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Abstract. Several applications, including the Aw-Rascle-Zhang traffic model and a model
of sedimentation of small particles in a viscous fluid, give rise to nonlinear 2× 2 systems of
conservation laws that are governed by a single scalar system velocity, which is associated
to a scalar flux function. Such systems are of the Temple class since rarefaction wave curves
and Hugoniot curves coincide. Moreover, one characteristic field is genuinely nonlinear (with
the exception of a manifold of inflection points of the scalar flux function) and the other
is linearly degenerate. For systems of this family, there are two well-known problems. The
vacuum state, which may form naturally even from positive initial data, gives rise to po-
tential problems of non-uniqueness and instability. This is resolved by the introduction of
two alternative solution concepts of the Riemann problem. The other problem are spurious
oscillations produced by Godunov’s method near contact discontinuities. This behaviour
actually arises with many standard conservative schemes since the numerical solution in-
variably leaves the invariant region of the exact solution. It is demonstrated that a strategy
consisting of alternating between averaging (Av) and remap steps similar to the approach
by C. Chalons and P. Goatin [Commun. Math. Sci. 5:533–551, 2007] generates numerical
solutions that satisfy an invariant region property (in contrast to, for instance, Godunov’s
method). For the case that the remap step is done by random sampling (RS), techniques due
to J. Glimm [Comm. Pure Appl. Math. 18(4):697–715, 1965], R. J. LeVeque and B. Tem-
ple [Trans. Amer. Math. Soc. 288(1):115–123, 1985] are combined to prove that the resulting
statistically conservative Av-RS scheme converges to a weak solution. Numerical examples
illustrate the performance of the Av-RS scheme, and its superiority over Godunov’s method
in terms of accuracy and resolution.
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1. Introduction

1.1. Scope. The purpose of this paper is to present and analyze numerical schemes for the
approximation of solutions to the inital value problem

(
φ
kφ

)

t

+

(
V (φ, k)

(
φ
kφ

))

x

=

(
0
0

)
, (x, t) ∈ R× (0, T ), (1)

φ(x, 0) = φ0(x), k(x, 0) = k0(x), x ∈ R, (2)

where T > 0 is fixed and the unknowns are φ = φ(x, t) and k = k(x, t). The system of
conservation laws (1) is said to be of the Temple class since the rarefaction wave curves of
each characteristic field coincide with the corresponding Hugoniot curves [40]. It appears
– with different assumptions on the scalar system velocity V – in the modelling of one-
dimensional two-phase flow [23, 39], elasticity theory [22, 33], traffic-flow theory [1, 42] and
sedimentation of particles in a liquid [4].

We consider a family of systems (1), for which the velocity function V ∈ C2 is such that
V (·, k) has one zero in [0, 1] for every k ∈ [0, 1] and

Vφ < 0 and Vk > 0 on (0, 1)× (0, 1]. (3)

Moreover, we restrict the discussion to initial data with values in

Ω :=
{

(φ, k) ∈ [0, 1]2 : V (φ, k) ≥ 0, V (·, k) invertible
}
.

The numerical schemes and the theoretical results are derived on a general level for the
entire family, with no further conditions imposed on V , and the analysis is illustrated by two
particular function expressions yielding the Aw-Rascle-Zhang (ARZ) traffic model [1] and
the sedimentation model in [4]. It is common in the literature to assume concavity of the
scalar flux function φ 7→ f(φ, k) := V (φ, k)φ, but the results given herein are not restricted
to this special case.

Introducing the conserved quantity w := kφ, the vector y := (φ,w)T and Ṽ (y) :=
V (φ,w/φ), we can write (1) as

yt +
(
Ṽ (y)y

)
x

= 0. (4)

This form becomes useful when we need standard results on first-order systems. However,

vacuum (φ = 0) complicates the definition of Ṽ , the fundamental difficulty being how to
understand k = w/φ in this case. Following Temple [39], we therefore always assume that
data are given in terms of u := (φ, k)T and move to the conserved variables in y via the
mapping Y (u) := (φ, kφ)T whenever needed.

For a general 2×2 system of conservation laws, Temple [40] proved that a Hugoniot curve
coincides with an integral curve of the same characteristic field if and only if the curve is
either a straight line or a level curve of the corresponding wave speed (eigenvalue of the
Jacobian). The system reduces to a scalar conservation law on each such curve. The two
types of characteristic fields are called line and contact field, respectively. The line field may
contain shock waves and rarefaction waves, while the second field with constant wave speed
is called a contact field since the only waves are contact discontinuities.

As LeVeque and Temple [28] recognized, the solution to the Riemann problem for (4) is
contained in an invariant region in the phase plane. This region – which we will refer to as
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M – bounds the Riemann invariants (k and V ) by their values at the initial datum. For the
numerical schemes, we define a counterpartM0 ofM for general initial data with values in
Ω. If both characteristic fields are line fields, then the setM is convex, which means that the
Riemann invariants of the averages produced by Godunov’s method are bounded by their
values for the local Riemann data at each time step and M0 is globally invariant. These
were the basic properties that allowed the authors of [28] to prove convergence of Godunov’s
method for initial data with bounded total variation. Here, the assumptions (3) on V do
not necessarily imply two line fields but the system may have a contact field in which the
Hugoniot curves have non-zero curvature. Under such circumstances, the setM need not be
convex and the invariance property for Godunov’s method is lost (both locally and globally).
One consequence is that spurious oscillations may develop near contact discontinuities in the
numerical solution, but even more importantly, the proof in [28] breaks down.

The main novelty of the present work is a so-called anti-diffusive numerical scheme, which
relies on averaging (Av) and random sampling (RS) and is referred to as the Av-RS scheme.
This method is closely related to the one proposed by Chalons and Goatin [9], and is con-
structed in two steps (averaging and remap) to obtain the local and global invariant region
properties associated with M. System (1) has at least one line field and the first step of
the Av-RS scheme consists of a Godunov-like averaging along this field. Such an averaging
stays withinM locally because of the convexity of straight lines, but it comes at the cost of
a non-uniform refinement of the spatial mesh. To remap the numerical approximations to
the original mesh, random sampling is applied in the second step.

Due to the averaging in the first step, the Av-RS scheme needs no detailed information
about rarefaction waves and therefore becomes simpler than the random-choice method by
Glimm [16], which has frequently been used for similar systems (see Section 1.4). As a
consequence of the sampling in the remap step, the Av-RS scheme does not conserve mass
(the integral of φ with respect to x) exactly. The expected value of the mass is however
conserved, wherefore we say that this scheme is statistically conservative. By combining the
ideas in [28] with those of Glimm [16] (also outlined by Smoller [38]), we prove convergence
for the Av-RS scheme to weak solutions for initial data with bounded total variation. We
reach this result assuming Lipschitz continuity of V (·, k) and its inverse Φ(·, k) on each line
k = constant in M0 and its image on the plane of Riemann invariants, respectively.

The delicate vacuum case when φ = 0 may be formed naturally in the solutions to (1)–(2)
even for initial data with φ0 > 0. In traffic-flow applications, the non-uniqueness and the
instability problems that appear near the vacuum states are well known; see e.g. [1]. We
distinguish between two types of Riemann solutions: type A and type B, where the latter
is unstable with respect to disturbances of initial data with φ0|x>0 = 0 and k0|x>0 < k0|x<0.
For all other Riemann initial data, the two types of solutions coincide.

Unstable solutions to mathematical models in general are often disregarded as unphysical
(e.g. via some entropy condition), but the instability in the type B solution is a consequence
of problems associated with the interpretation of k – and thus V – in vacuum. For example,
if φ denotes the density of vehicles on a road, what is the system velocity on empty sections
of the road? The answer is in some (non-unique) sense given by the prescribed values of φ0

and k0. In the type B solution, such problematic is avoided by not taking values of V at
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Figure 1. The system velocity V (·, k) of the sedimentation model (6) (left)
and the corresponding scalar flux f(·, k) (right) for k = 0.1, 0.2, . . . , 1.

vacuum into account. In fact, this type of solution is the physically relevant alternative in
both traffic flow and sedimentation.

The convergence proof for the Av-RS scheme is valid only if it is defined in terms of local
type A Riemann solutions. However, the relevance of the convergence result is strengthened
by a proposition, which states that if the discretized initial datum is such that locally type A
coincides with type B, then the Av-RS scheme preserves this agreement, i.e. the unstable
vacuum case is not formed in the numerical approximations. Furthermore, numerical ex-
periments suggest convergence of the Av-RS scheme also if it is defined by means of local
type B solutions.

1.2. Application to sedimentation. In [4], we presented a model for sedimentation of
suspensions with inhomogeneous settling properties. Herein, effects from bulk flows and
compression will be ignored and we account for so-called “hindered settling” only. To this
end, we let φ be the solids volume fraction and denote by vs ≥ 0 the settling velocity of the
solids. The conservation of mass yields

φt + (vsφ)x = 0. (5)

Kynch [25] assumed that vs := v(φ) depends on φ only, and thereby imposed the same
settling properties on all particles. This simplification is somewhat relaxed if we to each
particle associate a scalar quantity, called grey tone, which influences the settling properties.
Such a grey tone could for example represent the degree of flocculation, i.e. the extent to
which the solids are lumped together in so-called flocs. At a continuum level, we denote the
grey tone by k and redefine the settling velocity as vs := kv(φ). Values of k close to 0 thus
mean poor settling properties while portions of the suspension with k = 1 settle fast. Since
k is advected with the solids, we obtain kt + vskx = 0. Multiplying this equation by φ and
using (5), we find (1) with

V (φ, k) = kv(φ). (6)

The particular choice of v used herein to generate figures and to compute numerical solu-
tions, is given by the Richardson-Zaki [37] type of expression: v(φ) = (1− φ)2, which yields
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Figure 2. The system velocity V (·, k) of the ARZ model (left) and the cor-
responding scalar flux f(·, k) (right) for k = 0.1, 0.2, . . . , 1.

Ω = [0, 1]× (0, 1]. The corresponding flux φ 7→ f(φ, k) = k(1− φ)2φ has one inflection point
at φ = 2/3 for every k ∈ (0, 1] (see Figure 1).

Note that the sample formula v(φ) = (1 − φ)2 implies Vφ(1, k) = 0 and the requirement
on Lipschitz continuity of Φ(·, k) makes the convergence proof for the Av-RS scheme valid
only if the initial datum is such that M0 is contained in a closed subset of [0, 1) × (0, 1].
This extra restriction on the intial data would be superfluous if we instead considered the
perturbed velocity v(φ) := (1 + ε− φ)2 − ε2 for some fixed small ε > 0.

1.3. Application to traffic flow: The ARZ model. Aw and Rascle [1] and Zhang [42]
independently proposed a 2× 2 system as a model of traffic flow. The first equation in this
system conserves the mass (of vehicles):

φt + (νφ)x = 0, (7)

were we denote by φ the density of cars and by ν the mean car velocity. Influenced by gas
dynamics, some earlier models had included a pressure p(φ) via an additional second-order
(in space) equation for the momentum. In [1, 42], it was concluded that traffic flow behaves
somewhat differently from gas fluids, wherefore this second equation was replaced by the
convection equation (

ν + p(φ)
)
t
+ ν
(
ν + p(φ)

)
x

= 0. (8)

The system (7), (8) converts to (1) via the identification k = ν + p(φ) and

V (φ, k) = k − p(φ). (9)

Herein, all figures and numerical examples illustrating the ARZ model are rendered with
p(φ) = φ3. This choice implies Ω = {u : 0 ≤ φ3 ≤ k ≤ 1} and the associated flux φ 7→
f(φ, k) = (k−φ3)φ is concave on [0, k1/3] for every k ∈ [0, 1] (Figure 2). We again emphasize
that such a concavity is not necessary for the theory, but it simplifies the construction of
Riemann solutions.

In analogy with the sample model for sedimentation above, the convergence proof of the
Av-RS scheme is not valid on the entire Ω when p(φ) = φ3. There holds Vφ(0, k) = 0, and to
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obtain Lipschitz continuity of Φ(·, k), the initial datum must be such that M0 is contained
in a closed subset of Ω ∩ {(φ, k) : φ > 0}. Thus, the proof does not capture solutions with
vacuum if p is described by this particular formula. However, for the perturbed expression
p(φ) = (φ + ε)3 − ε3, where the small number ε > 0 is fixed, the entire (and perturbed)
region Ω is covered by the theory.

1.4. Related works. Temple [39] showed the existence of solutions for the Cauchy problem
of (1), but with V chosen such that f(·, k) is increasing with one inflection point and f(φ, ·)
is decreasing. The proof was given for initial data with bounded variation and relied on the
convergence of approximate solutions obtained by Glimm’s method [16]. The system models
two-phase polymer flow in a uniformly porous medium and looses strict hyperbolicity along a
curve in the phase plane. This loss may cause unbounded total variation for the approximate
solution, a complication that was handled in [39] by letting the random choice variable in
Glimm’s method be random in both space and time. An extension of the results on the
2 × 2 system in [39] to the case of arbitrary large systems was provided by Isaacsson and
Temple [21], who also used Glimm’s random choice method.

Another special case of system (1) is the well-known Keyfitz-Krantzer system [22]. Exis-
tence of bounded weak solutions to that system was given by Lu and Gu [33].

It is known that Godunov’s method produces spurious oscillations near states of coinciding
wave speeds [30, 32], but such undesirable behaviour can occur even in regions where the
system (1) is strictly hyperbolic. This is emphasized by Bressan et al. [5], who showed
that the total variation of an approximate solution produced by Godunov’s method can
become arbitrarily large. For certain initial data, numerical solutions with various solvers
may not contain oscillations, see the traffic-flow example by Qiao et al. [36]. However, we
are interested in a numerical scheme that can handle initial data that may produce all types
of waves.

The necessity to adjust Godunov’s method because of its poor accuracy also for strictly
hyperbolic systems was further investigated for the Euler equations for a compressible two-
fluid mixture; see e.g. Chalons and Coquel [8] and Bachmann et al. [2] and references
therein. They kept track of contact discontinuities and suggested a Lagrange-projection
method with the random-sampling technique in the spirit of Chalons and Goatin [9, 10].
See also Chalons [7, 11] for a related method built on a macroscopic model of pedestrian
flows or the recent work by Bürger et al. [6] on the multi-class Lighthill-Whitham-Richards
traffic model. A contact discontinuity, e.g. modelling a gas-fluid interface, can be tracked by
a level-set method or a colour function that is evolved by a single transport equation [2, 24].
Further examples of oscillations produced by Godunov’s method for the Euler equations are
given by Banks [3].

Several authors [18, 23, 29, 34] have proved the existence of weak solutions to systems of
the form (4) by using that it is hyperbolic away from vacuum and can be written in trian-
gular form via the idea by Wagner [41] to perform a Lagrangian coordinate transformation
and identify 1/φ as one of the variables. The eigenvalue of the second characteristic field
of the triangular system is zero, which means that the contact discontinuity of this field is
stationary and can be handled exactly by Godunov’s method in contrast to a moving con-
tact discontinuity. Naturally, 1/φ cannot be used as a variable for solutions with vacuum;
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however, in the present work, we also use a sort of Lagrangian approach with respect to the
velocity of the contact discontinuity when we utilize that no mass passes this discontinuity.

The traffic flow model by Aw and Rascle [1] and Zhang [42] satisfies (1) and our assump-
tions on V (see Section 1.3). Aw and Rascle solved the Riemann problem and discussed in
detail the vacuum case and the instabilities that may appear for data near the vacuum. See
also [26].

Godvik and Hanche-Olsen [18] proved the existence of a weak entropy solution of the
Cauchy problem for the ARZ model with the vacuum case included. They considered a
modified problem having a small parameter, used the Glimm scheme and the transformation
by Wagner [41]. In this way they cover the vacuum case as a boundary case obtained from the
natural entropy solutions for φ > 0 as the small parameter tends to zero. There is, however, a
case in traffic flow where we argue that the physically correct solution of a Riemann problem
with φR = 0 is not the (stable) solution obtained as the limit case of φR > 0; see Section 3.2.

Chalons and Goatin [9] resolved the problem of spurious oscillations near contact disconti-
nuities that appear when using the Godunov flux for obtaining approximate solutions of the
ARZ traffic model. They used a random-sampling strategy in the numerical treatment of
contact discontinuities and Godunov’s method elsewhere. In this sense, the Av-RS scheme
proposed in the present work resembles their scheme and they are both non-diffusive around
isolated contact discontinuities. Chalons and Goatin [10] extended the scheme to the case
when the phase space is non-convex, in fact a disjoint union of two sets corresponding to
free and congested traffic.

Several extensions of the ARZ model have been presented; see e.g. [13, 14, 15, 17]. For
example, Moutari and Rascle [34] presented a hybrid macro-microscopic variant of the ARZ
model. With a Lagrangian discretization of this hybrid model, the Godunov scheme preserves
a bounded and invariant region, which is one ingredient in their proof of convergence to a
weak entropy solution when the vacuum case is avoided.

Although not analyzed in their original paper, the acceleration equation of the ARZ model
has a relaxation source term. This case was covered by the existence and uniqueness results
by Godvik and Hanche-Olsen [18], see above. The extended equation was also analyzed by
Li [29], who, in contrast to all references to traffic-flow models mentioned above, did not as-
sume convexity of the flux function f(·, k) and showed existence of a unique entropy solution
of the Cauchy problem. The existence was shown by convergence of a monotone conservative
upwind difference scheme. The analysis includes the limit case with zero relaxation, which
is (1). The vacuum case is, however, avoided.

1.5. Outline of this work. The remainder of this paper is organized as follows. The basic
attributes such as eigenvalues, Riemann invariants and Hugoniot curves of System (1) are
given in Section 2, where we also define the concept of admissible solution to (1)–(2) and
introduce some central notations. In Section 3, we state and analyze the type A solutions to
the Riemann problem associated with (1). In particular, we prove the invariance property
of M. Furthermore, the type B solution is defined and motivated by physical arguments
concerning the application to traffic flow. It will be seen in Section 4.1 that Godunov’s
numerical flux is well defined only if it is based on the type B Riemann solution. In the same
section, we also show that a large family of conservative numerical schemes – Godunov’s
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method included – produce inadequate approximations near contact discontinuities. This
result justifies why we turn to alternative schemes in Section 4.2. There, we consider a
family of two-step averaging-remap schemes having a common averaging technique in the
first step and distinguished only by their different remap strategies in the second step. The
Av-RS scheme is a member of this family. We also define another member, whose remap
relies on a convex combination (CC) of Riemann invariants. The resulting scheme is called
the Av-CC scheme. We close Section 4 by stating and proving that the unstable vacuum case
is never formed by the Av-RS scheme if it does not appear in the (discrete) initial data. In
Section 5 we prove convergence to a limit function for the entire family of averaging-remap
schemes, and then show that the limit function obtained with the Av-RS scheme is in fact
a weak solution to (1)–(2). The performance of the Godunov, Av-RS and Av-CC schemes
are numerically investigated on six sample problems in Section 6.

2. Preliminaries

We let f(u) := V (u)Y (u) and write the Cauchy problem (1)–(2) in the condensed form:

Y (u)t + f(u)x = 0, (x, t) ∈ R× (0, T ), (10)

u(x, 0) = u0(x), x ∈ R, (11)

for the initial datum u0(x) ∈ Ω. Since solutions of quasilinear, first-order systems may
develop discontinuities even for smooth u0, the solution u is sought in the weak sense:∫∫

R×[0,T )

(
Y (u)ϕt + f(u)ϕx

)
dxdt+

∫

R
ϕ(x, 0)Y (u0(x))dx = 0 for all ϕ ∈ C1

0(R× [0, T )).

2.1. Basic properties of the governing model system. To derive the basic properties
of System (10), we will work with the conserved vector y, turn to the form (4) and restrict
our attention to the set Y (Ω′), where Ω′ := {u ∈ Ω : φ > 0, Vφ(u) < 0}. The Jacobian

matrix of the flux function f̃(y) := Ṽ (y)y is given by

J (y) =

[
Ṽ + φṼφ φṼw
wṼφ Ṽ + wṼw

]

and has the eigenvalue-eigenvector pairs

λ1 = Ṽ + φṼφ + wṼw = fφ(φ,w/φ), r1 = (1, w/φ)T,

λ2 = Ṽ = V (φ,w/φ), r2 =
(
Ṽw,−Ṽφ

)T
.

(12)

The eigenvalues are real and satisfy λ1 = Ṽ + φVφ(φ,w/φ) < Ṽ = λ2, so the system (4)
is strictly hyperbolic on Y (Ω′). Furthermore, the scalar product ∇yλ1 · r1 = fφφ(φ,w/φ)
reveals that for every fixed value of k = w/φ, the first characteristic field is genuinely
nonlinear away from the inflection points of f(·, k), while ∇yλ2 · r2 = 0 implies that the

second field is (globally) linearly degenerate. This linear degeneracy means that λ2 = Ṽ is a
Riemann invariant and it leads to an interesting feature of the solution: the only possible 2-

waves are contact discontinuities with propagation speed Ṽ ≥ 0. Such contact discontinuities

are constructed along the contours of Ṽ in the phase plane Y (Ω′). A direct computation
yields ∇yk · r1 = 0, so the Riemann invariant of the first family is k. Consequently, the
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1-rarefaction curves (the curves in Y (Ω′) along which rarefaction waves of the first field are
constructed) follow the contours of k.

In a weak solution, any discontinuity with propagation speed s separating y− to the left
from y+ to the right, both states in Y (Ω′), must satisfy the Rankine-Hugoniot condition [27]:

s(y+ − y−) = f̃(y+)− f̃(y−). (13)

This motivates the notion of Hugoniot curves through a fixed y† ∈ Y (Ω′) defined as the
curves along which

s(y† − y) = f̃(y†)− f̃(y) (14)

holds. In fact, the Hugoniot curves coincide with k = constant and Ṽ = constant (see e.g.
Section 3 in [39]), which we have already seen are the 1-rarefaction curves and curves for the
2-discontinuity, respectively. As rarefaction waves and discontinuities follow the same curves
in the phase plane, the system belongs to the Temple class [40].

2.2. Admissible solution. The system properties derived in Section 2.1 are restricted to

the domain Y (Ω′) on which k, Ṽ and J are well defined and the system (4) is strictly hy-
perbolic. To include the vacuum (φ = 0) and the saturation (V = 0) cases in the discussion,
we now move back to the original variables contained in the vector u. We denote by

H1(u†) := {u ∈ Ω : k = k†} and H2(u†) := {u ∈ Ω : V = V †},
the Hugoniot/rarefaction curves extended to the whole of Ω. Here, the subscripts emphasize
the association of the curves with the two characteristic fields. The set H1(u†) contains
the states that may be connected to u† via shocks or rarefaction waves or combinations
of such along the 1-characteristics, whereas H2(u†) is the set of states that can be joined
to u† across a contact discontinuity along the 2-characteristics. We note that φ 6= φ† for
all u ∈ H1(u†) ∪ H2(u†) with u 6= u† and derive from (14) that the slope s of a possible
discontinuity (also visible in the conserved variables) between u† and u is given by

s = σ(u,u†) :=
f(u†)− f(u)

φ† − φ .

To single out physically relevant discontinuities, we use the entropy condition by Liu [31].

Definition 2.1 (Admissible solution). Suppose that u−(t),u+(t) are such that Y (u−) ∈
Y (Hi(u+)). A discontinuity with a jump from u− to u+ is admissible if Y (u−) = Y (u+)
or if it propagates with speed s = σ(u−,u+) and for almost every t,

σ(u−,u+) ≤ σ(η(τ),u+) for all τ ∈ [0, 1), (15)

whenever η is a parametrization of Hi(u+) such that Y (η(0)) = Y (u−) and Y (η(1)) =
Y (u+).

A weak, piecewise continuous solution u of (10)–(11) with a finite number of dicontinuities
is an admissible solution if every discontinuity in u is admissible.

Definition 2.1 does not offer a condition for uniqueness for general initial data. In partic-
ular, discontinuities in vacuum – where differences in the k-component comprise the jump
– are admissible independently of their propagation speed. However, such discontinuities
are not observable in the conserved variables. It will be seen in Section 3 that vacuum may
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cause non-uniqueness also in regions where φ > 0. This is a more severe consequence of the
insufficiency of the above definition as it becomes evident also in the mapped solution Y (u).
A remedy would be to impose an extra condition for admissibility, but we intentionally leave
this out and instead introduce the notion of type A and type B solutions in Section 3.

2.3. Notations. The convergence analysis in Section 5 relies on a TVD-property of the
numerical solution measured in the coordinate system of Riemann invariants. Therefore, it
is convenient to introduce the map R(u) := (V (u), k)T from Ω to the (V, k)-plane. We recall
the definition of Φ(·, k) as the inverse of V (·, k) and note that R−1(V, k) = (Φ(V, k), k)T on
R(Ω).

As was mentioned in Section 1.1, we will appeal to an invariance property of the following
set

M(u1,u2) := {u ∈ Ω : k ∈ ch(k1, k2), V ∈ ch(V1, V2)}, (16)

which is defined for u1,u2 ∈ Ω. Here, ch(b1, b2) := [min(b1, b2),max(b1, b2)] denotes the
convex hull of two finite real numbers b1 and b2. We remark thatR(M(u1,u2)) is a rectangle
(or a subset of such) in the (V, k)-plane having R(u1) and R(u2) as diagonally opposite
corners.

Throughout this work, | · | denotes the 1-norm on Rd and by ‖ · ‖Lp and T.V.(·) we mean
the Lp-norm and the total variation, respectively, defined in terms of | · |.

At several instances we use self-explanatory super- and subscripts on function quantities.
The notation is always inherited from the arguments. For example, we write VL and VR for
V (uL) and V (uR), respectively, and by V n

j we mean V (unj ).

3. The Riemann problem

The Riemann problem is defined as the Cauchy problem (10)–(11) with

u0(x) =

{
uL if x ≤ 0,

uR if x > 0,
(17)

where uL,uR ∈ Ω. We give here a rather detailed review on its solution since this information
is required for the analysis of the numerical schemes in Section 4.

3.1. Type A solution. As pointed out by Liu [31], condition (15) generalizes Oleinik’s [35]
entropy inequality for scalar equations. This close relationship between Liu’s condition on
the system side and Oleinik’s condition on the scalar side becomes particularly important
when uL and uR can be connected via 1-waves only. On H1(uL) we have k = kL and the
system (10) reduces to the scalar equation

φt + f(φ, kL)x = 0, (18)

for which Oleinik’s condition reads
f(φ+, kL)− f(φ−, kL)

φ+ − φ−
≤ f(φ, kL)− f(φ−, kL)

φ− φ−
for all φ between φ− and φ+. (19)

For u−,u+ ∈ H1(uL), the Rankine-Hugoniot condition (13) and the entropy condition (15)
are equivalent to the corresponding conditions for (18), which are

s(φ+ − φ−) = f(φ+, kL)− f(φ−, kL)
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and (19), respectively. Consequently, u = (φ, kL)T is an admissible solution to (10)–(11),
(17) if kL = kR and φ is the entropy solution (in the sense of (19)) to (18) with the initial
datum

φ(x, 0) =

{
φL if x ≤ 0,

φR if x > 0,
x ∈ R.

Let us now turn to the situation when kL 6= kR and recall from (12) that λ1 < λ2. The
solution contains a contact discontinuity propagating with speed VR (in the (x, t)-plane) and
separating uR to the right from an intermediate state u?(uL,uR) to the left. If V (0, kL) ≥ VR

(cf. Figure 3), then this intermediate state is defined as the intersecting point of H1(uL) and
H2(uR), i.e. the solution to {

k = kL,

V (φ, k) = VR,
(20)

cf. Figure 3 (upper mid). The existence and uniqueness in Ω of such a solution follows since
V (·, k) has a zero in [0, 1] and is invertible on each straight line k = constant in Ω. By
definition, Φ(VR, kL) is the solution to V (φ, kL) = VR and we thus get u? = (Φ(VR, kL), kL)T.
If V (0, kL) < VR, then there exists no solution to the system (20) (cf. Figure 3, lower mid)
and we let u? = (0, kL)T.

As u?(uL,uR) ∈ H1(uL), the connection between uL and u?(uL,uR) may be constructed
via the solution to the scalar conservation law (18), keeping k = kL constant. We formulate
the overall solution in the following theorem, the proof of which is straightforward once we
realize that the possible contact discontinuity with a jump between u?(uL,uR) and uR is
admissible since σ(u,uR) = VR for all u ∈ H2(uR) \ {uR}.
Theorem 3.1. Consider uL,uR ∈ Ω and let φ?(uL,uR) be the first component of

u?(uL,uR) :=

{
(Φ(VR, kL), kL)T if V (0, kL) ≥ VR,

(0, kL)T if V (0, kL) < VR.
(21)

If φs is the (Oleinik) entropy solution to (18) with initial datum

φ(x, 0) =

{
φL if x ≤ 0,

φ?(uL,uR) if x > 0,

then the function

u(x, t) :=

{
(φs(x, t), kL)T if x ≤ VRt,

uR if x > VRt,
(22)

is an admissible solution of the Riemann problem (10)–(11), (17).

Remark 3.1. At first sight, φ may appear to be non-conserved in the solution (22) if
V (0, kL) > VR and φL = φR = 0. There is no mass in the system at time t = 0, but
the intermediate density is given by φ? = Φ(VR, kL) > 0. However, uL is connected to u? via
a 1-shock propagating with speed σ(uL,u

?) = V (u?) = VR. Hence, we get φ > 0 only on the
null-set x = VRt.
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Figure 3. The grids show the phase planes Y (Ω) (left column), Ω (mid-
dle column) and R(Ω) (right column) for the sedimentation model (top row)
and the ARZ model (bottom row). The Hugoniot curves (solid lines) and a
Riemann solution (thick lines) are shown in each plane. The mappings of the
states uL (•), uR (◦) and u?(uL,uR) (I) and the corresponding setM(uL,uR)
(shaded region) are also plotted. These Riemann problems are described more
carefully in Examples 2 and 3 in Section 6 and the solution profiles at time
t = 1 are seen in Figures 10 and 12, respectively.

It is possible to find a function V and a pair uL,uR ∈ Ω such that the total variation of
the Riemann solution u(·, t) is strictly larger than T.V.(u0(·)) for all 0 < t ≤ T (see e.g. the
solution for the ARZ model in Figure 3). However, considering the Riemann invariants, we
derive in Theorem 3.2 an invariance property of both M(uL,uR) and the total variation of
the mapped solution R(u). In Figure 3, we have drawnM(uL,uR) and its images under Y
and R in the (φ, k)-, (φ,w)- and (V, k)-plane, respectively.

Theorem 3.2. Let u be the solution (22) to the Riemann problem (10)–(11), (17). Then
M(uL,uR) is an invariant region of u, i.e. u(x, t) ∈ M(uL,uR) for all (x, t) ∈ R × [0, T ].
Moreover, the spatial total variation of u measured in the (V, k)-plane is constant:

T.V.(R(u(·, t))) = |R(uR)−R(uL)| for all t ∈ [0, T ]. (23)

Proof. The invariance property ofM(uL,uR) is easiest realized if we follow the construction
of u in the (V, k)-plane. For a fixed t > 0 and x ≤ VRt, there holds k = kL and V (u) is
a monotone function of x, taking values between VL and V (u?) ∈ ch(VL, VR). The mapped
solution R(u) is thus kept within R(M(uL,uR)) since u = uR for x > VRt.

To prove (23), we note that u(·, t) is constant outside of the interval [λ1(uL)t, VRt + 0]
wherefore we need only consider the total variation on this bounded part of R. As the V -
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Figure 4. Three Riemann solutions at time t = 1 for the ARZ model illus-
trated by their representations in the (φ, k)-plane (left) and by their φ-profiles
at time t = 1 (right). In all three solutions, the initial datum is chosen such
that uL = (0.5, 0.75)T and VR < V (0, kL). The solid lines show the type A so-
lution in Theorem 3.1 with uR = (0, 0.2)T, while the dashed lines show the
type B solution in Theorem 3.3 for the same initial datum. The intermedi-
ate states (21) and (24) of each type of solution are marked with open (I)
and filled (H) stars, respectively. The dash-dot lines show the solution for a
perturbed right state uR = (0, 0.2)T + 0.03(1, 1)T (the two types of solutions
coincide in this case since φR > 0 implies (uL,uR) ∈ S).

and k-components of R(u(·, t)) both are monotone, we get

T.V.(V (u(·, t))) = |V (u(VRt+ 0, t))− V (u(λ1(uL)t, t))| = |VR − VL|
and, analogously, T.V.(k(u(·, t))) = |kR − kL|. The identity (23) now follows by summation
of the contributions from the two Riemann invariants:

T.V.(R(u(·, t))) = T.V.(V (u(·, t))) + T.V.(k(u(·, t))) = |VR − VL|+ |kR − kL|.
�

3.2. Type B solution. The Riemann solution given in Theorem 3.1 is stable in the sense
that it depends continuously on the initial data. A small perturbation in uL or uR results
in just a small alteration of u and there will be no abrupt changes in the basic structure of
the solution. This is a desired mathematical property, but it is not necessarily correct from
a physical point of view. Consider for example a situation in traffic flow where a sequence of
vehicles enters an interval of vacuum (φ = 0). The frontal vehicle is not slowed down by any
driver ahead and thus travels freely with its own specific velocity. However, a disturbance
in the vacuum interval by the addition of a single vehicle (φ > 0) having a slower velocity
results in a traffic jam.

Mathematically, the vacuum case under discussion occurs when uL and uR are chosen
such that φL > 0, φR = 0 and kL > kR. We have VR = V (0, kR) < V (0, kL) and the solution
(21)–(22) contains a contact discontinuity propagating with speed VR. The front that should
travel freely is thus hindered by some slow “ghost” vehicle (see Figure 4). We can overcome
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this unrealistic behaviour by considering another admissible solution where uL is connected
directly to vacuum along the 1-characteristics without taking any concern to VR whenever
φR = 0. To be more precise, we redefine the intermediate state so that u? = (0, kL)T if
φR = 0, and keep the definition (21) otherwise. Hence, the solution will coincide with the
one in Theorem 3.1 if the pair (uL,uR) belongs to

S :=
{

(u1,u2) ∈ Ω2 : k1 ≤ k2 if φ2 = 0
}
.

In the (x, t)-plane, the construction via the scalar solution φs keeping k = kL constant
now reaches the line x = V(uL,uR)t, where

V(uL,uR) :=

{
VR if (uL,uR) ∈ S,
fφ(0, kL) if (uL,uR) /∈ S.

Theorem 3.3. Let uL,uR ∈ Ω and denote by φ?(uL,uR) the first component of

u?(uL,uR) :=

{
(Φ(VR, kL), kL)T if V (0, kL) ≥ VR and φR > 0,

(0, kL)T if V (0, kL) < VR or φR = 0.
(24)

If φs is defined analogously with Theorem 3.1, then the function

u(x, t) :=

{
(φs(x, t), kL)T if x ≤ V(uL,uR)t,

uR if x > V(uL,uR)t,
(25)

is an admissible solution of the Riemann problem (10)–(11), (17).

Proof. It suffices to consider the case (uL,uR) /∈ S. We have u? = (0, kL)T and there is no
contact discontinuity in the solution. The admissibility follows since the jump from u? to
uR = (0, kR)T across x = fφ(u?)t satisfies Y (u?) = Y (uR). �

4. Numerical schemes

Troughout this paper, we work with equidistant spatial and temporal grids determined
by the step lengths ∆x > 0 and ∆t > 0, respectively. The real axis is divided into cells
Cj := [xj−1/2, xj+1/2), j ∈ Z with the boundaries located at xj+1/2 := j∆x, while the time
axis is discretized at the points tn := n∆t for the integers 0 ≤ n ≤ T/∆t =: N . The
quantities ∆x and ∆t are chosen such that α := ∆t/∆x is bounded according to the CFL
condition

αmax
{
‖fφ‖∞, ‖V ‖∞

}
≤ 1

2
. (26)

This inequality prevents information in the numerical solutions from travelling faster than
the maximal signal speed of the system (10) (cf. the eigenvalues in (12)). For that reason,
the bound (26) is always assumed to be satisfied. In Section 5 we will send ∆x and ∆t to
zero keeping α constant and these discretization parameters are therefore sometimes referred
to by the common notation ∆. The initial datum is assumed to be locally integrable and is
discretized by means of the cell averages

u0
j :=

1

∆x

∫

Cj
u0(x) dx and y0

j :=
1

∆x

∫

Cj
Y
(
u0(x)

)
dx. (27)
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4.1. Some ill-behaved conservative schemes. This section is devoted to conservative
methods, i.e., schemes of the form

yn+1
j = ynj − α

(
F n
j+1/2 − F n

j−1/2

)
(28)

for some numerical flux F n
j+1/2 to be defined. The intention is to point at the problems

with such numerical schemes and thereby motivate why we turn to alternative methods in
Section 4.2.

Let us begin the discussion with Godunov’s method and temporarily assume that φnj , φ
n
j+1 >

0. If locally near each cell boundary x = xj+1/2 we solve the Riemann problem with initial

data ũnj := Y −1(ynj ) and ũnj+1 := Y −1(ynj+1), the solution will take a constant value, denote

it by ũn,+j+1/2, along x = xj+1/2 for t > 0. This feature of the solution is utilized by defining

F n
j+1/2 := f(ũn,+j+1/2). In (22) or (25) it is seen that ũn,+j+1/2 = (φ̃ns,j+1/2, k̃

n
j )T, where φ̃ns,j+1/2

is the solution to the scalar Riemann problem associated with (18) for kL = k̃nj and initial

datum defined by the pair φ̃nj = φnj , φ
?(ũnj , ũ

n
j+1). Including the vacuum cases φnj = 0 and

φnj+1 = 0, we get

F n
j+1/2 =

{
0 if φnj = 0,

g
(
φnj , φ

?(ũnj , ũ
n
j+1); k̃nj

)
(1, k̃nj )T if φnj > 0,

(29)

where

g(a, b; k) :=





min
a≤φ≤b

f(φ, k) if a ≤ b,

max
b≤φ≤a

f(φ, k) if a > b
(30)

is Godunov’s flux related to the scalar flux function f(·, k). To evaluate the flux (29), we
need to compute φ?(ũnj , ũ

n
j+1) if φnj > 0. However, this is not possible in the sense of (21)

if φnj+1 = 0 because then k̃nj+1 is not well defined from the conserved state vector ynj+1.
The definition (24) of φ?, on the other hand, causes no complications in this respect and
the flux (30) is defined for all ynj ,y

n
j+1 ∈ Ω. Henceforth, when referring to the underlying

Riemann solution of Godunov’s method, we thus mean the type B solution in Theorem 3.3.
To illustrate the shortcomings of Godunov’s method, we return to the Riemann prob-

lem (10)–(11), (17) and choose uL,uR ∈ Ω′ such that uL 6= uR and VL = VR. The exact
solution has one wave only, namely a contact discontinuity propagating with speed VL = VR:

u(x, t) =

{
uL if x ≤ VRt,

uR if x > VRt.
(31)

Note that (uL,uR) ∈ S and the type A and B solutions coincide. Moreover, we have
u ∈M(uL,uR) = {u : k ∈ ch(kL, kR), V = VR}. We let the straight line y` passing through
yL = Y (uL) and yR = Y (uR) be paramatrized as follows:

y`(τ ;yL,yR) := τyR + (1− τ)yL, τ ∈ R. (32)

After the first Godunov update, we get for j = 1:

y1
1 = yR − α(VRyR − VRyL) = y`(1− αVR;yL,yR).
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Figure 5. A numerical solution at time t = 1 of a Riemann problem asso-
ciated with the sedimentation model (6) generated with Godunov’s method
(∆x = 0.01 · 2−4). The initial datum is determined by uL = (0.55, 0.2)T and
uR = (0.1, 0.05)T. This means that VL = VR = 0.0405 and the exact solution
contains an isolated contact discontinuity.

The CFL condition (26) implies 1− αVR ∈ (0, 1). Unless the 2-Hugoniot curves are straight

lines in the (φ,w)-plane, we thus cannot assure that Ṽ 1
1 = VR and the numerical approxi-

mation may leave the invariant region Y (M(uL,uR)) of the exact solution. If this happens,
we can expect the discontinuity to be smeared and spurious oscillations to develop. Such
behaviour is observed in Figure 5, where we show the result from Godunov’s method ap-
plied to a Riemann problem associated with the sedimentation model (6) (this undesirable
feature of Godunov’s method when applied to the ARZ model was reported by Chalons and
Goatin [9]).

The sample problem above stresses the importance of imposing a requirement that the
numerical solution should be preserved withinM(uL,uR) if the exact solution has a contact
discontinuity. Another natural requirement near any discontinuity is that the φ-component
of the approximate solution should be bounded by the values determining the jump, e.g.
contained in ch(φL, φR) in the case of the isolated contact discontinuity in (31). However, as
the following proposition states, both requirements cannot in general be met simultaneously
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for a large family of schemes. This family includes all conservative schemes based on consis-
tent two-point fluxes (e.g. Godunov’s and Roe’s methods and the HLL-scheme by Harten et.
al. [19]) and the substance of the proposition is that contact discontinuities are inadequately
approximated with spurious overshoots either in the (φ, k)- or in the (V, k)-coordinates.

Proposition 4.1. Consider the Riemann problem (10)–(11), (17) and suppose that there is
a 2-Hugoniot curve V = V †, which is C2 and not a straight line in Y (Ω′). Then there exist
two states uL,uR ∈ Ω′ on this curve such that no conservative scheme in the form (28) with
a numerical flux satisfying

F 0
j+1/2 =

{
f(uL) if j < 0,

f(uR) if j > 0,
(33)

produces an approximate solution contained in M(uL,uR) ∩ {u : φ ∈ ch(φL, φR)}.

Proof. Since Vk = Ṽwφ, the monotonicity assumption in (3) gives Ṽw > 0 on Y (Ω′) and by

the implicit function theorem we can write w = W (φ) on Ṽ = V † for some C2-function

W . The non-zero curvature of Ṽ = V † ensures the existence of uL and uR such that W is
strictly convex or concave on the interval ch(φL, φR). We assume, without loss of generality,
the former.

The property (33) implies the following first updates on the cells C0 and C1:

y1
0 = yL − α(F 0

1/2 − V †yL), y1
1 = yR − α(V †yR − F 0

1/2).

We recall the definition (32) of y` and note that

y`
(
1/2;y1

0,y
1
1

)
= y`

(
1/2;y1

1,y
1
0

)
= y`

(
(1− αV †)/2;yL,yR

)
=: y∗. (34)

Assume that y1
0,y

1
1 ∈ Y (M(uL,uR) ∩ {u : φ ∈ ch(φL, φR)}), then Ṽ 1

0 = Ṽ 1
1 = V †. By (34),

the straight line parametrized as y`(·;y1
0,y

1
1) or y`(·;y1

1,y
1
0) share the common point y∗ with

the line y`(·;yL,yR). The strict convexity of W implies that these two lines are identical
and the only possibilities for the updates are (y1

0,y
1
1) = (yL,yR) or (y1

0,y
1
1) = (yR,yL).

However, the CFL condition (26) yields (1 − αV †)/2 < 1/2 and we reach a contradiction
in (34).

�

4.2. Averaging-remap schemes. Given a sequence {unj }j∈Z, we define un∆ : R× [0,∆t]→
Ω as an exact solution of (10)–(11) with the piecewise constant initial datum u0(x) = unj
on Cj for all j ∈ Z. Due to the CFL condition (26), un∆ can be understood as the result of
gluing together a series of Riemann solutions near each cell interface xj+1/2, where locally
uL = unj and uR = unj+1. If not otherwise stated, we understand these Riemann solutions
in the sense of type A in Theorem 3.1.

If ynj = Y (unj ) and yn+1
j is interpreted as the cell average

yn+1
j =

1

∆x

∫

Cj
Y (un∆(x,∆t)) dx,
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xj+3/2

Figure 6. Contours of φn∆ on the three rectangles Ci×[0,∆t], i = j−1, j, j+1.
The shaded regions are the sets En

i,+ in the partitions of each rectangle. In this
example, there is no contact discontinuity in Cj−1 × [0,∆t], i.e. knj−2 = knj−1,
and saturation has been reached in Cj+1 (V n

j+1 = 0).

then Godunov’s method can be derived from the conservation law (10) divided by ∆x and
integrated over the rectangle Cj × [0,∆t]:

0 =
1

∆x

∫∫

Cj×[0,∆t]

(
Y (un∆)t + f(un∆)x

)
dx dt. (35)

After applying Green’s formula on regions where un∆ is smooth and the Rankine-Hugoniot
condition (13) across discontinuities, we find (28) with the numerical flux F n

j+1/2 = f(un,+j+1/2),

where un,+j+1/2 := un∆(xj+1/2, t), t ∈ (0,∆t].

The averaging-remap schemes of this section are given in two sequential steps, where the
first step means a slight modification of Godunov’s approach by restricting the domain of
integration in (35) to regions on which kn∆ is constant. To be more precise, we divide the
rectangle Cj × [0,∆t] into the two sets

En
j,− :=

{
(x, t) ∈ Cj × [0,∆t] : xj−1/2 < x < xj−1/2 + V n

j t
}
,

En
j,+ :=

{
(x, t) ∈ Cj × [0,∆t] : xj−1/2 + V n

j t < x < xj+1/2

}
.

We avoid taking averages over contact discontinuities (which follow the straight lines x =
xj−1/2 + V n

j t if they are present) by defining the first step in terms of the two state vectors:

un+1
j,− :=





unj−1 if V n
j = 0,

1

∆x
n

j,−

∫ x̄n
j−1/2

xj−1/2

un∆(x,∆t) dx if V n
j > 0,

(36)

un+1
j,+ :=

1

∆x
n

j,+

∫ xj+1/2

x̄n
j−1/2

un∆(x,∆t) dx,

where x̄nj−1/2 := xj−1/2 + ∆tV n
j ,∆x

n

j,− := x̄nj−1/2 − xj−1/2 and ∆x
n

j,+ := xj+1/2 − x̄nj−1/2. To
bring back the approximations to the original mesh, a family of remap strategies can be
used. This remapping is the second step, and its specific definition is what distinguishes the
numerical methods discussed henceforth.



RANDOM SAMPLING FOR SYSTEMS OF TEMPLE CLASS 19

4.2.1. Step 1: averaging. The updating formula that maps {unj }j to {un+1
j,± }j becomes rather

simple because V (un∆) is continuous in a neighbourhood of each straight line γnj−1/2(t) defined
by x = xj−1/2 + V n

j t. The net flux of un∆ relative to the speed V n
j thereby vanishes along

γnj−1/2(t), i.e.
∫ ∆t

0

(
V (un∆)φn∆ − V n

j φ
n
∆

)∣∣
γn
j−1/2,±

dt = 0, (37)

where γnj−1/2,± denote the spatial one-sided limits of γnj−1/2(t).

Recall the definition of the scalar Godunov flux g from (30). To shorten the notation,
we let gnj−1/2 := g(φnj−1, φ

?(unj−1,u
n
j ); knj−1). If V n

j > 0, then we use that kn∆ = knj−1 on

En
j−1,+ ∪ En

j,−, integrate the first equation of System (10) over En
j,−, divide by ∆x

n

j,− and
apply the left limit of (37) to obtain

un+1
j,− =





unj−1 if V n
j = 0,(

∆t

∆x
n

j,−
gnj−1/2, k

n
j−1

)T

if V n
j > 0.

(38)

Analougous arguments over En
j,+ yield

un+1
j,+ =

(
∆x

∆x
n

j,+

φnj −
∆t

∆x
n

j,+

gnj+1/2, k
n
j

)T

(39)

if φnj is understood as the cell average of φn∆(·, 0) over Cj.

4.2.2. Step 2: remap. We perform the remapping from {[xj−1/2, x̄
n
j−1/2), [x̄nj−1/2, xj+1/2)} to

Cj while bounding the Riemann invariants V and k by their values at un+1
j,± . To be more

precise, we require that

un+1
j ∈M(un+1

j,− ,u
n+1
j,+ ). (40)

The condition (40) yields a whole family of remapping techniques and as will be seen in
Section 5, they all give rise to schemes producing approximations that converge to some
limit function. However, this limit need not be an admissible solution of (10). In fact, we
prove convergence to a weak solution only for one particular choice of remap satisfying (40),
namely the random sampling technique that yields the Av-RS scheme.

Definition 4.1 (Av-RS scheme). Let a = {an}∞n=1 be a uniformly distributed sequence in
(0, 1). The Av-RS scheme is given by (38)–(39) and the following sampling remap:

un+1
j :=

{
un+1
j,− if an+1 ∈ (0, αV n

j ),

un+1
j,+ if an+1 ∈ [αV n

j , 1).
(41)

For the actual computations behind the numerical examples in Section 6, we use the van
der Corput sequence defined by [12]

an :=
I∑

i=0

bi2
−(i+1),
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where n =
∑I

i=0 bi2
i, bi ∈ {0, 1} is the binary expansion of n ∈ N.

In Section 6, we also examine numerically the performance of a second remap, which is
constructed via a convex combination of the state vectors un+1

j,− and un+1
j,+ in their (V, k)-

coordinates. The complete scheme is defined as follows.

Definition 4.2 (Av-CC scheme). The scheme obtained by (38)–(39) together with the remap

un+1
j := R−1

(
αV n

j R(un+1
j,− ) + (1− αV n

j )R(un+1
j,+ )

)
, (42)

is called the Av-CC scheme.

In the the CC-remap (42), it is understood that R−1 is defined for the convex combi-
nation, at which it is evaluated. We recall that for the ARZ model (9) and the sedimen-
tation model (6), the set R(Ω) is convex and the CC-remap is applicable on every pair
(un+1

j,− ,u
n+1
j,+ ) ∈ Ω2.

4.2.3. Local type B Riemann solutions. By replacing V n
j with Vnj−1/2 := V(unj−1,u

n
j ) and

interpreting u? in the sense (24) at every instance in Section 4.2, we obtain numerical schemes
based on un∆ defined in terms of the unstable type B Riemann solution in Theorem 3.3.
Recall that the type A and type B solutions coincide for initial data in S. In the following
proposition, it is claimed that S is in a sense an invariant region under the Av-RS scheme.
As an immediate consequence, if the initial data satisfy the requirements of this proposition,
it is insignificant which type of Riemann solution we choose in the definition of un∆ (for the
Av-RS scheme).

Proposition 4.2. Consider the Av-RS scheme in Definition 4.1. If (u0
j−1,u

0
j) ∈ S for all

j, then (unj−1,u
n
j ) ∈ S for all j and 0 ≤ n ≤ N .

Proof. We will argue by induction and assume therefore that the assertion holds for a fixed
0 ≤ n < N , i.e. (unj−1,u

n
j ) ∈ S for all j. Suppose that φn+1

j = 0 for some j and recall from

(41) that un+1
j equals either un+1

j,− or un+1
j,+ , depending on the value of an+1.

Consider first the case un+1
j = un+1

j,+ , then an+1 ≥ αV n
j and unj = un+1

j . This implies
that φnj = 0 and by assumption knj ≥ knj−1. Using the monotonicity of V , we get V n

j ≥
V (0, knj−1) ≥ V n

j−1 and thus an+1 ≥ αV n
j−1. This means that un+1

j−1 = un+1
j−1,+ and

kn+1
j−1 = kn+1

j−1,+ = knj−1 ≤ knj = kn+1
j .

If the sampling step gave un+1
j = un+1

j,− instead, then V n
j > 0. Since φn+1

j,− = 0 is the
average of φn∆ over [xj−1/2, x̄

n
j−1), there holds φ?(unj−1,u

n
j ) = 0. Recall that φn∆ is constructed

such that φnj−1 is connected to φ?(unj−1,u
n
j ) along the 1-characteristics with k = knj−1 and

that fφ(φ?(unj−1,u
n
j ), knj−1) = fφ(0, knj−1) ≥ 0. We note that fφ(0, knj−1) = V (0, knj−1) so if

fφ(0, knj−1) = 0, then V n
j−1 = 0 because 0 ≤ V n

j−1 = V (φnj−1, k
n
j−1) ≤ V (0, knj−1) = 0. Hence,

the sampling step in the cell Cj−1 gave un+1
j−1 = un+1

j−1,+ and we have

kn+1
j−1 = kn+1

j−1,+ = knj−1 = kn+1
j,− = kn+1

j .

On the other hand, if fφ(0, knj−1) > 0, then there holds φnj−1 = 0 because otherwise positive
wave speeds (due to f(0, knj−1) = 0 and φ?(unj−1,u

n
j ) = 0) would disturb the zero average
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tn+1

tn

xj−1/2 xj+1/2

un+1
j,−

k = knj

un+1
j,+

un
j

un,+
j+1/2un,+

j−1/2

︸ ︷︷ ︸

︷ ︸︸ ︷︷ ︸︸ ︷

Figure 7. The rectangle Cj × [tn, tn+1) with some of the state vectors. The
shaded region shows where k∆ = knj .

φn+1
j,− . Thus, knj−2 ≤ knj−1 follows by assumption. If un+1

j−1 = un+1
j−1,+, then

kn+1
j−1 = kn+1

j−1,+ = knj−1 = kn+1
j,− = kn+1

j ,

while un+1
j−1 = un+1

j−1,− implies

kn+1
j−1 = kn+1

j−1,− = knj−2 ≤ knj−1 = kn+1
j,− = kn+1

j .

�

5. Convergence

We define the function u∆ : R× [0, T )→ Ω by u∆(x, t) := un∆(x, t− tn) on each time strip
R× [tn, tn+1). The purpose of this section is to prove convergence of u∆ to a weak solution
of the Cauchy problem (10)–(11) as the grid is refined, i.e. as ∆→ 0. To this end, we need
the invariance property ofM introduced in (16), and therefore understand un∆ in the stable
sense of type A Riemann solutions in Theorem 3.1. Convergence (along a subsequence) to
a limit function u is reached when u∆ is generated by any of the members in the family of
schemes (38)–(40). The proof is given via the following piecewise constant representation of
the numerical approximations:

û∆ :=
N−1∑

n=0

∑

j∈Z

χCj×[tn,tn+1)u
n
j , (43)

where χCj×[tn,tn+1) is the characteristic function of Cj × [tn, tn+1). As was previously an-
nounced, to show that u is a weak solution we restrict our attention to the Av-RS scheme
(Definition 4.1).

To clarify the notation regarding M, we consider a sequence {uj}j∈I in Ω indexed by
some set I and observe the following identity:

⋃

i,j∈I

M(ui,uj) =

{
u : inf

j∈I
{kj} ≤ k ≤ sup

j∈I
{kj}, inf

j∈I
{Vj} ≤ V (u) ≤ sup

j∈I
{Vj}

}
.
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5.1. Convergence to a limit function. The constant value un,+j+1/2 that un∆ takes on the

cell boundary x = xj+1/2 for t > 0 will play an important role when finding an upper bound

on the total variation of the numerical solution. One property of un,+j+1/2 that will become

useful is the following immediate consequence of Theorem 3.2:

un,+j+1/2 ∈M(unj ,u
n
j+1), (44)

and another is part of Lemma 5.1 below. We have in Figure 7 drawn some of the state
vectors related to the cell Cj.

Lemma 5.1. Consider the averaging step (38)–(39). There holds

un+1
j,± ∈M(un,+j±1/2,u

n
j ) ⊆M(unj±1,u

n
j ). (45)

Proof. The inclusion in (45) follows from (44). Turning to the other part of the claim,
namely un+1

j,± ∈ M(un,+j±1/2,u
n
j ), we see from the updating formulas (38)–(39) that kn+1

j,± =

kn,+j±1/2 ∈ ch(kn,+j±1/2, k
n
j ). It remains to prove V n+1

j,± ∈ ch(V n,+
j±1/2, V

n
j ). To this end, consider

first the left state un+1
j,− . If V n

j = 0, then V n+1
j,− = V n

j−1 = V n,+
j−1/2. On the other hand, if

V n
j > 0, then by (36) un+1

j,− is an average of states on the convex set {u ∈ Ω : k = knj−1, φ ∈
ch(φn,+j−1/2, φ

?(unj−1,u
n
j ))}. We have thus shown that V n+1

j,− ∈ ch(V n,+
j−1/2, V (u?(unj−1,u

n
j ))) and

now claim that this set is contained in ch(V n,+
j−1/2, V

n
j ). To see this, recall the definition (21)

of u?. If φ?(unj−1,u
n
j ) > 0, then V (u?(unj−1,u

n
j )) = V n

j while φ?(unj−1,u
n
j ) = 0 only if

V (u?(unj−1,u
n
j )) = V (0, knj−1) < V n

j .

Analogous arguments can be used for the right state un+1
j,+ , but with the averaging made

over states along k = knj between φnj and φn,+j+1/2. Indeed, we need not involve an intermediate

state in this case. �

Corollary 5.1. For a fixed mesh width ∆ > 0, let

M0
∆ :=

⋃

i,j∈Z

M(u0
j ,u

0
i ).

If the remap satisfies (40), then M0
∆ is an invariant region under the resulting numerical

scheme, i.e. unj ∈M0
∆ for all j ∈ Z and n ≥ 0.

Proof. Suppose that, for a fixed n ≥ 0, unj ∈ M0
∆ for all j. Then M(unj ,u

n
i ) ⊆ M0

∆ for
every pair i, j and the restriction (40) on the remap together with Lemma 5.1 yields

un+1
j ∈M(un+1

j,− ,u
n+1
j,+ ) ⊆M(unj−1,u

n
j ) ∪M(unj ,u

n
j+1) ∪M(unj−1,u

n
j+1) ⊆M0

∆.

The assertion follows from induction over n since u0
j ∈M0

∆ for all j. �
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Lemma 5.2. Let ∆ > 0 and suppose that R is Lipschitz continuous on M0
∆. If T.V.(u0) <

∞ and the remap satisfies (40), then for all 0 ≤ n ≤ N − 1

sup
j∈Z
|unj | <∞, (46)

∑

j∈Z

|R(unj )−R(unj−1)| ≤ ‖R‖LipT.V.(u0), (47)

∑

j∈Z

|R(un+1
j )−R(unj )| ≤ 2‖R‖LipT.V.(u0). (48)

Proof. The first bound (46) follows from the invariance of M0
∆ stated in Corollary 5.1.

Assume that n ≥ 1. The restriction (40) combined with (45) yields

unj ∈M(unj,−,u
n
j,+) ⊆M(un−1,+

j−1/2 ,u
n−1
j ) ∪M(un−1,+

j+1/2 ,u
n−1
j ) ∪M(un−1,+

j−1/2 ,u
n−1,+
j+1/2 ), (49)

which is, together with (44), the key ingredient of the proofs of Lemmas 3.1 and 3.2 in [28].
These Lemmas state the following TVD property in the (V, k)-plane:

∑

j∈Z

|R(unj )−R(unj−1)| ≤
∑

j∈Z

|R(un−1
j )−R(un−1

j−1 )|. (50)

Induction over n, the invariance ofM0
∆ and the Lipschitz continuity of R yield (47). Due to

the notational differences with [28], we review here the proof of (50) and consider first the
Riemann invariant k. From (49) we derive

|kn−1,+
j−1/2 − knj |+ |knj − k

n−1,+
j+1/2 | ≤ |k

n−1,+
j−1/2 − kn−1

j |+ |kn−1
j − kn−1,+

j+1/2 |,

while (44) gives

|kn−1
j − kn−1,+

j−1/2 |+ |k
n−1,+
j−1/2 − kn−1

j−1 | = |kn−1
j − kn−1

j−1 |.

Since the corresponding bounds hold also for the second Riemann invariant, V , we get

|R(un−1,+
j−1/2 )−R(unj )|+ |R(unj )−R(un−1,+

j+1/2 )|
≤ |R(un−1,+

j−1/2 )−R(un−1
j )|+ |R(un−1

j )−R(un−1,+
j+1/2 )|

and

|R(un−1
j )−R(un−1,+

j−1/2 )|+ |R(un−1,+
j−1/2 )−R(un−1

j−1 )| = |R(un−1
j )−R(un−1

j−1 )|.
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The proof of (50) in [28] is then completed by
∑

j∈Z

|R(unj )−R(unj−1)| ≤
∑

j∈Z

(
|R(unj )−R(un−1,+

j−1/2 )|+ |R(un−1,+
j−1/2 )−R(unj−1)|

)

=
∑

j∈Z

(
|R(unj )−R(un−1,+

j−1/2 )|+ |R(un−1,+
j+1/2 )−R(unj )|

)

≤
∑

j∈Z

(
|R(un−1,+

j−1/2 )−R(un−1
j )|+ |R(un−1

j )−R(un−1,+
j+1/2 )|

)

=
∑

j∈Z

(
|R(un−1,+

j−1/2 )−R(un−1
j )|+ |R(un−1

j−1 )−R(un−1,+
j−1/2 )|

)

=
∑

j∈Z

|R(un−1
j )−R(un−1

j−1 )|.

To show (48), we use that

unj ,u
n+1
j ∈M(unj−1,u

n
j ) ∪M(unj ,u

n
j+1) ∪M(unj−1,u

n
j+1)

(see the proof of Corollary 5.1 for un+1
j ) and derive

|kn+1
j − knj | ≤ max

(
|knj−1 − knj |, |knj − knj+1|, |knj−1 − knj+1|

)

≤ |knj−1 − knj |+ |knj − knj+1|.
Adding the corresponding bound for the V -components, we obtain

|R(un+1
j )−R(unj )| ≤ |R(unj−1)−R(unj )|+ |R(unj )−R(unj+1)|,

and (48) follows from (47) after summation over j. �

Theorem 5.1. Suppose that u0 ∈ L1(R), T.V.(u0) <∞ and that R and R−1 are Lipschitz
continuous on M0 := ∪∆>0M0

∆ and R(M0), respectively. If the remap satisfies (40), then
there exists a subsequence of {u∆} that converges in L1

loc(R× [0, T )) to a limit function u.

Proof. We give the proof via the convergence along a subsequence for the piecewise constant
function û∆ defined in (43), and then show that ‖u∆ − û∆‖L1 → 0 as ∆→ 0.

The bound (46) immediately gives ‖û∆‖∞ < ∞ while (47) and the Lipschitz continuity
of R−1 yield

T.V.(û∆(·, tn)) =
∑

j∈Z

|unj − unj−1| ≤ ‖R−1‖Lip

∑

j∈Z

|R(unj )−R(unj−1)| <∞.

For a general t ∈ [0, T ), we let n be the largest integer such that t ≥ tn and use the identity
û∆(·, t) = û∆(·, tn). Using the Lipschitz continuity ofR−1 once more, but this time combined
with (48), we can derive

‖û∆(·, t1)− û∆(·, t2)‖L1 ≤ C1|t1 − t2|+O(∆) for all t1, t2 ∈ [0, T ),

see e.g. the proof of Theorem 3.8 in [20]. Here, the constant C1 is independent of ∆, t1 and
t2. Standard compactness arguments now give the existence of a subsequence of {û∆} that
converges in L1

loc(R× [0, T )).
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To see that the difference between the two functions u∆ and û∆ vanishes in L1 as ∆→ 0,
fix t ∈ [0, T ) and again let n be the largest integer such that t ≥ tn. On each cell Cj, we have
û∆(x, t) = unj and

u∆(x, t) ∈M(unj−1,u
n
j ) ∪M(unj ,u

n
j+1)

(according to Theorem 3.2). This implies

|R(u∆(x, t))−R(û∆(x, t))| ≤ |R(unj+1)−R(unj )|+ |R(unj )−R(unj−1)|
for all x ∈ Cj. Thus, by (47):

‖u∆(·, t)− û∆(·, t)‖L1 ≤ ‖R−1‖Lip

∑

j∈Z

∫

Cj
|R(u∆(x, t))−R(û∆(x, t))| dx

≤ ‖R−1‖Lip∆x
∑

j∈Z

(
|R(unj+1)−R(unj )|+ |R(unj )−R(unj−1)|

)
≤ C2∆x,

where C2 = 2‖R−1‖Lip‖R‖LipT.V.(u0). This bound is uniform on [0, T ) so

‖u∆ − û∆‖L1 =

∫ T

0

‖u∆(·, t)− û∆(·, t)‖L1 dt ≤ TC2∆x.

�

5.2. Weak solution. To show that the limit function in Theorem 5.1 is in fact a weak solu-
tion of (10), we will soon restrict the discussion to the Av-RS scheme given in Definition 4.1.
However, let us dwell at the more general scheme (38)–(40) in the next Lemma, which states
an L1-bound on the jump in u∆ across t = tn. This is where we have a transition from the
evolved exact solution un−1

∆ in one strip R× [tn−1, tn) to initial data for un∆ in the next strip
R× [tn, tn+1). The handling of these transitions is the most delicate part of the proof of the
main result stated in Theorem 5.2.

Lemma 5.3. Let ∆ > 0 and suppose that R and R−1 are Lipschitz continuous on M0
∆ and

R(M0
∆), respectively. If u0 ∈ L1(R), T.V.(u0) <∞ and the remap satisfies (40), then

‖u∆(·, tn + 0)− u∆(·, tn − 0)‖L1 ≤ 2‖R−1‖Lip‖R‖LipT.V.(u0)∆x

for all integers 1 ≤ n ≤ N − 1.

Proof. Consider first a single cell Cj and recall that u∆(x, tn + 0) = unj on Cj. By (40) and
(45) we thus get

u∆(x, tn + 0) ∈M(un−1
j−1 ,u

n−1
j ) ∪M(un−1

j ,un−1
j+1 ) ∪M(un−1

j−1 ,u
n−1
j+1 ),

while Theorem 3.2 yields

u∆(x, tn − 0) ∈M(un−1
j−1 ,u

n−1
j ) ∪M(un−1

j ,un−1
j+1 ).

Using analogous arguments as in the proof of (48), we obtain

|R(u∆(x, tn + 0))−R(u∆(x, tn − 0))| ≤ |R(un−1
j−1 )−R(un−1

j )|+ |R(un−1
j )−R(un−1

j+1 )|,
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and the claim follows from the Lipschitz continuity of R−1 and the bound (47):

‖u∆(·, tn + 0)− u∆(·, tn − 0)‖L1

=
∑

j∈Z

∫

Cj
|
(
u∆(x, tn + 0)− u∆(x, tn − 0)

)
| dx

≤ ‖R−1‖Lip

∑

j∈Z

∫

Cj
|R(u∆(x, tn + 0))−R(u∆(x, tn − 0))| dx

≤ 2‖R−1‖Lip‖R‖LipT.V.(u0)∆x.

�

We now confine our attention to the Av-RS scheme (38)–(39), (41) and adjust the argu-
ments made in [38, Chapter 19, Section C], where convergence of the Glimm scheme was
proved. We emphasize the dependence on the random sequence a ∈ A :=

∏∞
n=1(0, 1) by

the subscript u∆,a. However, at some instances we leave this dependence in the discrete
variables implicitly understood to avoid to get entangled in indices. Analogously with [38],
we introduce

Jn(a,∆, ϕ) :=

∫

R
ϕ(x, tn)

(
y∆,a(x, tn + 0)− y∆,a(x, tn − 0)

)
dx,

J(a,∆, ϕ) :=
N−1∑

n=1

Jn(a,∆, ϕ)

for bounded functions ϕ, continuous in time and with compact support on R× [0, T ). Here,
the conserved counterpart of u∆,a is naturally defined as y∆,a := Y (u∆,a).

Corollary 5.2. Let a ∈ A, ∆ > 0 and suppose that ϕ is a bounded function, continuous in
time and with compact support on R× [0, T ). If u0 ∈ L1(R), T.V.(u0) <∞ and R and R−1

are Lipschitz continuous on M0
∆ and R(M0

∆), respectively, then there exist two constants
C1 and C2 independent of a,∆ and ϕ such that

|Jn(a,∆, ϕ)| ≤ C1‖ϕ‖∞∆x and |J(a,∆, ϕ)| ≤ C2‖ϕ‖∞. (51)

Proof. The first bound in (51) follows from Lemma 5.3 since Y is Lipschitz continuous with
‖Y ‖Lip ≤ 1 on Ω:

|Jn(a,∆, ϕ)| ≤ ‖ϕ‖∞‖y∆,a(·, tn + 0)− y∆,a(·, tn − 0)‖L1

≤ ‖ϕ‖∞‖u∆,a(·, tn + 0)− u∆,a(·, tn − 0)‖L1 ,

while the second bound can be derived from the first

|J(a,∆, ϕ)| ≤
N−1∑

n=1

|Jn(a,∆, ϕ)| ≤ C1‖ϕ‖∞N∆x ≤ C1
T

α
‖ϕ‖∞.

�

The requirement on a to be uniformly distributed in (0, 1) becomes relevant in the following
lemma, in which we consider the space L2(A) equipped with an unweighted inner product.
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Lemma 5.4. Let ∆ > 0 and suppose that the function ϕ is a bounded function, continuous
in time, constant on each cell Cj and with compact support on R × [0, T ). Then, for 1 ≤
n1, n2 ≤ N − 1, the components of Jn1 and Jn2 are pairwise orthogonal in L2(A), i.e.

∫

A
Jn1(a,∆, ϕ)Jn2(a,∆, ϕ) da = 0 if n1 6= n2, (52)

where Jn1Jn2 means the componentwise product.

Proof. Denote by ϕnj the value of ϕ on Cj at t = tn and note that y∆,a(·, t) is independent
of an if t < tn. We first consider the simple integral∫

(0,1)

Jn dan =

∫

(0,1)

∑

j∈Z

ϕnj

∫

Cj

(
y∆,a(x, tn + 0)− y∆,a(x, tn − 0)

)
dx dan

=
∑

j∈Z

ϕnj

(∫

Cj

∫

(0,1)

y∆,a(x, tn + 0) dan dx−
∫

Cj
y∆,a(x, tn − 0) dx

)
.

Each term in this series vanishes because the expected value of the mass is preserved by the
remap step according to the calculation:∫

Cj

∫

(0,1)

y∆,a(x, tn + 0) dan dx =

∫

Cj

(
αV n−1

j Y
(
unj,−

)
+ (1− αV n−1

j )Y
(
unj,+

))
dx

= ∆x
n−1

j,− Y
(
unj,−

)
+ ∆x

n−1

j,+ Y
(
unj,+

)
=

∫

Cj
y∆,a(x, tn − 0) dx, (53)

and we obtain ∫

(0,1)

Jn dan = 0. (54)

In the last step of (53), we have used that k∆,a(·, tn − 0) ≡ knj,− on (xj−1/2, x̄
n−1
j−1/2) if V n

j > 0

to derive

knj,−φ
n
j,− =

1

∆x
n−1

j,−

∫ x̄n−1
j−1/2

xj−1/2

k∆,a(x, tn − 0)φ∆,a(x, tn − 0) dx,

which gives

Y
(
unj,−

)
=

1

∆x
n−1

j,−

∫ x̄n−1
j−1/2

xj−1/2

y∆,a(x, tn − 0) dx.

Analogous arguments on (x̄n−1
j−1/2, xj+1/2) yield the corresponding identity for Y (unj,+).

Now, turn to the inner product in (52) and assume that n1 < n2. The orthogonality then
follows from (54) and the independence of Jn1 on an2 :∫

A
Jn1Jn2 da =

∫

A\(0,1)

(∫

(0,1)

Jn1Jn2 dan2

) ∏

n 6=n2

dan

=

∫

A\(0,1)

Jn1

(∫

(0,1)

Jn2 dan2

) ∏

n6=n2

dan = 0.

�
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The proof of the main result, Theorem 5.2 below, is a straightforward adaptation of the
arguments in [38] but for completeness of the current presentation, we give here some of the
details. Note that admissibility (see Definition 2.1) is not claimed for the weak solution in
this therorem.

Theorem 5.2. Suppose that u0 ∈ L1(R), T.V.(u0) <∞ and that R and R−1 are Lipschitz
continuous on M0 and R(M0), respectively. Then there exists a sequence ∆i → 0 such that
ua := limi→∞ u∆i,a is a weak solution to (10)–(11) for almost every a ∈ A.

Proof. Let ϕ be a smooth function with compact support in R × [0, T ). By construction,
u∆,a is a weak solution of (10) on each strip R× [tn, tn+1). Hence,

∫∫

R×[tn,tn+1)

(y∆,aϕt + f(u∆,a)ϕx) dx dt+

∫

R
ϕ(x, tn)y∆,a(x, tn + 0) dx

−
∫

R
ϕ(x, tn+1)y∆,a(x, tn+1 − 0) dx = 0. (55)

Summation of (55) over n = 0, . . . , N − 1 yields
∫∫

R×[0,T )

(y∆,aϕt + f(u∆,a)ϕx) dx dt+

∫

R
ϕ(x, 0)y∆,a(x, 0) dx+ J(a,∆, ϕ) = 0. (56)

By the discretization of u0 in (27) and the continuity of Y , we obtain

lim
∆↘0

∫

R
ϕ(x, 0)y∆,a(x, 0) dx = lim

∆↘0

∫

R
ϕ(x, 0)Y

(
u0

∆(x, 0)
)

dx =

∫

R
ϕ(x, 0)Y

(
u0(x)

)
dx.

It remains to control the last term on the left hand side of (56), namely J(a,∆, ϕ). With
Corollary 5.2 and Lemma 5.4 at hand, the existence of a null set N and a sequence ∆i such
that J(a,∆i, ϕ) → 0 for any a ∈ A \ N follows from a direct translation of the proof of
Theorem 19.14 in [38]. �

6. Numerical examples

We study here the performance of Godunov’s method, the Av-RS and Av-CC schemes on
a selection of sample problems. The numerical solutions are presented by their associated
φ̃∆- and k̃∆-profiles at fixed time instances t ∈ [0, T ) with T sufficiently large. The initial
data of Examples 1 to 5 are chosen such that for all three schemes, for all used values of ∆x
and at each time instance tn, the local Riemann data satisfy (unj ,u

n
j−1) ∈ S for all j and the

type A solutions agree with those of type B. In Example 6, the schemes are defined in terms
of local type B solutions.

The deviation of the numerical approximations from the exact solution is measured by

errtL1(∆) :=
∥∥Y
(
û∆(·, t)

)
− y(·, t)

∥∥
L1(I)

/‖y(·, t)‖L1(I),

where Y (û∆) is defined as ynj on Cj× [tn, tn+1) for Godunov’s method. In each sample prob-
lem, the bounded interval I ⊂ R is chosen such that the numerical solutions are identical
with the exact solution at the boundaries of I up to the time t and for all ∆ under considera-
tion. In this way, the fluxes of the numerical solutions remain identical with the exact fluxes
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Figure 8. Example 1: Solutions at time t = 1. The exact solution contains
an isolated contact discontinuity (cf. Figure 5) and the numerical solutions are
computed with ∆x = 0.01. The velocities V evaluated for the approximations
computed with the Av-RS and Av-CC schemes are constant and agree with
the exact velocity V = 0.0405.

at the boundaries of I throughout the computations, and we can study the conservativity of
the Av-RS and Av-CC schemes simply by measuring the relative mass error

errtmass(∆) :=

∣∣∣∣
∫

I

Y
(
û∆(x, t)

)
dx−

∫

I

y(x, t) dx

∣∣∣∣
/ ∣∣∣∣
∫

I

y(x, t) dx

∣∣∣∣ .

6.1. Example 1: An isolated contact discontinuity (sedimentation). In Section 4.1
we addressed the inability of Godunov’s method to adequately capture contact discontinu-
ities. This shortcoming of the method was illustrated in Figure 5 where we considered the
Riemann problem associated with the sedimentation model (6) and with the initial datum
determined by the states uL = (0.55, 0.2)T and uR = (0.1, 0.05)T. Recall that such a setup
gives VL = VR and the exact solution has an isolated contact discontinuity as its only wave.
Godunov’s method does not carry this simple structure over to the numerical solution, which
exhibits a distinct oscillating behaviour. In Figure 8 it is seen that the numerical solutions



30 BETANCOURT, BÜRGER, CHALONS, DIEHL, AND FARÅS
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Figure 9. Example 1: The errors err1
L1 (left) and err1

mass (right) for the nu-
merical solutions.

generated with the Av-RS and Av-CC schemes show more conformity with the exact so-
lution. The anti-diffusive property of the Av-RS scheme is clearly demonstrated since the
discontinuity is sharply resolved without any smearing.

Figure 9 (left) suggests convergence of all three schemes, the errors introduced by the
Av-RS and Av-CC schemes being many times smaller than the error for Godunov’s method.
The Av-RS scheme is the most accurate one for this sample problem. The mass errors for the
Av-RS and Av-CC schemes are shown in Figure 9 (right) and indicate that these schemes
approximate to being conservative for decreasing ∆.

6.2. Example 2: A mixed 1-wave and a contact discontinuity (sedimentation).
A more complicated solution to the Riemann problem associated with (6) is obtained if
uL = (0.8, 0.6)T and uR = (0.1, 0.3)T. The exact solution, which is shown in the phase planes
in Figure 3 (top row), contains waves along both characteristic fields. Since f(·, kL) has an
inflection point at φinfl = 2/3 and φ?(uL,uR) ≈ 0.36 < φinfl < φL, the admissible 1-wave is
composed of both a shock and a rarefaction. In Figure 10 we see that the three numerical
schemes produce similar results near this wave, while the 2-discontinuity is approximated
similarly to the isolated discontinuity in Example 1.

The errors seen in Figure 11 again suggest that all three schemes converge and that the
non-conservative nature of the Av-RS and Av-CC schemes has small impact for fine meshes.

6.3. Example 3: Formation of vacuum (traffic flow). We now turn to the Riemann
problem shown in Figure 3 (bottom row) associated with the ARZ traffic flow model (9),
where uL = (0.5, 0.2)T and uR = (0.5, 0.75)T. This example illustrates a road with a fraction
of fast vehicles in front of a slower fraction. Initially, the vehicles are uniformly distributed
on the road but as the faster fraction leaves the slow vehicles behind, vacuum is formed. As is
seen in Figure 12, the Av-RS scheme captures this behaviour well, while Godunov’s method
and the Av-CC scheme have obvious difficulties to reproduce the intermediate vaccum state.
Observe that this sample problem is not captured in the convergence analysis in Section 5
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Figure 10. Example 2: Solutions at time t = 1. The exact solution contains a
mixed shock- and rarefaction wave along the 1-field and a contact discontinuity
along the 2-field. The phase plane representations of this solution are shown
in Figure 3 (top row). The numerical solutions are computed with ∆x = 0.01.
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Figure 11. Example 2: The errors err1
L1 (left) and err1

mass (right) for the
numerical solutions.

since R−1 is not Lipschitz continuous on the entire M0 (recall the discussion in the last
paragraph of Section 1.3). Nevertheless, the errors plotted in Figure 13 suggest convergence.

6.4. Example 4: Collision of a contact discontinuity with a 1-shock (traffic flow).
Thus far in this section, the numerical schemes have exclusively been applied on Riemann
problems. The simplicity with non-interacting 1- and 2- waves has made the construction of
exact solutions possible, and thereby enabled quantitative examinations of the errors. We
now approach more general problems by considering the ARZ model (9) with initial datum

u0(x) =





uL if x < −0.05,

uM if − 0.05 < x < 0.05,

uR if x > 0.05,
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Figure 12. Example 3: Solutions at time t = 1. The exact solution has
a 1-rarefaction separated by vacuum from a contact discontinuity along the
2-field. The phase plane representations of this solution are shown in Figure
3 (bottom row). The numerical solutions are computed with ∆x = 0.01.
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Figure 13. Example 3: The errors err1
L1 (left) and err1

mass (right) for the
numerical solutions.

where uL = (Φ(0.2, V (uM)), 0.2)T, uM = (0.2, 0.1)T and uR = (0.4, 0.1)T. The exact solution
to this problem contains interacting waves, and yet it is elementary enough to be constructed
by the results of Section 3. Due to the piecewise constant nature of u0, we can derive the
initial part of the solution by solving two Riemann problems defined by the pairs (uL,uM)
and (uM,uR) around x = −0.05 and x = 0.05, respectively. Note that VL = VM and
kM = kR, which implies that uL can be connected to uM via a contact discontinuity while
uM can be connected to uR via an 1-wave. In fact, φM and φR are chosen such that this
1-wave, emanating from x = 0.05, is a shock with negative propagation speed s = (f(uR)−
f(uM))/(φR − φM) = −0.02. Simultaneously, the contact discontinuity emanating from
x = −0.05 travels with positive speed VM ≈ 0.09 and there will be a collision between the
two waves at time tcol = 0.1/(VM− s) ≈ 0.9. The continuation of the solution after this time
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Figure 14. Example 4: Solutions at time t = 0.5 (top row) and at t = 1
(bottom row). The exact solution contains a left-moving 1-shock and a right-
moving contact discontinuity colliding at t ≈ 0.9. The numerical solutions are
computed on the spatial interval [−0.45, 0.45] with ∆x = 0.005.

can be constructed as the solution to the Riemann problem defined by the pair (uL,uR)
around the location of the collision: x = −0.05 + VMtcol ≈ 0.03.

In Figure 14, we show the exact and numerical solutions before (top row) and after (bottom
row) the collision in the exact solution. The numerical solutions have been computed on
I = [−0.45, 0.45] to ensure constant states uL and uR at each respective boundary, whereas
the profiles are plotted over a zoomed spatial interval. The errors err1

L1 and err1
mass (after

the collision) seen in Figure 15 are defined in terms of this larger interval.

6.5. Example 5: Continuously decreasing initial data (sedimentation). Let us re-
turn to the sedimentation model (6) and consider the continuous, piecewise affine initial
datum decreasing from uL = (0.5, 0.1)T to uR = (0.1, 0.01)T according to:

u0(x) =





uL if x < −0.05,

uL + 10(uR − uL)(x+ 0.05) if − 0.05 < x < 0.05,

uR if x > 0.05.
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Figure 15. Example 4: The errors err1
L1 (left) and err1

mass (right) for the
numerical solutions.

The theory in Section 3 does not cover this problem and in the absence of an exact admissible
solution, we compute a reference solution on a fine mesh using the Av-RS scheme with
∆x = 0.01 · 2−12. This reference solution is plotted in Figure 16 together with the numerical
approximations of all three schemes for ∆x = 0.0025. It is seen that the Av-RS scheme
introduces spurious oscillations in the φ-component and appears to be inferior the two other
schemes for this problem. A possible cause for these oscillations is found if we consider the
local Riemann solutions associated with the cell interfaces, and which form the function un∆.
The piecewise constant approximation kn∆(·, 0) of a continuously varying k-component in the
exact solution at t = tn leads to contact discontinuities in several neighbouring local Riemann
solutions. Each such discontinuity involves an intermediate state u?(unj ,u

n
j+1) whose φ-

component need not be bounded by the local data φnj and φnj+1 (note that k?(unj ,u
n
j+1) = knj

and there are no oscillations in the k-component). The diffusive nature of Godunov’s method
and the Av-CC scheme dampens the impact of these “overshoots”, an effect which is not
obtained with the anti-diffusive RS remap.

6.6. Example 6: The unstable vacuum case (traffic flow). In the last example, we
once again consider a Riemann problem for the ARZ model (9) but now choose the pair
(uL,uR) outside of S by letting uL = (0.5, 0.75)T and uR = (0, 0.2)T. Since (uL,uR) /∈ S,
Theorems 3.1 and 3.3 define different solutions, both shown in Figure 4. We are interested
in the type B solution and therefore define the first step of the Av-RS and Av-CC schemes
in terms of un∆ constructed via the Riemann solution in Theorem 3.3 (recall from Section 4.1
that Godunov’s method is also based on this construction).

As is seen in Figure 17, Godunov’s method captures the behaviour of the type B solution
but with a dislocation of the discontinuity in the k-component. This deviation from the
exact solution is explained by the numerical solution being close to vaccum and is not as
severe in the conserved variables. The Av-RS scheme approximates the solution well and
produces satisfactory results in both components. The Av-CC scheme, on the other hand,
fails to produce the type B solution and instead generates an approximation closer to the
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Figure 16. Example 5: Solutions at time t = 1. The reference solution
is generated with the Av-RS scheme for ∆x = 0.01 · 2−12, while the coarser
approximations are computed with ∆x = 0.0025.

type A solution in Theorem 3.1. For this reason, we have not included the Av-CC scheme
in the convergence plot in Figure 17.

7. Concluding remarks

It has been the prime purpose of this work to present and in part analyze a method
that removes the spurious oscillations that arise when the Godunov scheme is applied to
systems of the form (1). These oscillations are well known in the special case of the ARZ
traffic model and the same difficulties arose when the authors attempted to apply that
scheme to the sedimentation model. Herein, it is demonstrated that a random-sampling
method provides a relatively simple working numerical scheme, the Av-RS scheme, that is
supported by a convergence analysis. We prove convergence to a weak solution and leave
the admissibility of this solution (i.e. that every discontinuity satisfies an entropy condition)
as an open problem. Numerical solutions illustrate that different types of waves and their
interactions are handled acceptably by the Av-RS scheme, at least in a better way than
Godunov’s method. In fact, while a frequent objection against random sampling methods is
their lack of conservation, it turns out that the numerical errors produced by the statistically
conservative scheme are actually consistently smaller than those of the conservative and
deterministic Godunov scheme for the sample problems investigated. We remark that the Av-
RS scheme may introduce oscillations in regions where the k-component of the solution is not
piecewise constant but varies continuously with respect to the spatial variable (see Section 6,
Example 5). These oscillations are, however, of a different nature with less regularity and
smaller magnitude than those introduced by Godunov’s method. Similar problems have also
been reported for Glimm’s method (see e.g. [2]).

The convergence proof provides the existence of a weak solution of the problem at hand,
and explicitly includes the vacuum state, which is avoided in several previous works (see
Section 1.4). No convexity condition is imposed on the scalar flux function f . The explicit
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Figure 17. Example 6: Solutions at time t = 1. The exact, type B solution
has a 1-rarefaction fronted by vacuum. The phase plane representation of this
solution is shown in Figure 4. The numerical solutions are computed with
∆x = 0.01 but for clarity, they are plotted for a coarser resolution.
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Figure 18. Example 6: The errors err1
L1 (left) and err1

mass (right) for the
numerical solutions.

treatment of the vacuum state is captured in the distinction between the different types of
concepts of Riemann solutions (types A and B).

Finally, we mention that the author’s original interest in the system (1)–(2) is motivated
by the applications discussed. While the new Av-RS scheme can readily be utilized for sim-
ulations of vehicular traffic in the framework of the ARZ model, possibly on a closed circuit
with easily implemented periodic boundary conditions, the sedimentation model is based on
considering x as a vertical coordinate and one must provide either zero-flux boundary condi-
tions for batch settling, or extend the model to a clarifier-thickener setup with superimposed
linear flux and a definition of V (φ, k) that changes discontinuously with spatial position.
The extension of the scheme to that setup is topic of current research.
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2015-10 Mario Álvarez, Gabriel N. Gatica, Ricardo Ruiz-Baier: A mixed-primal
finite element approximation of a steady sedimentation-consolidation system

2015-11 Sebastiano Boscarino, Raimund Bürger, Pep Mulet, Giovanni Russo,
Luis M. Villada: On linearly implicit IMEX Runge-Kutta methods for degenerate
convection-diffusion problems modeling polydisperse sedimentation

2015-12 Raimund Bürger, Christophe Chalons, Luis M. Villada: On second-order
antidiffusive Lagrangian-remap schemes for multispecies kinematic flow models

2015-13 Raimund Bürger, Sudarshan K. Kenettinkara, Sarvesh Kumar, Ricardo
Ruiz-Baier: Finite volume element-discontinuous Galerkin approximation of viscous
two-phase flow in heterogeneous porous media

2015-14 Gabriel N. Gatica, Luis F. Gatica, Filander A. Sequeira: A priori and a
posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity

2015-15 Anahi Gajardo, Nicolas Ollinger, Rodrigo Torres: Some undecidable prob-
lems about the trace-subshift associated to a Turing machine

2015-16 Fernando Betancourt, Raimund Bürger, Christophe Chalons, Stefan
Diehl, Sebastian Far̊as: A random sampling approach for a family of Temple-
class systems of conservation laws

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de
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