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AN A PRIORI ERROR ANALYSIS OF AN HDG METHOD FOR AN EDDY

CURRENT PROBLEM

ROMMEL BUSTINZA, BIBIANA LÓPEZ-RODRÍGUEZ, AND MAURICIO OSORIO

Abstract. This paper concerns itself with the development of an a priori error analysis of an eddy

current problem when applying the well known Hybridizable discontinuous Galerkin (HDG) method. Up

to the authors knowledge, this kind of theoretical result has not been proved for this kind of problems. We
consider non trivial domains and heterogeneous media which contain conductor and insulating materials.

When dealing with these domains, it is necessary to impose the divergence-free condition explicitly in
the insulator, what is done by means of a suitable Lagrange multiplier in that material. In the end, we

deduce an equivalent HDG formulation that includes as unknowns the tangential and normal trace of a

vector field. This represents a reduction in the degrees of freedom when compares with the standard DG
methods. For this scheme we conduct a consistency and local conservative analysis as well as its unique

solvability. After that, we introduce suitable projection operators that help us to deduce the expected

a priori error estimate, which provides estimated rates of convergence when additional regularity on the
exact solution is assumed.

1. Introduction

The eddy current problem is obtained from the Maxwell equations disregarding the electric displace-
ment currents in the Ampére-Maxwell law. This simplification of the equations is reasonable when the
magnitude of the displacement currents is negligible compared to the other terms of the equation (see,
for instance Chapter 15 in [7] or Chapter 1 in [3]). Our goal is to study the time-harmonic eddy current
problem defined in a three-dimensional domain including conducting and dielectric materials. This model
arises in applications where the problem is posed in a bounded domain and it is necessary to link the
electromagnetic fields with the current source, given as a volume current, in a conducting region.

For proposing a numerical solution of the eddy current problem, two fundamental aspects should keep
in mind. The first one is the need to impose a divergence-free condition to one of the electromagnetic
variables in the dielectric part of the domain and the second one is that, depending on the electromagnetic
properties of the coefficients in each material, discontinuities could be generated in the electromagnetic
variables. The first aspect has been studied by continuous Galerkin methods by introducing a Lagrange
multiplier or a scalar potential in the dielectric, see [1] with volumetric current source and [2,5,6,14] for
different power sources. Regarding the second aspect, discontinuous Galerkin methods (DG) have been
considered in recent years to deal with the discontinuity of the approximate solution, see [17]. However
the DG methods have a disadvantage compared to continuous methods: the number of degrees of freedom
is larger.

In this paper, we propose and analyse a hybridizable discontinuous Galerkin (HDG) method for the
time-harmonic eddy current problem. Hybridizable discontinuous Galerkin methods appear in 2010 as
a new kind of discontinuous Galerkin (DG) method that allows to find the approximate solution by
solving an equivalent system of equations associated to the skeleton of the partition of the domain.
This makes the scheme to be competitive with the standard continuous Galerkin methods, for example.
In [16] the authors introduce an HDG method under the assumption that the domain contains only
dielectric material (conductivity is zero). They show experimentally that the method is convergent with
the expected convergence rates; however a theoretical error analysis is missing. The current paper aims
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to introduce a more general analysis to the model when conducting and dielectric materials are introduce
in the domain. To this end, we introduce a Lagrange multiplier to impose the divergence-free condition
in the dielectric domain. As far as we know, there are a few papers dealing with HDG formulations for
either eddy current or Maxwell problems (see [16] and [15]) and none of them present a complete error
analysis.

The HDG method initially proposed here, has as unknowns the variables related to the magnetic
and electric field across the entire domain, the Lagrange multiplier in the dielectric domain and two
variables defined only on the skeleton (associated to the tangential and normal trace of the electric
field). By imposing the local conservative condition the method reduces to solving a system defined
only on the skeleton, thus obtaining a complete method that preserves the discontinuities due to the
different electromagnetic properties of the materials and the divergence-free condition in the dielectric,
thus reducing the number of unknowns compared with standard DG methods.

Here, we propose an HDG formulation based on the normal and tangential trace of vector field. We
show consistency and local conservative results, then prove that this formulation is well-posed and obtain
error estimates. To this end, we introduce suitable projection operators and under additional assumptions
on the regularity of the exact solution we obtain theoretical rates of convergence.

The outline of the paper is as follows: in Section 2 we introduce the time-harmonic eddy current model
and approximations spaces. Then, in Section 3, we propose and analyze our HDG formulation to show
it has a unique solution and the scheme is locally conservative and consistent. The hybridization of the
scheme, that leads to a linear system defined on the skeleton, is introduced in Section 4.. Finally, in
Section 5, we establish the a priori error analysis that is the main contribution of this paper.

2. Problem statement

2.1. Eddy current problem. Maxwell’s equations are used to describe electromagnetic phenomena.
The eddy current model results by disregarding the effect of electric displacement in the Ampère-Maxwell
law, and assuming that all fields involved are sinusoidal in time. This yields the model problem:

(2.1)
∇×H = σE + Js in Ω ,

i ω µH + ∇×E = 0 in Ω ,
∇ · (εE) = 0 in ΩD ,

where E denotes the intensity of electric field, H the intensity of magnetic field, ω the angular frequency,
and Js the density of current, which is assumed to be divergence-free. We have to take also into account
the electromagnetic coefficients: magnetic permeability µ, electric permittivity ε and electric conductivity
σ. We remark that i denotes the imaginary unit. About the domain Ω, we assume that it is bounded,
simple connected, and consists on two parts: ΩC and ΩD, with ΩC representing the conductor domain
while ΩD denotes the dielectric one (cf. Figure 1). The boundary of Ω, named Γ, is supposed to
be connected and Lipschitz-continuous. Γ0 denotes the interface between the conductor and dielectric
domains. We point out that the electromagnetic coefficients depend on the material. In particular, σ is
positive in conductor material and vanishes in the dielectric one. The electric permittivity is assumed to
be positive and continuous in each subdomain, as well as the magnetic permeability.

Figure 1. Domain Ω for problem (2.1)
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We introduce now the unknowns: u = E, z = µ−1∇× u. Then, system (2.1) can be rewritten as the
first order system

(2.2)

µz −∇× u = 0 in Ω ,
∇× z + i ω σu− ε ∇ϕ|ΩD

= −i ω Js in Ω ,
∇ · (εu) = ϕ in ΩD ,〈

εu|ΩD
· n0, 1

〉
Γ0

= 0 ,

n× u = g on Γ ,
ϕ = 0 on Γ .

Here, n and n0 denote the outward normal unit vector to Γ and Γ0, disjoint components of ∂ΩD.
Throughout this paper, when . is used, it means that the inequality holds with, eventually, an

omitted constant factor that does not depend either on the mesh size or the electromagnetic coefficientes
or stabilization parameters. Also, we will use standard notation for Sobolev spaces and norms. We will
use the well known Hilbert spaces H(curl; Ω), H(div; Ω), etc. (see, for instance, [4]). Let us emphasize
the following spaces

HΓ(curl; ΩD) := {G ∈ H(curl; ΩD) : G× n = 0 on Γ} ,

HΓ0(div0
ε ; ΩD) := {F ∈ H(divε; ΩD|) : div εF = 0 in ΩD, εF · n = 0 on Γ0} .

2.2. Mesh and approximation spaces. We let now Th be a shape-regular simplicial triangulation of
Ω̄, where h also denotes the mesh size of triangulation. Next, we set ∂Th := {∂K : K ∈ Th} and define

EIh and E0,I
h as the set of interior faces F induced by Th, lying in Ω and ΩD, respectively. By Eh we

denote the set of all faces induced by Th. In addition, we define T D
h and T C

h as the triangulations of Ω̄D

and Ω̄C, induced by Th, and by ED
h and EC

h their corresponding sets of all faces induced by T D
h and T C

h ,
respectively. As usual, given K ∈ Th, n denotes the outward normal unit vector to ∂K.

Now, let z be a function living in [H1/2(Th)]3, and let F a face in ∂Th, shared by two adjacent elements
K+ and K− in Th, that is F = ∂K+ ∩ ∂K−. By z± we set the trace of z on F from the interior of K±,
while n+ and n− denote the outward unit normal vectors to K+ and K−, respectively. Then, the jumps
J·K are defined as follows. When F is an interior face, we set

Jn� zK := n+ � z+ + n− � z− ,

while when F is a boundary face, we define

Jn� zK := n� z ,

with n being, in this case, the outward unit normal to Γ. Here, � is either · or ×. We recall the definitions
of zt, the tangential component of z, as well as of zn, the normal component of z:

zt := n× (z × n) , zn := (z · n)n .

We point out that the trace of z on ∂K, can be decomposed as z = zt + zn .
We introduce the following approximation spaces

Ph := {q ∈ L2(T D
h ) : q|K ∈ Pk(K) ∀K ∈ T D

h } ,

Vh := {v ∈
[
L2(Th)

]3
: v|K ∈ [Pk(K)]3 ∀K ∈ Th} ,

PΓ
h := {q ∈ Ph : q = 0 on Γ} ,

Mt
h :=

{
β ∈

[
L2(Eh)

]3
: β ∈ [Pk(F )]3, (β · n)|F = 0 ∀F ∈ Eh

}
,

Mt
h(g) :=

{
β ∈Mt

h : n× β = Πg on Γ
}
,

Mn
h :=

{
γ ∈

[
L2
(
EDh
)]3

: γ ∈ [Pk(F )]3, (γ × n)|F = 0 ∀F ∈ EDh
}
,

Mn
h(0) :=

{
γ ∈Mn

h, : (γ · n0)|F = 0 ∀F ∈ EΓ0

h

}
.

Hereafter, given S of positive measure, Pk(S) denotes the space of complex-valued polynomials of degree
at most k ≥ 0 on S. Moreover, Πg corresponds to the L2−projection of g onto Mt

h. We remark that Mt
h
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(Mn
h resp.) consists of vector-valued functions whose normal (tangential resp.) component is zero on any

face F ∈ Eh (F ∈ E0,I
h resp.). The inner products to be considered here are

(q, p)Th :=
∑
K∈Th

(q, p)K , (v,w)Th :=

d∑
j=1

(vj , wj)Th ,

〈q, p〉∂Th :=
∑
K∈Th

〈q, p〉∂K , 〈v,w〉∂Th :=

d∑
j=1

〈vj , wj〉∂Th ,

where (q, p)D :=

∫
D

q p̄, with p̄ denoting the conjugate complex operator when applies to p.

3. HDG formulation

In this section we apply the well known HDG method to deduce a discrete variational formulation.
Then, we look for (zh,uh, ϕh, û

t
h, û

n
h) ∈ Vh × Vh × PΓ

h ×Mt
h ×Mn

h(0), solution of the discrete scheme:

(µzh, r)Th − (uh,∇× r)Th − 〈ûth, r × n〉∂Th = 0 ,(3.1)

(zh,∇× v)Th + 〈ẑth,v × n〉∂Th + i ω (σuh,v)Th + (ϕh,∇ · (εv))T D
h

−〈ϕ̂h, εv · n〉∂T D
h

= (J ,v)Th ,(3.2)

(ϕh, ρ)T D
h

+ (εuh,∇ρ)T D
h
− 〈ûnh · n, ερ〉∂T D

h
= 0 ,(3.3)

〈n× ûth,η〉Γ = 〈g,η〉Γ ,(3.4)

〈n× ẑth,η〉∂Th\Γ = 0 ,(3.5)

〈ϕ̂h, εξ · n〉∂T D
h

= 0 ,(3.6)

for all (r,v, ρ,η, ξ) ∈ Vh × Vh × PΓ
h ×Mt

h ×Mn
h(0), where J := −i ω Js . The numerical fluxes ẑth and

ϕ̂h are defined by

n× ẑth = n× zth + τt(u
t
h − ûth) ,

ϕ̂h = ϕ̃h − τn(unh − ûnh) · n ,
(3.7)

with

(3.8) ϕ̃h =

{
ϕh on E0,I

h ∪ Γ ,

ϕh − λ
〈
εuh|ΩD

· n0, 1
〉

Γ0
on Γ0 .

Here, λ is a positive constant, and τt and τn are stabilization parameters, to be defined later.
One important feature of this discrete formulation is given next.

Lemma 3.1. The HDG scheme defined by (3.1)-(3.6) is locally conservative and consistent.

Proof. First we observe that (3.5) implies that Jn× ẑthK = 0 on EIh . By (3.7), we have

0 = Jn× zth + τt(u
t
h − ûth)K

= Jn× zthK + Jτt(uth − ûth)K

= Jn× zthK + τ+
t (uth − ûth)+ + τ−t (uth − ûth)−

= Jn× zthK + τ+
t (ut

+

h − ût
+

h ) + τ−t (ut
−

h − ût
−

h ) .

Hence (since numerical fluxes are single-valued)

ûth =
1

τ+
t + τ−t

Jn× zthK +
τ+
t u

t+

h + τ−t u
t−

h

τ+
t + τ−t

.

Substituting this into (3.7) we obtain

ẑth = zth + τt

(
uth −

1

τ+
t + τ−t

Jn× zthK−
τ+
t u

t+

h + τ−t u
t−

h

τ+
t + τ−t

)
× n

= zth +
τt

τ+
t + τ−t

(
τ+
t u

t
h + τ−t u

t
h − Jn× zthK− τ+

t u
t+

h − τ−t ut
−

h

)
× n.
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Thus,

ẑt
+

h = zt
+

h +
τ+
t

τ+
t + τ−t

(
τ−t u

t+

h − Jn× zthK− τ−t ut
−

h

)
× n+(3.9)

ẑt
−

h = zt
−

h +
τ−t

τ+
t + τ−t

(
τ+
t u

t−

h − Jn× zthK− τ+
t u

t+

h

)
× n− .(3.10)

Now,

Jn× zthK× n+ =
(
n+ × zt

+

h + n− × zt
−

h

)
× n+

= n+ ×
(
zt

+

h × n+
)

+ n− ×
(
zt
−

h × n+
)

= zt
+

h

(
n+ · n+

)
− n+

(
n+ · zt

+

h

)
+ zt

−

h

(
n− · n+

)
− n+

(
n− · zt

−

h

)
= zt

+

h − zt
−

h ,

Jn× zthK× n− =
(
n+ × zt

+

h + n− × zt
−

h

)
× n−

= n+ ×
(
zt

+

h × n−
)

+ n− ×
(
zt
−

h × n−
)

= zt
+

h

(
n+ · n−

)
− n−

(
n+ · zt

+

h

)
+ zt

−

h

(
n− · n−

)
− n−

(
n− · zt

−

h

)
= −zt

+

h + zt
−

h .

Likewise

ut
+

h × n+ =
(
n+ ×

(
u+
h × n

+
))
× n+ =

(
u+
h −

(
n+ · u+

h

)
n+
)
× n+ = u+

h × n
+,

ut
−

h × n− = −u−h × n
−.

Substituting into (3.9) and (3.10) we get

ẑt
+

h = zt
+

h +
τ+
t

τ+
t + τ−t

(
τ−t u

+
h × n

+ + τ−t u
−
h × n

−)− τ+
t

τ+
t + τ−t

(
zt

+

h − zt
−

h

)
=
zt

+

h τ−t + zt
−

h τ+
t

τ+
t + τ−t

+
τ−t τ

+
t

τ+
t + τ−t

(
u+
h × n

+ + u−h × n
−)

=
zt

+

h τ−t + zt
−

h τ+
t

τ+
t + τ−t

+
τ−t τ

+
t

τ+
t + τ−t

(Juh × nK)

ẑt
−

h = zt
−

h +
τ−t τ

+
t

τ+
t + τ−t

(
u−h × n

− + u+
h × n

+
)
− τ−t
τ+
t + τ−t

(
zt
−

h − zt
+

h

)
=
τ+
t z

t−

h + τ−t z
t+

h

τ+
t + τ−t

+
τ−t τ

+
t

τ+
t + τ−t

(Juh × nK) .

Therefore we have

ẑth =
τ+
t z

t
h
−

+ τ−t z
t
h

+

τ+
t + τ−t

+
τ−t τ

+
t

τ+
t + τ−t

(Juh × nK) .

Now, since 〈εϕ̂hn, ξ〉∂T D
h

= 0 and ε is continuous in ΩD, we have Jϕ̂hnK = 0 on E0,I
h . Then, using the

fact that unh · n = uh · n, we get

0 = J(ϕh − τn(unh − ûnh) · n)nK
= J(ϕh − τn(uh − ûnh) · n)nK
= JϕhnK− J(τn(uh − ûnh) · n)nK

= JϕhnK−
(
τ+
n (u+

h − (ûnh)
+ · n+

)
n+ −

(
τ−n (u−h − (ûnh)

−
) · n−

)
n−

= JϕhnK− τ+
n

(
u+
h · n

+
)
n+ − τ−n

(
u−h · n

−)n− + τ+
n

(
(ûnh)

+ · n+
)
n+ + τ−n

(
(ûnh)

− · n−
)
n−

= JϕhnK− τ+
n

(
u+
h · n

+
)
n+ − τ−n

(
u−h · n

−)n− + τ+
n û

n+

h + τ−n û
n−

h .
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Thus

ûnh =
τ+
n u

n+

h + τ−n u
n−

h

τ+
n + τ−n

− 1

τ+
n + ε− τ−n

JϕhnK.

Replacing in (3.7), we have

ϕ̂h = ϕh − τn(unh − ûnh) · n = ϕh − τn

(
uh · n−

τ+
n u

n+

h + τ−n u
n−

h

τ+
n + τ−n

· n

)
− τn

τ+
n + τ−n

JϕhnK · n .

Therefore

ϕ̂+
h = ϕ+

h − τ
+
n

(
u+
h · n

+ − τ+
n u

n+

h + τ−n u
n−

h

τ+
n + τ−n

· n+

)
− τ+

n

τ+
n + τ−n

JϕhnK · n+ .

Since JϕhnK · n+ = ϕ+
hn

+ · n+ + ϕ−hn
− · n+ = ϕ+

h − ϕ
−
h , we deduce

ϕ̂+
h =

ϕ+
h τ
−
n + ϕ−h τ

+
n

τ+
n + τ−n

− τ+
n τ
−
n

τ+
n + τ−n

(
u−h · n

− + u+
h · n

+
)

=
ϕ+
h τ
−
n + ϕ−h τ

+
n

τ+
n + τ−n

− τ+
n τ
−
n

τ+
n + τ−n

Juh · nK .

Similarly, noticing that JϕhnK · n− = −ϕ+
h + ϕ−h , we can check that

ϕ̂−h =
ϕ−h τ

+
n + ϕ+

h τ
−
n

τ+
n + τ−n

− τ−n τ
+
n

τ+
n + τ−n

(
u−h · n

− + u+
h · n

+
)

=
ϕ−h τ

+
n + ϕ+

h τ
−
n

τ+
n + τ−n

− τ−n τ
+
n

τ+
n + τ−n

Juh · nK ,

and thus,

ϕ̂h =
ϕ−h τ

+
n + ϕ+

h τ
−
n

τ+
n + τ−n

− τ−n τ
+
n

τ+
n + τ−n

Juh · nK.

Therefore, the numerical fluxes of the HDG scheme are locally conservative. It is not difficult to check
that the exact solution satisfies the HDG formulation (3.1) -(3.6), so the scheme is also consistent. �

Next result establishes the unique solvability of discrete linear system.

Theorem 3.2. The solution (zh,uh, ϕh, û
t
h, û

n
h) ∈ Vh × Vh × PΓ

h ×Mt
h ×Mn

h(0) of problem (3.1)-(3.6)
exists and is unique.

Proof. Let us consider the homogeneous problem associate to problem (3.1)−(3.6) and take r := zh , v :=
uh , ρ := ϕh , η := −ûth , ξ := ûnh in equations (3.1), (3.2), (3.3), (3.5) and (3.6), respectively. We have

(µ zh, zh)Th − (uh,∇× zh)Th − 〈ûth, zh × n〉∂Th = 0 ,(3.11)

(∇× uh, zh)Th + 〈uh × n, ẑth〉∂Th − i ω (σuh,uh)Th + (∇ · (εuh), ϕh)T D
h

−〈εuh · n, ϕ̂h〉∂T D
h

= 0 ,(3.12)

(ϕh, ϕh)T D
h

+ (εuh,∇ϕh)T D
h
− 〈ε ûnh · n, ϕh〉∂T D

h
= 0 ,(3.13)

−〈n× ẑth, ûth〉∂Th\Γ = 0 ,(3.14)

〈εûnh · n, ϕ̂h〉∂T D
h

= 0 .(3.15)

Also from equation (3.4), we deduce n× ûth = 0 on Γ. This fact, together with (3.14), help us to ensure
that

(3.16) 〈ûth, ẑth × n〉∂Th = −〈n× ẑth, ûth〉∂Th = 0 .

Adding (3.11)− (3.15), we get

(µzh, zh)Th + [(∇× uh, zh)Th − (uh,∇× zh)Th ]− 〈ûth, zh × n〉∂Th + 〈uh × n, ẑth〉∂Th
−i ω (σuh,uh)Th +

[
(∇ · (εuh), ϕh)T D

h
+ (εuh,∇ϕh)T D

h

]
+ (ϕh, ϕh)T D

h

−〈ε ûnh · n, ϕh〉∂T D
h
− 〈εuh · n, ϕ̂h〉∂T D

h
− 〈n× ẑth, ûth〉∂Th\Γ + 〈εûnh · n, ϕ̂h〉∂T D

h
= 0.

(3.17)
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Then, taking into account (3.16) and the identities

(∇× uh, zh)Th − (uh,∇× zh)Th = 〈uth, zth × n〉∂Th ,
(∇ · (εuh), ϕh)T D

h
+ (εuh,∇ϕh)T D

h
= 〈εuh · n, ϕh〉∂T D

h
,

〈uh × n, ẑth〉∂Th = −〈uth, ẑth × n〉∂Th ,

(3.17) reduces to[
(µzh, zh)Th + (ϕh, ϕh)T D

h
− i ω (σuh,uh)Th

]
+ 〈uth − ûth,

(
zth − ẑth

)
× n〉∂Th

+〈ε (unh − ûnh) · n, ϕh − ϕ̂h〉∂T D
h

= 0.

Now, using the definition of the numerical traces (cf. (3.7)-(3.8)), we obtain[
(µzh, zh)Th + (ϕh, ϕh)T D

h
− i ω (σuh,uh)Th

]
+ 〈uth − ûth, τt

(
uth − ûth

)
〉∂Th

+〈ε (unh − ûnh) · n, τn (unh − ûnh) · n〉∂T D
h

+ λ|〈εunh|ΩD
· n0, 1〉Γ0

|2

−λ〈ε ûnh|ΩD
· n0, 1〉Γ0

〈εunh|ΩD
· n0, 1〉Γ0

= 0,

and, since ûnh ∈Mn
h(0), we deduce[

(µzh, zh)Th + (ϕh, ϕh)T D
h
− i ω (σuh,uh)Th

]
+ 〈uth − ûth, τt

(
uth − ûth

)
〉∂Th

+ 〈ε (unh − ûnh) · n, τn (unh − ûnh) · n〉∂T D
h

+ λ |〈εunh · n, 1〉Γ0
|2 = 0.

(3.18)

Hence, it follows from (3.18)

zh = 0 in Th ,(3.19)

ϕh = 0 in T D
h ,(3.20)

ûth = uth in ∂Th ,(3.21)

ûnh · n = unh · n in ∂T D
h ,(3.22)

〈εunh|ΩD · n0, 1〉Γ0 = 0 ,(3.23)

uh = 0 in T C
h .(3.24)

Equations (3.21) and (3.22) imply that uh ∈ H(curl; Ω) and uh|ΩD ∈ H(div; ΩD). Thus, using (3.23),
(3.1), (3.3) and (3.4), we can conclude that uh|ΩD

∈ HΓ(curl0; ΩD)∩HΓ0
(div0

ε ; ΩD), and therefore uh = 0
also in T D

h (see Theorem 8.4 in [13]). This concludes the proof. �

4. Hybridization

One of the advantages of the HDG method is the fact that it is enough to solve a suitable and
equivalent linear system whose degrees of freedom are defined on the skeleton of the mesh. Then, the
global unknowns are recovered in a non expensive post process. This is not the exception here, as we
describe next.

We notice that equations (3.1), (3.2) and (3.3) can be written as

(µ zh, r)K − (uh,∇× r) = 〈ûth, r × n〉∂K ,(4.1)

(zh,∇× v)K − 〈zth × n,v〉∂K + 〈τt uth,v〉∂K + i ω (σuh,v)K

−〈ϕ̃h, εv · n〉∂K∩∂T D
h

+ 〈τn unh · n, εv · n〉∂K∩∂T D
h

= 〈τn ûnh · n, εv · n〉∂K∩∂T D
h

(4.2)

+ 〈τt ûth,v〉∂K + (J ,v)K ,

(ϕh, ρ)K∩T D
h

+ (εuh,∇ρ)K∩T D
h

= 〈ε ûnh · n, ρ〉∂K∩∂T D
h
,(4.3)

ϕh|F = 0 ∀F = ∂K ∩ Γ ,(4.4)

for all (r,v, ρ) ∈ [Pk(K)]3 × [Pk(K)]3 × Pk(K) with ρ = 0 on any face F = ∂K ∩ Γ, for any K ∈ Th.
Therefore, if (ûth, û

n
h,J) is given, we can compute (zh,uh, ϕh) in an element-by-element fashion by solving
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(4.1)-(4.4) for each K ∈ Th. This allows us to introduce the local solver L defined by L(ûth, û
n
h,J) :=

(zh,uh, ϕh) . Then, given (η, ξ) ∈Mt
h ×Mn

h, we set

(zηh ,u
η
h , ϕ

η
h) = L(η,0,0) ,

(zξh,u
ξ
h, ϕ

ξ
h) = L(0, ξ,0) ,

(zJh ,u
J
h , ϕ

J
h ) = L(0,0,J) .

(4.5)

Remark 4.1. The solvability of (4.1)-(4.4) follows similar arguments than the ones applied in the proof
of Theorem 3.2.

Now, taking into account the decomposition (4.5) in (3.5)–(3.6), we deduce the following result.

Lemma 4.2. Let (zh,uh, ϕh, û
t
h, û

n
h) be the solution of the HDG scheme (3.1)− (3.6). We have that

zh = zαh + zδh + zJh ,

uh = uαh + uδh + uJh ,

ϕh = ϕαh + ϕδh + ϕJh ,

ûth = α , ûnh = δ ,

where (α, δ) ∈Mt
h(g)×Mn

h(0) is the solution of

ah(α,β) + bh(δ,β) = lh(β) ∀β ∈Mt
h(0) ,

dh(α,γ) + ch(δ,γ) = fh(γ) ∀γ ∈Mn
h(0) .

(4.6)

Here, the forms as well as the functionals in (4.6) are given, for any η,β ∈Mt
h and ξ,γ ∈Mn

h, by

ah(η,β) :=
〈

(zηh )
t × n,β

〉
∂Th
−
〈
τt

(
(uηh)

t − η
)
,β
〉
∂Th

,

bh(ξ,β) :=

〈(
zξh

)t
× n,β

〉
∂Th
−
〈
τt

(
uξh

)t
,β

〉
∂Th

,

ch(ξ,γ) :=
〈
ϕξh, εγ · n

〉
∂T D

h

−
〈
τn

(
uξh − ξ

)n
· n, εγ · n

〉
∂T D

h

,

dh(η,γ) := 〈ϕηh , εγ · n〉∂T D
h
−
〈
τn (uηh)

n · n, εγ · n
〉
∂T D

h

,

lh(β) := −
〈(
zJh
)t × n,β〉

∂Th
+
〈
τt
(
uJh
)t
,β
〉
∂Th

,

fh(γ) := −
〈
ϕJh , εγ · n

〉
∂T D

h

+
〈
τn
(
uJh
)n · n, εγ · n〉

∂T D
h

.

Next results give us some information on the structure of the associated matrix system to (4.6).

Lemma 4.3. For all η , β ∈Mt
h and ξ , γ ∈Mn

h there hold
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〈
(zηh )

t × n − τt

(
(uηh)

t − η
)
,β
〉
∂Th

=
(
µ zηh , z

β
h

)
Th

+
(
ϕηh , ϕ

β
h

)
Th

+ i ω
(
σuηh ,u

β
h

)
Th

+ λ 〈εuηh |ΩD
· n0, 1〉Γ0

〈
εuβh |ΩD

· n0, 1
〉

Γ0

(4.7)

+

〈
τt

(
(uηh)

t − η
)
,
(
uβh

)t
− β

〉
∂Th

+
〈
τn (uηh)

n · n, ε
(
uβh

)n
· n
〉
∂T D

h

,〈(
zξh

)t
× n − τt

(
uξh

)t
,β

〉
∂Th

= −
〈
τn ξ · n, εuβh · n

〉
∂T D

h

+
〈
ε ξ · n, ϕβh

〉
∂T D

h

,(4.8)

−
〈(
zJh
)t × n − τt

(
uJh
)t
,β
〉
∂Th

=
(
J ,uβh

)
Th
− 2 i ω

(
σuJh ,u

β
h

)
Th
,(4.9) 〈

ϕξh − τn

(
uξh − ξ

)
· n, εγ · n

〉
∂T D

h

=
(
µ zξh, z

γ
h

)
T D
h

+
(
ϕξh, ϕ

γ
h

)
T D
h

+

〈
τt

(
uξh

)t
, (uγh)

t
〉
∂T D

h

+ λ
〈
εuξh |ΩD

· n0, 1
〉

Γ0

〈εuγh |ΩD
· n0, 1〉Γ0

(4.10)

+
〈
τn

(
uξh − ξ

)
· n, ε (uγh − γ) · n

〉
∂T D

h

,

−
〈
ϕJh − τn

(
uJh
)n · n, εγ · n〉

∂T D
h

= (J ,uγh)T D
h
.(4.11)

Proof. The strategy here is very similar to the one applied in [16]. To make the paper self-contained, we
first write down the local system that defines L(η,0,0):

(µ zηh , r)K − (uηh ,∇× r)K = 〈η, r × n〉∂K ,(4.12)

(zηh ,∇× v)K −
〈

(zηh )
t × n,v

〉
∂K

+
〈
τt (uηh)

t
,v
〉
∂K

+ i ω (σuηh ,v)K

+ (ϕηh ,∇ · (εv))K∩T D
h
−
〈
ϕ̃ηh − τn (uηh)

n · n, εv · n
〉
∂K∩∂T D

h

= 〈τt η,v〉∂K ,(4.13)

(ϕηh , ρ)K∩T D
h

+ (εuηh ,∇ρ)K∩T D
h

= 0 ,(4.14)

ϕηh |F = 0 ∀F = ∂K ∩ Γ .(4.15)

Proof of (4.7): Now, considering β instead of η in (4.12), then testing it with r := zηh , we find that
its conjugate is written as

(4.16)
(
µ zηh , z

β
h

)
K
−
(
∇× zηh ,u

β
h

)
K

= 〈zηh × n,β〉∂K .

Similarly, after replacing β instead of η in (4.14), taking ρ := ϕηh and conjugating the resulting expression,
we have

(4.17)
(
ϕηh , ϕ

β
h

)
K∩T D

h

+
(
∇ϕηh , εu

β
h

)
K∩T D

h

= 0 .

Next, we evaluate (4.13) for v := uβh , and add equations (4.16) and (4.17). After replacing ϕ̃ηh (defined
as in (3.8) but with the superscript η) and suitable simplifications, we establish (4.7).

Proof of (4.8): First, we notice that the conjugate of (4.12), after taking β as η and r := zξh, is

(4.18)
(
µ zξh, z

β
h

)
K
−
(
∇× zξh,u

β
h

)
K

=
〈
zξh × n,β

〉
∂K

.

Now, taking r := zβh in the first equation that induces L(0, ξ,0), we have

(4.19)
(
µ zξh, z

β
h

)
K
−
(
uξh,∇× z

β
h

)
K

= 0 .
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Next, the conjugate of (4.13), after taking β as η and v := uξh, is

(∇× uξh, z
β
h )K −

〈
uξh,

(
zβh

)t
× n

〉
∂K

+

〈
τt

(
uξh

)t
,
(
uβh

)t〉
∂K

− i ω (σuξh,u
β
h )K

+ (∇ · (εuξh), ϕβh )K∩T D
h
−
〈
εuξh · n, ϕ̃

β
h − τn

(
uβh

)n
· n
〉
∂K∩∂T D

h

= 〈τt uξh,β〉∂K .(4.20)

Analogously, taking v := uβh in the second equation that defines L(0, ξ,0), we have

(zξh,∇× u
β
h )K −

〈(
zξh

)t
× n,uβh

〉
∂K

+

〈
τt

(
uξh

)t
,uβh

〉
∂K

+ i ω (σuξh,u
β
h )K

+ (ϕξh,∇ · (εu
β
h ))K∩T D

h
−
〈
ϕ̃ξh − τn

(
uξh

)n
· n, εuβh · n

〉
∂(K∩T D

h )
= 〈τn ξ · n, εuβh · n〉∂K .(4.21)

In addition, the conjugate of (4.14), after taking β as η and ρ := ϕξh, is

(4.22) (ϕξh, ϕ
β
h )K∩T D

h
+ (ε∇ϕξh,u

β
h )K∩T D

h
= 0 ,

while taking ρ = ϕβh in the third equation that defines L(0, ξ,0), gives

(4.23) (ϕξh, ϕ
β
h )K∩T D

h
+ (εuξh,∇ϕ

β
h )K∩T D

h
= 0 .

Then, (4.8) is obtained after simplifying (4.18)-(4.19)-(4.20)+(4.21)+(4.22)-(4.23), and summing up K ∈
Th.

Proof of (4.9): We need the do the following operations: Conjugating (4.12), for η := β and r := zJh ,
we have

(4.24) (µ zJh , z
β
h )K − (∇× zJh ,u

β
h )K =

〈(
zJh
)t × n,β〉

∂K
.

Next, evaluating the first equation that defines L(0,0,J), for r := zβh , we obtain

(4.25) (µ zJh , z
β
h )K − (,uJh ,∇× z

β
h )K = 0 .

Now, the conjugate of (4.13), for η := β and v := uJh , we deduce

(∇× uJh , z
β
h )K −

〈
uJh ,

(
zβh

)t
× n

〉
∂K

+

〈
τt
(
uJh
)t
,
(
uβh

)t〉
∂K

− i ω (σuJh ,u
β
h )K

+ (∇ · (εuJh ), ϕβh )K∩T D
h
−
〈
εuJh · n, ϕ̃

β
h − τn

(
uβh

)n
· n
〉
∂(K∩T D

h )
= 〈τt uJh ,β〉∂K .(4.26)

Similarly, taking v := uβh in second equation that defines L(0,0,J), we derive

(zJh ,∇× u
β
h )K −

〈(
zJh
)t × n,uβh〉

∂K
+
〈
τt
(
uJh
)t
,uβh

〉
∂K

+ i ω (σuJh ,u
β
h )K

+ (ϕJh ,∇ · (εu
β
h ))K∩T D

h
−
〈
ϕ̃Jh − τn

(
uJh
)n · n, εuβh · n〉

∂(K∩T D
h )

= (J ,uβh )K .(4.27)

The conjugate of (4.14), for η := β and ρ := ϕJh , is

(4.28)
(
ϕJh , ϕ

β
h

)
K∩T D

h

+
(
∇ϕJh , εu

β
h

)
K∩T D

h

= 0 ,

and third equation that defines L(0,0,J), for ρ := ϕβh , reduces to

(4.29)
(
ϕJh , ϕ

β
h

)
K∩T D

h

+
(
εuJh ,∇ϕ

β
h

)
K∩T D

h

= 0 ,

Then, after simplifying (4.25)-(4.24)+(4.26)-(4.27)-(4.28)+(4.29), and summing up K ∈ Th, we conclude
(4.9).
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Proof of (4.10): Taking v := uγh in the second equation in L(0, ξ,0), we deduce

(zξh,∇× u
γ
h)K −

〈(
zξh

)t
× n,uγh

〉
∂K

+

〈
τt

(
uξh

)t
,uγh

〉
∂K

+ i ω (σuξh,u
γ
h)K + (ϕξh,∇ · (εu

γ
h))K∩T D

h
−
〈
ϕ̃ξh, εu

γ
h · n

〉
∂K∩∂T D

h

+
〈
τn

((
uξh

)n
− ξ
)
· n, ε (uγh − γ) · n

〉
∂K∩∂T D

h

= −
〈
τn

(
uξh − ξ

)
· n, εγ · n

〉
∂K

.(4.30)

Next, the conjugate of third equation in L(0, ξ,0), after taking γ as ξ and ρ := ϕξh, is

(4.31) (ϕξh, ϕ
γ
h)K∩T D

h
+ (∇ϕξh, εu

γ
h)K∩T D

h
=
〈
ϕξh, εγ · n

〉
∂(K∩T D

h )
.

We also consider the conjugate of first equation that defines L(0, ξ,0), after taking γ as ξ and r := zξh:

(4.32) (µ zξh, z
γ
h )K − (∇× zξh,u

γ
h)K = 0 .

After simplifying (4.30)+(4.31)+(4.32) and summing up K ∈ T Dh , we deduce (4.10).
Proof of (4.11): First, the conjugate of (4.14), for η := γ and ρ := ϕJh , we have

(4.33) (ϕJh , ϕ
γ
h)K∩T D

h
+ (∇ϕJh , εu

γ
h)K∩T D

h
=
〈
ϕJh , εγ · n

〉
∂(K∩T D

h )
.

Evaluating third equation that defines L(0,0,J), for ρ := ϕγh , we derive

(4.34) (ϕJh , ϕ
γ
h)K∩T D

h
+ (εuJh ,∇ϕ

γ
h)K∩T D

h
= 0 .

The conjugate of (4.13), for η := γ and v := uJh , is

(∇× uJh , z
γ
h )K −

〈
uJh , (z

γ
h )
t × n

〉
∂K

+
〈
τt
(
uJh
)t
, (uγh)

t
〉
∂K

− i ω (σuJh ,u
γ
h)K + (∇ · (εuJh ), ϕγh)K∩T D

h
(4.35)

−
〈
εuJh · n, ϕ̃

γ
h

〉
∂(K∩T D

h )
+
〈
τn
(
uJh
)n · n, ε (uγh)

n · n
〉
∂(K∩T D

h )
= 〈τn

(
uJh
)n · n, εγ · n〉∂K .

Similarly, taking v := uγh in second equation that defines L(0,0,J), we derive

(zJh ,∇× u
γ
h)K −

〈(
zJh
)t × n,uγh〉

∂K
+
〈
τt
(
uJh
)t
,uγh

〉
∂K

+ i ω (σuJh ,u
γ
h)K

+ (ϕJh ,∇ · (εu
γ
h))K∩T D

h
−
〈
ϕ̃Jh − τn

(
uJh
)n · n, εuγh · n〉

∂(K∩T D
h )

= (J ,uγh)K .(4.36)

Now, conjugating (4.12), for η := γ and r := zJh , results

(4.37) (µ zJh , z
γ
h )K − (∇× zJh ,u

γ
h)K = 0 ,

while first equation in L(0,0,J), when r := zγh , gives

(4.38) (µ zJh , z
γ
h )K − (uJh ,∇× z

γ
h )K = 0 .

Finally, after simplifying (4.34)-(4.33)+(4.35)-(4.36)-(4.37)+(4.38), and summing up K ∈ T Dh ,. we obtain
(4.11). �

As a consequence of Lemmata 4.2 and 4.3, we conclude the following result that gives some knowledge
on the structure of system (4.6).

Lemma 4.4. (α, δ) ∈Mt
h(g)×Mn

h(0) satisfies the following system

ah(α,β) + bh(δ,β) = lh(β) ∀β ∈Mt
h(0) ,

bh(γ,α) + ch(δ,γ) = fh(γ) ∀γ ∈Mn
h(0) ,

(4.39)
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where the forms and functionals are given, for all η , β ∈Mt
h and ξ , γ ∈Mn

h, by

ah(η,β) :=
(
µ zηh , z

β
h

)
Th

+
(
ϕηh , ϕ

β
h

)
Th

+ i ω
(
σuηh ,u

β
h

)
Th

+
〈
τn (uηh)

n · n, ε
(
uβh

)n
· n
〉
∂T D

h

+ λ 〈εuηh |ΩD
· n0, 1〉Γ0

〈
εuβh |ΩD

· n0, 1
〉

Γ0

+

〈
τt

(
(uηh)

t − η
)
,
(
uβh

)t
− β

〉
∂Th

,

bh(ξ,β) := −
〈
τn ξ · n, εuβh · n

〉
∂T D

h

+
〈
ε ξ · n, ϕβh

〉
∂T D

h

,

ch(ξ,γ) :=
(
µ zξh, z

γ
h

)
T D
h

+
(
ϕξh, ϕ

γ
h

)
T D
h

+

〈
τt

(
uξh

)t
, (uγh)

t
〉
∂T D

h

,

lh(β) :=
(
J ,uβh

)
Th
− 2 i ω

(
σuJh ,u

β
h

)
Th
,

fh(γ) := (J ,uγh)T D
h
.

Remark 4.5. We notice that the complex-valued matrix of discrete system (4.39) is symmetric but not
hermitian. This is due to the presence of a term that contains the imaginary unit i as a factor in the
sesquilinear form ah. We point out that the unknowns in this system are defined only on the skeleton
of Th, and then it should be less expensive to solve than the original HDG scheme (3.1)-(3.6). Once
(4.39) is solved, we recover the global unknowns by solving (4.5), which again represents an inexpensive
post-process.

5. A priori error analysis

5.1. Projection operators. We begin this section by introducing the projector operators for z, u and
ϕ, that help us to obtain a priori error estimates of the method. This definition will depend on whether
the element is taken from T C

h or T D
h . Moreover, when we are on T D

h , we distinguish the operators defined
on K ∈ T D

h that have at least one face lying on Γ and that have none. It is important to remark that
the operators we consider here have been presented and studied in [11], [12].

We start by introducing ΠV z ∈ Vh as the standard piecewise orthogonal L2-projection of z onto Vh.
This means that on each K ∈ Th:

(5.1) (ΠV z, r)K = (z, r)K ∀ r ∈ [Pk(K)]3 .

Now, since ϕ is defined only on the dielectric domain, we set ΠV u ∈ Vh in the conductor domain as in
Section 6 in [12]:

(5.2) ∀K ∈ T C
h :

 (ΠV u,v)K = (u,v)K ∀v ∈ [Pk−1(K)]3 ,

〈ΠV u · n,v · n〉∂K = 〈u · n,v · n〉∂K ∀v ∈ [P⊥k (K)]3 ,

where P⊥k (K) := {p ∈ Pk(K) : (p, q)K = 0 ∀ q ∈ Pk−1(K)} .
Concerning the dielectric region, we first propose a suitable decomposition of T D

h . To this aim, we set
AD :=

{
K ∈ T D

h : |∂K ∩ Γ|Rd−1 > 0
}

, and BD := T D
h \AD . Then, we define (ΠV u,ΠPϕ) as follows:

(5.3) ∀K ∈ BD :


(ΠV u,v)K = (u,v)K ∀v ∈ [Pk−1(K)]3 ,

(ΠPϕ,ψ)K = (ϕ,ψ)K ∀ψ ∈ Pk−1(K) ,

〈ΠPϕ− τn ΠV u · n, η〉F = 〈ϕ− τn u · n, η〉F ∀ η ∈ Pk(F ) ∀F ∈ ∂K ,
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and

(5.4) ∀K ∈ AD :



(ΠV u,v)K = (u,v)K ∀v ∈ [Pk−1(K)]3 ,

〈τn ΠV u · n,v · n〉∂K = 〈τn u · n,v · n〉∂K ∀v ∈ [P⊥k (K)]3 ,

(ΠPϕ,ψ)K = (ϕ,ψ)K ∀ψ ∈ Pk−1(K) ,

〈ΠPϕ, η〉F0
= 〈ϕ, η〉F0 ∀ η ∈ Pk(F0) , F0 = ∂K ∩ Γ .

We point out that since ϕ = 0 on Γ, its projection ΠPϕ also vanishes on Γ. We notice that in BD we
define (ΠV u,ΠPϕ) as in [11], while in AD, we follow the description given in Section 6 in [12] to define
(ΠV u,ΠPϕ).

In what follows, we resume the approximation properties of the introduced projector operators, ac-
cording to the region where they are defined.

Lemma 5.1. Considering ΠV u given by (5.2), and lu ∈ [0, k], then for any K ∈ T C
h there hold

(a) ‖(ΠV u− u) · n‖∂K . h
lu+1/2
K |u|lu+1,K ∀ [u ∈ Hlu+1(K)]3 ,

(b) ‖ΠV u− u‖K . hlu+1
K |u|lu+1,K ∀u ∈ [Hlu+1(K)]3 ,

(c) ‖ΠV u− u‖∂K . h
lu+1/2
K |u|lu+1,K ∀u ∈ [Hlu+1(K)]3 .

Proof. They are consequences of Propositions 6.2 and 6.3 in [12]. �

Lemma 5.2. Assume that τn|∂K > 0, for any K ∈ AD. Then, for lu , lϕ ∈ [0, k], the operators ΠV and
ΠP defined in (5.4), satisfy

(a) ‖(ΠV u− u) · n‖∂K . h
lu+1/2
K |u|lu+1,K ∀u ∈ [Hlu+1(K)]3 ,

(b) ‖ΠV u− u‖∂K . h
lu+1/2
K |u|lu+1,K ∀u ∈ [Hlu+1(K)]3 ,

(c) ‖ΠV u− u‖K . hlu+1
K |u|lu+1,K ∀u ∈ [Hlu+1(K)]3 ,

(d) ‖ΠPϕ− ϕ‖∂K . h
lϕ+1/2
K |ϕ|lϕ+1,K ∀ϕ ∈ Hlϕ+1(K) ,

(e) ‖ΠPϕ− ϕ‖K . h
lϕ+1
K |ϕ|lϕ+1,K ∀ϕ ∈ Hlϕ+1(K) .

Proof. (a)-(c) are deduced from Propositions 6.2 and 6.3 in [12], while for (d)-(e) we refer to the proof of
Proposition 2.1-(vii) in [10]. �

Lemma 5.3. Suppose that τn|∂K > 0, for any K ∈ BD. Then, for lu , lϕ ∈ [0, k], the operators ΠV and
ΠP defined in (5.3), satisfy

(a) ‖ΠPϕ− ϕ‖K . h
lϕ+1
K |ϕ|lϕ+1,K ∀ϕ ∈ Hlϕ+1(K) ,

(b) ‖ΠV u− u‖K . hlu+1
K |u|lu+1,K +

h
lϕ+1
K

(τn)
∗
K

|ϕ|lϕ+1,K ∀u ∈ [Hlu+1(K)]3 ,

(c) ‖ΠV u− u‖∂K . h
lu+1/2
K |u|lu+1,K ∀u ∈ [Hlu+1(K)]3 .

Here (τn)
∗
K := min τn|∂K .

Proof. These results correspond to Theorem 2.1 in [9] (see also Theorem 2.1 in [11]). �

Lemma 5.4. Given lz ∈ [0, k], there hold on any K ∈ Th
(a) ‖ΠV z − z‖K . hlz+1

K |z|lz+1,K ∀ z ∈ [Hlz (Th)]3 ,

(b) ‖ΠV z − z‖∂K . h
lz+1/2
K |z|lz+1,K ∀ z ∈ [Hlz (Th)]3 .

Proof. We refer to [8]. �
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5.2. Error estimates. The idea here is to bound the errors involving the discrete solution and its
corresponding projection. Then, the a priori error estimate is derived by applying triangle inequality. To
this end, we first introduce the following notations, which we call the projection errors:

eϕh := ΠPϕ − ϕh , e
ût

h

h := PMt
h
ut − ûth , ezh := ΠVz − zh ,

e
ûn

h

h := PMn
h(0)u

n − ûnh , euh := ΠV u − uh ,

where PMt
h

and PMn
h(0) denote the L2−projection onto Mt

h and Mn
h(0), respectively. Now, we relate these

projection errors in the next result.

Lemma 5.5. Let (z,u, ϕ) and (zh,uh, ϕh, û
t
h, û

n
h) be the solutions of (2.2) and (3.1)-(3.6), respectively.

Then, the projection errors ezh, e
u
h , e

ϕ
h , e

ûn
h

h , e
ût

h

h satisfy

(µezh, r)Th − (euh ,∇× r)Th −
〈
e
ût

h

h , r × n
〉
∂Th

= 0 ,(5.5)

(ezh,∇× v) +
〈
n× (ezh)

t
+ τt

(
(euh )

t − eû
t
h

h

)
,v
〉
∂Th

+ iω(σeuh ,v)Th

+ (eϕh ,∇ · (εv))T D
h
−
〈
eϕh + τn

(
e
ûn

h

h − (euh )
n
)
· n, εv · n

〉
∂T D

h

+ λ 〈εeuh |ΩD
· n0, 1〉Γ0

〈εv|ΩD
· n0, 1〉Γ0

=
〈
τt

(
(ΠV u)

t
+ PMt

h
ut
)
,v
〉
∂Th

+ iω (σ (ΠV u− u) ,v)Th(5.6)

−
∑

K∈BD

F0∈∂K∩Γ

〈ΠPϕ− ϕ, εv · n〉∂K +
∑
K∈AD

〈
τn

(
(ΠV u)

n − PMn
h(0)u

n
)
· n, εv · n

〉
∂K

+ λ 〈ε (ΠV u) |ΩD · n0, 1〉Γ0
〈εv|ΩD · n0, 1〉Γ0

+ 〈n× (ΠV z − z) ,v〉∂Th ,

(eϕh , ρ)T D
h

+ (εeuh ,∇ρ)T D
h
−
〈
εe
ûn

h

h · n, ρ
〉
∂T D

h

= (ΠPϕ− ϕ, ρ)T D
h
,(5.7)

〈
n× eû

t
h

h ,η
〉

Γ
= 0 ,(5.8) 〈

−n× (ezh)
t

+ τt

(
e
ût

h

h − (euh )
t
)
,η
〉
∂Th\Γ

=
〈
−n× (ΠV z − z) + τt (u−ΠV u)

t
,η
〉
∂Th\Γ

,(5.9) 〈
eϕh + τn

(
e
ûn

h

h − e
u
h

)
· n, εξ · n

〉
∂T D

h

−λ 〈εeuh |ΩD · n0, 1〉Γ0
〈εξ · n0, 1〉Γ0

= 〈ΠPϕ− ϕ, εξ · n〉∂AD − 〈τn (ΠV u− u) · n, εξ · n〉∂AD(5.10)

−λ〈ε (ΠV u) |ΩD
· n0, 1〉Γ0

〈εξ · n0, 1〉Γ0
,

for all (r,v, ρ,η, ξ) ∈ Vh × Vh × PΓ
h ×Mt

h ×Mn
h(0).

Proof. First, we derive from (3.1):

(µ (ΠV z − ezh) , r)Th − (ΠV u − euh ,∇× r)Th −
〈
PMt

h
uth − e

ût
h

h , r × n
〉
∂Th

= 0 .

Then, we have

(µezh, r)Th − (euh ,∇× r)Th −
〈
e
ût

h

h , r × n
〉
∂Th

= (µΠV z, r)Th

− (ΠV u,∇× r)Th −
〈
PMt

h
uth, r × n

〉
∂Th

= (µ (ΠV z − z) , r)Th

+
[
(µz, r)Th − (u,∇× r)Th −

〈
ut, r × n

〉
∂Th

]
,
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and (5.5) is deduced, after applying the consistency of the scheme and the fact that ΠV z is the L2−projection
of z onto Vh. (5.6)–(5.10) are established by similar arguments. We omit further details. �

Next result establishes an important inequality that helps us to conclude on the convergence of the
method.

Theorem 5.6. The projection errors ezh, euh , eϕh , e
ût
h

h , and e
ûn
h

h satisfy∥∥∥µ1/2ezh

∥∥∥2

Th
+ ω

∥∥∥σ1/2euh

∥∥∥2

Th
+ ‖eϕh‖

2

T D
h

+ λ
∣∣〈εeuh |ΩD

· n0, 1〉Γ0

∣∣2 +
∥∥∥(τnε)

1/2
(
euh − e

ûn
h

h

)
· n
∥∥∥2

∂T D
h

+

∥∥∥∥τ1/2
t

(
euh − e

ût
h

h

)t∥∥∥∥2

∂Th
. ω

∥∥∥σ1/2 (ΠV u− u)
∥∥∥2

Th
+ ‖ΠPϕ− ϕ‖2T D

h
+
∥∥∥τ1/2
t (ΠV u− u)

∥∥∥2

∂Th

+
∥∥∥(ετn)

1/2
(ΠV u− u) · n

∥∥∥2

∂AD
+
∥∥∥(ετ−1

n

)1/2
(ΠPϕ− ϕ)

∥∥∥2

∂AD
(5.11)

+ λ
∣∣〈ε (ΠV u− u|ΩD) · n0, 1〉Γ0

∣∣2 +
∥∥∥τ−1/2
t n× (ΠV z − z)

∥∥∥2

∂Th
.

Proof. After reducing (5.5) + (5.6) + (5.7), for r := ezh, v := euh , and ρ := eϕh , we obtain

‖µ1/2ezh‖2Th +
〈
n× ezh, e

êth
h

〉
∂Th

+

〈
τt

(
euh − e

ût
h

h

)t
, euh

〉
∂Th

+ iω||σ1/2euh ||2Th + ||eϕh ||
2
T D
h

−
〈
eϕh , εe

ûn
h

h · n
〉
∂T D

h

−
〈
τn

(
e
ûn

h

h − e
u
h

)
· n, εeuh · n

〉
∂T D

h

+ λ
∣∣〈εeuh |ΩD · n0, 1〉Γ0

∣∣2
= iω (σ (ΠV u− u) , euh )Th + (eϕh ,ΠPϕ− ϕ)T D

h
+ 〈n× (ΠV z − z) , euh 〉∂Th

(5.12)

−
〈
τt (ΠV u− u)

t
, euh

〉
Th
− 〈ΠPϕ− ϕ, εeuh · n〉∂T D

h
+ 〈τn (ΠV u− u) · n, εeuh · n〉∂AD

+ λ 〈ε(ΠV u− u)|ΩD
· n0, 1〉Γ0

〈εeuh |ΩD
· n0, 1〉Γ0

.

We notice that (5.8) implies e
ût

h

h = 0 on Γ
(

take for example η := n× eû
t
h

h

)
. Then, taking η := e

ût
h

h and

ξ := e
ûn

h

h in (5.9) and (5.10) respectively, and summing the resulting relations with (5.12), we have (after
some simplifications)

‖µ1/2ezh‖2Th +

〈
τt

(
euh − e

ût
h

h

)t
,
(
euh − e

ût
h

h

)t〉
∂Th

+ iω||σ1/2euh ||2Th + ‖eϕh‖2T D
h

+
〈
τn

(
e
ûn

h

h − euh
)
· n, ε

(
e
ûn

h

h − euh
)
· n
〉
∂T D

h

+ λ
∣∣∣〈εeuh |ΩD · n0, 1〉Γ0

∣∣∣2
= iω (σ (ΠV u− u) , euh )Th + (eϕh ,ΠPϕ− ϕ)T D

h
−
〈
τt (ΠV u− u)

t
, euh − e

ût
h

h

〉
∂Th

+
〈
τn (ΠV u− u) · n, ε(euh − e

ûn
h

h ) · n
〉
∂AD

+
〈

ΠPϕ− ϕ, ε
(
e
ûn

h

h − e
u
h

)
· n
〉
∂AD

+ λ 〈ε(ΠV u− u)|ΩD
· n0, 1〉Γ0

〈εeuh |ΩD · n0, 1〉Γ0
+
〈
n× (ΠV z − z), euh − e

ût
h

h

〉
∂Th

.

Next, taking into account the property 1
2 (|Re(w)| + |Im(w)|) ≤ |w| ,∀w ∈ C, and a discrete version of

Cauchy-Schwarz inequality, (5.11) is obtained. We omit further details. �

As by product, we derive the following result.
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Theorem 5.7. Assuming that the exact solution of (2.2), (z,u, ϕ) ∈ [H lz+1(Th)]3 × [H lu+1(Th)]3 ×
H lϕ+1(T Dh ), lz, lu, lϕ ∈ [0, k], there holds∥∥∥µ1/2 ezh

∥∥∥2

Th
+ ω

∥∥∥σ1/2 euh

∥∥∥2

Th
+ ‖eϕh‖

2

T D
h

+ λ
∣∣∣〈ε euh |2ΩD

· n0, 1
〉

Γ0

∣∣∣2 +

∥∥∥∥τ1/2
t

(
euh − e

ût
h

h

)t∥∥∥∥2

∂Th

+
∥∥∥(τn ε)

1/2
(
euh − e

ûn
h

h

)
· n
∥∥∥2

∂T D
h

.
∑
K∈Th

(
1

(τt)∗K

)
h2(lz+1/2) |z|2lz+1,K +

∑
K∈BD

h
2(lϕ+1)
K |ϕ|2lϕ+1,K

+
∑
K∈AD

(
hK +

maxK ε

(τn)∗K

)
h

2(lϕ+1/2)
K |ϕ|2lϕ+1,K +

∑
K∈T C

h

(
ω
(

max
K

σ
)
hK + (τn)mK

)
h2(lu+1/2) |u|2lu+1,K

+
∑
K∈AD

(
(τt)

m
K +

(
max
K

ε
)

(τn)mK

)
h

2(lu+1/2)
K |u|2lu+1,K +

∑
K∈BD

(
(τt)

m
K + λ

(
max
K

ε
)
hk

)
h

2(lu+1/2)
K |u|2lu+1,K .

Here, given K ∈ Th, we have (τn)
m
K := max τn|∂K , (τt)

m
K := max τt|∂K , (τn)

∗
K := min τn|∂K , and

(τt)
∗
K := min τt|∂K .

Proof. It follows straightforwardly by using triangle inequalities, applying Theorem 5.6 and some approx-
imation properties (cf. Lemmata 5.1-5.4). We omit further details. �

Now, in order to deduce an error estimate for the numerical fluxes, we introduce the norm || · ||h,T D
h

given by ||θ||2
h,T D

h
:=
∑
K∈T D

h
hK ||θ||2∂K for any function θ ∈ L2(∂T D

h ) :=
∏
K∈T D

h
L2(∂K). The definition

of ||θ||h,T C
h

, when θ ∈ [L2(∂T C
h )]3, is given in analogous way. So, we derive the following results.

Theorem 5.8. Under the same assumptions in Theorem 5.7, there hold

a)
∥∥∥eûn

h

h · n
∥∥∥2

h,T D
h

.
∑
K∈T D

h

hK
ε (τn)∗K

∥∥∥(ε τn)1/2
(
e
ûn

h

h − (euh )
n
)
· n
∥∥∥2

∂K
+ ‖euh‖

2
K ,

b)
∥∥∥eût

h

h

∥∥∥2

h,T C
h

.
∑
K∈T C

h

hK
(τt)∗K

∥∥∥(τt)
1/2
(
e
ût

h

h − (euh )
t
)∥∥∥2

∂K
+ ‖euh‖

2
K .

Proof. Just apply triangle inequality and Theorem 5.7. We omit further details. �

Finally, we conclude the main result of this paper.

Theorem 5.9. Under the same assumptions in Theorem 5.7, we have that

‖z − zh‖0,Ω = O(h`+1/2),
∥∥∥eûn

h

h · n
∥∥∥
h,T D

h

= O(h`+1/2),∥∥∥σ1/2(u− uh)
∥∥∥

0,Ω
= O(h`+1/2),

∥∥∥eût
h

h

∥∥∥
h,T C

h

= O(h`+1/2),

‖ϕ− ϕh‖0,Ω = O(h`+1/2).

where ` = min{lz, lu, lϕ}, provided τn and τ−1
n , as well as τt and τ−1

t remain of order one on ∂T D
h and

∂Th, respectively.

These results show that we achieve rates of convergence for the method, but without applying any
duality argument. In addition, since σ vanishes on ΩD, the current analysis is not able to find an a priori
error estimate for the error of uh in the dielectric domain. Nevertheless, in practice, this knowledge is
not so useful.

6. Concluding remarks

Using a simple strategy, we have been able to develop an a priori error analysis of an HDG method for
an eddy current problem. We point out that, as far as we know, this kind of analysis has not been done
before. We observe that under enough regularity of the exact solution, the error of the method behaves
as O(hk+1/2), where k ≥ 0. Moreover, the same analysis does not let us prove super-convergence for the
error of involved numerical fluxes. The introduction of adjoint problem and use of dual arguments do not
help us in this matter. It remains open, then, if this rate of convergence is indeed the best it could be,
or it can be improved, for example, by defining another suitable projection operators. Some numerical
examples could be helpful also in this direction. These would be the subject of future work.
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Escuela de Matemáticas, Universidad Nacional de Colombia, Sede Medelĺın, Colombia
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error analysis of an HDG method for an eddy current problem

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de
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