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We present an a posteriori estimator of the error in the L2-norm for the numerical approximation of the

Maxwell’s eigenvalue problem by means of Nédélec finite elements. Our analysis is based on a Helmholtz

decomposition of the error and on a superconvergence result between the L2-orthogonal projection of the

exact eigenfunction onto the curl of the Nédélec finite element space and the eigenfunction approxima-

tion. Reliability of the a posteriori error estimator is proved up to higher order terms and local efficiency

of the error indicators is shown by using a standard bubble functions technique. The behavior of the a

posteriori error estimator is illustrated on a numerical test.
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1. Introduction

One of the most classical problems in electromagnetism is the so called cavity problem for Maxwell’s

equations, which corresponds to computing the resonant frequencies of a bounded perfectly conducting

cavity. This amounts to solving the eigenvalue problem for the Maxwell’s system. Although there has

been an intense research in this area, to the best of authors’ knowledge, no results on a posteriori error

estimation of Maxwell’s eigenvalue problem are available in the literature.

A posteriori error estimation for various problems involving Maxwell’s equations has been subject

of several papers. Residual-based a posteriori error analyses have been done for an electromagnetic

scattering problem in Monk (1998) and for an eddy current problem in Beck et al. (2000); in both

cases, smooth coefficients and sufficiently regular domains have been considered. Generalizations to

piecewise constant coefficients and to Lipschitz domains have been done in Nicaise & Creusé (2003)

and Schöberl (2008), respectively. Estimates robust with respect to the coefficients of the equations

have been obtained in Cochez-Dhondt & Nicaise (2007). The hp-version has been considered in Bürg

(2011, 2012), where bounds with explicit dependence on the polynomial degree have been derived. Fur-
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ther, convergence of an hp-adaptive strategy based on these estimates has been studied in Bürg (2013).

Residual-based a posteriori error estimates have been also obtained for the AAA−φ and the TTT/Ω magne-

todynamic harmonic formulations in Creusé et al. (2012) and Creusé et al. (2013), respectively, and for

the time-harmonic Maxwell’s equations with strong singularities in Chen et al. (2007). Functional-type

error estimates for the time-harmonic Maxwell’s equations have been derived in Repin (2007) and Han-

nukainen (2008). A drawback of this approach is that it requires to solve a global auxiliary problem.

By contrast, equilibrated fluxes-based a posteriori error estimates requiring to solve only local problems

have been analyzed in Braess & Schöberl (2008). Furthermore, implicit error estimates have been de-

rived in Harutyunyan et al. (2008) and a Zienkiewicz–Zhu error estimator based on a patch recovery has

been introduced in Nicaise (2005).

On the other hand, a posteriori error estimation for different spectral problems has been subject of

several papers, too. Among the first ones, we mention Verfürth (1994); Larson (2000); Durán et al.

(2003) for the standard finite element approximation of second-order elliptic eigenvalue problems. We

also mention Garau et al. (2009) and Giani & Graham (2009), where adaptive schemes based on this

estimators have been proved to converge.

In its turn, the first paper dealing with a posteriori error estimates for a mixed formulation of an

eigenvalue problem seems to be Durán et al. (1999), where Raviart–Thomas finite elements are used for

the discretization of the spectral problem for the Laplace operator. The analysis in this reference makes

use of a Helmholtz decomposition of the error, as is typical in the a posteriori error analysis of mixed

problems. It also uses a superconvergent approximation of the primal variable, which is constructed by

exploiting the equivalency between the lowest-order Raviart–Thomas mixed discretization and a non-

conforming method for the primal problem based on the Crouzeix–Raviart space enriched by bubble

functions. This approach has been extended to fluid-structure vibration problems in Alonso et al. (2001,

2004). However, in spite of many existing analogies, a direct extension of these ideas to Maxwell’s

eigenvalue problem does not seem feasible, because no element that could play the role of Crouzeix–

Raviart’s in Durán et al. (1999) is known.

An alternative analysis which avoids the relation between Raviart–Thomas and Crouzeix–Raviart

elements has been more recently explored in (Boffi et al., 2012, Section 6.4.2). The results from this

reference are based on a superconvergence result from Gardini (2009). A similar result is obtained in

Lin & Xie (2012) for more general second-order elliptic eigenvalue problems and mixed finite element

methods. In both cases, an interpolation coming from the commuting diagram applied to the primal

variable comes to play a role in order to prove superconvergence with respect to the eigenfunction

approximation. An a posteriori error estimator based on this result has been proposed in Jia et al.

(2013). More recently, a similar analysis has been used to conclude convergence of an adaptive scheme

in Boffi et al. (2015).

We derive in this paper a posteriori error estimates of the error in the L2-norm for the Maxwell’s

eigenvalue problem discretized by Nédélec elements (see Boffi et al. (1999); Boffi (2000); Caorsi et al.

(2000); Monk & Demkowicz (2001) for the a priori analysis). With this end, we adapt the results from

Durán et al. (1999); Boffi et al. (2012); Lin & Xie (2012); Jia et al. (2013). However, our approach

use neither an alternative discretization (as in Durán et al. (1999)) nor an interpolation coming from the

commuting diagram (as in the other references) for obtaining a superconvergence approximation of the

primal variable. Instead, we use a superconvergence result between the L2-orthogonal projection of the

eigenfunction onto the curl of the Nédélec finite element space and the eigenfunction approximation.

The structure of the paper is the following. We introduce primal and mixed weak formulations of

the Maxwell’s eigenvalue problem and their corresponding finite element discretizations in Section 2.

The superconvergence result is established in Section 3. A posteriori error estimates in the L2-norm are
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derived and reliability and local efficiency of the error indicators are proved in Section 4. The paper is

concluded with Section 5, where the behavior of the derived estimates is illustrated on a numerical test.

2. Continuous and discrete problems

In this section we introduce continuous and discrete variational formulations of the problem under in-

terest.

2.1 Preliminaries

Let Ω ⊂R
3 be a domain with polyhedral Lipschitz boundary ∂Ω . For the sake of simplicity, we assume

that Ω is non-convex and simply-connected and that its boundary is connected. Let nnn be the unit outward

normal to ∂Ω .

We use standard notation for Lebesgue and Sobolev spaces. Specifically, for a given domain M ⊂R
3,

L2(M) denotes the space of square-integrable functions and, for t ∈ N, Ht(M) denotes the space of

functions having square-integrable weak derivatives up to the t-th order. For t /∈ N (t > 0), Ht(M)
denotes the standard fractional Sobolev space. For any t > 0, ‖·‖t,M denotes the norm of the Sobolev

space Ht(M). We recall that for any t > 0 the inclusion Ht(M) →֒ L2(M) is compact. We also denote

L2(M) := [L2(M)]3 and Ht(M) := [Ht(M)]3. Further, (·, ·)M denotes the inner product in L2(M) or

L2(M) and ‖·‖0,M the induced norm. Analogously, (·, ·)∂M denotes the (d − 1)-dimensional L2(∂M)
inner product; the same notation is applied in the vector case. We will omit subscript M in case M = Ω .

We denote by C a generic positive constant, not necessarily the same at each occurrence, but always

independent of the mesh refinement parameter h which will be introduced in the next subsection.

We recall the definition of some classical spaces that will be used in the sequel:

H1
0(Ω) :=

{

v ∈ H1(Ω) : v = 0 on ∂Ω
}

;

H(div,Ω) :=
{

vvv ∈ L2(Ω) : divvvv ∈ L2(Ω)
}

;

H0(div,Ω) := {vvv ∈ H(div,Ω) : vvv ·nnn = 0 on ∂Ω} ;

H(div0,Ω) := {vvv ∈ H(div,Ω) : divvvv = 0 in Ω} ;

H0(div0,Ω) := H0(div,Ω)∩H(div0,Ω);

H(curl,Ω) :=
{

vvv ∈ L2(Ω) : curlvvv ∈ L2(Ω)
}

;

H0(curl,Ω) := {vvv ∈ H(curl,Ω) : vvv×nnn = 000 on ∂Ω} ;

H(curl0,Ω) := {vvv ∈ H(curl,Ω) : curlvvv = 000 in Ω} ;

H0(curl0,Ω) := H0(curl,Ω)∩H(curl0,Ω);

Ht(curl,Ω) :=
{

vvv ∈ Ht(Ω) : curlvvv ∈ Ht(Ω)
}

(t > 0).

Spaces H(div,Ω) and H(curl,Ω) endowed with the norms defined by

‖vvv‖2
div := ‖vvv‖2

0 +‖divvvv‖2
0 and ‖vvv‖2

curl := ‖vvv‖2
0 +‖curlvvv‖2

0 ,

respectively, are Hilbert spaces. In turn, H0(div,Ω), H(div0,Ω) and H0(div0,Ω) are closed sub-

spaces of H(div,Ω). In its turn, H0(curl,Ω), H(curl0,Ω) and H0(curl0,Ω) are closed subspaces

of H(curl,Ω).
We also denote

M := curl(H0(curl,Ω))
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endowed with the L2(Ω)-norm. Notice that M = H0(div0,Ω) (see Amrouche et al. (1998)), which is

a Hilbert space.

In the paper we will repeatedly use the following embedding theorem.

THEOREM 2.1 There exists t ∈
(

1
2
,1
)

such that the following inclusions are continuous:

H0(curl,Ω)∩H(div,Ω)

H(curl,Ω)∩H0(div,Ω)

}

→֒ Ht(Ω).

Moreover, there exists C > 0 such that

‖vvv‖t 6C (‖curlvvv‖0 +‖divvvv‖0)

for all vvv ∈ H0(curl,Ω)∩H(div,Ω) or vvv ∈ H(curl,Ω)∩H0(div,Ω).

Proof. The inclusions in Ht(Ω) with t > 1/2 can be found in (Amrouche et al., 1998, Proposition 3.7),

for instance; the constraint t < 1 comes from the fact that Ω is not convex. The estimate follows

from (Amrouche et al., 1998, Corollary 3.16) and the simple connectedness of Ω for vvv ∈ H(curl,Ω)∩
H0(div,Ω) and from (Amrouche et al., 1998, Corollary 3.19) and the fact that ∂Ω is connected for

vvv ∈ H0(curl,Ω)∩H(div,Ω). �

2.2 Continuous problem

In a homogeneous and isotropic medium, by setting all the physical constants to 1, the Maxwell’s eigen-

value problem reduces to finding λ ∈ R and uuu : Ω −→ R
3, uuu 6= 000, satisfying

curl(curluuu) = λuuu in Ω ,

divuuu = 0 in Ω ,

uuu×nnn = 000 on ∂Ω .

We will consider two formulations of this problem, one primal and the other mixed. In order to make

the numerical approximation easier, the former usually drops the divergence free constraint. Then, the

primal formulation reads as follows.

Problem 2.2 Find (λ ,uuu) ∈ R×H0(curl,Ω), uuu 6= 000, such that

(curluuu,curlvvv) = λ (uuu,vvv) ∀vvv ∈ H0(curl,Ω).

The eigenvalues of this problem consist of λ = 0 with eigenspace H0(curl0,Ω) = ∇(H1
0(Ω)) and a

sequence of positive real numbers {λn}
∞
n=1 which satisfy λn → ∞.

For λ 6= 0, by introducing σσσ := (curluuu)/λ ∈ M , we are led to the following mixed formulation.

Problem 2.3 Find (λ ,uuu,σσσ) ∈ R×H0(curl,Ω)×M , (uuu,σσσ) 6= 000, such that

(uuu,vvv)− (curlvvv,σσσ) = 0 ∀vvv ∈ H0(curl,Ω), (2.1a)

− (curluuu,τττ) =−λ (σσσ ,τττ) ∀τττ ∈ M . (2.1b)

The spectra of Problems 2.2 and 2.3 are identical, except for λ = 0 which is not an eigenvalue of the

latter. More precisely, both problems are equivalent for λ 6= 0 in the following sense:
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• if (λ ,uuu) is an eigenpair of Problem 2.2 with λ 6= 0, then
(

λ ,uuu, 1
λ curluuu

)

is a solution of Prob-

lem 2.3;

• if (λ ,uuu,σσσ) is a solution of Problem 2.3, then (λ ,uuu) is a solution of Problem 2.2 and σσσ =
1
λ (curluuu).

For the purpose of subsequent analysis, we define the solution operators

TTT : M −→ M and SSS : M −→ H0(curl,Ω)

as follows: given ggg ∈ M , (SSSggg,TTT ggg) ∈ H0(curl,Ω)×M is the solution of

(SSSggg,vvv)− (curlvvv,TTT ggg) = 0 ∀vvv ∈ H0(curl,Ω), (2.2a)

− (curl(SSSggg),τττ) =−(ggg,τττ) ∀τττ ∈ M . (2.2b)

LEMMA 2.1 Equations (2.2) yield a well-posed problem.

Proof. We define a(uuu,vvv) := (uuu,vvv) for uuu,vvv ∈ H0(curl,Ω) and b(vvv,τττ) := (curlvvv,τττ) for vvv ∈ H0(curl,Ω)
and τττ ∈ M . According to the classical theory for mixed finite element methods (see, e.g., Boffi et al.

(2013)), it is enough to prove the ellipticity of a in the kernel of b and the inf-sup condition for b for the

problem to be well-posed.

The kernel of b has the form

K := {vvv ∈ H0(curl,Ω) : (τττ ,curlvvv) = 0 ∀τττ ∈ M }= H0(curl0,Ω),

so that the ellipticity of a in the kernel of b follows immediately:

a(vvv,vvv) = ‖vvv‖2
0 = ‖vvv‖2

curl ∀vvv ∈ K .

On the other hand, let τττ ∈ M be arbitrary but fixed. Since M = H0(div0,Ω), due to (Amrouche

et al., 1998, Therorem 3.17), there exists a vector potential vvvτττ ∈ H0(curl,Ω)∩H(div0,Ω) of τττ , such

that curlvvvτττ = τττ and ‖vvvτττ‖curl 6C‖τττ‖0 (see (Amrouche et al., 1998, Corollary 3.19)). Consequently, by

taking vvv := vvvτττ in the supremum below, we obtain

sup
vvv∈H0(curl,Ω)

(τττ ,curlvvv)

‖vvv‖curl

>
‖τττ‖2

0

‖vvvτττ‖curl

>
1

C
‖τττ‖0 .

Since τττ ∈ M has been chosen arbitrarily, we derive the inf-sup condition for b, which together with the

ellipticity of a in the kernel of b allow us to conclude that the mixed formulation (2.2) is well-posed. �

In the following lemma we derive some additional regularity for SSSggg and TTT ggg, which will yield addi-

tional regularity for the solutions of the eigenvalue problem as well.

LEMMA 2.2 For all ggg∈M , SSSggg= curl(TTT ggg). Moreover, TTT ggg and SSSggg both belong to Ht(Ω) with t ∈
(

1
2
,1
)

as in Theorem 2.1 and

‖SSSggg‖t +‖TTT ggg‖t 6C‖ggg‖0 .

Proof. The equality SSSggg= curl(TTT ggg) follows from (2.2a) by taking vvv∈D(Ω)3. Then, TTT ggg∈H(curl,Ω)∩
H0(div0,Ω) →֒ Ht(Ω) with 1/2 < t < 1 (cf. Theorem 2.1) and

‖TTT ggg‖t 6C‖curl(TTT ggg)‖0 =C‖SSSggg‖0 6C‖ggg‖0 ,
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where the last inequality holds because of the well-posedness proved in Lemma 2.1. On the other hand,

since SSSggg = curl(TTT ggg), SSSggg ∈ H(div0,Ω)∩H0(curl,Ω) →֒ Ht(Ω) (cf. Theorem 2.1, again) and

‖SSSggg‖t 6C‖SSSggg‖curl 6C‖ggg‖0 ,

once more because of Lemma 2.1. Thus, we conclude the proof. �

COROLLARY 2.1 Let (λ ,uuu,σσσ) be a solution of Problem 2.3. Then,

uuu = curlσσσ and curluuu = λσσσ in Ω . (2.3)

Moreover, uuu,σσσ ∈ Ht(curl,Ω) and

‖uuu‖t +‖curluuu‖t +‖σσσ‖t +‖curlσσσ‖t 6C‖σσσ‖0

with 1/2 < t < 1 as in Theorem 2.1.

Proof. Since uuu = SSS(λσσσ) and σσσ = TTT (λσσσ), due to the previous lemma, uuu = curlσσσ . Moreover,

since curluuu−λσσσ ∈ M , equation (2.1b) implies that curluuu = λσσσ . The rest of the results follow from

Lemma 2.2. �

2.3 Finite element spaces

We set up the notation for introducing finite element approximations of Problems 2.2 and 2.3. We

consider a regular family {Th} of partitions of the closure of Ω into a finite number of tetrahedra K. As

usual, h := maxK∈Th
hK , where hS denotes the diameter of S, for any S ⊂ Ω . We denote by Pk(K) the

space of polynomials of degree at most k on K and by P̃k(K) the subspace of homogeneous polynomials

of degree k.

We consider the Nédélec space of order k,

N
0
h (Ω) :=

{

vvvh ∈ H0(curl,Ω) : vvvh|K ∈ [Pk(K)]3 ⊕ xxx× [P̃k(K)]
3
∀K ∈ Th

}

,

the Raviart–Thomas space of order k,

RT
0
h (Ω) :=

{

vvvh ∈ H0(div,Ω) : vvvh|K ∈ [Pk(K)]3 ⊕ xxxP̃k(K) ∀K ∈ Th

}

,

the Lagrangian finite element space of order k,

L
0

h (Ω) :=
{

vh ∈ C (Ω̄) : vh|K ∈ Pk(K) ∀K ∈ Th and vh = 0 on ∂Ω
}

⊂ H1
0(Ω),

and the curl of the Nédélec space

M h := curl(N 0
h (Ω)).

We will use different interpolants on each of these discrete spaces. In H0(curl,Ω) we will use the

Nédélec interpolant,

I N : Ht(curl,Ω)∩H0(curl,Ω)−→ N
0
h (Ω),

which is well-defined provided t > 1/2. In such a case, we have the following interpolation error

estimate (see (Monk, 2003, Theorem 5.41(1))):

‖vvv−I Nvvv‖curl 6Chmin{t,k+1} (‖vvv‖t +‖curlvvv‖t) . (2.4)
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The Nédélec interpolant is also well-defined for vvv ∈ Ht(Ω) with 1/2 < t 6 1, whenever curlvvv ∈
RT

0
h (Ω). In such a case, curl(I Nvvv) = curlvvv and we have the following error estimate (see (Monk,

2003, Theorem 5.41(2))):

‖vvv−I Nvvv‖0 6C
(

ht ‖vvv‖t +h‖curlvvv‖0

)

. (2.5)

In H0(div,Ω) we will use the Raviart–Thomas interpolant,

I R : Ht(Ω)∩H0(div,Ω)−→ RT
0
h (Ω),

which is well-defined provided t > 0. In case t > 1/2, the following error estimate holds true (see

(Monk, 2003, Theorem 5.25)):

‖vvv−I Rvvv‖0 6Chmin{t,k+1} ‖vvv‖t . (2.6)

Moreover, it is well-known that for vvv ∈ Ht(Ω)

divvvv = 0 ⇒ div(I Rvvv) = 0 (2.7)

and, for vvv ∈ Ht(curl,Ω),

curl(I Nvvv) = I R(curlvvv); (2.8)

therefore, I R(curlvvv) ∈ M h.

The following result will be used in the sequel.

LEMMA 2.3 For Ω simply connected,

curl(N 0
h (Ω)) = RT

0
h (Ω)∩H(div0,Ω).

Moreover, there exists C > 0 (independent of h) such that, for all τττh ∈ RT
0
h (Ω)∩H(div0,Ω), there

exists vvvh ∈ N
0
h (Ω) that satisfies curlvvvh = τττh and

‖vvvh‖curl 6C‖τττh‖0 .

Proof. The inclusion curl(N 0
h (Ω)) ⊂ RT

0
h (Ω)∩ H(div0,Ω) is well-known (see (Monk, 2003,

Lemma 5.40)). To prove the other inclusion, let τττh ∈ RT
0
h (Ω)∩H(div0,Ω). Since Ω is simply con-

nected, there exists vvv ∈ H0(curl,Ω)∩H(div0,Ω) such that τττh = curlvvv in Ω (see (Amrouche et al.,

1998, Theorem 3.17)). Then, there exists t ∈
(

1
2
,1
)

such that vvv ∈ Ht(Ω) (cf. Theorem 2.1) and

curlvvv∈RT
0
h (Ω). Hence, as mentioned above, its Nédélec interpolant I Nvvv∈N

0
h (Ω) is well-defined,

curl(I Nvvv) = curlvvv = τττh in Ω and (2.5) holds true. Therefore, τττh ∈ curl(N 0
h (Ω)). Moreover, as a

consequence of (2.5) we have that

‖I Nvvv‖0 6 ‖vvv‖0 +C
(

ht ‖vvv‖t +h‖curlvvv‖0

)

6C‖curlvvv‖0 =C‖τττh‖0 ,

where we have used Theorem 2.1 for the last inequality. Thus, since curl(I Nvvv) = τττh, we conclude the

proof by taking vvvh := I Nvvv. �

2.4 Discrete problem

The finite element approximation of the primal formulation in Problem 2.2 reads as follows.
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Problem 2.4 Find (λh,uuuh) ∈ R×N
0
h (Ω), uuuh 6= 000, such that

(curluuuh,curlvvvh) = λh (uuuh,vvvh) ∀vvvh ∈ N
0
h (Ω).

The eigenvalues of this problem consist of λh = 0 with corresponding eigenspace ∇(L 0
h (Ω)) and

λh,n > 0, n = 1, . . . ,dim(N 0
h (Ω))−dim(L 0

h (Ω))+1.

In turn, the finite element approximation of the mixed formulation in Problem 2.3 is the following.

Problem 2.5 Find (λh,uuuh,σσσh) ∈ R×N
0
h (Ω)×M h such that (uuuh,σσσh) 6= 000 and

(uuuh,vvvh)− (curlvvvh,σσσh) = 0 ∀vvvh ∈ N
0
h (Ω), (2.9a)

− (curluuuh,τττh) =−λh (σσσh,τττh) ∀τττh ∈ M h. (2.9b)

Problems 2.4 and 2.5 are equivalent for λh 6= 0 in the same sense as described for the corresponding

continuous problems. In particular, notice that if (λh,uuuh,σσσh) ∈ R×N
0
h (Ω)×M h is a solution of

Problem 2.5, then

(curluuuh −λhσσσh,τττh) = 0 ∀τττh ∈ M h

and, since clearly curluuuh ∈ M h, we have that

curluuuh = λhσσσ h. (2.10)

Further, we define the discrete solution operators

TTT h : M −→ M h ⊂ M and SSSh : M −→ N
0
h (Ω)⊂ H0(curl,Ω)

as follows: given ggg ∈ M , (SSShggg,TTT hggg) ∈ N
0
h (Ω)×M h is the solution of

(SSShggg,vvvh)− (curlvvvh,TTT hggg) = 0 ∀vvvh ∈ N
0
h (Ω), (2.11a)

− (curl(SSShggg),τττh) =−(ggg,τττh) ∀τττh ∈ M h. (2.11b)

LEMMA 2.4 Equations (2.11) yield a well-posed problem and ‖TTT h‖ and ‖SSSh‖ are bounded uniformly

in h.

Proof. The discrete kernel of b takes the form

K h :=
{

vvvh ∈ N
0
h (Ω) : (τττh,curlvvvh) = 0 ∀τττh ∈ curl(N 0

h (Ω))
}

= N
0
h (Ω)∩H(curl0,Ω)⊂ K

and the ellipticity of a in K has been proved in Lemma 2.1. The discrete inf-sup condition follows

immediately from Lemma 2.3 with a constant independent of h. Thus the proof follows from these two

conditions and the classical theory for mixed finite element methods (see, e.g., Boffi et al. (2013)). �

In what follows we will establish convergence properties for SSSh and TTT h.

LEMMA 2.5 If ggg ∈ M ∩Ht(Ω) with t ∈
(

1
2
,1
)

as in Theorem 2.1, then

‖(SSS−SSSh)ggg‖curl +‖(TTT −TTT h)ggg‖0 6Cht ‖ggg‖t .

Proof. Let ggg ∈ M ∩Ht(Ω) with t ∈
(

1
2
,1
)

as in Theorem 2.1. By virtue of Lemmas 2.1 and 2.4, from

the classical approximation theory for mixed finite elements (see, e.g., Boffi et al. (2013)) we have that

‖SSSggg−SSShggg‖curl +‖TTT ggg−TTT hggg‖0 6C

(

inf
vvvh∈N

0
h (Ω)

‖SSSggg− vvvh‖curl + inf
τττh∈M h

‖TTT ggg− τττh‖0

)

. (2.12)
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Notice that, for ggg ∈ M , due to (2.2b), curl(SSSggg) = ggg. Hence, the assumed additional regularity, ggg ∈
Ht(Ω), together with the fact that SSSggg ∈ Ht(Ω) (cf. Lemma 2.2) yield that the Nédélec interpolant of SSSggg

is well-defined. Thus, we can take vvvh := I N(SSSggg) in (2.12) and using (2.4) and Lemma 2.2, we obtain

‖SSSggg−I N(SSSggg)‖curl 6Cht (‖SSSggg‖t +‖ggg‖t)6Cht ‖ggg‖t .

On the other hand, because of Lemma 2.2, TTT ggg ∈ Ht(Ω). Thus, since TTT ggg ∈ M ⊂ H0(div0,Ω), (2.7)

implies that div(I R(TTT ggg)) = 0 in Ω . Therefore, I R(TTT ggg) ∈ M h (see Lemma 2.3) and we can take

τττh := I R(TTT ggg) in (2.12). Using (2.6) and Lemma 2.2 again, we obtain

‖TTT ggg−I R(TTT ggg)‖0 6Cht ‖TTT ggg‖t 6Cht ‖ggg‖0 .

We conclude the proof by combining the above estimates. �

It is also possible to prove a similar approximation property for SSSh and TTT h when the right-hand side

ggg lies in the discrete space M h. In fact, we have the following result.

LEMMA 2.6 If ggg ∈ M h, then

‖(SSS−SSSh)ggg‖curl +‖(TTT −TTT h)ggg‖0 6Cht ‖ggg‖0

with t ∈
(

1
2
,1
)

such that Theorem 2.1 holds true.

Proof. The proof runs almost identical to that of Lemma 2.5. The only difference is that, now,

curl(SSSggg) = ggg ∈ M h which does not lie necessarily in Ht(Ω). However, as claimed above, I N(SSSggg) is

also well-defined and (2.5) holds true, namely,

‖SSSggg−I N(SSSggg)‖0 6C
(

ht ‖SSSggg‖t +h‖curl(SSSggg)‖0

)

6Cht ‖ggg‖0 ,

where the last inequality is a consequence of Lemma 2.2. Since according to (2.8) we have that

curl(SSSggg)− curl(I N(SSSggg)) = curl(SSSggg)−I R(curl(SSSggg)) = ggg −I Rggg = 000, we conclude the proof by

taking vvvh := I N(SSSggg) and τττh := I R(TTT ggg) as in the proof of Lemma 2.5. �

3. A superconvergence result

The aim of this section is to obtain a superconvergence result which will be central for the a posteriori

error analysis that will be developed in the following section. With this aim, we will adapt some results

from Lin & Xie (2012) to our case.

First, we recall some a priori approximation results. From now on, we fix t ∈
(

1
2
,1
)

as in Theo-

rem 2.1. Moreover, for the sake of simplicity, we will focus our attention on approximating a simple

eigenvalue. Therefore, let λ be a fixed eigenvalue of Problem 2.3 with multiplicity one. Let (uuu,σσσ) be

an associated eigenfunction which we normalize by taking ‖σσσ‖0 = 1. As shown in Boffi (2000), there

exists a simple eigenvalue λh of Problem 2.5 that converges to λ as h goes to zero. Moreover, there

exists an associated eigenfunction (uuuh,σσσh), which we can take also normalized by ‖σσσh‖0 = 1, such that

the following a priori error estimates holds true.

THEOREM 3.1 There hold:

|λ −λh|6C inf
vvvh∈N

0
h (Ω),τττh∈M h

(

‖uuu− vvvh‖
2
curl +‖σσσ − τττh‖

2
0

)

6Ch2t , (3.1)

‖σσσ −σσσh‖0 6C inf
vvvh∈N

0
h (Ω),τττh∈M h

(‖uuu− vvvh‖curl +‖σσσ − τττh‖0)6Cht . (3.2)
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Proof. The estimates of |λ −λh| and ‖σσσ −σσσh‖0 by the respective infima can be found in (Boffi,

2000, Theorem 2). The remaining bounds follow from (2.4) by taking vvvh := I Nuuu ∈ N
0
h (Ω), from

(2.6) by taking τττh := I Rσσσ ∈ M h (cf. (2.7)), from Corollary 2.1 and from the normalization constraint

‖σσσ‖0 = 1. �

Our next step is to define the standard L2(Ω)-orthogonal projector

PPPh : M −→ M h

and establish its approximation properties.

LEMMA 3.1 For all τττ ∈ M ∩Ht(Ω),

‖τττ −PPPhτττ‖0 6Cht ‖τττ‖t .

Proof. Since τττ ∈ M = H0(div0,Ω), according to (Amrouche et al., 1998, Theorem 3.17), there

exists vvv ∈ H0(curl,Ω)∩H(div0,Ω) such that τττ = curlvvv and ‖vvv‖curl 6 C‖τττ‖0 (see (Amrouche et al.,

1998, Corollary 3.19)). Since H0(curl,Ω)∩H(div0,Ω) →֒ Ht(Ω) (cf. Theorem 2.1), vvv ∈ Ht(Ω) and

‖vvv‖t 6 C‖vvv‖curl 6 C‖τττ‖0. Moreover, since curlvvv = τττ ∈ Ht(Ω), we have that vvv ∈ Ht(curl,Ω) with

‖vvv‖t +‖curlvvv‖t 6C‖τττ‖t . On the other hand, since PPPh is the L2(Ω)-orthogonal projector onto M h and

curl(I Nvvv) ∈ M h,

‖τττ −PPPhτττ‖0 6 ‖curlvvv− curl(I Nvvv)‖0 6Cht (‖vvv‖t +‖curlvvv‖t)6Cht ‖τττ‖t ,

where we have used (2.4). �

In the forthcoming analysis we will also use the mixed finite element approximation (ûuuh, σ̂σσh) ∈
N

0
h (Ω)×M h of an eigenfunction (uuu,σσσ) of Problem 2.3 defined by

(ûuuh,vvvh)− (curlvvvh, σ̂σσh) = 0 ∀vvvh ∈ N
0
h (Ω), (3.3a)

− (curl ûuuh,τττh) =−λ (σσσ ,τττh) ∀τττh ∈ M h. (3.3b)

Notice that ûuuh = SSSh(λσσσ) and σ̂σσh = TTT h(λσσσ), whereas uuu = SSS(λσσσ) and σσσ = TTT (λσσσ). Hence, it follows

from Lemma 2.5 that

‖uuu− ûuuh‖curl +‖σσσ − σ̂σσh‖0 6Cht ‖σσσ‖t 6Cht ‖σσσ‖0 , (3.4)

the last inequality because of Corollary 2.1.

Our next step is to prove a superconvergence approximation property between σ̂σσh and PPPhσσσ .

LEMMA 3.2 There holds

‖σ̂σσh −PPPhσσσ‖0 6Ch2t .

Proof. Let us set rrrh := (σ̂σσh −PPPhσσσ)/‖σ̂σσh −PPPhσσσ‖0 ∈ M h. Let ũuu := SSSrrrh and σ̃σσ := TTT rrrh, so that (ũuu, σ̃σσ) ∈
H0(curl,Ω)×M and

(ũuu,vvv)− (curlvvv, σ̃σσ) = 0 ∀vvv ∈ H0(curl,Ω), (3.5a)

− (curl ũuu,τττ) =−(rrrh,τττ) ∀τττ ∈ M . (3.5b)

Also, let ũuuh := SSShrrrh and σ̃σσh := TTT hrrrh, so that (ũuuh, σ̃σσh) ∈ N
0
h (Ω)×M h and

(ũuuh,vvvh)− (curlvvvh, σ̃σσh) = 0 ∀vvvh ∈ N
0
h (Ω), (3.6a)

− (curl ũuuh,τττh) =−(rrrh,τττh) ∀τττh ∈ M h. (3.6b)
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Then, from Lemma 2.6, we have that

‖ũuu− ũuuh‖curl +‖σ̃σσ − σ̃σσh‖0 6Cht ‖rrrh‖0 6Cht . (3.7)

Now, by using the definition of rrrh, taking τττh := σ̂σσh −PPPhσσσ in (3.6b), and using the fact that PPPh is the

L2(Ω)-orthogonal projection onto M h, we write

‖σ̂σσh −PPPhσσσ‖0 = (σ̂σσh −PPPhσσσ ,rrrh) = (curl ũuuh, σ̂σσh −PPPhσσσ) = (curl ũuuh, σ̂σσh −σσσ) .

Taking vvvh := ũuuh in (3.3a) and vvv := ũuuh in (2.1a) and adding and subtracting (ûuuh −uuu, ũuu) yield

(curl ũuuh, σ̂σσh −σσσ) = (ûuuh −uuu, ũuuh − ũuu)+(ûuuh −uuu, ũuu) .

Further, taking vvv := ûuuh −uuu in (3.5a) and adding and subtracting (σ̃σσh,curl(ûuuh −uuu)) lead to

(ûuuh −uuu, ũuu) = (σ̃σσ − σ̃σσh,curl(ûuuh −uuu))+(σ̃σσh,curl(ûuuh −uuu)) .

Moreover, by using τττh := σ̃σσh in (3.3b) and τττ := σ̃σσh in (2.1b), we obtain

(σ̃σσh,curl(ûuuh −uuu)) = 0.

Therefore, from all these equations we derive

‖σ̂σσh −PPPhσσσ‖0 = (ûuuh −uuu, ũuuh − ũuu)+(σ̃σσ − σ̃σσh,curl(ûuuh −uuu)) .

Thus, we conclude the proof by combining the equation above, the error estimates (3.4) and (3.7) and

the normalization constraint ‖σσσ‖0 = 1. �

Now, we prove a superconvergence approximation property between σ̂σσh and σσσh.

LEMMA 3.3 If h is small enough, then

‖σ̂σσh −σσσh‖0 6Ch2t .

Proof. The proof we provide follows that of (Lin & Xie, 2012, Theorem 3.2). Let us first state some

relations that follow from (2.2), (2.11), and (3.3):

λTTT σσσ = σσσ , λhTTT hσσσh = σσσh and λTTT hσσσ = σ̂σσh.

According to this, the following equalities hold:

(III −λTTT )(σ̂σσh −σσσh) = (λhTTT h −λTTT )(σ̂σσh −σσσh)+ σ̂σσh −σσσh −λhTTT h(σ̂σσh −σσσ)−λhTTT h(σσσ −σσσh)

= (λhTTT h −λTTT )(σ̂σσh −σσσh)+(λ −λh)TTT hσσσ −λhTTT h(σ̂σσh −σσσ). (3.8)

Let us set δδδ h := σ̂σσh−σσσh− (σ̂σσh −σσσ h,σσσ)σσσ . Due to normalization (‖σσσ‖0 = 1) there holds (δδδ h,σσσ) =
0. Because of the fact that λ is a simple eigenvalue, its eigenspace is spanned by σσσ . Since TTT : M −→
M is self-adjoint, the orthogonal complement of σσσ is an invariant subspace for TTT and λ does not

belong to the spectrum of TTT |
σσσ⊥M

: σσσ⊥M −→ σσσ⊥M . Therefore, (III −λTTT ) : σσσ⊥M −→ σσσ⊥M is invertible

and its inverse is bounded. Consequently, since δδδ h ∈ σσσ⊥M , there exists C > 0 such that ‖δδδ h‖0 6
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C‖(III −λTTT )δδδ h‖0. Moreover, since (III −λTTT )σσσ = 000, we have that ‖δδδ h‖0 6 C‖(III −λTTT )(σ̂σσh −σσσh)‖0.

Then, by using (3.8), we arrive at

‖δδδ h‖0 6C (‖(λhTTT h −λTTT h)(σ̂σσh −σσσh)‖0 +‖(λTTT h −λTTT )(σ̂σσh −σσσh)‖0

+ |λ −λh|‖TTT hσσσ‖0 +λh ‖TTT h(σ̂σσh −σσσ)‖0) . (3.9)

We will estimate all terms on the right-hand side above in the same way as in (Lin & Xie, 2012,

Theorem 3.2.(3.27)), except for the last one. With the aid of (3.1) and using the facts that ‖TTT h‖0 6 C

(cf. Lemma 2.4) and ‖σσσ‖0 = 1, we have

‖(λhTTT h −λTTT h)(σ̂σσh −σσσh)‖0 6Ch2t ‖TTT h(σ̂σσh −σσσh)‖0 6Ch2t ‖σ̂σσh −σσσh‖0 , (3.10)

and

|λ −λh|‖TTT hσσσ‖0 6Ch2t , (3.11)

whereas from Lemma 2.6 with ggg := σ̂σσh −σσσh we derive

‖(λTTT h −λTTT )(σ̂σσh −σσσh)‖0 6Cλht ‖TTT (σ̂σσh −σσσh)‖t 6Cλht ‖σ̂σσh −σσσh‖0 . (3.12)

The last term in (3.9) can be handled as follows. We add and subtract TTT h(PPPhσσσ) and obtain

λh ‖TTT h(σ̂σσh −σσσ)‖0 6 λh ‖TTT h(σ̂σσh −PPPhσσσ)‖0 +λh ‖TTT h(PPPhσσσ −σσσ)‖0 .

For the first term on the right-hand side above, Lemma 3.2 leads to

λh ‖TTT h(σ̂σσh −PPPhσσσ)‖0 6Ch2t .

On the other hand, to evaluate the last term we use the definition of TTT h and observe that TTT h(PPPhσσσ −σσσ) =
0, because the right-hand side of (2.11) vanishes for g = PPPhσσσ −σσσ . Therefore, we have proved that

λh ‖TTT h(σ̂σσh −σσσ)‖0 6Ch2t . (3.13)

Now, by using the definition of δδδ h, we have that

‖σ̂σσh −σσσh‖0 6 ‖δδδ h‖0 +‖(σ̂σσh −σσσh,σσσ)σσσ‖0 . (3.14)

Thus, there remains to estimate

‖(σ̂σσh −σσσh,σσσ)σσσ‖0 = |(σ̂σσh −σσσh,σσσ)|6 |(σ̂σσh −σσσ ,σσσ)|+ |(σσσ −σσσh,σσσ)| . (3.15)

Since ‖σσσ‖0 = ‖σσσh‖0 = 1, by using (3.2) we have that

|(σσσ −σσσh,σσσ)|=
1

2
‖σσσ −σσσh‖

2
0 6Ch2t (3.16)

and we are left with the estimation of |(σ̂σσh −σσσ ,σσσ)|. By taking qqq := σ̂σσh −σσσ as a test function in (2.1b)

and τττ := ûuuh −uuu in (2.1a), we write

λ (σσσ , σ̂σσh −σσσ) = (curluuu, σ̂σσh −σσσ)+(curl(ûuuh −uuu),σσσ)− (uuu, ûuuh −uuu) . (3.17)
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Furthermore, by using ûuuh as test function in (2.1a) and (3.3a), we have that (ûuuh, ûuuh −uuu)− (curl ûuuh, σ̂σσh −
σσσ) = 0, whereas, by taking σ̂σσh as test function in (2.1b) and (3.3b), we have that (curl(ûuuh −uuu), σ̂σσh) = 0.

Thus, from the last three equations and making use of the error estimate (3.4), we arrive at

λ (σσσ , σ̂σσh −σσσ) = (curl(uuu− ûuuh), σ̂σσh −σσσ)+(curl(ûuuh −uuu),σσσ − σ̂σσh)− (uuu− ûuuh, ûuuh −uuu)6Ch2t . (3.18)

Finally, putting together (3.14), (3.9)–(3.13), and (3.15)–(3.18) leads to

‖σ̂σσh −σσσh‖0 6C
(

h2t +λht ‖σ̂σσh −σσσh‖0

)

.

Therefore, for h small enough we conclude that

‖σ̂σσh −σσσh‖0 6Ch2t

and we end the proof. �

Now we are in a position to derive as an immediate consequence of Lemmas 3.2 and 3.3, the super-

convergence result that will be used in the following section.

COROLLARY 3.1 For h small enough,

‖PPPhσσσ −σσσh‖0 6Ch2t .

4. A posteriori error estimate

In this section we derive an a posteriori error estimate in the L2-norm of the error between the eigen-

function uuu and its approximation uuuh. With this end, we apply the Helmholtz decomposition of the error

as follows:

eeeh := uuu−uuuh = ∇α + curlβββ ,

where α ∈ H1
0(Ω) is the solution of the following problem:

(∇α,∇ψ) = (eeeh,∇ψ) ∀ψ ∈ H1
0(Ω).

Therefore, div(eeeh −∇α) = 0 in Ω and, hence, there exists βββ ∈ H(curl,Ω)∩H0(div0,Ω) such that

curlβββ = eeeh −∇α (see (Amrouche et al., 1998, Theorem 3.12)). Moreover, ‖βββ‖curl 6C‖eeeh −∇α‖0 6

C‖eeeh‖0 (see (Amrouche et al., 1998, Corollary 3.16)). Using this decomposition, we split the L2(Ω)-
norm of the error eeeh into two terms,

‖eeeh‖
2
0 = (eeeh,∇α)+(eeeh,curlβββ ) ,

which will be estimated separately.

For each K ∈ Th, we define the (local) error indicator

η2
K := h2

K ‖divuuuh‖
2
0,K + ∑

F∈F I
h

: F⊂∂K

hF

4
‖[[uuuh ·nnnF ]]F‖

2
0,F ,

where F I
h is the set of all tetrahedra faces lying in the interior of Ω , nnnF is a unit vector normal to F and

[[·]]F denotes the jump across F . We also define the (global) error estimator

η :=

{

∑
K∈Th

η2
K

}
1
2

.
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LEMMA 4.1 There holds

(eeeh,∇α)6Cη ‖∇α‖0 .

Proof. Let IC : H1
0(Ω) → L 0

h (Ω) denote a Clément interpolant preserving the vanishing values on

the boundary (see Clément (1975)). Since ICα ∈ L 0
h (Ω), it is easy to check that ∇(ICα) ∈ N

0
h (Ω).

Then, taking τττh := ∇(ICα) in (2.9a), we have that (uuuh,∇(ICα)) = 0. Moreover, we have from (2.1a)

that (uuu,∇α) = 0, too. Using these observations, Green’s theorem and Cauchy–Schwarz inequality, we

write

(eeeh,∇α) =−(uuuh,∇α) =−(uuuh,∇(α −ICα)) = ∑
K∈Th

{

(divuuuh,α −ICα)K − (uuuh ·nnnK ,α −ICα)∂K

}

6 ∑
K∈Th







‖divuuuh‖K ‖α −ICα‖K + ∑
F∈F I

h
: F⊂∂K

1

2
‖[[uuuh ·nnnF ]]F‖F ‖α −ICα‖F







,

where nnnK denotes the unit outer normal to K.

We recall the following approximation properties of the Clément interpolant (see Clément (1975)):

‖α −ICα‖F 6Ch
1
2
F ‖α‖1,ωF

and ‖α −ICα‖K 6ChK ‖α‖1,ωK
,

where ωS :=
⋃

{K′ ∈ Th : K′∩S 6= /0}, for S = F or S = K. Using these estimates, Cauchy–Schwarz

inequality and Friedrich’s inequality, we obtain

(eeeh,∇α)6C ∑
K∈Th

ηK ‖α‖1,ωK
6Cη ‖α‖1 6Cη ‖∇α‖0 ,

which allows us to conclude the proof. �

LEMMA 4.2 There holds

(eeeh,curlβββ )6Ch2t ‖eeeh‖0 .

Proof. Due to the fact that eeeh ∈ H0(curl,Ω), by using Green’s theorem, (2.3) and (2.10) and adding

and subtracting λh (σσσ −PPPhσσσ ,βββ ), we obtain

(eeeh,curlβββ ) = (curleeeh,βββ ) = ((λ −λh)σσσ ,βββ )+λh (σσσ −PPPhσσσ ,βββ )+λh (PPPhσσσ −σσσh,βββ ) .

Since βββ ∈ H(curl,Ω)∩H0(div0,Ω), by virtue of Theorem 2.1, we have that βββ ∈ M ∩Ht(Ω) and

‖βββ‖t 6 C‖curlβββ‖0 6 C‖eeeh‖0. Then, since σσσ ∈ M ∩Ht(Ω) (cf. Corollary 2.1) as well, we apply

Lemma 3.1 and Corollary 2.1 again to write

(σσσ −PPPhσσσ ,βββ ) = (σσσ −PPPhσσσ ,βββ −PPPhβββ )6Ch2t ‖σσσ‖t ‖βββ‖t 6Ch2t ‖σσσ‖0 ‖eeeh‖0 .

Using this estimate together with (3.1), Corollary 3.1 and the facts that ‖σσσ‖0 = 1 and ‖βββ‖0 6C‖eeeh‖0,

we conclude that

(eeeh,curlβββ )6Ch2t ‖eeeh‖0 .

�

As an immediate consequence of Lemmas 4.1 and 4.2, we obtain a reliability estimate up to an

O(h2t)-term.
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THEOREM 4.1 Let eeeh := uuu−uuuh. Then

‖eeeh‖0 6C
(

η +h2t
)

.

REMARK 4.1 The term O(h2t) in the theorem above can be seen as a ‘higher-order term’. This is strictly

the case when lowest-order Nédélec elements (k = 0) are used for the discretization. In fact, in such a

case, ‖eeeh‖0 could be at most O(h), provided the eigenfunction uuu were smooth enough (uuu∈H1(curl,Ω)).
Otherwise, ‖eeeh‖0 is O(ht) with 1/2 < t < 1. In both cases, the term O(h2t) is asymptotically negligible

with respect to eeeh. For higher-order Nédélec elements, the term O(h2t) is asymptotically negligible

only when the eigenfunction is singular (uuu /∈ H2t(curl,Ω)), as often happens in non-convex polyhedral

domains.

4.1 Local efficiency of the estimators

In this section we show that the indicators ηK provide a lower bound of the error eeeh in a vicinity of K.

THEOREM 4.2 There exists C > 0 such that, for any K ∈ Th,

hK ‖divuuuh‖0,K 6C‖eeeh‖0,K (4.1)

and, for any inner face F ∈ F I
h ,

h
1
2
F ‖[[uuuh ·nnnF ]]F‖0,F 6C‖eeeh‖0,ω̃F

, (4.2)

where ω̃F denotes the union of the two tetrahedra sharing the face F . Consequently,

ηK 6C‖eeeh‖ω̃K
,

where ω̃K is the union of the tetrahedra sharing a face with K.

Proof. Let bK ∈ H1
0(Ω) be the standard quartic bubble function on K which attains the value one at the

barycenter of K extended by zero to the whole Ω . Let us set ϕK := (divuuuh)bK ∈H1
0(Ω). By equivalence

of norms on finite-dimensional spaces and using that divuuu = 0 in Ω and Green’s theorem, we have that

C‖divuuuh‖
2
0,K 6 (divuuuh,ϕK)K = (diveeeh,ϕK)K =−(eeeh,∇ϕK)K .

Now, by using Cauchy–Schwarz inequality, an inverse inequality and scaling arguments, we obtain

(eeeh,∇ϕK)K 6 ‖eeeh‖0,K

(

‖∇(divuuuh)‖0,K ‖bK‖∞,K +‖divuuuh‖0,K ‖∇bK‖∞,K

)

6Ch−1
K ‖divuuuh‖0,K ‖eeeh‖0,K .

Thus, (4.1) follows by combining these two inequalities.

In order to prove (4.2), we observe that by applying Green’s theorem and the fact that divuuu = 0 in

Ω , we have for all γ ∈ H1
0(Ω)

(eeeh,∇γ)Ω =−(uuuh,∇γ)Ω = ∑
K∈Th

{

(divuuuh,γ)K − (uuuh ·nnnK ,γ)∂K

}

= ∑
K∈Th







(divuuuh,γ)K −
1

2
∑

F∈F I
h

: F⊂∂K

([[uuuh ·nnnF ]]F ,γ)F







. (4.3)
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Let us fix F ∈ F I
h and set JF := [[uuuh ·nnnF ]]F ∈ Pk+1(F). Let J∗F be the extension of JF to ω̃F such

that, for each of the two tetrahedra K sharing F , J∗F |K ∈ Pk+1(K) is constant in the direction from the

barycenter of F to the opposite vertex of K. Further, let bF ∈ H1
0(ωF) be the piecewise cubic bubble

function which attains the value one at the barycenter of F . Taking γ := J∗F bF ∈ H1
0(ωF) in (4.3), we

have

(eeeh,∇γ)ω̃F
= (divuuuh,γ)ω̃F

− (JF ,γ)F .

Therefore, using an inverse inequality and Cauchy–Schwarz inequality, we obtain

C‖JF‖
2
0,F 6 (JF ,JF bF)F = (JF ,γ)F 6 ‖divuuuh‖0,ω̃F

‖γ‖0,ω̃F
+‖eeeh‖0,ω̃F

‖∇γ‖0,ω̃F
(4.4)

Now, straightforward computations allow us to check that, for each of the two tetrahedra K sharing F ,

‖J∗F‖
2
0,K 6ChF ‖JF‖

2
0,F . (4.5)

Hence,

‖γ‖0,ω̃F
= ‖J∗F bF‖0,ω̃F

6 ‖J∗F‖0,ω̃F
6Ch

1
2
F ‖JF‖0,F .

On the other hand, a scaling argument, an inverse inequality and (4.5) yield

‖∇γ‖0,ω̃F
= ‖∇(J∗F bF)‖0,ω̃F

6 ‖(∇J∗F)bF‖0,ω̃F
+‖J∗F ∇bF‖0,ω̃F

6 ‖(∇J∗F)‖0,ω̃F
+‖∇bF‖∞,ω̃F

‖J∗F‖0,ω̃F
6Ch−1

F ‖J∗F‖0,ω̃F
6Ch

− 1
2

F ‖JF‖0,F .

By substituting the last two inequalities into (4.4), we obtain

‖JF‖
2
0,F 6C

(

h
1
2
F ‖divuuuh‖0,ω̃F

+h
− 1

2
F ‖eeeh‖0,ω̃F

)

‖JF‖0,F .

Finally, (4.2) follows from this inequality and (4.1). �

5. Numerical test

In this section, we illustrate the behavior of the proposed error indicators on a particular test problem.

We have discretized Problem 2.2 by using lowest-order edge elements on tetrahedral meshes and

solved the resulting algebraic eigenvalue problem using the Matlab routine eigs, that is based on

the ARPACK package (Lehoucq et al. (1998)). Meshes have been created with the tetrahedral mesh

generator TetGen (Si (2015)).

Notice that since the lowest-order edge elements have zero divergence on each element K, only the

jumps in the normal components of the computed eigenfunction contribute to the error indicators:

η2
K := ∑

F∈F I
h

: F⊂∂K

hF

4
‖[[uuuh ·nnnF ]]F‖

2
0,F .

We have chosen a domain with a reentrant corner in order to have singular eigenfunctions which

may take advantage of solving the discrete problem with adaptively refined meshes. In particular, we

have taken a so called Fichera domain: Ω := (0,0.8)× (0,1)× (0,1.2)\(0,0.4)× (0,0.5)× (0,0.6)
(see Figure 1).
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FIG. 1. Domain with the initial mesh.

The goal of this test was to compute the eigenpair corresponding to the smallest positive eigenvalue.

The exact eigenpairs of this problem are not known. Because of this, first, we have computed them

with highly refined structured ‘uniform’ meshes, which allowed us to obtain by extrapolation a very

accurate approximation of the corresponding eigenvalue. These ‘uniform’ meshes have been obtained

by subdividing the domain in equal hexahedra, each of them subdivided into six tetrahedra. By so

doing, we have obtained λ = 12.92 as an approximate value of the smallest positive eigenvalue with

four correct significant digits. This λ was taken as the ‘exact’ eigenvalue.

Then, we have applied an adaptive scheme driven by the error indicators ηK . We have started

the computations with the unstructured mesh consisting of 578 elements shown in Figure 1 and have

proceeded with the adaptive refinement process.

Figure 2 displays a log-log plot of the errors between the computed approximations of the smallest

positive eigenvalue and the ‘exact’ one, versus the number of elements N of the meshes. The figure

shows the results obtained with ‘uniform’ meshes and with adaptively refined meshes.

The very accurate agreement between the eigenvalues computed with ‘uniform’ meshes and the line

obtained by a least square fitting of them is a clear indication of the reliability of the value taken as

‘exact’. The slope of the line is −0.44, which indicates that the errors of the eigenvalue computed with

these ‘uniform’ meshes satisfy |λ −λh| ≈CN−0.44 =Ch2t with t = 0.66.

It can be clearly seen from this figure that the eigenvalues computed with the adaptively refined

meshes converge to the ‘exact’ one with a higher order of convergence than those computed with the

‘uniform’ meshes. Moreover, for similar number of elements N, the former are significantly smaller

than the latter, which shows a neat advantage of using such and adaptive procedure. The figure also

includes a dashed line with slope −2/3, which corresponds to the optimal order of convergence for the

used lowest-order edge elements. The slope of the line obtained by a least squares fitting of the values

computed with the adaptive scheme is a bit steeper: −0.79.
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FIG. 2. Error curves for the smallest positive eigenvalue of the Maxwell’s equations on the Fichera domain computed with

‘uniform’ and adaptively refined meshes: log-log plots of the respective errors versus the number of elements.

Acknowledgements and Funding

First author gratefully acknowledges the hospitality of University of Concepción (Departamento de
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HARUTYUNYAN, D., IZSÁK, F., VAN DER VEGT, J. J. W. & BOTCHEV, M. A. (2008) Adaptive finite element

techniques for the Maxwell equations using implicit a posteriori error estimates. Comput. Methods Appl.

Mech. Engrg., 197, 1620–1638.

JIA, S., CHEN, H. & XIE, H. (2013) A posteriori error estimator for eigenvalue problems by mixed finite element

method. Sci. China Math., 56, 887–900.



20 of 19 D. BOFFI, ET AL.

LARSON, M. G. (2000) A posteriori and a priori error analysis for finite element approximations of self-adjoint

elliptic eigenvalue problems. SIAM J. Numer. Anal., 38, 608–625 (electronic).

LEHOUCQ, R. B., SORENSEN, D. C. & YANG, C. (1998) ARPACK Users’ Guide. Philadelphia, PA: Society for

Industrial and Applied Mathematics (SIAM), pp. xvi+142.

LIN, Q. & XIE, H. (2012) A superconvergence result for mixed finite element approximations of the eigenvalue

problem. ESAIM Math. Model. Numer. Anal., 46, 797–812.

MONK, P. (1998) A posteriori error indicators for Maxwell’s equations. J. Comput. Appl. Math., 100, 173–190.

MONK, P. (2003) Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific

Computation. Oxford University Press, New York, pp. xiv+450.

MONK, P. & DEMKOWICZ, L. (2001) Discrete compactness and the approximation of Maxwell’s equations in R
3.

Math. Comp., 70, 507–523.

NICAISE, S. (2005) On Zienkiewicz-Zhu error estimators for Maxwell’s equations. C. R. Math. Acad. Sci. Paris,

340, 697–702.
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VERFÜRTH, R. (1994) A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic

equations. Math. Comp., 62, 445–475.



Centro de Investigación en Ingenieŕıa Matemática (CI
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