) = φnoi (y
o
i ;µ

o
i (β), κ(ui)Ω

oo
i )Φnci

(Vc
i ;µ

c·o
i ,Si).

2. (Student’s-t) If κ(u) = 1/u and U is distributed as Gamma(ν/2, ν/2), with ν > 0, then

Li(θ) = tnoi (y
o
i ;µ

o
i (β),Ωoo

i , ν)Tnci

(
Vc
i ;µ

c·o
i ,

(
ν + δ

ν + noi

)
Si, ν + noi

)
,

where δ = (yoi − µoi (β))>(Ωoo
i )−1(yoi − µoi (β)).

3. (contaminated normal) If κ(u) = 1/u and U is a discrete random variable taking one of two
states and with probability function given by h(u|ν) = νI{γ}(u) + (1− ν)I{1}(u), then

Li(θ) = ν
[
φnoi (y

o
i ;µ

o
i (β), γ−1Ωoo

i )Φnci
(Vc

i ;µ
c·o
i , γ−1Si)

]
+ (1− ν)

[
φnoi (y

o
i ;µ

o
i (β),Ωoo

i )Φnci
(Vc

i ;µ
c·o
i ,Si)

]
.

Lucas (1997) carried out an interesting study on the robust aspects of the Student’s-t M-estimator in
the univariate case using influence functions. He showed that the protection against outliers is preserved
only if the degrees of freedom parameter are fixed. In this paper, we assume that the parameter ν is fixed.
The most appropriate value of ν (see Lange et al. 1989; Meza et al. 2012) is chosen on AIC or BIC. The
entire parameter vector is θ = (β>, σ2,φ>)> hereafter.

3.3 Maximum likelihood estimation

In this subsection, we develop the MCMC-SAEM (hereafter SAEM) algorithm for ML estimation of
the parameters in the SMN-NCR model defined previously. Consider the model defined in (6) – (8),
u = (u1, . . . , un)>, V = vec(V1, . . . ,Vn), and C = vec(C1, . . . ,Cn) such that we observe (Vi,Ci)
for the i-th subject. Treating u, and y as hypothetical missing data, and augmenting with the observed
data V,C, we set yc = (C>,V>,y>,u>)> as the complete data. Therefore, the complete data log-
likelihood function for all individuals can be written, using the representation defined in (9), as `c(θ |
yc) =

∑n
i=1 `i(θ | yc),

`c(θ | yc) =

n∑
i=1

{log f(yi|ui) + log h(ui | ν)}

= −N
2

log σ2 −
n∑
i=1

1

2
log |Ei| −

n∑
i=1

κ−1(ui)

2σ2
(yi − µi(β))>E−1i (yi − µi(β))

+
n∑
i=1

log h(ui|ν) + C,

8



with C being a constant that does not depend on the parameter vector θ and
∑n

i=1 ni = N . Given

the current estimate (at the k-th iteration) θ = θ̂
(k)

, the conditional expectation of the complete data
log-likelihood function is given by:

Q
(
θ | θ̂

(k)
)

= E
[
`c(θ | yc) | V,C, θ̂

(k)
]

=

n∑
i=1

Qi(θ | θ̂
(k)

),

where

Qi

(
θ | θ̂

(k)
)

= −ni
2

log σ̂2
(k)
− 1

2
log |Ê(k)

i |

− 1

2σ̂2
(k)
E
[
κ−1(ui)(yi − µi(β̂

(k)
))>E−1i (yi − µi(β̂

(k)
)) | V,C, θ̂

(k)
]

= −ni
2

log σ̂2
(k)
− 1

2
log |Ê(k)

i | −
1

2σ̂2
(k)

[
tr
(
κ̂y2

i

(k)
Ê
−1(k)
i

)
− 2µ>i (β̂

(k)
)Ê
−1(k)
i κ̂yi

(k) + κ̂i
(k)µ>i (β̂

(k)
)Ê
−1(k)
i µi(β̂

(k)
)
]
,

with

κ̂y2
i

(k)
= E

[
κ−1(ui)yiy

>
i | Vi,Ci, θ̂

(k)
]
, (14)

κ̂yi
(k) = E

[
κ−1(ui)yi | Vi,Ci, θ̂

(k)
]
, (15)

κ̂i
(k) = E

[
κ−1(ui) | Vi,Ci, θ̂

(k)
]
. (16)

Note that in this case we do not consider the computation of E[h(ui | ν) | Vi,Ci, θ̂
(k)

] because ν is
fixed.

In the traditional EM algorithm, we evaluate the conditional expectations given in Equations (14) –
(16). As there are no closed-form expressions for them, two intermediate steps are introduced, including
the simulation and approximation steps. In the simulation step, for the i-th subject, we generate samples
from the full conditional distributions of the latent variables (ui,yi) via the Gibbs sampler algorithm
according to the following scheme (at the k-th iteration):

Step 1:

Sample y
c(k,l)
i from f(yci | Vc

i ,y
o
i , ui, θ̂

(k−1)
), which is a truncated normal distribution. Using

definition 1 and conditioning on the censored components, we obtain

yci | Vc
i ,y

o
i , ui,θ ∼ TNnci

(µi, κ(ui)Si;Ai),

with Ai = {yci = (yci1, . . . , y
c
inci

)> | yci1 ≤ V c
i1, . . . , y

c
inci
≤ V c

inci
},µi = µci (β)+Ωco

i (Ωoo
i )−1(yoi−

µoi (β)) and Si = Ωcc
i −Ωco

i (Ωoo
i )−1Ωoc

i .

Then, the new observation y
(k,l)
i = (y

c(k,l)
i1 , . . . , y

c(k,l)
inci

, ynci+1, . . . , yni) is a sample generated for
the nci censored cases and the observed values (uncensored cases).

Step 2:

Sample u(k,l)i from f(ui | y(k,l)
i , θ̂

(k−1)
). This gives rise to

(a) Student’s-t

ui | yi,θ ∼ Gamma
(
ν + ni

2
,
ν + (yi − µi(β))>Ω−1i (yi − µi(β))

2

)
;

9



(b) Slash

ui | yi,θ ∼ TGamma
(
ν +

ni
2
,
(yi − µi(β))>Ω−1i (yi − µi(β))

2
; (0, 1)

)
,

which follows a truncated gamma distribution lying in the interval (0,1);

(c) Contaminated normal
f(ui | yi,θ), is a discrete distribution taking values γ with probability p1

p1+p2
and 1 with

probability p2
p1+p2

, where

p1 = νγ
ni
2 exp

(
−γ

2
(yi − µi(β))>Ω−1i (yi − µi(β))

)
,

p2 = (1− ν) exp

(
−1

2
(yi − µi(β))>Ω−1i (yi − µi(β))

)
.

The next step is the Stochastic Approximation. Since the sequence (y
(k,l)
i , u

(k,l)
i ) for l = 1, . . . ,m

is collected at the k-th iteration, we replace the conditional expectations given in (14) –(16) with the
following stochastic approximations:

κ̂y2
i

(k)
= κ̂y2

i

(k−1)
+ δk

[
1

m

m∑
l=1

κ−1(u
(k,l)
i )y

(k,l)
i y

(k,l)>
i − κ̂y2

i

(k−1)
]
, (17)

κ̂yi
(k) = κ̂yi

(k−1) + δk

[
1

m

m∑
l=1

κ−1(u
(k,l)
i )y

(k,l)
i − κ̂yi

(k−1)
]
, (18)

κ̂i
(k) = κ̂i

(k−1) + δk

[
1

m

m∑
l=1

κ−1(u
(k,l)
i )− κ̂i(k−1)

]
. (19)

An advantage of the SAEM algorithm is that, even though it performs a MCMC E-step, it requires
a small and fixed sample size, making it much faster than MCEM. Some authors claim that m ≤ 10 is
large enough, but to be more conservative, we chose m = 20. As a consequence, the MCMC samples
are incorporated in a smooth way with the previous step of the algorithm.

Finally, the conditional maximization step is carried out and θ̂
(k)

is updated by maximizingQ(θ|θ̂
(k)

)

over θ̂
(k)

, which leads to the following expressions:

β̂
(k+1)

= β̂
(k)

+

(
n∑
i=1

κ̂i
(k)Ĵ

(k)>
i Ê

−1(k)
i Ĵ

(k)
i

)−1 n∑
i=1

Ĵ
(k)>
i Ê

−1(k)
i

(
κ̂yi

(k) − µi(β̂
(k)

)
)
, (20)

σ̂2
(k+1)

=
1

N

n∑
i=1

[
tr
(
κ̂y2

i

(k)
Ê
−1(k)
i

)
− 2µ>i (β̂

(k)
)Ê
−1(k)
i κ̂yi

(k)

+ κ̂i
(k)µ>i (β̂

(k)
)Ê
−1(k)
i µi(β̂

(k)
)
]
, (21)

φ̂
(k+1)

= argmax
φ∈(0,1)×R+

(
− 1

2σ̂2
(k)

n∑
i=1

[
tr
(
κ̂y2

i

(k)
E−1i

)
− 2µ>i (β̂

(k)
)E−1i κ̂yi

(k)

+ κ̂i
(k)µ>i (β̂

(k)
)E−1i µ

>
i (β̂

(k)
)
]
− 1

2

n∑
i=1

log(|E−1i |)

)
,

(22)

where Ji =
∂µi(β)

∂β>
and κ̂y2

i

(k)
, κ̂yi

(k) and κ̂i(k) rely on minimal sufficient statistics.
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It is important to stress that, since the complete likelihood function does belong to the exponential
family, the SAEM algorithm converges. Under several conditions, Kuhn and Lavielle (2005) and Samson
et al. (2006) have verified that the estimate sequence produced by the SAEM algorithm converges towards
a (local) maximum of the likelihood function.

3.4 Imputation of censored components

We are also interested in the prediction of the censored components of the i-th subject. Let yci be the true
unobserved response vector for the censored components. In the implementation of the SAEM algorithm,
the predictions of the censored components, denoted by ỹ

c(k)
i , are calculated as

ỹ
c(k)
i = E{yi | Vi,Ci, θ̂

(k)
}, i = 1, . . . , n,

where

ỹ
c(k)
i = ỹ

c(k−1)
i + δk

[
1

m

m∑
l=1

y
c(k,l)
i − ỹ

c(k)
i

]
(23)

and the y
c(k,l)
i ’s are obtained without computational effort from the Step 1 of the proposed SAEM algo-

rithm.

4 Standard errors and prediction of future observations

4.1 Empirical information matrix

According to large sample theory, the asymptotic covariance matrix of the ML estimates can be approx-
imated by

Ie(θ | y) =
n∑
i=1

s(yi | θ)s>(yi | θ)− 1

n
S(yi | θ)S>(yi | θ), (24)

where S(yi | θ) =
∑n

i=1 s(yi | θ) and s(yi | θ) is the empirical score function for the i-th subject.
Following to Louis (1982), the individual score is determined as

s(yi | θ) =
∂ log f(yi | θ)

∂θ
= E

(
∂`ic(θ | yci)

∂θ
| Vi,Ci,θ

)
, (25)

where `ic(θ | yci) is the complete data log-likelihood formed from the complete observation yci. Sub-
stituting the ML estimate of θ in (25), it leads to s(yi | θ̂) = 0. As a result, the empirical information
matrix Ie(θ | y) is reduced to

Ie(θ̂ | y) =
n∑
i=1

ŝiŝ
>
i =

 ŝi,β
ŝi,σ2
ŝi,φ

( ŝi,β ŝi,σ2 ŝi,φ

)
, (26)

where

ŝi,β = (ŝi,β1 , . . . , ŝi,βp)
> =

Ĵ>i Ê−1i

σ̂2

(
κ̂yi − µi(β̂)

)
,

ŝi,σ2 = − ni

2σ̂2
+

1

2σ̂4

[
tr
(
κ̂y2

i Ê
−1
i

)
− 2µ>i (β̂)Ê−1i κ̂yi + κ̂iµ

>
i (β̂)Ê−1i µi(β̂)

]
,

ŝi,φ = (ŝi,φ1 , ŝi,φ2)>,

11



with

ŝi,φs =
1

2σ̂2

[
tr
(
κ̂y2

i Ê
−1
i Ėi(s)Ê

−1
i

)
− 2µ>i (β̂)Ê−1i Ėi(s)Ê

−1
i κ̂yi + κ̂iµ

>
i (β̂)Ê−1i Ėi(s)Ê

−1
i µi(β̂)

]
,

−1

2
tr
(
Ê−1i Ėi(s)

)
,

and Ėi(s) = ∂Ei
∂φs
|
φ=φ̂

for s = 1, 2. For the DEC structure, we have the following partial derivatives

∂Ei

∂φ1
= |tij − tik|φ2φ

|tij−tik|φ2−1
1 ,

∂Ei

∂φ2
= |tij − tik|φ2 log(|tij − tik|) log(φ1)φ

|tij−tik|φ2
1 .

4.2 Prediction

For generating predicted values from the SMN-NCR model, we follow the scheme adopted by Wang
(2013) and Garay et al. (2014). Let yi,obs be an observed response vector of dimension ni,obs × 1 for a
new subject i over the first portion of time and yi,pred the corresponding ni,pred× 1 response vector over
the future portion of time. Let µi(β) = (µi,obs(β),µi,pred(β))> be the (ni,obs + ni,pred)× 1 nonlinear
vector corresponding to ȳi = (y>i,obs,y

>
i,pred).

The censored values existing in yi,obs are imputed by (23). Therefore, after this imputation step, a
complete data set, yi,obs∗ , is obtained. We obtain

ȳ∗i =
(
y>i,obs∗ ,y

>
i,pred

)>
∼ SMNni,obs+ni,pred (µi(β),Ωi; H) ,

where Ωi =

(
Ωobs∗,obs∗

i Ωobs∗,pred
i

Ωpred,obs∗

i Ωpred,pred
i

)
. The best linear predictor of yi,pred (with respect to the

minimum mean squared error) is the conditional expectation of yi,pred given yi,obs∗ , namely

ŷi,pred(θ) = µi,pred(β) + Ωpred,obs∗

i Ωobs∗,obs∗−1
i

(
yi,obs∗ − µi,obs∗(β)

)
. (27)

Consequently, yi,pred can be estimated directly by substituting θ̂ into (27).

5 Application

In this section, we illustrate the performance of the proposed techniques through simulated datasets.
Afterward, we apply the methods to the analysis of two HIV datasets previously analyzed by Vaida and
Liu (2009) and Matos et al. (2013).

5.1 Simulation study

The main goal of this simulation study is to investigate the effects on the parameter inference when the
traditional normality assumption is violated. We examine the behavior of the models under different
proportions of censoring and sample sizes.

We present three scenarios considering the same probability distribution and correlation structure for
the datasets. The responses follow a contaminated normal distribution with parameter ν = (ν, γ)> =
(0.1, 0.1)> and DEC structure with φ1 = 0.8 and φ2 = 1. The simulated data are generated following the
model defined in Subsection 3.1, where Ai =

[
1ni t>i

]
and gi is the identity function, with parameters

setting at β1 = 2 β2 = 1, σ2 = 2 and time points set as ti = (1, 3, 5, 7, 10, 14), for i = 1, . . . , n.

12



Scenario 1: A censoring proportion of 10% and different sample sizes, say, n = 50, 100, 200, 400
and 600. Under each setting, we fitted the N-NCR model, the T-NCR model with 4 degrees of
freedom and the SL-NCR model with ν = 2. The goal in this study is to show the asymptotic
behavior of the ML estimates obtained via the proposed SAEM algorithm.

Scenario 2: A sample of size n = 200 and different censoring proportions, say, 0, 5, 10, 20 and
30%. As in the previous case, the N-, T- and SL-NCR models are fitted. We aim at studying the
behavior of the SMN-NCR models under different proportions of censoring.

Scenario 3: We consider a data set of sample size n = 100 and a censoring level of 5% to show
the convergence of the SAEM algorithm and the imputation performance of censored values.

Note that, for scenarios 1 and 2, there are 30 different simulation settings with 100 simulated Monte
Carlo datasets for each one. The ML estimates and their associate standard errors together with the AIC
and BIC values were recorded. For all the fitted models, the initial estimates are chosen by fitting a linear
regression for all the parameters and we fixed the number maximum of iterations W = 300 and a cut
point c = 0.25.
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Figure 2: Simulation study - Scenario 1. Mean square error of the parameter estimates in the SMN-NCR model
under 10% of censoring level and different samples sizes. The solid line (blue) represents the T-NCR model , the
dotted line (red) represents the N-NCR model and the dotdash line (green) represents the SL-NCR model.

Scenario 1

To study the finite sample properties, we compute the absolute bias (Bias) and mean square error
(MSE) of the regression coefficient estimates obtained from the SMN-NCR models under different sam-
ple sizes. These measures are defined as:

Bias =
1

100

100∑
j=1

|θ̂
(j)

i − θi| and MSE =
1

100

100∑
j=1

(
θ̂
(j)

i − θi
)2
, (28)
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Table 1: Simulation study - Scenario 1. Results based on 100 simulated samples with 10% of censoring pro-
portion. MC mean and MC Sd are the respective mean estimates and standard deviations from fitting SMN-NCR
models with different samples sizes. IM SE is the average value of the approximate standard error obtained through
the empirical information-based method. MC AIC and MC BIC are the arithmetic averages of the respective model
comparison measures.

Censoring 10%

Parameters Criteria

Distribution β1 β2 σ2 φ1 φ2 MC Loglik. MC AIC MC BIC

n = 50

T
MC Mean 2.021 0.997 2.019 0.799 1.020 -539.049 1088.098 1106.617
IM SE 0.235 0.024 0.359 0.046 0.203
MC Sd 0.200 0.022 0.351 0.038 0.188

SL
MC Mean 2.015 0.997 1.446 0.800 1.022 -540.094 1090.188 1108.707
IM SE 0.246 0.025 0.206 0.045 0.197
MC Sd 0.186 0.021 0.210 0.036 0.182

N
MC Mean 2.121 1.003 16.052 0.801 1.184 -714.865 1439.731 1458.250
IM SE 1.012 0.089 1.554 0.050 0.278
MC Sd 0.361 0.062 8.093 0.123 0.665

n = 100

T
MC Mean 2.023 0.997 1.973 0.799 1.015 -1075.346 2160.692 2182.676
IM SE 0.163 0.017 0.242 0.031 0.139
MC Sd 0.148 0.015 0.253 0.031 0.139

SL
MC Mean 2.016 0.998 1.420 0.800 1.018 -1077.510 2165.019 2187.004
IM SE 0.171 0.017 0.139 0.030 0.134
MC Sd 0.135 0.014 0.159 0.030 0.136

N
MC Mean 2.088 1.009 16.134 0.790 1.051 -1449.267 2908.533 2930.518
IM SE 0.633 0.053 0.688 0.020 0.081
MC Sd 0.263 0.038 6.519 0.103 0.436

n = 200

T
MC Mean 2.023 0.997 1.972 0.801 1.010 -2152.751 4315.502 4340.953
IM SE 0.114 0.012 0.169 0.022 0.096
MC Sd 0.105 0.011 0.172 0.020 0.092

SL
MC Mean 2.016 0.997 1.421 0.801 1.013 -2156.934 4323.867 4349.318
IM SE 0.120 0.012 0.097 0.021 0.093
MC Sd 0.097 0.010 0.106 0.019 0.089

N
MC Mean 2.068 1.011 16.115 0.798 1.016 -2923.747 5857.494 5882.944
IM SE 0.419 0.034 0.375 0.009 0.040
MC Sd 0.203 0.028 4.570 0.060 0.267

n = 400

T
MC Mean 2.023 0.997 1.972 0.802 1.010 -4309.241 8628.483 8657.399
IM SE 0.081 0.008 0.119 0.015 0.068
MC Sd 0.080 0.008 0.109 0.013 0.061

SL
MC Mean 2.017 0.998 1.423 0.802 1.013 -4317.693 8645.387 8674.303
IM SE 0.084 0.009 0.068 0.015 0.065
MC Sd 0.072 0.007 0.069 0.013 0.059

N MC Mean 2.061 1.011 16.166 0.803 1.002 -5873.152 11756.305 11785.221
IM SE 0.289 0.023 0.237 0.005 0.025
MC Sd 0.145 0.020 3.125 0.038 0.180

n = 600

T
MC Mean 2.020 0.998 1.972 0.802 1.010 -6468.005 12946.01 12976.95
IM SE 0.066 0.007 0.097 0.012 0.055
MC Sd 0.070 0.006 0.080 0.010 0.047

SL
MC Mean 2.014 0.998 1.423 0.803 1.013 -6480.928 12971.86 13002.80
IM SE 0.069 0.007 0.056 0.012 0.053
MC Sd 0.064 0.006 0.051 0.010 0.045

N
MC Mean 2.057 1.012 16.228 0.803 0.988 -8826.036 17662.07 17693.02
IM SE 0.235 0.019 0.187 0.004 0.019
MC Sd 0.126 0.016 2.459 0.028 0.147
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Table 2: Simulation study - Scenario 2. Results based on 100 simulated samples with sample size 200. MC mean
and MC Sd are the respective mean estimates and standard deviations from fitting SMN-NCRM with different set-
tings of censoring proportions. IM SE is the average value of the approximate standard error obtained through the
information-based method. MC AIC and MC BIC are the arithmetic averages of the respective model comparison
measures.

n = 200

Censoring Parameters Criteria

Fit β1 β2 σ2 φ1 φ2 MC Loglik. MC AIC MC BIC

0%

T
MC Mean 2.010 0.998 1.994 0.801 1.009 -2357.915 4725.830 4751.280
IM SE 0.111 0.012 0.168 0.021 0.093
MC Sd 0.104 0.011 0.172 0.018 0.087

SL
MC Mean 2.007 0.999 1.425 0.801 1.012 -2360.530 4731.060 4756.510
IM SE 0.116 0.012 0.095 0.020 0.090
MC Sd 0.096 0.010 0.106 0.018 0.086

N
MC Mean 2.031 0.999 22.820 0.800 1.033 -3342.554 6695.108 6720.559
IM SE 0.392 0.040 0.397 0.008 0.035
MC Sd 0.313 0.032 6.086 0.050 0.259

5%

T
MC Mean 2.011 0.998 1.988 0.802 1.013 -2221.685 4453.371 4478.821
IM SE 0.112 0.012 0.170 0.021 0.094
MC Sd 0.106 0.011 0.171 0.018 0.086

SL
MC Mean 2.008 0.998 1.425 0.803 1.016 -2224.916 4459.832 4485.282
IM SE 0.117 0.012 0.096 0.020 0.091
MC Sd 0.098 0.010 0.106 0.018 0.085

N
MC Mean 2.300 0.988 16.115 0.800 1.040 -3038.035 6086.069 6111.519
IM SE 0.413 0.034 0.350 0.008 0.038
MC Sd 0.226 0.028 4.549 0.060 0.274

10%

T
MC Mean 2.023 0.997 1.972 0.801 1.010 -2152.751 4315.502 4340.953
IM SE 0.114 0.012 0.169 0.022 0.096
MC Sd 0.105 0.011 0.172 0.020 0.092

SL
MC Mean 2.016 0.997 1.421 0.801 1.013 -2156.934 4323.867 4349.318
IM SE 0.120 0.012 0.097 0.021 0.093
MC Sd 0.097 0.010 0.106 0.019 0.089

N
MC Mean 2.068 1.011 16.115 0.798 1.016 -2923.747 5857.494 5882.944
IM SE 0.419 0.034 0.375 0.009 0.040
MC Sd 0.203 0.028 4.570 0.060 0.267

20%

T
MC Mean 2.091 0.991 1.968 0.797 1.012 -1987.323 3984.646 4010.097
IM SE 0.129 0.013 0.171 0.024 0.106
MC Sd 0.105 0.010 0.169 0.021 0.101

SL
MC Mean 2.071 0.993 1.420 0.798 1.017 -1992.863 3995.727 4021.177
IM SE 0.134 0.013 0.099 0.023 0.102
MC Sd 0.097 0.010 0.108 0.020 0.096

N
MC Mean 1.627 1.051 16.496 0.788 0.976 -2687.424 5384.848 5410.299
IM SE 0.464 0.036 0.425 0.011 0.045
MC Sd 0.202 0.030 4.783 0.061 0.256

30%

T
MC Mean 2.290 0.974 1.998 0.796 1.055 -1804.398 3618.796 3644.246
IM SE 0.158 0.015 0.176 0.027 0.124
MC Sd 0.134 0.012 0.169 0.022 0.115

SL
MC Mean 2.262 0.976 1.421 0.796 1.056 -1811.364 3632.728 3658.178
IM SE 0.165 0.016 0.100 0.026 0.119
MC Sd 0.128 0.012 0.106 0.022 0.113

N
MC Mean 1.394 1.071 16.922 0.774 0.928 -2430.493 4870.987 4896.437
IM SE 0.538 0.039 0.486 0.013 0.051
MC Sd 0.274 0.035 4.975 0.063 0.250
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where θ̂
(j)

i is the ML estimate of the parameter θi for the j-th sample, j = 1, . . . , 100. The main ob-
jective of this simulation is to provide empirical evidence about consistence of the ML estimates. It is
apparently seen in Figure 2 that the MSE tends to zero as the sample size increases. Similar results are
obtained after the analysis of the absolute bias (see Figure 7 in Appendix B). In general, for all models,
the SAEM algorithm provides estimates with good asymptotic properties. In addition, Table 1 presents
the summary statistics for parameter estimation under this scenario. As expected, censored models with
heavy-tailed distributions have better performance than the normal one in recovering the true parameter
values independently of sample sizes.

Scenario 2

In this scenario, we intend to study the behavior of the SMN-NCR models under different proportions
of censoring. It can be found from Table 2 that the heavy-tailed models outperforms the normal one for
all levels of censoring. In fact, those models have smaller standard deviations. In addition, Monte Carlo
means of the model comparison criteria (MC AIC and MC BIC) strongly favor the heavy-tailed ones.

Table 2 provides the Monte Carlo standard errors of the SAEM estimates obtained through the empir-
ical information matrix described in Section 4 (IM SE). Comparing to the Monte Carlo standard deviation
(MC Sd) for the parameters of interest, it is evident that the proposed asymptotic approximation for the
variances of the parameters obtained through Equation (26) is reliable. Furthermore, it is readily seen
that the estimates of the scale parameter σ2 obtained from the heavy-tailed models are less sensitive to
the variation in the censoring level, concluding that these models are not only robust to model misspeci-
fication but also for different levels of censoring.

Normal Slash Student−t
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Figure 3: Simulation study - Scenario 3. Conditional expectation of the censored values (E[ycens | yobs])
evaluated by the SAEM algorithm as a function of the true censored simulated values y.

Scenario 3

The aim of this last simulation study is monitor the convergence of the SAEM algorithm as well
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the performance of the imputation procedure. To conduct the experimental study, an arbitrary simulated
dataset is considered, where the conditional expectation E [ycens | yobs] of the censored values is com-
puted using Equation (23). Figure 3 shows the plot of the imputed values E [ycens | yobs] as a function
of the true censored (simulated) values y. As expected, the SAEM algorithm provides a satisfactory
imputation for these censored values when heavy-tailed distributions are used.

Figures 8, 9 and 10, given in Appendix B, show the convergence of the SAEM algorithm for all
the parameters and SMN distributions for this simulated dataset. Observing these figures, the estimates
converge swiftly to a neighborhood of the ML estimates during the first 75 iterations for all models. The
next few iterations ensure the almost sure convergence of the sequence to these estimates.

5.2 Real Data - UTI Data

The application considered in this section is referred to a study of 72 perinatally HIV-infected children
(Saitoh et al. 2008). This dataset is available in the R package (R Development Core Team 2015) through
the library lmec. All subjects in the study had received ARV therapy for at least 6 months before the
interruption, and the medication was discontinued for more than 3 months. Out of 362 observations, 26
were below the detection limits (50 or 400 copies/mL) and considered left-censored at those values.

We consider the SMN-CR models with DEC structure defined in Subsection 3.1 to fit this dataset.
We considered five different correlation structures, namely the uncorrelated structure (UNC), continuous-
time autoregressive of order 1 (AR(1)), first-order moving average (MA(1)), compound symmetric struc-
ture (CS) and damped exponential correlation (DEC) (without fixing parameters φ1 and φ2). Here,
yi = Xiβ + εi where yi is the log10 HIV RNA for subject i from follow-up times, with t1 = 0, t2 =
1, t3 = 3, t4 = 6, t5 = 9, t6 = 12, t7 = 18, and t8 = 24; and Xi the design matrix.

Table 3: UTI data. Information criteria for the SMN-CR models under different structures.

Structure

Distribution Criteria DEC AR(1) MA(1) CS UNC

T

`max -363.08 -406.98 -468.31 -364.21 -473.92
AIC 748.15 833.96 956.62 748.43 965.84
BIC 790.96 872.87 995.53 787.34 1000.86
ν 2.3 2.1 2.1 2.3 2.1

SL

`max -359.72 -403.08 -470.46 -360.90 -476.12
AIC 741.44 826.15 960.92 741.79 970.24
BIC 784.25 865.07 999.84 780.71 1005.26
ν 0.8 0.7 1.0 0.8 1.0

CN

`max -351.32 -396.56 -481.87 -353.37 -487.92
AIC 724.64 813.12 983.74 726.75 993.83
BIC 767.44 852.04 1022.66 765.66 1028.86
ν (0.2,0.1) (0.3,0.1) (0.1,0.1) (0.2,0.1) (0.1,0.1)

N

`max -411.93 -463.05 -516.52 -412.06 -524.17
AIC 845.87 946.11 1053.03 844.11 1066.34
BIC 888.68 985.02 1091.95 883.03 1101.37
ν - - - - -

For the Student’s-t, slash and contaminated normal models, the degrees of freedom ν are assumed
to be unknown but fixed. According to the AIC (or BIC) values, the appropriate values of ν vary under
different types of correlation structures. Observing Table 3, the CN-CR model with ν = (0.2, 0.1) and
DEC structure outperforms all other competitors. Moreover, for these models, the estimated values of ν
are fairly small, indicating a lack of adequacy of the normal assumption for the UTI data.

Table 4 reports the ML estimates and standard errors for the model parameters from the four fitted
SMN models under DEC structure . Note that the estimates of β1, β2, and β3 (the slope parameters cor-
responding to time points 0, 1, and 3 months) for the SMN models are quite close to each other and those
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for the time points further away, i.e., β4 . . . , β8, are also reasonably close to each other. The standard
error estimates of β are smaller than those in the normal model, indicating that the three heavy-tailed
models are capable of producing more precise estimates. The variance components are not comparable
since they are on different scales. The regression coefficients βj , for j = 1, . . . , 8, increase gradually
under these models. This signifies the negative effect of the antiretroviral therapy interruption on the
viral load levels. In other words, the viral load increments consistently along the time when the antiretro-
viral therapy begins to be interrupted. For our best model (CN-CR), the convergence of the estimates
obtained through the SAEM algorithm are shown in Figures 11 and 12 (Appendix C). As can be seen,
the convergence can be achieved very quickly.

Table 4: UTI data. ML estimates with standard errors for the SMN-CR models under DEC structure.

T SL CN N

Parameter Estimative SE Estimative SE Estimative SE Estimative SE

β1 4.040 (0.096) 4.020 (0.096) 3.993 (0.097) 3.625 (0.136)
β2 4.321 (0.107) 4.312 (0.107) 4.303 (0.111) 4.185 (0.178)
β3 4.354 (0.111) 4.344 (0.115) 4.332 (0.119) 4.259 (0.212)
β4 4.533 (0.115) 4.498 (0.117) 4.487 (0.119) 4.375 (0.201)
β5 4.675 (0.130) 4.649 (0.129) 4.638 (0.122) 4.579 (0.223)
β6 4.670 (0.147) 4.646 (0.141) 4.623 (0.139) 4.582 (0.243)
β7 4.688 (0.136) 4.670 (0.140) 4.657 (0.152) 4.688 (0.218)
β8 4.871 (0.183) 4.842 (0.189) 4.791 (0.206) 4.806 (0.378)
σ2 0.544 (0.139) 0.282 (0.065) 0.543 (0.100) 1.090 (0.134)
φ1 0.812 (0.040) 0.820 (0.038) 0.823 (0.038) 0.700 (0.043)
φ2 0.094 (0.083) 0.096 (0.082) 0.121 (0.085) 0.028 (0.071)

We are also interested in investigating the performance of the prediction for future values described
in Section 4. Toward this, we compare the predicted values under the four fitted models, say, T-CR, SL-
CR, CN-CR and N-CR with DEC structure. We exclude the last two measurements of each individual in
the datasets with more than 6 observations (total of 29 individuals). To evaluate the predictive accuracy,
we compute the mean absolute error (MAE) and the mean square error (MSE), defined as

MAE =
1

m

∑
i,j

|yij − y∗ij | and MSE =
1

m

∑
i,j

(yij − y∗ij)2, (29)

where yij is the original value and y∗ij is the predicted value, for i = 1, . . . , 29, j = 1, 2 and m = 58.
Table 5 shows the comparison between the predicted values and real ones under the SMN-CR models.
We can see from these results that the CN-CR model outperforms its competitors.

Table 5: UTI data. Evaluation of the prediction accuracy for the SMN-CR models under DEC correla-
tion structure.

T SL CN N

MSE 0.219 0.227 0.197 0.240
MAE 0.357 0.361 0.340 0.383

In addition, for the CN-CR model (our best model), we present in Figure 4 a comparison between the
predicted values and the real ones considering the five different correlation structures. From this figure
we can see that the CN-CR model with DEC structure has a better performance in terms of prediction
than the other ones.

5.3 Real Data - AIEDRP study

This study is taken from the AIEDRP program, a large multicenter observational study of subjects with
acute and early HIV infection, consisting of 320 untreated individuals with acute HIV infection. Of the
830 recorded observations, 185 (22%) were above the limit of assay quantification. For this data we
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Figure 4: UTI data. Evaluation of the prediction performance for three random subjects, considering the CN-CR
model under different correlation structures.

consider the same model of Vaida and Liu (2009) and Matos et al. (2013),but without the random effects.
We fit a right-censored five-parameter SMN-NCR model with DEC structure, as follows

yi = g(ϕi, ti) + εi, (30)

where ϕi = Aiβ, with Ai = 15, β = (β1, . . . , β5)
>, and

g(ϕi, ti) = eϕ1 +
eϕ2

1 + exp((ti − eϕ3)/eϕ4)
+ eϕ5(ti − 50). (31)

In this study, yij is the log10 of the viral load for subject i at time tij . The parameters ϕ1 and ϕ2

represent the subject-specific set-point values and decrease from the maximum HIV-1 RNA. The location
parameter ϕ3 indicates the time point at which half of the change in HIV-1 RNA is attained, ϕ4 is a scale
parameter modeling the rate of decline and ϕ5 allows increasing the HIV-1 RNA trajectory after day 50.
We adopted the exponential for each model parameters to avoid negative values.

Table 6: AIEDRP study. Model selection criterion for the NCR model under DEC structure.
Distribution

Criterion N T SL CN

`max -769.54 -762.13 -762.46 -762.60
AIC 1555.07 1540.27 1540.91 1541.19
BIC 1592.85 1578.04 1578.68 1578.961
ν - 10 2.4 (0.1,0.3)

As in the first real data, the degrees of freedom (ν) for the Student’s-t, slash and contaminated normal
models are assumed to be unknown but fixed. According to the AIC (or BIC) values, the appropriate
values of ν vary under different types of correlation structures. For all SMN distribution (N, T, SL and
CN), the DEC structure fitted better than the others correlation structures. Observing Table 6, the T-NCR
model with DEC structure and ν = 10 outperforms all the other SMN competitors.
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Table 7 summarizes the ML estimates and standard errors for the model parameters from the four
fitted SMN models. As in the simulation study, the SE values for the parameter estimates are obtained
using the empirical information matrix. From this table, the standard errors under the heavy-tailed mod-
els are smaller than the normal model, reflecting that the heavy-tailed models produces more precise
estimates.

Table 7: AIEDRP study. ML estimates with standard errors for the SMN-NCR models under DEC
structure.

N T SL CN

Parameter Estimative SE Estimative SE Estimative SE Estimative SE

β1 1.580 0.021 1.590 0.017 1.588 0.018 1.587 0.018
β2 0.387 0.155 0.327 0.119 0.338 0.123 0.349 0.128
β3 3.543 0.034 3.541 0.025 3.536 0.026 3.528 0.027
β4 1.603 0.258 1.413 0.225 1.390 0.227 1.426 0.232
β5 -0.002 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002
σ2 0.733 0.061 0.642 0.064 0.477 0.045 0.645 0.058
φ1 0.841 0.028 0.872 0.026 0.875 0.025 0.876 0.025
φ2 0.342 0.064 0.383 0.070 0.389 0.068 0.394 0.067

9 230
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κ
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Figure 5: AIEDRP data. Estimated weight κ̂i for the T-NCR fit. The influential observations are
numbered.

It is well known that outlying observations may affect the estimation of the parameters under the
normality assumption. If we use the heavy-tailed distributions, the SAEM algorithm allows one to ac-
commodate discrepant observations attributing small weights to them in the estimation procedure. The
estimated weights (κ̂i, i = 1, . . . , 320) for the T-NCR model with DEC structure (our best model) are
presented in Figure 5. We found that the observations #9 and #230 seems to be possible outliers receiving
small weight.

To compare the performance of the prediction for future values. We compute the predicted values
under T-NCR model with five types of correlation structures (AR(1), MA(1), CS, UNC, and DEC). As in
the first application, we exclude the last two measurements of each individual in the datasets with more
than 6 observations (total of 36 individuals), namely, i = 1, . . . , 36, j = 1, 2 and m = 72. Table 8 shows
the comparison between the predicted values and real ones under the T-NCR model. The MAE and MSE
values indicate that the T-NCR model with DEC structure outperforms its competitors.

Besides, for the T-NCR model, we present in Figure 6 a comparison between the predicted values
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and the real ones considering the five different correlation structures. It is clearly seen that the T-NCR
model with DEC structure has a better performance in terms of prediction than the other ones.
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Figure 6: AIEDRP study. Evaluation of the prediction performance for three random subjects, considering the
T-NCR model under different correlation structures.

6 Conclusions

In this paper, we have introduced a robust multivariate censored regression model for longitudinal data
under the SMN class of distributions, extending the recent work by Garay et al. (2014) and Garay et al.
(2015) to a multivariate context and a nonlinear case. For modeling the autocorrelation existing among
irregularly observed measures, a damped exponential correlation structure was adopted as proposed by
Muñoz et al. (1992). The main advantage of the proposed SMN-NCR model is that it can reduce the
negative impact of distributional misspecification and outliers in the parameters estimation. Moreover,
the SMN class admits a convenient framework for the implementation of the SAEM algorithm, leading
to an efficient ML estimation of the parameters.

We applied our methods to an AIDS study and undertake a simulation study to demonstrate the
superiority of SMN-NCR model on the provision of more adequate results when the available data have
censored components. Furthermore, the simulation results reveal that our method gives very competitive
performance in terms of imputation when the DEC structure is imposed. Therefore, it is noteworthy to
mention that the use of the SMN-NCR model with DEC structure can offer a better fit, protection against
outliers, and more precise inferences.

Future extensions of the work include the use of scale mixtures of skew-normal distributions (La-
chos et al. 2010) to accommodate both skewness and heavy-tailed feature, or the development of some
diagnostics and tests for the model adequacy. Incorporating measurement error models within our ro-

Table 8: AIEDRP study. Evaluation of the prediction accuracy for the T-NCR model under different
correlation structures.

DEC AR(1) CS MA(1) UNC

MSE 0.212 0.516 0.280 0.640 0.639
MAE 0.323 0.539 0.395 0.618 0.618
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bust framework for related HIV viral load covariates (namely, CD4 cell counts) is also part of our future
research.
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Appendix

Appendix A. Proof of Proposition 1

Proof. Let κ(ui) = κ(u), p1 = noi , p2 = nci , y1 = yoi , y2 = Vc
i , µ1 = µoi (β), µ2 = µi, Σ1 = Ωoo

i and
Σ2 = Si. The likelihood contributed by subject i is given by

Li(θ) =

∫ ∞
0

φnoi (y
o
i ;µ

o
i (β), κ(ui)Ω

oo
i )Φnci

(Vc
i ;µi, κ(ui)Si)dH(u)

=

∫ ∞
0

φp1(y1;µ1, κ(u)Σ1)Φp2(y2;µ2, κ(u)Σ2)dH(u).

(a) For the multivariate normal distribution:
The proof is straightforward since U is degenerated in 1.

(b) For the multivariate Student–t distribution:

L(θ) =

∫ ∞
0

1√
(2π)p1 | 1uΣ1|

exp
{
− u

2
(y1 − µ1)

>Σ−11 (y1 − µ1)
}

Φp2

(
y2;µ2,

Σ2

u

)
(ν2 )

ν
2 u

ν
2
−1

Γ(ν2 )
exp

{
− ν

2
u
}
du.

Let d(y1) = (y1 − µ1)
>Σ−11 (y1 − µ1). After some algebraic manipulations, we can deduce that

L(θ) = tp1(y1;µ1,Σ1, ν)

∫ ∞
0

(
ν +

d(y1)

2

) (p1+ν)
2 1

Γ(p1+ν2 )

exp
{
− u

2
(d(y1 + ν))

}
u

(v+p1)
2
−1Φp2

(
y2;µ2,

Σ2

u

)
du

= tp1(y1;µ1,Σ1, ν)

∫ ∞
0

f(u)Φp2

(
y2;µ2,

Σ2

u

)
du(

U ∼ Gamma
(
p1 + ν

2
,
d(y1) + ν

2

))
= tp1(y1;µ1,Σ1, ν)

∫ ∞
0

f(u)Φp2

(√
UΣ

−1/2
2 (y2 − µ2); 0, Ip2

)
du

= tp1(y1;µ1,Σ1, ν)EU

{
Φp2

(√
UΣ

−1/2
2 (y2 − µ2)

)}
.

It follows from Lemma 1 of Prates et al. (2014) that

L(θ) = tp1(y1;µ1,Σ1, ν)Tp2

(√
d(y1) + ν

p1 + ν
Σ
−1/2
2 (y2 − µ2)

∣∣∣0, Ip2 , p1 + ν

)

= tp1(y1;µ1,Σ1, ν)Tp2

(
y2

∣∣∣µ2,
d(y1) + ν

p1 + ν
Σ2, p1 + ν

)
.
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(c) For the multivariate contaminated normal distribution:

Li(θ) =

∫ ∞
0

φp1(y1;µ1, κ(u)Σ1)Φp2(y2;µ2, κ(u)Σ2)dH(u)

= ν

 1√
(2π)p1 | 1γΣ1|

exp
{
− 1

2
(y1 − µ1)

>
(

Σ−11

γ

)
(y1 − µ1)

}
Φp2

(
y2;µ2,

Σ2

γ

)
+ (1− ν)

[
1√

(2π)p1 |Σ1|
exp

{
− 1

2
(y1 − µ1)

>Σ−11 (y1 − µ1)
}

Φp2(y2;µ2,Σ2)

]
= ν

[
φp1(y1;µ1, γ

−1Σ1)Φp2(y2;µ2, γ
−1Σ2)

]
+ (1− ν) [φp1(y1;µ1,Σ1)Φp2(y2;µ2,Σ2)] .

Appendix B. Complementary results of simulation study

B1. Scenario 1: Absolute bias of parameter estimates in the SMN-CR model
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Figure 7: Simulation study - Scenario 1. Absolute bias of the parameter estimates in the SMN-CR model under
10% of censoring and different samples sizes. The solid line (blue) represents the T-CR model, the dotted line
(red) represents the N-CR model and the dotdashed line (green) represents the SL-CR model.
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B2. Scenario 3: Convergence of the parameters estimates
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Figure 8: Simulation study - Scenario 3. Convergence of the SAEM parameters estimates for the T-CR model.
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Figure 9: Simulation study - Scenario 3. Convergence of the parameters estimates for the SL-CR model.
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Figure 10: Simulation study - Scenario 3. Convergence of the SAEM parameters estimates for the N-CR model.

Appendix C. Complementary results of the UTI data: convergence of the
parameters estimates
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Figure 11: UTI data. Convergence of the SAEM parameters estimates.
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Figure 12: UTI data. Convergence of the SAEM parameters estimates (cont.).
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