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Abstract. This paper is devoted to the numerical analysis of a finite element approximation of the
axisymmetric Brinkman equations written in terms of stream-function and vorticity fields. A mixed
formulation is introduced involving appropriate weighted Sobolev spaces, and its well-posedness is
analyzed using the Babuška-Brezzi theory. We introduce a suitable Galerkin discretization based
on continuous piecewise polynomials of degree k ≥ 1 for all the unknowns, whose solvability is
established using the same framework as the continuous problem and we derive optimal a priori error
estimates. A set of numerical examples are presented to illustrate the convergence and performance
of the proposed schemes.

1. Introduction

We consider the axisymmetric Brinkman equations, but formulated in terms of vorticity and
stream-function to describe viscous flow within a porous medium. The same principle, applied
for the two-dimensional Stokes equations in Cartesian coordinates has been extensively used (see
e.g. [19]). More recently, the axisymmetric case has been studied by Adbellatif et al. in [2],
decoupling the Stokes equations into two Poisson problems, and analyzing a spectral discretization.
Apart from the fact that computed stream-functions are the standard tool for flow visualization,
this kind of formulations enjoy some attractive features from the numerical viewpoint, since they
only involve two scalar unknowns to resolve the flow patterns, and the discrete solutions may lead
to exactly divergence-free postprocessed velocity fields. In addition, the pressure drops from the
formulation and can be recovered via a generalized Poisson problem whose datum comes from the
previously obtained stream-function (similarly to the decoupled methods recently proposed in [17, 5]
for the Brinkman equations). In the three-dimensional case the stream-function is a vector field,
and therefore these formulations are no longer substantially advantageous over classical velocity-
pressure ones. As in [2], we will focus on the axisymmetric case, where the cylindrical symmetry
reduces a three dimensional problem to a bidimensional one, and the stream-function is still a
scalar. The radial configuration implies that suitable weighted Sobolev spaces will appear in the
theoretical setting (see e.g. the monograph [12]).

Numerous studies involve different discretizations for axisymmetric viscous flows (see e.g. [1,
3, 5, 6, 7, 11, 13, 15, 18, 24]). Specifically, here we follow some ideas from [4] (where we have
proposed a stabilized mixed method to resolve axisymmetric velocity–vorticity–pressure Brinkman
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†GIMNAP, Departamento de Matemática, Universidad del B́ıo-B́ıo, Concepción, Chile. E-mail:

vanaya@ubiobio.cl.
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flows), but consider a mixed formulation written in terms of stream-function and vorticity. We note
that, as a consequence of the zero-order term and the variable permeability tensor, in this case the
problem cannot be decoupled as in [2]. Existence, uniqueness at the continuous and discrete level
is established using standard arguments for saddle-point problems (see [16]). The proposed finite
element discretization is based on piecewise polynomials of order k ≥ 1 for all scalar fields, defined
on triangular meshes. In its lowest-order version, it represents only six degrees of freedom per ele-
ment, decoupled from a pressure solve (approximated in axisymmetric H1−conforming spaces and
having three degrees of freedom per element), thus being a very competitive method (for instance,
less expensive than the scheme introduced in [4]). A common goal, here satisfied automatically,
is to recover flow fields that satisfy exactly the incompressibility condition. In addition, our ap-
proach allows a direct computation of the vorticity with optimal accuracy, and without the need of
postprocessing. Our optimal order error estimates are derived from the continuous dependence on
the data and an appropriate Céa estimate, and we stress that these bounds are established with
constants independent of the viscosity. Moreover, a duality argument allows us to improve the
order of convergence of the vorticity and the stream function approximations in L2-norm.

The remainder of this paper is structured as follows. Section 2 collects the formulations of
the Brinkman problem for velocity and pressure in Cartesian coordinates, its reduction to the
axisymmetric case, and we recall its stream-function–vorticity form. The weak formulation in
mixed form, along with some preliminary results are also presented. Next, in Section 3 we prove
the unique solvability and stability properties of the proposed formulation. In Section 4 we introduce
the finite element discretization of our variational formulation, for which we prove a discrete inf-sup
condition uniformly with respect to the viscosity ν and the mesh parameter h; and we establish
optimal error estimates. Some illustrative numerical tests are postponed to Section 5, and we close
with a few remarks and perspectives in Section 6.

2. Formulations of the linear Brinkman equations in different coordinates

2.1. Cartesian coordinates. The linear Brinkman equations govern the motion of an incompress-
ible viscous fluid within a porous medium. The system is

K̆−1ŭ− ν∆ŭ +∇p̆ = f̆ in Ω̆,(2.1a)

div ŭ = 0 in Ω̆,(2.1b)

ŭ · n̆ = 0 on ∂Ω̆,(2.1c)

curl ŭ ∧ n̆ = 0 on ∂Ω̆,(2.1d)

where Ω̆ ⊂ R3 is a given spatial domain. The sought quantities are the local volume-average velocity
ŭ and the pressure field p̆. The permeability K̆ is a symmetric and positive definite tensor and
without loosing generality we restrict ourselves to the isotropic case where the inverse permeability
distribution can be represented by the scalar function σ, i.e. K̆−1 = σ̆I. The inverse permeability
has L∞(Ω̆) regularity, with 0 < σ̆min ≤ σ̆(x, y, z) ≤ σ̆max a.e. in Ω̆. For simplicity we assume a
constant fluid viscosity ν > 0.

2.2. Axisymmetric case. Under axial symmetry of the domain, the forcing term, and the inverse
permeability, we can replace them by Ω, f , and σ, respectively, with 0 < σmin ≤ σ(r, z) ≤ σmax a.e.
in Ω, and system (2.1a)-(2.1d) can be recast as a problem involving only the meridional domain
Ω and written in terms of unknowns ur, uz and p. In general, we will denote with ·̆ a quantity
associated to the three-dimensional domain Ω̆, whereas vector fields associated to the axisymmetric
restriction will be denoted by v = (vr, vz).
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Moreover, if we introduce a vorticity field, scaled with respect to viscosity, ω =
√
ν rotu, we

arrive at the following problem

σu +
√
ν curla ω +∇p = f in Ω,(2.2a)

ω −
√
ν rotu = 0 in Ω,(2.2b)

diva u = 0 in Ω,(2.2c)

u · n = 0 on Γ,(2.2d)

ω = 0 on Γ,(2.2e)

where the axisymmetric counterparts of the usual differential operators acting on vectors and scalars
read

diva v := ∂rvr + r−1vr + ∂zvz, rotv := ∂rvz − ∂zvr, curla ϕ := (∂zϕ,−∂rϕ−
1

r
ϕ)t.

2.3. Axisymmetric stream-function–vorticity formulation. Next, we realize that the incom-
pressibility condition (2.2c) is equivalent to the existence of a scalar stream-function ψ satisfying
u = curla ψ, with ψ = 0 on Γ (cf. Lemma 2.1 and [2, 19]). Therefore, (2.2) is re-written as

σ curla ψ +
√
ν curla ω +∇p = f in Ω,(2.3a)

ω −
√
ν rot(curla ψ) = 0 in Ω,(2.3b)

ψ = 0 on Γ,(2.3c)

ω = 0 on Γ.(2.3d)

2.4. Recurrent notation and auxiliary results. Before stating a weak form to (2.3), we recall
some standard definitions of weighted Sobolev spaces and involved norms (see further details in
e.g. [21]). Let Lpα(Ω) denote the weighted Lebesgue space of all measurable functions ϕ defined in
Ω for which

‖ϕ‖p
Lpα(Ω)

:=

∫
Ω
|ϕ|p rα drdz <∞.

The subspace L2
1,0(Ω) of L2

1(Ω) contains functions q with zero weighted integral (q, 1)r,Ω = 0, where

(s, t)r,Ω :=

∫
Ω
str drdz ,

for all sufficiently regular s, t. The weighted Sobolev space Hk
1(Ω) consists of all functions in L2

1(Ω)
whose derivatives up to order k are also in L2

1(Ω). This space is provided with semi-norms and
norms defined in the standard way; in particular,

|ϕ|2H1
1(Ω) :=

∫
Ω

(
|∂rϕ|2 + |∂zϕ|2

)
r drdz ,

is a norm onto the Hilbert space H1
1(Ω)∩L2

1,0(Ω). Furthermore, the space H̃1
1(Ω) := H1

1(Ω)∩L2
−1(Ω)

is endowed with the following norm and semi-norm, respectively (the former being ν-dependent):
(2.4)

|||ϕ|||
H̃1

1(Ω)
:=
(
‖ϕ‖2L2

1(Ω) + ν |ϕ|2H1
1(Ω) + ν ‖ϕ‖2L2

−1(Ω)

)1/2
, ‖ϕ‖

H̃1
1(Ω)

:=
(
|ϕ|2H1

1(Ω) + ‖ϕ‖2L2
−1(Ω)

)1/2
.

We will also require the following weighted scalar and vectorial functional spaces:

H1
1,�(Ω) :=

{
ϕ ∈ H1

1(Ω);ϕ = 0 on Γ
}
, H̃1

1,�(Ω) :=
{
ϕ ∈ H̃1

1(Ω);ϕ = 0 on Γ
}
,

H(diva,Ω) :=
{
v ∈ L2

1(Ω)2; diva v ∈ L2
1(Ω)

}
, H(curla,Ω) :=

{
ϕ ∈ L2

1(Ω); curla ϕ ∈ L2
1(Ω)2

}
,

H(rot,Ω) :=
{
v ∈ L2

1(Ω)2; rotv ∈ L2
1(Ω)

}
.
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We observe that as a consequence of [20, Proposition 2.1], the second entity in (2.4) is a norm

in H̃1
1,�(Ω). In addition, the spaces H(diva,Ω) and H(curla,Ω) are endowed respectively by the

norms:

‖v‖H(diva,Ω) :=
(
‖v‖2L2

1(Ω)2 + ‖diva v‖2L2
1(Ω)

)1/2
, |||ϕ|||H(curla,Ω) :=

(
‖ϕ‖2L2

1(Ω) + ν‖ curla ϕ‖2L2
1(Ω)2

)1/2
,

and ‖ϕ‖H(curla,Ω) := ‖ curla ϕ‖L2
1(Ω)2 .

Moreover, it holds that

|||ϕ|||
H̃1

1(Ω)
≤ |||ϕ|||H(curla,Ω) ≤

√
2|||ϕ|||

H̃1
1(Ω)

∀ϕ ∈ H̃1
1(Ω),(2.5)

‖ϕ‖
H̃1

1(Ω)
≤ ‖ϕ‖H(curla,Ω) ≤

√
2‖ϕ‖

H̃1
1(Ω)

∀ϕ ∈ H̃1
1,�(Ω),(2.6)

The following result has been proved in [10] (see also [2]).

Lemma 2.1. Let Ω be simply connected. For any s > 1, if v ∈ [H̃1
1,�(Ω) ∩ Hs

1(Ω)]2 satisfies

diva v = 0, and v · n = 0 on Γ, then there exists a unique potential ϕ ∈ Hs+1
1 (Ω) such that

v = curla ϕ, and ϕ = 0 on Γ.

On the other hand, let H
1/2
1 (Γ) be the trace space associated to H1

1(Ω), and notice that the
normal trace operator on Γ is defined by v 7→ v ·n|Γ, and it is continuous from H(diva,Ω) into the

dual space of H
1/2
1 (Γ). We next recall the following Green identities have been established in [3].

Lemma 2.2. For any v ∈ H(diva,Ω) and q ∈ H1
1(Ω), the following Green formula holds

(diva v, q)r,Ω + (v,∇q)r,Ω = 〈v · n, q〉r,Γ.

Lemma 2.3. For any v ∈ H(rot,Ω) and ϕ ∈ H̃1
1(Ω), we have the following Green formula

(v, curla ϕ)r,Ω − (ϕ, rotv)r,Ω = 〈v · t, ϕ〉r,Γ.

2.5. The variational formulation. Now we test system (2.3a)-(2.3b) against curla ϕ, with ϕ ∈
H̃1

1,�(Ω), and θ ∈ H̃1
1,�(Ω), respectively:

(σ curla ψ, curla ϕ)r,Ω + (
√
ν curla ω, curla ϕ)r,Ω + (∇p, curla ϕ)r,Ω = (f , curla ϕ)r,Ω,

(ω, θ)r,Ω − (
√
ν rot[curla ψ], θ)r,Ω = 0.

Then, combining Lemmas 2.2 and 2.3 with a direct application of the boundary conditions, yields

the following variational problem: Find (ψ, ω) ∈ H̃1
1,�(Ω)× H̃1

1,�(Ω) such that

a(ψ,ϕ)+b(ϕ, ω)=F (ϕ) ∀ϕ ∈ H̃1
1,�(Ω),

b(ψ, θ) −d(ω, θ)= 0 ∀θ ∈ H̃1
1,�(Ω),(2.7)

where the involved bilinear forms and linear functional are

a(ψ,ϕ) := (σ curla ψ, curla ϕ)r,Ω, b(ϕ, ω) := (
√
ν curla ω, curla ϕ)r,Ω, d(ω, θ) := (ω, θ)r,Ω,

F (ϕ) := (f , curla ϕ)r,Ω.

Remark 2.1. The discussion about possible shortcomings of the boundary treatment (2.3c),(2.3d)
and the associated issues in representing no-slip velocity conditions or other wall laws is not part
of the goals of this paper. We refer the interested reader to [8, 25]. However, we do stress that
imposition of tangential velocities poses no difficulty in our framework. For instance, if we want
to set u · t = ut with a known ut on Γt ⊂ Γ, then Lemma 2.3 suggest that the adequate test space
for the vorticity field would be

H̃1
1,t(Ω) :=

{
ϕ ∈ H̃1

1(Ω);ϕ = 0 on Γ \ Γt

}
.
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Also from Lemma 2.3, it follows that a non-homogeneous term

H(θ) := 〈
√
νut, θ〉r,Γt ∀θ ∈ H̃1

1,t(Ω),

should appear in the second equation of (2.7).

3. Well-posedness of the continuous problem

In this section, we prove that the continuous variational formulation (2.7) is uniquely solvable.
With this aim, we recall the following abstract result (see e.g. [16, Theorem 1.3]):

Theorem 3.1. Let (X , 〈·, ·〉X ) be a Hilbert space. Let A : X × X → R be a bounded symmetric
bilinear form, and let G : X → R be a bounded functional. Assume that there exists β̄ > 0 such that

(3.1) sup
y∈X
y 6=0

A(x, y)

‖y‖X
≥ β̄ ‖x‖X ∀x ∈ X .

Then, there exists a unique x ∈ X , such that

(3.2) A(x, y) = G(y) ∀ y ∈ X .
Moreover, there exists C > 0, independent of the solution, such that

‖x‖X ≤ C‖G‖X ′ .

Theorem 3.2. The variational problem (2.7) admits a unique solution (ψ, ω) ∈ H̃1
1,�(Ω)× H̃1

1,�(Ω).
Moreover, there exists C > 0 independent of ν such that

(3.3) ‖ψ‖
H̃1

1(Ω)
+ |||ω|||

H̃1
1(Ω)
≤ C‖f‖L2

1(Ω)2 .

Proof. First, we define X := H̃1
1,�(Ω) × H̃1

1,�(Ω) (endowed with the corresponding product norm:

‖ · ‖
H̃1

1(Ω)
and ||| · |||

H̃1
1(Ω)

, respectively) and the following bilinear form and linear functional:

A((ψ, ω), (ϕ, θ)) := a(ψ,ϕ) + b(ϕ, ω) + b(ψ, θ)− d(ω, θ), G((ϕ, θ)) := F (ϕ).

To continue, it suffices to verify the hypotheses of Theorem 3.1. First, we note that the linear
functional G(·) is bounded and as a consequence of the boundedness of a(·, ·) b(·, ·), and d(·, ·), one
has that the bilinear form A(·, ·) is bounded too with constants independent of ν.

The next step consists in proving that the bilinear form A(·, ·) satisfies the inf-sup condition
(3.1). With this aim, we have that for any (ψ, ω) ∈ X , we define

ϕ̃ := (ψ + ĉ
√
νω) ∈ H̃1

1,�(Ω), and θ̃ := −ω ∈ H̃1
1,�(Ω),

where ĉ is a positive constant which will be specified later. Therefore, from the definition of bilinear
form A(·, ·) we obtain

A((ψ, ω), (ϕ̃, θ̃))

= (σ curla ψ, curla ϕ̃)r,Ω + (
√
ν curla ω, curla ϕ̃)r,Ω + (

√
ν curla θ̃, curla ψ)r,Ω − (ω, θ̃)r,Ω

≥ σmin‖ curla ψ‖2L2
1(Ω)2 + ĉ(

√
νσ curla ψ, curla ω)r,Ω + ĉν‖ curla ω‖2L2

1(Ω)2

+ (
√
ν curla ψ, curla ω)r,Ω − (

√
ν curla ψ, curla ω)r,Ω + ‖ω‖2L2

1(Ω)

≥ σmin‖ curla ψ‖2L2
1(Ω)2 −

σmin

2
‖ curla ψ‖2L2

1(Ω)2 −
ĉ2σ2

max

2σmin
ν‖ curla ω‖2L2

1(Ω)2

+ ĉν‖ curla ω‖2L2
1(Ω)2 + ‖ω‖2L2

1(Ω)

=
σmin

2
‖ curla ψ‖2L2

1(Ω)2 + ĉ

(
1− ĉσ2

max

2σmin

)
ν‖ curla ω‖2L2

1(Ω)2 + ‖ω‖2L2
1(Ω),
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and choosing ĉ = σmin
σ2
max

, we can assert that

A((ψ, ω), (ϕ̃, θ̃)) ≥ C‖(ψ, ω)‖2X ,

with C independent of ν, where we have used (2.5) and (2.6) to derive the last inequality. On the
other hand, we notice that

(3.4) |||θ̃|||
H̃1

1(Ω)
= |||ω|||

H̃1
1(Ω)

and ‖ϕ̃‖
H̃1

1(Ω)
≤ C

(
‖ψ‖

H̃1
1(Ω)

+ |||ω|||
H̃1

1(Ω)

)
,

and consequently

sup
(ϕ,θ)∈X
(ϕ,θ) 6=0

A((ψ, ω), (ϕ, θ))

‖(ϕ, θ)‖X
≥ A((ψ, ω), (ϕ̃, θ̃))

‖(ϕ̃, θ̃)‖X
≥ C‖(ψ, ω)‖X ∀(ψ, ω) ∈ X ,

which gives (3.3). �

Remark 3.1. Vorticity and stream-function are available after solving (2.7). On the other hand,
as a consequence of the Lax-Milgram Theorem, the pressure can be computed as the unique solution
of the following problem: Find p ∈ H1

1(Ω) ∩ L2
1,0(Ω) such that

(3.5) (∇p,∇q)r,Ω = Gψ(q) := (f − σ curla ψ,∇q)r,Ω ∀q ∈ H1
1(Ω) ∩ L2

1,0(Ω).

This problem has been obtained by testing (2.3a) against ∇q for a generic q ∈ H1
1(Ω) ∩ L2

1,0(Ω),

and using integration by parts in combination with the boundary condition (2.3d). Moreover, the
following continuous dependence holds: there exists C > 0 independent of ν such that

‖p‖H1
1(Ω)∩L2

1,0(Ω) ≤ C‖f‖L2
1(Ω)2 .

Notice that, according to Remark 2.1, if tangential velocities is imposed on Γt, or if non-homogeneous
Dirichlet data are set for the vorticity, then Gψ(q) should be replaced by Gψ,ω(q) = (f−σ curla ψ−√
ν curla ω,∇q)r,Ω in (3.5). Analogously for the discrete problem (4.4).

4. Mixed finite element approximation

In this section, we construct discrete schemes associated to (2.7) and (3.5), define explicit finite
element subspaces yielding its unique solvability, derive a priori error estimates and provide the
rate of convergence of the methods.

4.1. Statement of the Galerkin scheme. Let {Th}h>0 be a regular family of triangulations of
Ω by triangles T with mesh size h. For S ⊂ Ω̄, we denote by Pk(S), k ∈ N, the set of polynomials
of degree ≤ k. For any k ≥ 1, we adopt the subspaces

Zh :=
{
ϕh ∈ H̃1

1,�(Ω) : ϕh|T ∈ Pk(T ) ∀T ∈ Th
}
,(4.1)

Qh :=
{
qh ∈ H1

1(Ω) : qh|T ∈ Pk(T ) ∀T ∈ Th
}
∩ L2

1,0(Ω).(4.2)

Then, the Galerkin finite element method for (2.7) reads: Find (ψh, ωh) ∈ Zh × Zh such that

a(ψh, ϕh)+b(ϕh, ωh)= F (ϕh) ∀ϕh ∈ Zh,

b(ψh, θh) −d(ωh, θh)= 0 ∀θh ∈ Zh.(4.3)

In turn, the discrete counterpart of (3.5) is: Find ph ∈ Qh such that

(4.4) (∇ph,∇qh)r,Ω = Gψh(qh) := (f − σ curla ψh,∇qh)r,Ω ∀qh ∈ Qh.



STREAM-FUNCTION – VORTICITY FEM FOR THE AXISYMMETRIC BRINKMAN EQUATIONS 7

4.2. Solvability and stability analysis. We now establish discrete counterparts of Theorem 3.2
and Remark 3.1, which will yield the solvability and stability of problems (4.3) and (4.4). First we
state a discrete version of Theorem 3.1.

Theorem 4.1. Let (X , 〈·, ·〉X ) be a Hilbert space and let {Xh}h>0 be a sequence of finite-dimensional
subspaces of X . Let A : X × X → R be a bounded symmetric bilinear form, and G : X → R a
bounded functional. Assume that there exists β̄h > 0 such that

(4.5) sup
yh∈Xh
y 6=0

A(xh, yh)

‖yh‖X
≥ β̄h ‖xh‖X ∀xh ∈ Xh.

Then, there exists a unique xh ∈ Xh, such that

(4.6) A(xh, yh) = G(yh) ∀ yh ∈ Xh.
Moreover, there exist C1, C2 > 0, independent of the solution, such that

‖xh‖X ≤ C1‖G|Xh‖X ′h , and ‖x− xh‖X ≤ C2 inf
yh∈Xh

‖x− yh‖X ,

where x ∈ X is the unique solution of continuous problem (3.2).

Proof. The proof follows from that of Theorem 3.1, and from the discrete inf-sup condition for
A(·, ·). �

The unique solvability and convergence of the discrete problem (4.3) are stated next.

Theorem 4.2. Let k ≥ 1 and let Zh be given by (4.1). Then, there exists a unique (ψh, ωh) ∈ Zh×Zh
solution of discrete problem (4.3). Moreover, there exist constants Ĉ1, Ĉ2 > 0 independent of h
and ν, such that

(4.7) ‖ψh‖H̃1
1(Ω)

+ |||ωh|||H̃1
1(Ω)
≤ Ĉ1‖f‖L2

1(Ω)2 ,

and

(4.8) ‖ψ − ψh‖H̃1
1(Ω)

+ |||ω − ωh|||H̃1
1(Ω)
≤ Ĉ2 inf

(ϕh,θh)∈Zh×Zh
(‖ψ − ϕh‖H̃1

1(Ω)
+ |||ω − θh|||H̃1

1(Ω)
),

where (ψ, ω) ∈ H̃1
1(Ω)× H̃1

1(Ω) is the unique solution to variational problem (2.7).

Proof. We define Xh := Zh×Zh and we consider A(·, ·) and G(·) as in the proof of Theorem 3.2. The
next step consists in proving that the bilinear form A(·, ·) satisfies the discrete inf-sup condition
(4.5). In fact, given (ψh, ωh) ∈ Xh, we define

θ̃h := −ωh ∈ Zh, and ϕ̃h := (ψh +
σmin

σ2
max

√
νωh) ∈ Zh,

and repeating the steps used in the proof of Theorem 3.2, we obtain the desired result. �

We now establish the stability and approximation property for the discrete pressure.

Theorem 4.3. Let k ≥ 1 be an integer and let Qh be given by (4.2). Then, there exists a unique
solution ph ∈ Qh to discrete problem (4.4) and there exists a constant C > 0 such that:

‖ph‖H1
1(Ω)∩L2

1,0(Ω) ≤ C‖f‖L2
1(Ω)2 .

Moreover, there exists a constant Ĉ > 0 such that
(4.9)

‖p− ph‖H1
1(Ω)∩L2

1,0(Ω) ≤ Ĉ
(

inf
qh∈Qh

‖p− qh‖H1
1(Ω)∩L2

1,0(Ω) + inf
ϕh,θh∈Zh

(‖ψ−ϕh‖H̃1
1(Ω)

+ |||ω− θh|||H̃1
1(Ω)

)

)
,

where C and Ĉ are independent of ν and h, and p ∈ H1
1(Ω) ∩ L2

1,0(Ω) is the unique solution of

problem (3.5).
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Proof. On the one hand, the well posedness of problem (4.4) follows from the Lax-Milgram Theorem.
On the other hand, from the well-known first Strang Lemma, we have that

‖p− ph‖H1
1(Ω)∩L2

1,0(Ω) ≤ C

{
inf

qh∈Qh
‖p− qh‖H1

1(Ω)∩L2
1,0(Ω) + sup

qh∈Qh

Gψh(qh)−Gψ(qh)

‖qh‖H1
1(Ω)∩L2

1,0(Ω)

}
.

To estimate the second term on the right-hand side above, we use the definition of Gψ (cf. (3.5))
and Gψh (cf. (4.4)) to obtain

sup
qh∈Qh

Gψh(qh)−Gψ(qh)

‖qh‖H1
1(Ω)∩L2

1,0(Ω)

≤ C‖ curla(ψ − ψh)‖L2
1(Ω)2 ≤ C‖ψ − ψh‖H̃1

1(Ω)
,

where in the last inequality we have used (2.6). Thus, the proof follows from (4.8). �

4.3. Convergence analysis. According to the theorem above, it only remains to prove that ψ, ω
and p can be conveniently approximated by functions in Zh and Qh respectively. With this purpose,

we introduce the Lagrange interpolation operator Πh : H̃1
1(Ω)∩H2

1(Ω)→ Zh. Moreover, there holds
the following error estimate, whose proof can be found in [22, Lemma 6.3].

Lemma 4.1. There exists C > 0, independent of h, such that for all ϕ ∈ Hk+1
1 (Ω) :

‖ϕ−Πhϕ‖H̃1
1(Ω)
≤ Chk ‖ϕ‖Hk+1

1 (Ω) .

We now turn to the statement of convergence properties of the discrete problem (4.3).

Theorem 4.4. Let k ≥ 1 be an integer and let Zh and Qh be given by (4.1) and (4.2), respectively.

Let (ψ, ω) ∈ H̃1
1,�(Ω) × H̃1

1,�(Ω) and p ∈ H1
1(Ω) ∩ L2

1,0(Ω) be the unique solutions to the continuous

problems (2.7) and (3.5), and (ψh, ωh) ∈ Zh×Zh and ph ∈ Qh be the unique solutions to the discrete

problems (4.3) and (4.4), respectively. Assume that ψ ∈ Hk+1
1 (Ω), ω ∈ Hk+1

1 (Ω), and p ∈ Hk+1
1 (Ω).

Then, the following error estimate holds true

‖ψ − ψh‖H̃1
1(Ω)

+ ‖ω − ωh‖H̃1
1(Ω)
≤ C1h

k

(
‖ψ‖Hk+1

1 (Ω) + ‖ω‖Hk+1
1 (Ω)

)
,

‖p− ph‖H1
1(Ω)∩L2

1,0(Ω) ≤ C2h
k

(
‖p‖Hk+1

1 (Ω) + ‖ψ‖Hk+1
1 (Ω) + ‖ω‖Hk+1

1 (Ω)

)
.

where C1 and C2 are positive constants independent of ν and h.

Proof. The proof follows from (4.8) and (4.9) and error estimates from Lemma 4.1. �

A natural consequence of this result is that the vorticity and stream-function approximations
converge also in the L2

1(Ω)−norm with an order O(hk):

‖ω − ωh‖L2
1(Ω) = O(hk), and ‖ψ − ψh‖L2

1(Ω) = O(hk).

Such an estimate can be improved by one order of convergence, as show by the following theorem.

Theorem 4.5. Under the assumptions of Theorem 4.4, there exists C > 0 is independent of h and
ν such that

‖ω − ωh‖L2
1(Ω) ≤ Chk+1

(
‖ψ‖Hk+1

1 (Ω) + ‖ω‖Hk+1
1 (Ω)

)
,(4.10)

‖ψ − ψh‖L2
1(Ω) ≤ Chk+1

(
‖ψ‖Hk+1

1 (Ω) + ‖ω‖Hk+1
1 (Ω)

)
.(4.11)
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Proof. The core of the proof is based on a duality argument. We first establish (4.10). Let us

consider the following well-posed problem: Given g ∈ L2
1(Ω), find (ρ, ξ) ∈ H̃1

1,�(Ω) × H̃1
1,�(Ω) such

that

a(ϕ, ρ)+b(ϕ, ξ)= 0 ∀ϕ ∈ H̃1
1,�(Ω),

b(ρ, θ) −d(θ, ξ)= G(θ) ∀θ ∈ H̃1
1,�(Ω),(4.12)

where G(θ) := (g, θ)r,Ω. Improvement of the estimates will require the following regularity: ρ ∈
H2

1(Ω), ξ ∈ H2
1(Ω), and we also assume that there exists a constant C > 0, independent of ν and g

such that

(4.13) ‖ρ‖H2
1(Ω) + ‖ξ‖H2

1(Ω) ≤ C‖g‖L2
1(Ω).

Next, choosing (ϕ, θ) = (ψ − ψh, ω − ωh) in (4.12), we obtain

G(ω − ωh) = b(ρ, ω − ωh)− d(ω − ωh, ξ),(4.14)

and a(ψ − ψh, ρ) + b(ψ − ψh, ξ) = 0.(4.15)

Moreover, from (2.7) and (4.3) we have that:

b(ψ − ψh, ξh)− d(ω − ωh, ξh) = 0,

and a(ψ − ψh, ρh) + b(ρh, ω − ωh) = 0.

Thus, subtracting equations above and (4.15) from (4.14), we obtain

G(ω − ωh) = b(ρ, ω − ωh)− d(ω − ωh, ξ)− b(ψ − ψh, ξh) + d(ω − ωh, ξh)

− a(ψ − ψh, ρh)− b(ρh, ω − ωh) + a(ψ − ψh, ρ) + b(ψ − ψh, ξ)
= b(ρ− ρh, ω − ωh)− d(ω − ωh, ξ − ξh) + b(ψ − ψh, ξ − ξh) + a(ψ − ψh, ρ− ρh),

for all (ρh, ξh) ∈ Zh × Zh. Hence,

|G(ω − ωh)| ≤ C
(
‖ρ− ρh‖H̃1

1(Ω)
|||ω − ωh|||H̃1

1(Ω)
+ ‖ω − ωh‖L2

1(Ω)‖ξ − ξh‖L2
1(Ω)

+ ‖ψ − ψh‖H̃1
1(Ω)
|||ξ − ξh|||H̃1

1(Ω)
+ ‖ψ − ψh‖H̃1

1(Ω)
‖ρ− ρh‖H̃1

1(Ω)

)
≤ Chk

(
‖ψ‖Hk+1

1 (Ω) + ‖ω‖Hk+1
1 (Ω)

)(
‖ρ− ρh‖H̃1

1(Ω)
+ |||ξ − ξh|||H̃1

1(Ω)

)
,

for all (ρh, ξh) ∈ Zh × Zh, where in the last inequality we have utilized Theorem 4.4. Taking
in particular (ρh, ξh) as the Lagrange interpolants of (ρ, ξ) (see Lemma 4.1), and then using the
additional regularity result (4.13) in the above estimate, we obtain:

|G(ω − ωh)| ≤Chk+1

(
‖ψ‖Hk+1

1 (Ω) + ‖ω‖Hk+1
1 (Ω)

)
‖g‖L2

1(Ω).

Thus, from the estimate above and the definition by duality of ‖ · ‖L2
1(Ω), we arrive at

‖ω − ωh‖L2
1(Ω) = sup

g∈L2
1(Ω)

(g, ω − ωh)r,Ω
‖g|L2

1(Ω)

≤ Chk+1

(
‖ψ‖Hk+1

1 (Ω) + ‖ω‖Hk+1
1 (Ω)

)
,

where the constant C is independent of h and ν.

Finally, (4.11) follows from the same arguments as above, but instead of dual problem (4.12),
we consider the following one:

a(ϕ, ρ)+b(ϕ, ξ)= G(ϕ) ∀ϕ ∈ H̃1
1,�(Ω),

b(ρ, θ) −d(θ, ξ)= 0 ∀θ ∈ H̃1
1,�(Ω),

where in this case G(ϕ) := (g, ϕ)r,Ω. �
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h ‖ψ − ψh‖1 rate ‖ψ − ψh‖0 rate ‖ω − ωh‖1 rate ‖ω − ωh‖0 rate ‖p− ph‖ rate

Approximation with k = 1
0.4138 2.1494 – 0.1853 – 0.4382 – 0.0542 – 6.4610 –
0.3501 1.1751 0.932 0.0842 1.277 0.3705 0.845 0.0375 1.554 5.6059 0.848
0.2290 0.6029 1.572 0.0212 2.246 0.1724 1.802 0.0094 2.265 3.4136 1.168
0.1220 0.3521 0.853 0.0071 1.730 0.1028 0.821 0.0032 1.724 1.9000 0.929
0.0785 0.2130 1.141 0.0026 2.318 0.0619 1.149 0.0011 2.353 1.1731 1.094
0.0532 0.1417 1.044 0.0011 2.092 0.0412 1.044 0.0005 2.012 0.7850 1.030
0.0384 0.1007 1.050 0.0006 2.084 0.0294 1.033 0.0003 2.131 0.5491 1.098
0.0289 0.0755 1.011 0.0003 2.013 0.0220 1.029 0.0001 2.089 0.4115 1.010
0.0220 0.0581 0.983 0.0002 1.970 0.0168 0.986 0.0001 1.983 0.3170 0.974

Approximation with k = 2
0.4138 0.1675 – 0.0099 – 0.0993 – 0.0142 – 0.6899 –
0.3501 0.0596 1.743 0.0030 2.014 0.0410 1.243 0.0022 2.516 0.3413 1.797
0.2290 0.0197 2.608 0.0005 3.066 0.0114 2.023 0.0003 3.117 0.1164 2.134
0.1220 0.0062 1.831 0.0001 2.951 0.0037 1.976 6.6e-5 2.867 0.0353 1.982
0.0785 0.0023 2.259 2.2e-5 3.157 0.0014 2.251 1.5e-5 3.186 0.0132 2.123
0.0532 0.0010 2.069 7.1e-6 2.993 0.0006 2.038 4.5e-6 2.981 0.0058 2.084
0.0384 0.0005 2.163 2.4e-6 3.130 0.0003 2.107 1.6e-6 3.193 0.0029 2.146
0.0289 0.0003 1.996 1.0e-6 2.970 0.0002 2.065 6.8e-7 3.098 0.0016 2.018
0.0220 0.0002 1.981 4.8e-7 2.972 0.0001 1.992 3.0e-7 2.963 0.0010 1.991

Approximation with k = 3
0.4138 0.0258 – 0.0012 – 0.0050 – 0.0003 – 0.0044 –
0.3501 0.0109 3.288 0.0005 4.158 0.0019 3.385 0.0001 3.623 0.0012 2.843
0.2290 0.0015 3.543 4.3e-5 4.893 0.0004 3.247 1.3e-5 4.033 0.0004 2.987
0.1220 0.0001 3.526 2.3e-6 4.550 0.0001 2.955 1.2e-6 3.975 3.6e-5 3.143
0.0785 2.5e-5 3.670 3.1e-7 4.528 1.2e-5 3.104 1.7e-7 4.050 6.9e-6 3.166
0.0532 4.9e-6 3.532 3.6e-8 4.431 3.8e-6 2.984 3.4e-8 4.077 2.2e-6 3.240
0.0384 1.3e-6 3.430 6.3e-9 4.409 1.3e-6 3.204 8.7e-9 4.195 3.8e-7 3.440
0.0289 4.0e-7 3.679 1.6e-9 4.530 5.4e-7 3.136 2.6e-9 4.191 1.0e-7 3.154
0.0220 1.3e-7 3.387 4.4e-10 4.406 2.5e-7 2.914 1.0e-9 3.960 4.1e-8 3.161

Table 1. Example 1: errors and convergence rates associated to the piecewise
polynomial approximation of stream-function, vorticity and pressure.

Remark 4.1. We observe that since u = curla ψ, the velocity can be readily recovered from the
main unknowns of the underlying problem. More precisely, if (ψh, ωh) ∈ Zh × Zh is the unique
solution of (4.3), then uh := curla ψh approximates the velocity with the same order of the proposed
method. This result is summarized as follows.

Corollary 4.1. Assume that the hypotheses of Theorem 4.4 hold. Then, there exists C > 0
(independent of both h and ν) such that

‖u− uh‖H(diva,Ω) = ‖u− uh‖L2
1(Ω)2 ≤ Chk

(
‖ψ‖Hk+1

1 (Ω) + ‖ω‖Hk+1
1 (Ω)

)
.

Proof. It is a consequence of Theorem 4.4. �
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Figure 1. Example 1: approximated stream-function, vorticity, and pressure dis-
tribution for the accuracy assessment test on the axisymmetric domain Ω.

5. Numerical results

In our first example we test the convergence of the proposed scheme when applied to the ax-
isymmetric version of the classical colliding flow problem (see e.g. [14, Sect. 5.1] for the Cartesian
case). The analytic solution is given as follows

ψ(r, z) = 5rz4 − r5, ω(r, z) = 12
√
ν(2r3 − 5rz2), p(r, z) = 60r2z − 24z3,

and it is defined on the meridional domain Ω having four sides defined by the symmetry axis (left
wall r = 0), bottom and top lids (z = 0 and z = 1, respectively), and the curve characterized by the
parameterization s ∈ [0, 1], r = 1− s/2 + 0.15 cos(πs) sin(πs), and z = s− 0.15 cos(πs) sin(πs). We
set the model parameters to σ = 10 and ν = 0.1. The boundary conditions are non-homogeneous
and set according to the interpolant of the exact stream-function and vorticity (and the pressure
solve is modified according to Remark 3.1), whereas the forcing term f has been manufactured
using the momentum equation (2.3a). Errors for vorticity and stream-function were measured

in the H̃1
1(Ω) and L2

1(Ω)−norms (denoted hereafter with subscripts 1 and 0, respectively), while
those for the pressure correspond to the H1

1(Ω) ∩ L2
1,0(Ω)−norm (denoted without a subscript).

The convergence history (obtained on a family of successively refined unstructured partitions of
Ω) is collected in Table 1, confirming the expected behavior predicted by Theorems 4.4 and 4.5.
The approximate solutions obtained using the lowest-order method (k = 1) on a coarse mesh are
displayed in Figure 1.

Our next example addresses the well-known lid driven cavity flow. The domain under consid-
eration is the unit square Ω = (0, 1)2, discretized with an unstructured mesh of 80K triangular
elements. Following Remark 2.1, a tangential velocity ut = −1 is imposed on the top lid of the
domain (Γt ⊂ Γ), and on the whole boundary Γ we set homogeneous Dirichlet data for the stream-
function. No boundary conditions are explicitely set for the vorticity. The forcing term is f = 0,
the viscosity is constant ν = 1e − 2, and the inverse permeability is, in a first round, constant
σ = 0.1. We also test the case where σ is discontinuous across the line r = 0.4, going from
σ0 = 0.01 to σ1 = 100. Stream-function, vorticity and pressure profiles for both cases are displayed
in Figure 2, where the bottom row shows a clear change of regime between the regions of high and
low permeability.

Finally, we perform a simulation of axisymmetric laminar flow past a sphere. The meridional
domain configuration is given in the left panel of Figure 3. The boundary of the meridional Ω is
decomposed into an inlet boundary (located at z = 0), an outlet (at z = 10), a “far-field” border
(on r = 2), the surface of the obstacle (centered at r = 0, z = 5 and with radius 1), and the
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Figure 2. Example 2: approximated stream-function, vorticity, and pressure dis-
tribution for the lid-driven cavity problem for constant (top row) and discontinuous
permeability (bottom panels).

symmetry axis is located at r = 0. The domain is discretized into 80K triangular elements and the
model parameters are ν = 5e− 3, σ = 0.1. The boundary conditions are set as follows: on Γsym we
put ψ = 0 and ω = 0, on Γin we set ψ = r, on Γfar we set ψ = 1

2r
2 and ω = 0, and on Γobs we put

ψ = 0. The numerical results are depicted on the reflected domain in Figure 3, where we observe
flow patterns qualitatively agreeing with the expected results (see e.g. [9]).

6. Concluding remarks

In the present paper we have analyzed a mixed finite element method to approximate a stream-
function–vorticity variational formulation for the Brinkman problem in axisymmetric domains,
which has been shown to be well-posed using standard arguments for mixed problems. The for-
mulation was discretized by means of continuous piecewise polynomials of degree k ≥ 1 for all the
unknowns. We proved an O(hk) convergence with respect to the mesh size in the natural H1-norm,
as well as a O(hk+1) order in L2-norm by a duality argument, and all estimates are uniform with
respect to the fluid viscosity ν. Finally, we reported numerical results that confirm the numerical
analysis of the proposed method. A distinctive feature of this method is that it allows discrete
velocities which are automatically divergence-free. Extensions of this work include the nonlin-
ear Navier-Stokes equations and coupling with transport problems arising from multiphase flow
descriptions, as in e.g. [23].
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Figure 3. Example 3: meridional domain (where the symmetry axis is vertical)
with obstacle and sketch of boundary decomposition; and approximate solutions for
stream-function, vorticity, and pressure.
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


