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ORTHOGONAL POLYNOMIAL PROJECTION ERROR MEASURED IN

SOBOLEV NORMS IN THE UNIT DISK

LEONARDO E. FIGUEROA

Abstract. We study approximation properties of weighted L2-orthogonal projectors onto the
space of polynomials of degree less than or equal to N on the unit disk where the weight is of the

generalized Gegenbauer form x 7→ (1 − |x|2)α. The approximation properties are measured in
Sobolev-type norms involving canonical weak derivatives, all measured in the same weighted L2

norm. Our basic tool consists in the analysis of orthogonal expansions with respect to Zernike
polynomials. The sharpness of the main result is proved in some cases and otherwise strongly

hinted at by reported numerical tests.
A number of auxiliary results of independent interest are obtained including some properties

of the uniformly and non-uniformly weighted Sobolev spaces involved, a Markov-type inequality,

connection coefficients between Zernike polynomials and relations between the Fourier–Zernike
expansions of a function and its derivatives.

1. Introduction

The main purpose of this work is proving the analogue on the unit disk of a well known fact
in the case of the interval; namely, in its simplest manifestation, the orthogonal projector ProjN
mapping L2(−1, 1) onto the space of polynomials of degree less than or equal to N , equivalently
defined as the operator returning the truncation at degree N of the Fourier–Legendre series of its
argument, obeys

(∀u ∈ Hl(−1, 1)) ‖u− ProjN (u)‖H1(−1,1) ≤ C N3/2−l ‖u‖Hl(−1,1) , (1.1)

where C > 0 depends only on l and H1(−1, 1) and Hl(−1, 1) denote standard Sobolev spaces
(this was first proved in [10]; see [9, Chapter 5] for detailed proofs of (1.1), its analogues for
the Chebyshev weight and the periodic unweighted case; see [20] for its analogue for general
Gegenbauer weights on the unit interval). Our main result (Theorem 3.9) is

(
∀u ∈ Hl

w(B
2)
)

‖u− ProjN (u)‖Hr
w(B2) ≤ C N−1/2+2r−l ‖u‖Hl

w(B2) , (1.2)

where B2 is the unit disk, ProjN is the L2
w(B

2)-orthogonal projector onto the space of bivariate
polynomials of total degree less than or equal to N and C > 0 depends only on the integers
1 ≤ r ≤ l and the weight w, which in turn is of the generalized Gegenbauer form x 7→ (1− |x|

2
)α,

α > −1. The crucial role Fourier–Legendre expansions play in the cited proofs of (1.1) will be
taken up here by Fourier–Zernike expansions; in particular, ProjN in (1.2) can be expressed as
the truncation at total degree N of the Fourier–Zernike series of its argument.

The main result, besides being important on its own, has applications in the analysis of polyno-
mial interpolation operators (this is the motivation behind (1.1) and its analogues in [10] and [9,
Chapter 5]) and, because of the relative simplicity of orthogonal expansion truncation operators,
has been exploited in the one-dimensional case by the present author to give partial characteri-
zations of approximability spaces involved in the analysis of nonlinear iterative methods for the
numerical solution of high-dimensional PDE [17, Chapter 4].
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We expect some of the auxiliary results to be useful in the design and the analysis of spectral
methods on the unit disk (cf. the survey [7]; see also [37]). Although we do report on some
numerical tests which rely on some of those auxiliary results, our code is only intended to illustrate
(when we can prove it) or suggest (otherwise) the sharpness of our main result and not for general
use; in particular, no attempt has been made to make it particularly efficient.

We emphasize that neither (1.1) nor (1.2) are best or quasi-best approximation results; in
particular, in each case the restriction of the weighted L2-orthogonal projector ProjN does not
result in the H1(−1, 1)- or the Hr

w(B
2)-orthogonal projector, respectively. Such weighted Sobolev

best approximation results can be found in [9, Chapter 5] and [20] in the one-dimensional case
and in [27, § 4] for balls (constant weight). See also [13, § 5] for related results set in a different
kind of Sobolev-type space.

1.1. Structure of this work. In the rest of this introductory section we briefly provide pointers
to relevant literature on the Zernike families of orthogonal polynomials (subsection 1.2), introduce
some basic notation (subsection 1.3) and some results concerning the Jacobi family of univariate
polynomials we will use later (subsection 1.4).

In section 2 we present those auxiliary results that do not depend on the two-dimensional

character of our main problem. One particular result concerning the density of C∞(Bd) (Bd

being the d-dimensional unit ball) functions in a Sobolev-type function space naturally associated
with orthogonal polynomials on Bd is of a different character compared to the rest of this work,
so we put it in Appendix A.

In the main section 3 we introduce the exact normalization and indexing scheme of Zernike poly-
nomials we will adopt—i.e., that of [39]—, obtain connection coefficients between Zernike polyno-
mials of different parameters sometimes involving their derivatives and, as a consequence, relations
between the expansion coefficients of a function and that of its derivatives (subsection 3.1). Then,
we prove our main result and extend it by complex interpolation (subsection 3.2) and later prove
where we can and otherwise conjecture informed by numerical experiments the sharpness of our
main result (subsection 3.3).

1.2. Zernike polynomials. The families of Zernike or disk polynomials ([4], [23], [24], [16, Chap-

ter 2], [39]) are pairwise L2
w-orthogonal in the unit disk, with w of the form x 7→ (1− |x|

2
)α, and

play there the role the Gegenbauer or symmetric Jacobi families of polynomials play in the unit
interval. Sometimes (but not in this work) the words “complex” or “generalized” are prepended if
otherwise the names Zernike/disk polynomials are deemed to correspond exclusively to the real-
valued or α = 0 cases. These families of polynomials have been used as basis functions for the
approximation of functions and the numerical solution of partial differential equations (see the
references in [7, §4] to which we would add [30]). Just like their one dimensional counterparts, the
Zernike polynomials are subject to a wealth of useful and sometimes quite elegant identities (cf.
[39] mainly; see also [19], [34], [21], [38], [22] and [2]). As it is bound to happen with multivariate
orthogonal polynomials, the Zernike polynomials are not the only possible family of orthogonal
polynomials with respect to the abovementioned weights; cf. [16, § 2.3].

1.3. Notation. We denote by N the set of strictly positive integers {1, 2, . . . } and let N0 = {0}∪N.
We denote by Πd the space of complex polynomials in d variables and by Πd

n the subspace of Πd

consisting of polynomials of degree at most n. Let Bd := {x ∈ Rd | |x| < 1} (i.e., the unit ball of
Rd) and Sd−1 := ∂(Bd) = {x ∈ Rd | |x| = 1} (i.e., unit sphere of Rd).

We will denote the Lebesgue d-dimensional measure of subsets Ω ⊂ Rd simply by |Ω| and
integrals of functions f : Ω → C with respect to this measure simply by

∫
Ω
f or

∫
Ω
f(x) dx. We

will denote by σd−1 the surface measure of Sd−1 [5, Ex. 3.10.82]. Given an integrable f over Rd,
its integral can be expressed in generalized polar form:

∫

Rd

f(x) dx =

∫ ∞

0

∫

Sd−1

f(ry) rn−1 σd−1(dy) dr. (1.3)
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Given an open subset Ω of an Euclidean space Rd, a measurable and almost-everywhere non-
negative and finite weight function w : Ω → R and m ∈ N0 let

L2
w(Ω) :=

{
u : Ω → C Lebesgue measurable | ‖u‖L2

w(Ω) :=

(∫

Ω

|u|
2
w

)1/2

< ∞

}
, (1.4)

Hm
w (Ω) :=



u ∈ L2

w(Ω) | ‖u‖Hm
w (Ω) :=

(
m∑

k=0

|u|
2
Hk

w(Ω)

)1/2

< ∞



 , (1.5a)

where in turn the seminorms | · |Hk
w(Ω) are defined by

|u|Hk
w(Ω) :=

(∑

|α|=k

‖∂αu‖
2
L2
w(Ω)

)1/2
. (1.5b)

The L2
w(Ω) are Hilbert spaces and under the additional condition w−1 ∈ L1

loc(Ω) so are the Hm
w (Ω)

(cf. [26]). All the weight functions used in this work satisfy these conditions.

Given a ∈ C and n ∈ N0 the Pochhammer symbol (a)n is defined as
∏n−1

k=0(a+ k). Due to the
empty product convention (a)0 = 1 for any a ∈ C. Also, (a)m+n = (a)m (a+m)n. If a /∈ −N0,
(a)n = Γ(a + n)/Γ(a), where Γ is the gamma function (cf. [3, § 1]), which in turn is finite and
non-zero on C \ (−N0) and obeys Γ(z + 1) = z Γ(z) with z over the same set. Besides these
properties we will also use the asymptotic formula (cf. [31, § 4.5])

(∀ (a, b) ∈ C× C)
Γ(z + a)

Γ(z + b)
∼ za−b as ℜ(z) → +∞; (1.6)

i.e., the limit of the ratio of both sides is 1.
We denote the forward difference operator with respect to some index j by ∆j ; that is, ∆j(fj) =

fj+1 − fj . We will denote compact inclusion and compact embedding relations with the symbol
⋐. Lastly, we will denote generic positive constants by C with or without sub- and superscripts,
tildes, hats, etc. and they may vary from line to line and even from expression to expression.

1.4. Jacobi polynomials. Let α, β > −1 and let χ(α,β) : (−1, 1) → R be the function defined by
χ(α,β)(t) = (1− t)α(1 + t)β . The Jacobi polynomial of parameter (α, β) and degree n, denoted by

P
(α,β)
n is defined as the member of said degree of the orthogonalization of the sequence of monomials

(x 7→ xn)n∈N0
with respect to the L2

χ(α,β)(−1, 1) inner product together with the normalization

condition P
(α,β)
n (1) =

(
n+α
n

)
(cf. [35, § 4.1]). P

(α,β)
n is also a polynomial with respect to α and β

[35, ¶ 4.22.1].

In [3, Theorem 7.1.3] we find the connection coefficients which allow for expressing P
(γ,β)
n in

terms of the P
(α,β)
k , k ∈ {0, . . . , n}; namely,

P (γ,β)
n =

(β + 1)n
(α+ β + 2)n

×

n∑

k=0

(γ − α)n−k (α+ β + 1)k (α+ β + 2k + 1) (β + γ + n+ 1)k
Γ(n− k + 1) (β + 1)k (α+ β + 1) (α+ β + n+ 2)k

P
(α,β)
k . (1.7)

We note that on account of the continuity of the Jacobi polynomials with respect to their pa-
rameters this relation is still valid if α + β = −1 if the above coefficients are replaced by their
corresponding limits.

2. Polynomial eigenfunctions on the Euclidean unit ball

2.1. Polynomial eigenfunctions their associated Fourier series. Let d ∈ N and let ρ : Bd →
R be the function defined by

(∀x ∈ Bd) ρ(x) := 1− |x|
2
.
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Following [16, eq. (3.1.2)] for every α > −1 we define the space of polynomials orthogonal with
respect to L2

ρα(Bd) of degree exactly N as

VN (L2
ρα(Bd)) =

{
P ∈ Πd

N : ∀Q ∈ Πd
N−1, 〈P,Q〉L2

ρα
(Bd) = 0

}
.

It transpires from the theory exposed in Section 3.2 of [16] (using the fact that α > −1) that⋃N
k=0 Vk(L

2
ρα(Bd)) spans Πd

N and, consequently,
⋃

k≥0 Vk(L
2
ρα(Bd)) spans Πd. Also, in [16, The-

orem 8.1.3], it was proved that members of VN (L2
ρα(Bd)) have to satisfy any of the equivalent

equations below (we commit the usual abuse of notation consisting of only selectively omitting
the independent variable and its components):

∆P −
d∑

j=1

∂j

(
xj

[
2αP +

d∑

i=1

xi∂iP

])
= −(N + d)(N + 2α)P, (2.1a)

d∑

i=1

ρ−α∂i
(
ρα+1∂iP

)
+

∑

1≤i<j≤d

(xj∂i − xi∂j)
2P = −N(N + d+ 2α)P. (2.1b)

The form (2.1a) is from equation 5.2.3 of [16] and the form (2.1b) is the combination of equation 5.9
and Proposition 7.1 of [12]; their equivalence can be checked directly.

Let Hd
n denote the linear space of harmonic polynomials homogeneous of degree n on Rd.

The spherical harmonics of degree n are the restrictions of members of Hd
n to the unit sphere

Sd−1. Spherical harmonics of differing degrees are L2(σd−1)-orthogonal. Let (Y d
n,ν)

dim(Hd
n)

ν=1 be a

L2(σd−1)-orthogonal basis of H
d
n. Then, given N ∈ N0, the functions P

N
j,ν(ρ

α; · ) : Bd → R defined
by

(∀x ∈ Bd) PN
j,ν(ρ

α;x) := P
(α,N−2j+ d−2

2 )
j (2 |x|

2
− 1)Y d

N−2j,ν(x), (2.2)

where ν ∈ {1, . . . , dim(Hd
N−2j)}, j ∈ {0, . . . , ⌊N/2⌋}, are polynomials and form a L2

ρα(Bd)-

orthogonal basis of VN (L2
ρα(Bd)) (cf. [16, Proposition 5.2.1]) and, as members of the latter, satisfy

the equations in (2.1). The above considerations motivate the introduction of the index sets

(∀N ∈ N0) Id
N :=

{
(j, ν) | j ∈ {0, . . . , ⌊N/2⌋}, ν ∈ {1, . . . , dim(Hd

N−2j)}
}

(2.3a)

and
Id :=

{
(N, j, ν) | N ∈ N0, (j, ν) ∈ Id

N

}
. (2.3b)

We also introduce a notation for the squared norms of the polynomials comprising the above bases.

(∀ (N, j, ν) ∈ Id) hN
j,ν(ρ

α) :=
∥∥PN

j,ν(ρ
α; · )

∥∥2
L2
ρα

(Bd)
(2.4)

From (2.1b) it is apparent that solutions of the equations in (2.1) are eigenfunctions of the
eigenvalue problem

L(α)(u) := −
1

ρα
div
(
ρα+1∇u

)
−

∑

1≤i<j≤d

(xj∂i − xi∂j)
2u = λu. (2.5)

In particular, each polynomial PN
j,ν(ρ

α; · ) defined in (2.2) is an eigenfunction of (2.5) with asso-
ciated eigenvalue

λα,N = N(N + d+ 2α), (2.6)

which depends only on the dimension d, the total degree N and the singularity parameter α and
not on the indices j and ν of the particular spherical harmonic involved.

For the purposes of approximation in ρα-weighted Sobolev spaces, we introduce the following
variational eigenvalue problem reformulation of (2.5): Find (λ, u) ∈ C ×

(
HZα(B

d) \ {0}
)
such

that ∫

Bd

∇u · ∇v ρα+1 +
∑

1≤i<j≤d

∫

Bd

(xj∂iu− xi∂ju)(xj∂iv − xi∂jv) ρ
α = λ

∫

Bd

u v ρα (2.7)

for all v ∈ HZα(B
d); here,

HZα(B
d) = C∞(Bd)

‖·‖WZα(Bd)

(2.8)
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where the Hilbert space WZα(B
d) is, in turn, defined by

WZα(B
d) :=

{
v ∈ L2

ρα(Bd) : ‖v‖WZα(Bd) < ∞
}
, (2.9a)

‖v‖WZα(Bd) :=

(
‖v‖

2
L2
ρα

(Bd) + ‖∇v‖
2
[L2

ρα+1 (B
d)]d +

∑

1≤i<j≤d

‖xj∂iv − xi∂jv‖
2
L2
ρα

(Bd)

)1/2

. (2.9b)

Remark 2.1.

(1) The differential operator xj∂i − xi∂j can be interpreted as an angular derivative (cf. [12,
§ 2.1]). Thus, roughly speaking, the space WZα(B

d) is the subspace of L2
ρα(Bd) whose

members have their angular derivatives in L2
ρα(Bd) and their radial derivative in the larger

space L2
ρα+1(Bd).

(2) The arguments put forth in [26] are readily adapted to the presence of the non-standard
differential operator xj∂i − xi∂j in order to guarantee that WZα(B

d) is indeed a Hilbert
space.

(3) If α ≥ 0 then HZα(B
d) = WZα(B

d); that is, C∞(Bd) functions are dense in WZα(B
d).

This is proved in Corollary A.3 in Appendix A.

We start the study of (2.7) with a number of basic results on its interaction with the HZα(B
d)

and Hk
ρα(Bd) spaces. While doing this we will often make silent use of the fact that

(∀x ∈ Bd) dist(x, ∂Bd) ≤ ρ(x) ≤ 2 dist(x, ∂Bd), (2.10)

for many results in the cited literature are stated in terms of spaces weighted with such distance-
to-the-boundary functions.

Proposition 2.2. Let α > −1. Then,

(1) HZα(B
d) ⋐ L2

ρα(Bd).

(2) The space of polynomials defined over Bd is dense in L2
ρα(Bd).

(3) HZα(B
d) is dense in L2

ρα(Bd).

Proof. Setting Ω = Bd, κ = 1, p = q = 2, β = α+1 and α = α in Theorem 8.8 of [32] we find that
H1

ρα+1(Bd) ⋐ L2
ρα(Bd). The observation that HZα(B

d) ⊆ WZα(B
d) is continuously embedded in

H1
ρα+1(Bd) completes the proof of part 1.

As
∫
Bd exp(|y|)ρ(y)

α dy < ∞, the hypotheses of [16, Theorem 3.2.18] are satisfied and so its
thesis, namely 2, is obtained. Part 3 is a direct corollary of part 2. �

We prove that the polynomials in (2.2) are eigenfunctions of (2.7) as well. Then, we will appeal
to the Hilbert–Schmidt theory to exploit this fact; a terse formulation of the former lies below
followed by some consequences upon the behavior of the generalized Fourier series with respect to
said polynomials.

Lemma 2.3. If α > −1, then the eigenvalue problem (2.7) has a complete system of solutions
(eigenpairs) with a countably infinite set of finite-multiplicity and isolated eigenvalues which diverge
to +∞ and whose associated eigenfunctions allow for orthogonal expansions of both L2

ρα(Bd) and

HZα(B
d). These expansions are subject to Parseval’s identity.

Proof. Because of Proposition 2.2 this stems from the spectral theory of compact self-adjointed
operators in Hilbert spaces (see, for example, [33, Theorem VI.15] and [41, Section 4.2]). �

Lemma 2.4. Let α > −1.

(1) The pairs (λα,N , PN
j,ν(ρ

α; · )) indexed by (N, j, ν) ∈ Id (cf. (2.2) and (2.6)) form a complete
system of eigenpairs of (2.7).

(2) Given u ∈ L2
ρα(Bd), on defining

(∀ (N, j, ν) ∈ Id) û
(α)
N,j,ν :=

〈
u, PN

j,ν(ρ
α; · )

〉
L2
ρα

(Bd)

/
hN
j,ν(ρ

α), (2.11)
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the series (
∀u ∈ L2

ρα(Bd)
)

u =
∑

(N,j,ν)∈Id

û
(α)
N,j,ν P

N
j,ν(ρ

α; · ) (2.12a)

converges in L2
ρα(Bd) in general and in WZα(B

d) if u ∈ HZα(B
d) and there hold the

Parseval identities
(
∀u ∈ L2

ρα(Bd)
)

‖u‖
2
L2
ρα

(Bd) =
∑

(N,j,ν)∈Id

∣∣∣û(α)
N,j,ν

∣∣∣
2

hN
j,ν(ρ

α) (2.12b)

and
(
∀u ∈ HZα(B

d)
)

‖u‖
2
WZα(Bd) =

∑

(N,j,ν)∈Id

(1 + λα,N )
∣∣∣û(α)

N,j,ν

∣∣∣
2

hN
j,ν(ρ

α). (2.12c)

Proof. Let us abbreviate λ = λα,N and P = PN
j,ν(ρ

α; · ) for the moment. Then, if v ∈ C∞(Bd),

λ〈P, v〉L2
ρα

(Bd) = 〈L(α)(P ), v〉L2
ρα

(Bd)

= −

∫

Bd

div
(
ρα+1∇P

)
v −

∑

1≤i<j≤d

∫

Bd

(
(xj∂i − xi∂j)

2P
)
v ρα

=

∫

Bd

ρα+1∇P · ∇v +
∑

1≤i<j≤d

∫

Bd

(xj∂iP − xi∂jP )(xj∂iv − xi∂jv)ρ
α, (2.13)

where the first equality comes from the fact that (λ, P ) is an eigenpair of (2.5), the second is an
immediate consequence of the definition of L(α) in the same equation and the third comes from
applying the divergence theorem and using the facts that both ρα+1 and xj ν̂i−xiν̂j (here ν̂ is the
unit outward vector defined on ∂Bd) vanish at ∂Bd and that (xj∂i − xi∂j)ρ

α ≡ 0. Now, as per

definition (2.8) C∞(Bd) is dense in HZα(B
d), the identity (2.13) is also valid for all v in the latter

space. Therefore, P is an eigenvalue of (2.7) with eigenvalue λ. Incidentally, this justifies calling
(2.7) the weak form of (2.5).

The fact that the polynomials PN
j,ν(ρ

α; · ) form a complete system of eigenfunctions of (2.7) is

then a consequence of part 2 of Proposition 2.2 and the fact that the PN
j,ν(ρ

α, · ), for fixed N , span

each space VN (L2
ρα(Bd)), which, in turn, collectively span the space of all polynomials defined on

Bd; hence part 1. Having identified a complete system of eigenpairs we can put the orthogonal
expansions and Parseval’s identity alluded to in Lemma 2.3 in the form given in (2.12), thus giving
part 2. �

Proposition 2.5. Let α > −1. Then,

(1) For every k ∈ N0, L
(α) is a continuous map between Hk+2

ρα (Bd) and Hk
ρα(Bd).

(2) For every u, v ∈ H2
ρα(Bd),

〈L(α)(u), v〉L2
ρα

(Bd) = 〈u, L(α)(v)〉L2
ρα

(Bd).

(3) H1
ρα(Bd) ⊆ HZα(B

d) with continuous embedding.

Proof. Expanding the terms in (2.5) we find that

L(α)(u) = −ρ∆ϕ+ (2α+ 1 + d)x · ∇ϕ−
∑

1≤i<j≤d

(x2
i ∂

2
jϕ+ x2

j∂
2
i ϕ− 2xixj∂i∂jϕ).

As the coefficients ρ, x, x2
i , etc. above have L∞(Bd) derivatives of all orders, part 1 becomes

readily apparent.
By the divergence theorem and the fact that (xj∂i − xi∂j)(ρ

α) = 0 part 2 is easily seen to be

true if both u and v lie in C∞(Bd). As the latter is dense in H2
ρα(Bd) (cf. [25, Remark 11.12.(iii)]),

the result extends to u and v in H2
ρα(Bd) as well.

Let u ∈ H1
ρα(Bd). Again from [25, Remark 11.12.(iii)] we know that there is a sequence (un)n∈N

of C∞(Bd) functions converging to u in the norm of that space. As the WZα(B
d) norm is, up to a
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positive constant, bounded by the norm of H1
ρα(Bd), limn→∞ un = u in WZα(B

d) as well, whence

per the definition (2.8), u ∈ HZα(B
d) and we have part 3. �

Lemma 2.6. If α > −1 and k ∈ N0, there exists a positive constant C = C(α, d, k) such that

(
∀u ∈ Hk

ρα(Bd)
) ∑

(N,j,ν)∈Id

(λα,N )
k
∣∣∣û(α)

N,j,ν

∣∣∣
2

hN
j,ν(ρ

α) ≤ C ‖u‖
2
Hk

ρα
(Bd) .

Proof. Let us suppose first that k is even. Then, from parts 1 and 2 of Proposition 2.5, the fact
that the PN

j,ν(ρ
α; · ) are polynomials (and thus members of Hk

ρα(Bd)) and eigenfunctions of L(α)

and the Parseval identity (2.12b),

C1 ‖u‖
2
Hk

ρα
(Bd) ≥

∥∥∥(L(α))k/2(u)
∥∥∥
2

L2
ρα

(Bd)
=

∑

(N,j,ν)∈Id

∣∣∣(λα,N )
k/2

û
(α)
N,j,ν

∣∣∣
2

hN
j,ν(ρ

α).

Now, if k is odd, similarly as above but this time also using part 3 of Proposition 2.5 and the
Parseval identity (2.12c),

C2 ‖u‖
2
Hk

ρα
(Bd) ≥

∥∥∥(L(α))
k−1
2 (u)

∥∥∥
2

H1
ρα

(Bd)

≥ C3

[∥∥∥(L(α))
k−1
2 (u)

∥∥∥
2

WZα(Bd)
−
∥∥∥(L(α))

k−1
2 (u)

∥∥∥
2

L2
ρα

(Bd)

]

= C3

∑

(N,j,ν)∈Id

λα,N

∣∣∣(λα,N )
k−1
2 û

(α)
N,j,ν

∣∣∣
2

hN
j,ν(ρ

α).

�

Given N ∈ N0 let Proj
(α)
N : L2

ρα(Bd) → Πd
N be the orthogonal projection from L2

ρα(Bd) onto

Πd
N . On account of (2.12a) in Lemma 2.4 we can express it as a truncation operator:

(∀u ∈ L2
ρα(Bd)) Proj

(α)
N (u) =

N∑

n=0

∑

(j,ν)∈Id
n

û
(α)
n,j,ν P

n
j,ν(ρ

α; · ). (2.14)

Corollary 2.7. If α > −1 and k ∈ N0 there exists a positive constant C = C(α, d, k) such that
(
∀u ∈ Hk

ρα(Bd)
)

(∀N ∈ N0) ‖u− Proj
(α)
N (u)‖L2

ρα
(Bd) ≤ C(N + 1)−k ‖u‖Hk

ρα
(Bd) .

Proof. From (2.12b) in Lemma 2.4, Lemma 2.6 and (2.6),

∥∥∥u− Proj
(α)
N (u)

∥∥∥
2

L2
ρα

(Bd)
=

∞∑

n=N+1

∑

(j,ν)∈Id
n

∣∣∣û(α)
n,j,ν

∣∣∣
2

hn
j,ν(ρ

α)

≤ sup
n≥N+1

1

(λα,n)
k

∞∑

n=N+1

∑

(j,ν)∈Id
n

(λα,n)
k
∣∣∣û(α)

n,j,ν

∣∣∣
2

hn
j,ν(ρ

α)

≤ C1 ((N + 1)(N + 1 + d+ 2α))
−k

‖u‖
2
Hk

ρα
(Bd) .

Upon taking the square root of both ends of the above chain of inequalities and using the fact
that there exists C2 > 0 such that (N + 1+ d+ 2α)−k ≤ C2(N + 1)−k for N ∈ N0, we obtain the
desired result. �

Remark 2.8. The result of Corollary 2.7 is essentially a particular case of [40, Corollary 4.4] (which
also encompasses the case of approximation in Lp

ρα(Bd) for general p ∈ [1,∞] and a wider class of
weights). The reason why we chose to present our own proof is because of its simplicity following
the intermediate result Lemma 2.6, which in turn is needed in the sequel. At this stage it is
relevant to point out that the same result could be obtained with spaces that, with respect to the
Hk

ρα(Bd) spaces, have a slightly less stringent requirement on the radial derivative of its members

but still map to L2
ρα(Bd) (k even) or H1

ρα(Bd) (k odd) under the action of the ⌊k/2⌋-th power of

the operator L(α). In the one-dimensional case this idea is pursued in [29].
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The orthogonal projection operators defined in (2.14) allow for defining an equivalent norm for
the Hk

ρα(Bd) spaces.

Proposition 2.9. Let α > −1 and k ∈ N. Then, the functional u 7→ |u|Hk
ρα

(Bd)+‖Proj
(α)
k−1(u)‖L2

ρα
(Bd)

is an equivalent norm for Hk
ρα(Bd).

Proof. Setting Ω = Bd, κ = 1, p = q = 2, β = α and α = α in Theorem 8.8 of [32] we have
that H1

ρα(Bd) ⋐ L2
ρα(Bd). By standard arguments [1, Remark 6.4.4] this implies that Hk

ρα(Bd) ⋐

Hk−1
ρα (Bd). Then, the desired result follows from the Peetre–Tartar lemma; in the formulation of

[36, Lemma 11.1] it comes from setting E1 = Hk
ρα(Bd), E2 = [L2

ρα(Bd)](
k+d−1

k ), E3 = Hk−1
ρα (Bd),

A = ∇k, B the injection from Hk
ρα(Bd) onto Hk−1

ρα (Bd), G = L2
ρα(Bd) and M = Proj

(α)
k−1 and

noting that ∇ku ≡ 0 implies u ∈ Πd
k−1, which in turn is a consequence of [36, Lemma 6.4]. �

2.2. Inverse or Markov-type inequality. We will later have use of a Markov-type inequality
(Lemma 2.11 below). We were not able to reproduce the very direct proofs that work in the one
dimensional case (cf. [9, p. 298] and [20, Theorem 2.3]), so had to take a detour through Remez-
and Bernstein-type inequalities. Our argument roughly corresponds to some in [15] where the
unweighted case is treated for more general geometry and for general Lp norms. Other related
integral inequalities for polynomials appear in [11] and [6] and are reported in [14].

Proposition 2.10. Let α > −1. If the positive number A is small enough, then there exists
C = C(A,α, d) > 0 such that

(∀N ∈ N) (∀ p ∈ Πd
N )

∫

Bd

|p(x)|
2
ρ(x)α dx ≤ C

∫

B
Rd

(0,1−AN−2)

|p(x)|
2
ρ(x)α dx. (2.15)

Proof. We know from equations 2.3 (weights of Jacobi type are doubling) and 7.17 (Remez-type
inequality for doubling weights and algebraic polynomials) of [28] that the following Remez-type
inequality holds in the one-dimensional case: Let α, β > −1. Then, there exists Λ0 = Λ0(α, β) > 0
such that for every Λ ≤ Λ0 there exists CR = CR(α, β,Λ) > 0 such that, in turn, for every N ∈ N

and every p ∈ Π1
N ,

∫ 1

−1

|p(x)|
2
(1− x)α(1 + x)β dx ≤ CR

∫ 1−ΛN−2

−(1−ΛN−2)

|p(x)|
2
(1− x)α(1 + x)β dx. (2.16)

So, setting β = α, (2.15) is true in the d = 1 case.
Let N ∈ N and p ∈ Πd

N . Then, the orthogonal expansion (2.12a) of p is finite; using (2.2):

p(x) =

N∑

k=0

∑

(j,ν)∈Id
k

p̂
(α)
k,j,ν Y

d
k−2j,ν(x)P

(α,k−2j+ d−2
2 )

j (2 |x|
2
− 1).

Because of the form the index sets Id
k have (cf. (2.3a)) we can rearrange the sum as

p(x) =

N∑

l=0

dim(Hd
l )∑

ν=1

Y d
l,ν(x) p̂

(α)
ν,l (2 |x|

2
−1) where p̂

(α)
ν,l =

⌊(N−l)/2⌋∑

j=0

p̂
(α)
l+2j,j,νP

(α,l+ d−2
2 )

j ∈ Πd
⌊(N−l)/2⌋.

Using the generalized polar integration formula (1.3) and the fact that the Y d
l,ν are homogeneous

polynomials of degree l (whence Y d
l,ν(ry) = rlY d

l,ν(y) for all r > 0 and y ∈ Sd−1) and pairwise

L2(σd−1)-orthogonal,

∫

Bd

|p(x)|
2
ρ(x)α dx =

N∑

l=0

dim(Hd
l )∑

ν=1

∥∥Y d
l,ν

∥∥2
L2(σd−1)

∫ 1

0

∣∣∣rlp̂(α)ν,l (2r
2 − 1)

∣∣∣
2

(1− r2)α rd−1 dr. (2.17)

Each of the functions r 7→ rl p̂
(α)
ν,l (2r

2 − 1) is a polynomial of degree less than or equal to N .

Performing the change of variable r′ = 2r − 1 they remain so and r 7→ (1 − r2)αrd−1 turns
into a function which in (−1, 1) is bounded from above and below by positive constants times
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r′ 7→ (1 − r′)α(1 + r′)d−1. Hence, we can appeal to (2.16) with the same α and β = d − 1 and
performing the inverse change of variable we obtain that for A small enough there exists C > 0
depending on A, α and the dimension d such that

∫ 1

0

∣∣∣rlp̂(α)ν,l (2r
2 − 1)

∣∣∣
2

(1− r2)α rd−1 dr ≤ C

∫ 1−AN−2

AN−2

∣∣∣rlp̂(α)ν,l

(
2r2 − 1

)∣∣∣
2

(1− r2)αrd−1 dr.

Using this in (2.17) and using again the L2(σd−1) orthogonality of the Y d
l,ν and the generalized

polar integration formula (1.3) we obtain that
∫
Bd |p(x)|

2
ρ(x)α dx can be bounded by C times

the same integral taken over {x ∈ Rd | AN−2 < |x| < 1 − AN−2} and this implies the desired
result. �

Lemma 2.11. Let α > −1. Then there exists C = C(α, d) > 0 such that for all N ∈ N0 and
p ∈ Πd

N ,

‖∇p‖[L2
ρα

(Bd)]d ≤ CN2 ‖p‖L2
ρα

(Bd) .

Proof. We start by proving a Bernstein-type inequality. Let N ∈ N0 and let q ∈ Πd
N so its expan-

sion according to (2.12a) is finite: q =
∑N

k=0

∑
(j,ν)∈Id

k
q̂
(α)
k,j,νP

k
j,ν(ρ

α; · ). Then, as the P k
j,ν(ρ

α; · )
are eigenfunctions of the problem (2.7) (cf. Lemma 2.4)—with associated eigenvalue λα,k which is
a monotone increasing function of k (cf. (2.6))—and pairwise L2

ρα(Bd)-orthogonal,

‖∇q‖
2
[L2

ρα+1 (B
d)]d ≤ ‖∇q‖

2
[L2

ρα+1 (B
d)]d +

∑

1≤i<j≤d

‖xj∂iq − xi∂jq‖
2
L2
ρα

(Bd)

=

N∑

k=0

∑

(j,ν)∈Id
k

∣∣∣q(α)k,j,ν

∣∣∣
2

λα,k

∥∥P k
j,ν(ρ

α; · )
∥∥2
L2
ρα

(Bd)
≤ N(N + d+ 2α) ‖q‖

2
L2
ρα

(Bd) . (2.18)

Let us now consider p ∈ Πd
N with N ≥ 2 (our desired result is obviously true in the case N = 0

with any C and the case N = 1 can be incorporated later at the possible price of an enlargement
of C). Given any direction i ∈ {1, . . . , N}, ∂ip ∈ Πd

N−1. From Proposition 2.10 there exist positive
numbers A and C1 such that
∫

Bd

|∂ip(x)|
2
ρ(x)α dx ≤ C1

∫

B
Rd

(0,1−A(N−1)−2)

|∂ip(x)|
2
ρ(x)α dx

≤ C1

[
sup

B
Rd

(0,1−A(N−1)−2)

ρ−1

]∫

Bd

|∂i(x)|
2
ρ(x)α+1 dx.

We can replace ρ−1 with x 7→ (1−|x|)−1 in the supremum above which then evaluates to (N−1)2/A
to obtain an upper bound for the last expression. Summing the resulting inequality with respect
to i and using the Bernstein-type inequality (2.18),

‖∇p‖
2
[L2

ρα
(Bd)]d ≤ C1/A(N − 1)2N(N + 2 + 2α) ‖p‖

2
L2
ρα

(Bd)

which, through another possible worsening of the constant, implies the desired result. �

3. Truncation projection in the two-dimensional case

3.1. Zernike polynomials and Fourier–Zernike series. Let θ : B2 → R and r : B2 → R be
the usual components of the Cartesian-to-polar change of coordinates. Then, an admissible basis
of H2

n is readily identified as {1} if n = 0 and {rn cos(nθ), rn sin(nθ)} if n ≥ 1. Yet instead of using
the resulting system of solutions of (2.7) exactly as given in (2.2), we will find it more convenient
to use the following recombined, re-indexed and rescaled form found in [39, eq. 2.1]:

(∀ (m,n) ∈ N0×N0) P (α)
m,n =

Γ(min(m,n) + 1)Γ(α+ 1)

Γ(min(m,n) + α+ 1)
r|m−n|eı(m−n)θP

(α,|m−n|)
min(m,n) (2r2−1). (3.1)

In order to simplify some expressions below we adopt the convention

P (α)
m,n ≡ 0 if m < 0 or n < 0. (3.2)
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As in the above re-indexing |m− n| is the degree of the spherical harmonic and min(m,n) that of

the Jacobi polynomial involved, the degree of the polynomial P
(α)
m,n is |m− n|+2min(m,n) = m+n,

whence its associated eigenvalue is (cf. (2.6))

λ(α)
m,n = (m+ n)(m+ n+ 2 + 2α). (3.3)

The attractiveness of the precise form for the basis functions given in (3.1) is apparent in the light
of the simplicity of the relations (cf. equations 3.4 and 5.3 of [39])

h(α)
m,n := ‖P (α)

m,n‖
2
L2
ρα

(B2) =
π Γ(α+ 1)2

m+ n+ α+ 1

Γ(m+ 1)

Γ(m+ α+ 1)

Γ(n+ 1)

Γ(n+ α+ 1)
, (3.4)

∂z∗P (α)
m,n =

(m+ α+ 1)n

α+ 1
P

(α+1)
m,n−1 and ∂zP

(α)
m,n =

m(n+ α+ 1)

α+ 1
P

(α+1)
m−1,n, (3.5)

which are valid for all (m,n) ∈ N0 × N0; here, ∂z∗ = 1
2 (∂1 + ı ∂2) = eıθ

2

(
∂r +

ı
r∂θ
)
and ∂z =

1
2 (∂1 − ı ∂2) = e−ıθ

2

(
∂r −

ı
r∂θ
)
. For analytical purposes these differential operators can be used

in lieu of the canonical ones because for all weakly differentiable u and l ∈ N, the relation

|∇lu|
2
=

∑

l1+l2=l

|∂l1
1 ∂l2

2 u|2 ∼=l

∑

l1+l2=l

|∂l1
z ∂l2

z∗u|2 (3.6)

holds almost everywhere, with ∼=l meaning that each side is bounded by the other times some
positive constant depending on l only. When l = 1 the left-hand side is exactly twice the right-
hand side almost everywhere.

We now translate some of the results of section 2 to the reindexed and rescaled basis (3.1).
Suppose that α > −1. From Lemma 2.4,

(
∀u ∈ L2

ρα(B2)
)

u =
∑

(m,n)∈N0×N0

û(α)
m,n P

(α)
m,n (3.7)

in the L2
ρα(B2) sense in general and in the WZα(B

2) sense if, in addition, u ∈ HZα(B
2); here, for

all u ∈ L2
ρα(B2) and (m,n) ∈ N0 × N0,

û(α)
m,n :=

〈
u, P (α)

m,n

〉
L2
ρα

(B2)

/
h(α)
m,n . (3.8)

Further, Parseval’s identity manifests itself as
{
(∀u ∈ L2

ρα(B2)) ‖u‖
2
L2
ρα

(B2)

(∀u ∈ HZα(B
2)) ‖u‖

2
WZα(B2)

=
∑

(m,n)∈N0×N0

{
1

1 + λ
(α)
m,n

∣∣∣û(α)
m,n

∣∣∣
2

h(α)
m,n. (3.9)

From Lemma 2.6 we know that there exists a positive constant C = C(α, k) such that

(
∀u ∈ Hk

ρα(B2)
) ∑

(m,n)∈N0×N0

(
λ(α)
m,n

)k ∣∣∣û(α)
m,n

∣∣∣
2

h(α)
m,n ≤ C ‖u‖

2
Hk

ρα
(B2) . (3.10)

The projection (truncation) operator Proj
(α)
N : L2

ρα(B2) → Π2
N of (2.14) here takes the form

(∀u ∈ L2
ρα(B2)) Proj

(α)
N (u) =

∑

m+n≤N

û(α)
m,n P

(α)
m,n. (3.11)

Proposition 3.1 (Connection coefficients between Zernike polynomials). If α, γ > −1 and
(m,n) ∈ N0 × N0,

P (α)
m,n =

Γ(m+ 1)Γ(n+ 1)Γ(α+ 1)

Γ(α+m+ 1)Γ(α+ n+ 1)Γ(γ + 1)

min(m,n)∑

k=0

[
(α− γ)k Γ(α+m+ n− k + 1)

Γ(k + 1)

×
Γ(γ +m− k + 1)Γ(γ + n− k + 1)(γ +m+ n− 2k + 1)

Γ(m− k + 1)Γ(n− k + 1)Γ(γ +m+ n− k + 2)

]
P

(γ)
m−k,n−k.
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Proof. From the definition (3.1) of P
(α)
m,n, using (1.7) to expand P

(α,|m−n|)
min(m,n) in terms of P

(γ,|m−n|)
j ,

j ∈ {0, . . . ,min(m,n)}, expanding Pochhammer symbols with suitable arguments into ratios
of gamma functions, using the basic property xΓ(x) = Γ(x + 1), the fact that min(m,n) +
|m− n| = max(m,n), the fact that for any commutative function B : N0 × N0 → R it holds that
B(min(m,n),max(m,n)) = B(m,n) and some cancellations, we find that

P (α)
m,n =

Γ(m+ 1)Γ(n+ 1)Γ(α+ 1)

Γ(α+m+ 1)Γ(α+ n+ 1)

min(m,n)∑

j=0

(α− γ)min(m,n)−j Γ(α+max(m,n) + 1 + j)

Γ(min(m,n)− j + 1)

×
Γ(γ + |m− n|+ 1 + j)(γ + |m− n|+ 2j + 1)

Γ(|m− n|+ 1 + j)Γ(γ +max(m,n) + 2 + j)
r|m−n|eı(m−n)θP

(γ,|m−n|)
j (2r2 − 1).

On defining mj := j +max(m− n, 0) and nj := j +max(n−m, 0) and noting that

mj ≥ 0, nj ≥ 0, m− n = mj − nj and j = min(mj , nj),

we find that dividing and multiplying each term of the above sum by Γ(j+1)Γ(γ+1)
Γ(j+γ+1) we can make

P
(γ)
mj ,nj appear. Substituting the summation variable for k = min(m,n) − j (wherein mj and

nj turn into m − k and n − k, respectively) and using |m− n| + 2min(m,n) = m + n plus
some of the previously used identities we obtain the desired result after a number of elementary
cancellations. �

We can now deduce some simple relations between Zernike polynomials which will be useful
later to express the expansion coefficients of the derivatives of a function in terms of the expansions
coefficients of the function itself. Related identities including three term recurrences appear in
[39, § 5]; (3.13) and (3.14) appear in [22] in the case α = 0.

Proposition 3.2. If α > −1, then for (m,n) ∈ N0×N0, we have the parameter-raising expansion

(m+ n+ α+ 1)P (α)
m,n =

(m+ α+ 1)(n+ α+ 1)

α+ 1
P (α+1)
m,n −

mn

α+ 1
P

(α+1)
m−1,n−1, (3.12)

and the same-parameter expansions with respect to first order derivatives

(m+ n+ α+ 1)P (α)
m,n =

n+ α+ 1

n+ 1
∂z∗P

(α)
m,n+1 −

m

m+ α
∂z∗P

(α)
m−1,n (3.13)

and

(m+ n+ α+ 1)P (α)
m,n =

m+ α+ 1

m+ 1
∂zP

(α)
m+1,n −

n

n+ α
∂zP

(α)
m,n−1. (3.14)

Proof. We obtain (3.12) from Proposition 3.1 by setting γ = α + 1. Combining (3.12) with
adequate shifts of the relations in (3.5) yields (3.13) and (3.14). �

Proposition 3.3. Let u ∈ Hk
ρα(B2). Then,

(∀ (m,n) ∈ N0 × N0) lim
L→∞

Lk−α−1/2 û
(α)
m+L,n+L = 0.

Proof. Using the forms of λ
(α)
m+L,n+L and h

(α)
m+L,n+L which stem from (3.3) and (3.4), respectively,

and applying the asymptotic formula (1.6) on the ratio of gamma functions therein we obtain

λ
(α)
m+L,n+L ∼ 4L2 and h

(α)
m+L,n+L ∼ π Γ(α+ 1)2 2−1L−1−2α as L → ∞.

Combining this with the fact (coming from (3.10)) that

lim
L→∞

(λ
(α)
m+L,n+L)

k |u
(α)
m+L,n+L|

2 h
(α)
m+L,n+L = 0

we obtain the desired result. �

Lemma 3.4. Let α > −1 and

u ∈ Hk
ρα(B2) with k =

{
1 if α ∈ [−1/2,∞),

2 if α ∈ (−1,−1/2).
(3.15)
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Then, the coefficients of the Fourier–Zernike series (3.7) of ∂z∗u and ∂zu can be expressed in
terms of the coefficients of the corresponding series of u according to

(̂∂z∗u)
(α)

m,n = (m+ n+ α+ 1)
∞∑

l=0

(m+ 1)l
(m+ α+ 1)l

(n+ 1)l+1

(n+ α+ 1)l+1

û
(α)
m+l,n+1+l (3.16)

and

(̂∂zu)
(α)

m,n = (m+ n+ α+ 1)

∞∑

l=0

(m+ 1)l+1

(m+ α+ 1)l+1

(n+ 1)l
(n+ α+ 1)l

û
(α)
m+1+l,n+l (3.17)

for (m,n) ∈ N0 × N0.

Proof. Let us abbreviate vm,n = (̂∂z∗u)
(α)

m,n. Then, using (3.13), the fact that P
(α)
−1,n ≡ 0 and

∂z∗P
(α)
m,0 ≡ 0 (cf. (3.2) and (3.5)) and careful index tracking we have that given M,N ∈ N,

M∑

m=0

N∑

n=0

vm,n P
(α)
m,n =

M−1∑

m=0

N∑

n=1

[
vm,n−1

m+ n+ α

n+ α

n
−

vm+1,n

m+ n+ α+ 2

m+ 1

m+ α+ 1

]
∂z∗P (α)

m,n

+

M∑

m=0

vm,N

m+N + α+ 1

N + α+ 1

N + 1
∂z∗P

(α)
m,N+1

︸ ︷︷ ︸
:=SM,N

+

N−1∑

n=0

vM,n

M + n+ α+ 1

n+ α+ 1

n+ 1
∂z∗P

(α)
M,n+1

︸ ︷︷ ︸
:=TM,N

. (3.18)

Taking the square of the L2
ρα(B2) norm of SM,N , using the L2

ρα+1(B2)-orthogonality of the terms

that comprise it (which comes from (3.5)), substituting the resulting h
(α+1)
m,N with the products

h
(α)
m,N

(
h
(α+1)
m,N /h

(α)
m,N

)
and simplifying the gamma functions appearing in the second factors (cf.

(3.4)) we obtain

‖SM,N‖
2
L2
ρα+1 (B

2) =

M∑

m=0

|vm,N |
2 (N + α+ 1)(m+ α+ 1)

(m+N + α+ 1)(m+N + α+ 2)
h
(α)
m,N ≤

M∑

m=0

|vm,N |
2
h
(α)
m,N .

As the vm,N are the coefficients of the expansion of the L2
ρα(B2) function ∂z∗u, it follows from

the above inequality and Parseval’s identity (3.9) that SM,N
M,N→∞
−−−−−−→ 0 in L2

ρα+1(B2). The same

argument leads to TM,N
M,N→∞
−−−−−−→ 0 in the same space. As the left hand side of (3.18) tends to

∂z∗u as M,N → ∞ in L2
ρα+1(B2) (because it does so in the stronger L2

ρα(B2) norm) we conclude

that

∂z∗u =

∞∑

m=0

∞∑

n=1

[
vm,n−1

m+ n+ α

n+ α

n
−

vm+1,n

m+ n+ α+ 2

m+ 1

m+ α+ 1

]
∂z∗P (α)

m,n, (3.19)

the series converging in the L2
ρα+1(B2) sense.

On the other hand, per part 3 of Proposition 2.5, u itself is a member of HZα(B
2) and thus, per

part 2 of Lemma 2.4, its Fourier–Zernike series as defined in (3.7) converges to u in WZα(B
2) and

because of the structure of that norm (cf. (2.9)) we have, again using the fact that ∂z∗P
(α)
m,0 ≡ 0,

∂z∗u =
∞∑

m=0

∞∑

n=1

û(α)
m,n ∂z∗P (α)

m,n, (3.20)

the series also converging in the L2
ρα+1(B2) sense.

As in the index range involved the ∂z∗P
(α)
m,n are non-zero and pairwise L2

ρα+1(B2)-orthogonal,

we can compare the coefficents of the series (3.19) and (3.20) so as to obtain for m ∈ N0 and
n ∈ N0,

1

m+ n+ α+ 1
vm,n =

n+ 1

n+ α+ 1
û
(α)
m,n+1 +

(n+ 1)(m+ 1)

(m+ n+ α+ 3)(n+ α+ 1)(m+ α+ 1)
vm+1,n+1.

(3.21)
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An induction argument based on (3.21) can then justify that, for all (m,n) ∈ N0×N0 and L ∈ N0,

1

m+ n+ α+ 1
vm,n =

L∑

l=0

(n+ 1)l+1

(n+ α+ 1)l+1

(m+ 1)l
(m+ α+ 1)l

û
(α)
m+l,n+1+l +Rm,n,α,L+1 (3.22)

where

Rm,n,α,L :=
(n+ 1)L

(n+ α+ 1)L

(m+ 1)L
(m+ α+ 1)L

1

m+ n+ 2L+ α+ 1
vm+L,n+L.

Now, expressing the Pochhammer symbols above as ratios of gamma functions and using the
asymptotic relation (1.6) we find

Rm,n,α,L ∼
Γ(n+ α+ 1)

Γ(n+ 1)

Γ(m+ α+ 1)

Γ(m+ 1)
2−1L−1−2α vm+L,n+L as L → ∞. (3.23)

So far, we have only used that u ∈ H1
ρα(B2), which is weaker than the hypothesis (3.15) when

α ∈ (−1,−1/2).
As the vm,n are the Fourier–Zernike coefficients of the expansion of ∂z∗u and the latter belongs

to Hk−1
ρα (B2) we infer from Proposition 3.3 that limL→∞ Lk−α−3/2vm+L,n+L = 0, which, together

with the fact that k ≥ 1/2− α (only now we are making use of the full hypothesis (3.15)) implies
that limL→∞ Rm,n,α,L = 0. Thus, (3.16) is obtained from (3.22).

Let the reflection A : B2 → B2 be defined by A(x) = (x1,−x2) for all x ∈ B2. Then, u ◦ A ∈
Hk

ρα(B2) as well and ∂zu ◦ A = ∂z∗(u ◦ A). This, together with (3.16), the readily verifiable

formulae ρ◦A = ρ, P
(α)
m,n ◦A = P

(α)
n,m and h

(α)
m,n = h

(α)
n,m and the invariance of the Lebesgue measure

with respect to reflections give (3.17). �

The hypothesis u ∈ H2
ρα(B2) adopted in Lemma 3.4 when α ∈ (−1,−1/2) can be relaxed to u

belonging to certain interpolation spaces between H1
ρα(B2) and H2

ρα(B2) as long as the residual
Rm,n,α,L+1 of (3.22) can be shown to tend to 0 as L → ∞. However, the example below makes it
clear that we cannot relax the hypothesis all the way to the hypothesis u ∈ H1

ρα(B2) befitting the
case in which α ∈ [−1/2,∞).

Proposition 3.5. Let α ∈ (−1,−1/2).

(1) For all (m0, n0) ∈ N0 × N0 there exists u ∈ H1
ρα(B2) such that (3.16) fails for (m,n) =

(m0 + 1, n0).
(2) For all (m0, n0) ∈ N0 × N0 there exists u ∈ H1

ρα(B2) such that (3.17) fails for (m,n) =
(m0, n0 + 1).

Proof. For all (m,n) ∈ N0 × N0 let

vm,n :=





(
2j
)2α−1

(m0 + 2j + α+ 1)(n0 + 2j + 1)
if there exists j ∈ N0 such that
(m,n) = (m0 + 2j + 1, n0 + 2j),

0 otherwise.

Then, on account of (3.4) and the asymptotic formula (1.6), the sum

∑

(m,n)∈N0×N0

|vm,n|
2
‖P (α)

m,n‖
2
L2
ρα

(B2) =
∞∑

j=0

(2j)4α−2(m0 + 2j + α+ 1)2(n0 + 2j + 1)2h
(α)
m0+2j+1,n0+2j

is finite or infinite together with
∑∞

j=0(2
j)(4α−2)+2+2−1−α−α =

∑∞
j=0(2

j)2α+1; this last expression

being, indeed, finite (as 2α+ 1 < 0), it transpires that

v :=
∑

(m,n)∈N0×N0

vm,n P
(α)
m,n ∈ L2

ρα(B2).

The same argument goes on to show that, on defining for all (m,n) ∈ N0 × N0

wm,n :=





(
2j
)2α−1

(m0 + 2j + 1)(n0 + 2j + α+ 1)
if there exists j ∈ N0 such that
(m,n) = (m0 + 2j , n0 + 2j + 1),

0 otherwise,
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one then has
w :=

∑

(m,n)∈N0×N0

wm,n P
(α)
m,n ∈ L2

ρα(B2).

Using the differentiation identities in (3.5) it can be checked that the choice of the coefficients
vm,n and wm,n yields ∂zv− ∂z∗w = 0 in the sense of distributions. From this and the definition of
the differential operators involved given below (3.5) it follows that the curl of (v + w, ı(v − w)) ∈
[L2

ρα(B2)]2 ⊆ [L2(B2)]2 is null in the sense of distributions. Therefore there exists u ∈ H1(B2),
unique up to an additive constant, such that ∇u = (v+w, ı(v−w)) (cf. [18, Theorem 2.9]). Now,
H1(B2) ⊆ H1

ρα+2(B2) ⊆ L2
ρα(B2) (see [25, Theorem 8.2] for the latter inclusion, which holds with

continuous embedding). In this way we have constructed u ∈ H1
ρα(B2) such that ∂z∗u = v and

∂zu = w.
On the other hand, from (3.22) in the proof of Lemma 3.4 we know that (3.16) holds in the

case (m,n) = (m0 + 1, n0) if and only if

Rm0+1,n0,α,L =
(n0 + 1)L

(n0 + α+ 1)L

(m0 + 2)L
(m0 + α+ 2)L

1

m0 + n0 + 2L+ α+ 2
vm0+1+L,n0+L

L→∞
−−−−→ 0.

However, restricting our attention to the subsequence of indices L of the form 2j , j ∈ N0 and
using the asymptotic relation (1.6),

Rm0+1,n0,α,2j
j→∞
−−−→

Γ(n0 + α+ 1)

Γ(n0 + 1)

Γ(m0 + α+ 2)

Γ(m0 + 2)

1

2
6= 0,

so (3.16) cannot hold in this case and part 1 of this proposition is proved.
Symmetry arguments analogous to those made at the end of Lemma 3.4 show that (x1, x2) 7→

u(x1,−x2) is a function satisfying part 2. �

Remark 3.6. The formula analogous to (3.16) and (3.16) for symmetric Jacobi expansions, namely

(̂u′)
(α)

n = (2k + 2α+ 1)

∞∑

n=k+1
n−k is odd

(k + α+ 1)n−k

(k + 2α+ 1)n−k

û(α)
n , (3.24)

where

u =
∞∑

n=0

û(α)
n P (α,α)

n and u′ =
∞∑

n=0

(̂u′)
(α)

n P (α,α)
n ,

is valid for all u ∈ H1
χ(α,α)(−1, 1) if α ≥ −1/2 (cf. [20, eq. 2.13], where it is expressed in an

equivalent way in terms of Gegenbauer polynomials). Using essentially the same arguments put
forth in Lemma 3.4 and Proposition 3.5 it can be shown that if α ∈ (−1,−1/2) then the relation
(3.24) is valid under the stronger condition u ∈ H2

χ(α,α)(−1, 1) and that there are functions in

H1
χ(α,α)(−1, 1) \ H2

χ(α,α)(−1, 1) for which the relation is false. One such example is the function

defined by u(x) =
∫ x

0
v(t) dt where in turn

v =
∞∑

n=0

vn P
(α,α)
n and vn =

{
nα+1 if n ∈ {2j | j ∈ N0},

0 otherwise.

3.2. Main result. Having obtained the necessary preliminary results we can prove our main
result using roughly the same outer structure of the proof of the univariate case with α = −1/2
(Chebyshev) and α = 0 (Legendre) on page 302 of [9]. The core of the argument lies below
in Lemma 3.7 and the main result itself in Theorem 3.9. In order to express the former in a

more compact form we extend the notation Proj
(α)
N (cf. (3.11)) so that given any k ∈ N and

F ∈ [L2
ρα(B2)]k, Proj

(α)
N (F ) signifies the componentwise application of Proj

(α)
N to F .

Lemma 3.7. Let α > −1 and r, l ∈ N with l ≥ r. Then there exists C = C(α, l, r) such that for
every N ∈ N and u ∈ Hl

ρα(B2),
∥∥∥Proj(α)N (∇ru)−∇r Proj

(α)
N (u)

∥∥∥
[L2

ρα
(B2)]r+1

≤ CN2r−1/2−l ‖u‖Hl
ρα

(B2) .



ORTHOGONAL POLYNOMIAL PROJECTION IN THE UNIT DISK 15

Proof. Let l ∈ N and u ∈ Hl
ρα(B2). If we prove the existence of C > 0 independent of u and N

such that ∥∥∥Proj(α)N (∂z∗u)− ∂z∗ Proj
(α)
N (u)

∥∥∥
2

L2
ρα

(B2)
≤ CN3−2l ‖u‖

2
Hl

ρα
(B2) (3.25)

and the corresponding result involving the operator ∂z, the r = 1 case of our desired result will
follow. For the proof of (3.25) we can assume that u is regular enough for the relation (3.16)
between the orthogonal expansion of u and that of its image under the operator ∂z∗ to hold
(otherwise, we can replace u by the members of a sequence of C∞(B2) functions which converges
to u in Hl

ρα(B2)—which exists by virtue of [25, Remark 11.12.(iii)]—and once (3.25) is proved it
will extend to u by continuity); that is,

u =

∞∑

m=0

∞∑

n=0

û(α)
m,n P

(α)
m,n and ∂z∗u =

∞∑

m=0

∞∑

n=0

vm,n P
(α)
m,n,

both series converging in the L2
ρα(B2) sense, with the vm,n and the û

(α)
m,n connected by (3.16). As

Proj
(α)
N (u) is a polynomial, it is also regular enough to have the coefficients of its Fourier–Zernike

series and the corresponding coefficients of its image under the operator ∂z∗ connected by the

formula (3.16). Further taking into account the fact that the expansion of Proj
(α)
N (u) is but a

truncation of the expansion of u we have

Proj
(α)
N (u) =

∑

m+n≤N

û(α)
m,n P

(α)
m,n and ∂z∗ Proj

(α)
N (u) =

∑

m+n≤N

v(trunc)m,n P (α)
m,n,

where (3.16) takes the particular form: for all (m,n) ∈ N0 × N0 with m+ n ≤ N ,

v(trunc)m,n = (m+ n+ α+ 1)

⌊N−m−n−1
2 ⌋∑

l=0

(m+ 1)l
(m+ α+ 1)l

(n+ 1)l+1

(n+ α+ 1)l+1

u
(α)
m+l,n+1+l.

In particular, v
(trunc)
m,n = 0 if m + n = N . Therefore, whenever 0 ≤ m + n ≤ N and adopting the

notation δ
(N)
m,n =

⌊
N−m−n+1

2

⌋
,

vm,n − v
(trunc)
m,n

m+ n+ α+ 1
=

∞∑

l=δ
(N)
m,n

(m+ 1)l
(m+ α+ 1)l

(n+ 1)l+1

(n+ α+ 1)l+1

u
(α)
m+l,n+1+l

=

∞∑

l=0

(m+ 1)
l+δ

(N)
m,n

(m+ α+ 1)
l+δ

(N)
m,n

(n+ 1)
l+δ

(N)
m,n+1

(n+ α+ 1)
l+δ

(N)
m,n+1

u
(α)

m+l+δ
(N)
m,n,n+1+l+δ

(N)
m,n

=
(m+ 1)

δ
(N)
m,n

(m+ α+ 1)
δ
(N)
m,n

(n+ 1)
δ
(N)
m,n

(n+ α+ 1)
δ
(N)
m,n

v
m+δ

(N)
m,n,n+δ

(N)
m,n

m+ n+ α+ 2δ
(N)
m,n + 1

, (3.26)

where the last equality is obtained by expanding the Pochhammer symbols of the form (X)
δ
(N)
m,n+Y

according to the rules given in subsection 1.3 and noting that then (3.16) can be used to make the
coefficient v

m+δ
(N)
m,n,n+δ

(N)
m,n

appear. Now, from (3.4)

h(α)
m,n =

m+ n+ α+ 2δ
(N)
m,n + 1

m+ n+ α+ 1

(m+ α+ 1)
δ
(N)
m,n

(n+ α+ 1)
δ
(N)
m,n

(m+ 1)
δ
(N)
m,n

(n+ 1)
δ
(N)
m,n

h
(α)

m+δ
(N)
m,n,n+δ

(N)
m,n

. (3.27)

Using (3.26) and the fact that if m+ n = N then δ
(N)
m,n = 0,

Proj
(α)
N (∂z∗u)− ∂z∗ Proj

(α)
N (u) =

∑

m+n≤N−1

(
vm,n − v(trunc)m,n

)
P (α)
m,n +

∑

m+n=N

vm,n P
(α)
m,n

=

N∑

k=0

∑

m+n=k

(k + α+ 1)
(m+ 1)

δ
(N)
m,n

(m+ α+ 1)
δ
(N)
m,n

(n+ 1)
δ
(N)
m,n

(n+ α+ 1)
δ
(N)
m,n

v
m+δ

(N)
m,n,n+δ

(N)
m,n

k + α+ 2δ
(N)
m,n + 1

P (α)
m,n. (3.28)
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As the terms resulting in (3.28) are L2
ρα(B2)-orthogonal to each other, taking the corresponding

squared norm of both its ends, using (3.27) results in

∥∥∥Proj(α)N (∂z∗u)− ∂z∗ Proj
(α)
N (u)

∥∥∥
2

L2
ρα

(B2)

=

N∑

k=0

∑

m+n=k

k + α+ 1

k + α+ 2δ
(N)
m,n + 1

(m+ 1)
δ
(N)
m,n

(m+ α+ 1)
δ
(N)
m,n

(n+ 1)
δ
(N)
m,n

(n+ α+ 1)
δ
(N)
m,n

∣∣∣vm+δ
(N)
m,n,n+δ

(N)
m,n

∣∣∣
2

h
(α)

m+δ
(N)
m,n,n+δ

(N)
m,n

.

We want to rearrange the above sum so that those (m′, n′) ∈ N0 × N0 such that |vm′,n′ |
2
h
(α)
m′,n′

appears in the above sum and their accompanying coefficients become readily apparent. Let E
(α)
N

and O
(α)
N denote the above sum restricted to the terms with N − k even and odd, respectively. In

the inner sum of both resulting expressions n can be replaced with k −m by letting m range in

{0, . . . , k}. Applying the change of variable (i, j) = (m+ N−k
2 , N−k

2 ) in the sum defining E
(α)
N we

are left with

E
(α)
N =

N∑

i=0



min(i,N−i)∑

j=0

E
(α)
N,i,j


 |vi,N−i|

2
h
(α)
i,N−i. (3.29a)

where

E
(α)
N,i,j :=

N − 2j + α+ 1

N + α+ 1

(i− j + 1)j
(i− j + α+ 1)j

(N − i− j + 1)j
(N − i− j + α+ 1)j

. (3.29b)

The sum inside the square brackets in (3.29a) is invariant under the transformation i 7→ N − i.
Thus, we can learn the values of all the instances of this sum by looking at the cases where i ≤ N−i
only. For such i it is straightforward to check that as long as j ∈ {0, . . . , i},

E
(α)
N,i,j =





∆j

[
−
(i− j + α+ 1)(N − i− j + α+ 1) (i− j + 1)j (N − i− j + 1)j

(α+ 1)(N + α+ 1) (i− j + α+ 1)j (N − i− j + α+ 1)j

]
if α 6= 0,

N − 2j + α+ 1

N + α+ 1
if α = 0.

Hence, the sum with respect to j telescopes if α 6= 0 and is well known if α = 0, giving (using the
abovementioned invariance under the transformation i 7→ N − i)

E
(α)
N =

N∑

i=0

(i+ α+ 1)(N − i+ α+ 1)

(α+ 1)(N + α+ 1)
|vi,N−i|

2
h
(α)
i,N−i.

Applying the change of variable (i, j) = (m+ N−k+1
2 , N−k+1

2 ) in the sum defining O
(α)
N we obtain

O
(α)
N =

N∑

i=1



min(i,N+1−i)∑

j=1

O
(α)
N,i,j


 |vi,N+1−i|

2
h
(α)
i,N+1−i (3.30a)

where

O
(α)
N,i,j :=

N − 2j + α+ 2

N + α+ 2

(i− j + 1)j
(i− j + α+ 1)j

(N − i− j + 2)j
(N − i− j + α+ 2)j

. (3.30b)

The sum inside the square brackets in (3.30a) is invariant under the transformation i 7→ N +1− i.

Also, comparing (3.30b) with (3.30a) we find that O
(α)
N,i,j = E

(α)
N+1,i,j . Hence, we can adapt our

previous argument and state

O
(α)
N =

N∑

i=1

i(N + 1− i)

(α+ 1)(N + α+ 2)
|vi,N+1−i|

2
h
(α)
i,N+1−i.

Summing the resulting expressions for E
(α)
N and O

(α)
N and using the fact that i 7→ (i+ α+ 1)(N −

i+ α+ 1) and i 7→ i(N + 1− i), seen as functions of a real variable, attain their maxima at N/2
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and (N + 1)/2, respectively, we obtain

∥∥∥Proj(α)N (∂z∗u)− ∂z∗ Proj
(α)
N (u)

∥∥∥
2

L2
ρα

(B2)

≤
(N/2 + α+ 1)2

(α+ 1)(N + α+ 1)

∑

m+n=N

|vm,n|
2
h(α)
m,n +

((N + 1)/2)2

(α+ 1)(N + α+ 2)

∑

m+n=N+1

|vm,n|
2
h(α)
m,n

≤ Cα(N + 1)

(∥∥∥∂z∗u− Proj
(α)
N−1 (∂z∗u)

∥∥∥
2

L2
ρα

(B2)
+
∥∥∥∂z∗u− Proj

(α)
N (∂z∗u)

∥∥∥
2

L2
ρα

(B2)

)

≤ CαC(N + 1)N2(1−l) ‖∂z∗u‖
2
Hl−1

ρα
(B2) + CαC(N + 1)(N + 1)2(1−l) ‖∂z∗u‖

2
Hl−1

ρα
(B2) ,

where Cα = supN∈N0
max

(
(N/2+α+1)2

(α+1)(N+α+1)(N+1) ,
((N+1)/2)2

(α+1)(N+α+2)(N+1)

)
> 0 and the last inequality

comes from Corollary 2.7. Upon using standard inequalities (3.25) is attained.
By using the reflection introduced at the end of the proof of Lemma 3.4 we can turn (3.25) into

its analogue for the ∂z differential operator and thus conclude the proof of the r = 1 case of this
lemma.

Starting from the bidimensional case of the Markov inequality in Lemma 2.11 it is readily
proved by induction that there exists C = C(α, r) > 0 such that for all N ∈ N0 and p ∈ Πd

N ,

|p|Hr
ρα

(B2) ≤ CN2r ‖p‖L2
ρα

(B2) . (3.31)

We are now in a position to obtain the general case of this lemma by induction on r, the initial-
ization r = 1 having already being proved. Thus, let us assume that the desired result holds up
to some r ∈ N and let l ≥ r + 1 and u ∈ Hl

ρα(B2). Then,

∥∥∥Proj(α)N (∇r∂z∗u)−∇r∂z∗ Proj
(α)
N (u)

∥∥∥
[L2

ρα
(B2)]r+1

≤
∥∥∥Proj(α)N (∇r∂z∗u)−∇r Proj

(α)
N (∂z∗u)

∥∥∥
[L2

ρα
(B2)]r+1

+
∣∣∣Proj(α)N (∂z∗u)− ∂z∗uProj

(α)
N (u)

∣∣∣
Hr

ρα
(B2)

≤ CN−1/2+2r−(l−1) ‖∂z∗u‖Hl−1
ρα

(B2) + CN2r
∥∥∥Proj(α)N (∂z∗u)− ∂z∗ Proj

(α)
N (u)

∥∥∥
L2
ρα

(B2)
,

where we have used the induction hypothesis and (3.31). Using (3.25) to bound the last term
above we obtain∥∥∥Proj(α)N (∇r∂z∗u)−∇r∂z∗ Proj

(α)
N (u)

∥∥∥
[L2

ρα
(B2)]r+1

≤ CN−1/2+2(r+1)−l ‖u‖Hl
ρα

(B2) .

Combining this with its analogue involving the ∂z operator we obtain the desired bound for the
commutator of the projection and the ∇r+1 operators. �

Remark 3.8. The proof of Lemma 3.7 can be significantly simplified in the α ≥ 0 case because

then E
(α)
N,i,j of (3.29b) and O

(α)
N,i,j of (3.30b) can each be bounded by 1.

Theorem 3.9. Let α > −1 and r, l ∈ N with l ≥ r. Then there exists C = C(α, l, r) > 0 such
that for every N ∈ N and u ∈ Hl

ρα(B2),

‖u− Proj
(α)
N (u)‖Hr

ρα
(B2) ≤ C N−1/2+2r−l ‖u‖Hl

ρα
(B2) .

Proof. For every k ∈ {1, . . . , r},

‖∇k

(
u− Proj

(α)
N (u)

)
‖2[L2

ρα
(B2)]k+1

≤ 2‖∇ku− Proj
(α)
N (∇ku)‖

2
[L2

ρα
(B2)]k+1 + 2‖Proj

(α)
N (∇ku)−∇k Proj

(α)
N (u)‖2[L2

ρα
(B2)]k+1 .

We can bound the first term using Corollary 2.7 and the second term using Lemma 3.7. As the

squared Hl
ρα(B2) norm of u−Proj

(α)
N (u) is the sum of the squared L2

ρα(B2) norm of u−Proj
(α)
N (u)

(which again, can be bounded using Corollary 2.7) and the left-hand side above for k ∈ {1, . . . , r},
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we obtain the desired bound upon realizing that the highest power on N which will appear is
−1− 2l + 4r and taking square roots. �

Given l ∈ N0 and θ ∈ (0, 1) we use complex interpolation (see [1, ¶7.51–52] for a succinct
discussion which suffices for our purposes save for a strong enough statement of the reiteration
theorem, which can be found in [8, ¶12.3]) to define

Hl+θ
ρα (B2) :=

[
Hl

ρα(B2),Hl+1
ρα (B2)

]
θ
. (3.32)

Then, by using the exact interpolation theorem, Corollary 2.7 and Theorem 3.9 are readily gen-
eralized to the above intermediate spaces:

Corollary 3.10. Let α > −1 and r, l ≥ 0 with l ≥ r. Then there exists C = C(α, l, r) > 0 such
that for every N ∈ N and u ∈ Hl

ρα(B2),

‖u− Proj
(α)
N (u)‖Hr

ρα
(B2) ≤ CNe(l,r) ‖u‖Hl

ρα
(B2) (3.33a)

where

e(l, r) :=

{
3/2 r − l if 0 ≤ r ≤ 1,

−1/2 + 2 r − l if r ≥ 1.
(3.33b)

Proof. For N ∈ N let T
(α)
N,l,r denote the operator I−Proj

(α)
N : Hl

ρα(B2) → Hr
ρα(B2). Let us suppose

first that neither l nor r is an integer. Then, if ⌊l⌋ ≥ ⌊r⌋+1, for j ∈ {0, 1}, using the known bounds

on the operator norms ‖T
(α)
N,⌊l⌋,⌊r⌋+j‖ and ‖T

(α)
N,⌊l⌋+1,⌊r⌋+j‖ and the exact interpolation theorem

with interpolation parameter l − ⌊l⌋ results in the desired bound on ‖T
(α)
N,l,⌊r⌋‖ and ‖T

(α)
N,l,⌊r⌋+1‖;

combining these estimates with the exact interpolation theorem with interpolation parameter

r − ⌊r⌋ gives the desired bound on ‖T
(α)
N,l,r‖. If ⌊l⌋ = ⌊r⌋, the bound on ‖T

(α)
N,l,⌊r⌋‖ is obtained

exactly as in the previous case but now it is combined via the exact interpolation theorem with

parameter θ = r−⌊r⌋
l−⌊l⌋ with the desired bound on ‖T

(α)
N,l,l‖ which, in turn, comes about by combining

the known bounds on ‖T
(α)
N,⌊l⌋,⌊l⌋‖ and ‖T

(α)
N,⌊l⌋+1,⌊l⌋+1‖ with the exact interpolation theorem with

parameter l − ⌊l⌋; the reiteration theorem is used to ensure that

[
H

⌊r⌋
ρα (B2),Hl

ρα(B2)
]
θ
=

[[
H

⌊l⌋
ρα (B2),H

⌊l⌋+1
ρα (B2)

]
0
,
[
H

⌊l⌋
ρα (B2),H

⌊l⌋+1
ρα (B2)

]
l−⌊l⌋

]

θ

=
[
H

⌊l⌋
ρα (B2),H

⌊l⌋+1
ρα (B2)

]
(1−θ)0+θ(l−⌊l⌋)

= Hr
ρα(B2).

The cases where either l or r is an integer are similar but simpler so we omit further details. �

Remark 3.11.

(1) Essentially the same argument put forward in Corollary 3.10 allows for generalizing Corollary 2.7
and Theorem 3.9 using real instead of complex interpolation.

(2) The proof of Corollary 3.10 works with the interpolated space defined as in (3.32) and does
not depend on any further characterization of those spaces (cf. [10, Lemma 2.1], where a
weighted identity of the form Hθm = [L2,Hm]θ, for (m, θ) ∈ N× (0, 1), is tacitly used).

3.3. On the sharpness of the main result.

Proved sharpness results. We can show the optimality with respect to the power onN of Theorem 3.9
in the r = 1 case and that of its r = 0 analogue, namely Corollary 2.7, in the two-dimensional
case. Note that in both cases all the weighted Sobolev spaces involved have integer regularity
parameters. We will need the following auxiliary result, which is of independent interest (see
Proposition 4.26 and Theorem 4.29 of [17] for its one-dimensional analogue and one application,
respectively).

Proposition 3.12. For all α > −1 and (m,n) ∈ N0 × N0,
∣∣∣P (α)

m,n

∣∣∣
2

H1
ρα

(B2)
=

2π Γ(α+ 1)2Γ(m+ 1)Γ(n+ 1)

(α+ 1)Γ(m+ α+ 1)Γ(n+ α+ 1)
(2mn+ (m+ n)(α+ 1)).
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Proof. We first observe that for all α > −1 and (m,n) ∈ N0 × N0,
∥∥∥P (α+1)

m,n

∥∥∥
2

L2
ρα

(B2)
=

π Γ(m+ 1)Γ(n+ 1)Γ(α+ 1)Γ(α+ 2)

Γ(m+ α+ 2)Γ(n+ α+ 2)
. (3.34)

Indeed, using Proposition 3.1 to expand P
(α+1)
m,n in terms of the P

(α)
m−k,n−k with k ∈ {0, . . . ,min(m,n)},

noting that the latter are L2
ρα(B2)-orthogonal and using (3.4) we obtain

∥∥∥P (α+1)
m,n

∥∥∥
2

L2
ρα

(B2)
=

π Γ(m+ 1)2 Γ(n+ 1)2 Γ(α+ 2)2

Γ(α+m+ 2)2 Γ(α+ n+ 2)2

min(m,n)∑

k=0

θ
(α)
m,n,k

where θ
(α)
m,n,k = (α + m + n − 2k + 1)Γ(α+m−k+1)Γ(α+n−k+1)

Γ(m−k+1)Γ(n−k+1) . Using that θ
(α)
m,n,k = ∆k(ζ

(α)
m,n,k),

where ζ
(α)
m,n,k = −Γ(m−k+α+2)Γ(n−k+α+2)

(α+1)Γ(m−k+1)Γ(n−k+1) the above sum telescopes and the (3.34) follows. Then

the desired result is a direct consequence of the relations in (3.5) and (3.34). �

Theorem 3.13. The power on N for the d = 2 case of Corollary 2.7 and that of the r = 1 case
of Theorem 3.9 when r = 1 are sharp.

Proof. Let α > −1. By iterating the relations in (3.5) it is readily proved by induction that for
every m,n, l1, l2 ∈ N0,

∂l2
z∗∂l1

z P (α)
m,n =

(m− l1 + 1)l1 (n− l2 + 1)l2 (n+ α+ 1)l1 (m+ α+ 1)l2
(α+ 1)l1+l2

P
(α+l1+l2)
m−l1,n−l2

. (3.35)

Given l, j ∈ N with j ≥ l we define the polynomial

t
(α,l)
j :=

l∑

k=0

(−l)k Γ(α+ j + l − k + 1)2(α+ 2j + 2l − 2k + 1)

Γ(k + 1)Γ(j + l − k + 1)2 (α+ 2j + l − k + 1)l+1

P
(α)
j+l−k,j+l−k. (3.36)

Let l1, l2 ∈ N0 be such that l1 + l2 = l. Then applying the the ∂l2
z∗∂l1

z operator to t
(α,l)
j and using

(3.35) results in a linear combination of Zernike polynomials of parameter α + l. By comparing
the resulting expression term by term with the result of applying Proposition 3.1 with (α, γ,m, n)
replaced by (α, α+ l, j + l2, j + l1) (which, because (−l)k = 0 if k ≥ l+ 1, is a sum with the same
number of effective terms) we find that

∂l2
z∗∂l1

z t
(α,l)
j =

Γ(α+ j + l1 + 1)Γ(α+ j + l2 + 1)

Γ(j + l1 + 1)Γ(j + l2 + 1)
P

(α)
j+l2,j+l1

,

whence, using (1.6), (3.4), and (3.6),

∣∣∣t(α,l)j

∣∣∣
2

Hl
ρα

(B2)

∼=l

l∑

q=0

∥∥∥∂q
z∗∂l−q

z t
(α,l)
j

∥∥∥
2

L2
ρα

(B2)

=
π Γ(α+ 1)2

2j + l + α+ 1

l∑

q=0

Γ(α+ j + l − q + 1)Γ(α+ j + q + 1)

Γ(j + l − q + 1)Γ(j + q + 1)
. (3.37)

Let us define for integer j ≥ l the indices N
(l)
j and the residuals R

(α,l)
j by

N
(l)
j := 2j + 2l − 1 and R

(α,l)
j := t

(α,l)
j − Proj

(α)

N
(l)
j

(
t
(α,l)
j

)
. (3.38)

As R
(α,l)
j is exactly the k = 0 term of the sum in (3.36), using (3.4),

∥∥∥R(α,l)
j

∥∥∥
2

L2
ρα

(B2)
=

πΓ(α+ 1)2

2j + 2l + α+ 1

Γ(α+ j + l + 1)2

Γ(j + l + 1)2
Γ(α+ 2j + l + 1)2

Γ(α+ 2j + 2l + 1)2
(3.39)

and, by Proposition 3.12,
∣∣∣R(α,l)

j

∣∣∣
2

H1
ρα

(B2)
=

4π Γ(α+ 1)2Γ(α+ j + l + 1)2(α+ 2j + 2l + 1)2

(α+ 1)Γ(j + l + 1)2 (α+ 2j + l + 1)
2
l+1

(j + l)(α+ j + l + 1). (3.40)
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Thus, using the asymptotic formula (1.6), for r ∈ {0, 1},
∣∣∣R(α,l)

j

∣∣∣
Hr

ρα
(B2)

/∣∣∣t(α,l)j

∣∣∣
Hl

ρα
(B2)

∼ Cα,l,rj
3/2r−l ∼ C̃α,l,r(N

(l)
j )3/2r−l (3.41)

as j → ∞. By the norm equivalence of Proposition 2.9 and the fact that the Fourier–Zernike series

of t
(α,l)
j only have non-zero terms of degrees between 2j and 2j+2l we can replace the seminorms

above by the corresponding norms. Thus, the choice (u,N) = (t
(α,l)
j , N

(l)
j ) turns the inequalities

of Corollary 2.7 and that of the r = 1 case of Theorem 3.9 into asymptotic equalities; hence, the
power on N in each case is sharp. �

Conjectured sharpness of main result in general. We conjecture that Theorem 3.9 is optimal with
respect to the power on N in the r ≥ 2 case as well and that, for every α > −1 and l ∈ N, the

same sequence (t
(α,l)
j )∞j=l defined in (3.36) attains the proved upper-bound rate asymptotically in

the same way it does so in the proof of Theorem 3.13; that is, we conjecture that for all α > −1,
l ∈ N and r ∈ {1, . . . , l}, as j → ∞,

rat
(α,l)
r,j :=

∣∣∣R(α,l)
j

∣∣∣
Hr

ρα
(B2)

/∣∣∣t(α,l)j

∣∣∣
Hl

ρα
(B2)

∼ Cα,l,rj
−1/2+2r−l ∼ C̃α,l,r(N

(l)
j )−1/2+2r−l (3.42)

with N
(l)
j and R

(α,l)
j as in (3.38) and with the same immateriality of using seminorms instead of

norms discussed in the proof of Theorem 3.13.

Numerical tests in the proved and conjectured cases. The conjecture (3.42) is informed by numer-
ical tests coded in the Julia programming language1. The code has the encoding of a polynomial
by its finite Fourier–Zernike coefficients as its basic data structure and is able to differentiate, per-
form some changes of basis and compute inner products and norms of the represented polynomials
mainly by using equations (3.4), (3.5) and those of Proposition 3.2. We numerically compute the
ratio in the leftmost expression of (3.42) including both the proved r = 0 and r = 1 cases and
the conjectured r ≥ 2 case. The behavior of a representative instance of those tests is shown in

Figure 1 and Table 1; there rat
(α,l)
r,j is the seminorm ratio defined in (3.42) and the experimental

growth rate with respect to the truncation degree is

egrr :=
log
(
rat

(α,l)
r,j

/
rat

(α,l)
r,j′

)

log
(
N

(l)
j

/
N

(l)
j′

) , (3.43)

where N
(l)
j and N

(l)
j′ are consecutive truncation degrees in the table (in one-to-one correspondence

with their respective j and j′ via (3.38)). It is apparent from both the figure and the table that the
experimental growth rate in each case does indeed approach the rate predicted by Corollary 2.7
and Theorem 3.9 thus corroborating the sharpness result Theorem 3.13 proved for r ∈ {0, 1} and
supporting the conjecture (3.42) posed for r ≥ 2.

Appendix A. A density result

In this appendix we will prove that, for all d ∈ N, C∞(Bd) is dense in the Sobolev-type space
WZα(B

d) defined in (2.9). We will find it convenient to define the index set

I := {(i, j) | i, j ∈ {1, . . . , d}, i < j} .

and denote
Di,j = xj ∂i − xi ∂j .

Given λ > 0 let us define the dilation operator δλ which maps any function f : Rd → R to the
function δλf : R

d → R defined by

(∀x ∈ R
d) δλf(x) := f(λx).

Because of the change of variable properties of the Lebesgue integral with respect to linear trans-
formations (see, for example, [5, Theorem 3.6.1 and Corollary 3.6.4]) δλ maps Lp(Rd) into itself

1Code available from https://github.com/lfiguero/ZernikeSuite.

https://github.com/lfiguero/ZernikeSuite
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Figure 1. Logarithmic plot of truncation degrees N
(l)
j versus computed semi-

norm ratios rat
(α,l)
r,j , r ∈ {0, . . . , l}, for one instance of α and l. For comparison

purposes plots of constant positive scalar multiples of the function N 7→ Ne(l,r)

(cf. (3.33b)) are also shown.

N
(l)
j rat

(α,l)
0,j egr0 rat

(α,l)
1,j egr1 rat

(α,l)
2,j egr2 rat

(α,l)
3,j egr3

15 3.11e-05 — 1.20e-03 — 4.55e-02 — 1.61e+00 —
19 1.66e-05 −2.665 8.06e-04 −1.687 4.06e-02 −0.480 1.96e+00 0.820
27 6.29e-06 −2.754 4.44e-04 −1.698 3.57e-02 −0.369 2.83e+00 1.041
43 1.67e-06 −2.847 2.02e-04 −1.692 3.25e-02 −0.205 5.28e+00 1.342
75 3.29e-07 −2.921 8.02e-05 −1.661 3.23e-02 −0.008 1.34e+01 1.677

139 5.29e-08 −2.965 2.96e-05 −1.615 3.60e-02 0.174 4.54e+01 1.977
267 7.53e-09 −2.986 1.06e-05 −1.571 4.41e-02 0.311 1.91e+02 2.197
523 1.01e-09 −2.994 3.77e-06 −1.540 5.75e-02 0.397 9.17e+02 2.336
1035 1.30e-10 −2.997 1.33e-06 −1.522 7.80e-02 0.446 4.76e+03 2.414
2059 1.65e-11 −2.999 4.72e-07 −1.511 1.08e-01 0.472 2.58e+04 2.456
4107 2.08e-12 −2.999 1.67e-07 −1.506 1.51e-01 0.486 1.43e+05 2.478
8203 2.61e-13 −3.000 5.90e-08 −1.503 2.12e-01 0.493 7.99e+05 2.489

Table 1. Truncation degrees, computed seminorm ratios for r ∈ {0, . . . , l} and
experimental growth rates in the α = 9.9 and l = 3 case.

and ‖δλf‖Lp(Rd) = λ−d/p ‖f‖Lp(Rd). Another consequence is that for any f ∈ L1
loc(R

d) and any

multi-index β ∈ Nd
0, ∂β(δλf) = λ|β|δλ(∂βf); hence,

(∀ i ∈ {1, . . . , d}) ∂i(δλf) = λ δλ(∂if), (∀ (i, j) ∈ I) Di,j(δλf) = δλ(Di,jf). (A.1)

Proposition A.1. Let p ∈ [1,∞). For all f ∈ Lp(Rd), limλ→1 ‖f − δλf‖Lp(Rd) = 0.

Proof. Let us assume for now that f ∈ C∞
0 (Rd). Then there exists R > 0 such that supp(f) ⊂

B(0, R). Also, restricted to B(0, 2R), f is uniformly continuous; that is,

(∀ ǫ > 0) (∃ δ(ǫ) > 0) (∀x, y ∈ B(0, 2R)) ‖x− y‖ < δ(ǫ) =⇒ |f(x)− f(y)| < ǫ.

Given any ǫ > 0, let δ∗(ǫ) := min(δ(ǫ)/R, 1). Then, for all x ∈ B(0, R),

|λ− 1| < δ∗(ǫ) =⇒ ‖λx− x‖ = |λ− 1| ‖x‖ < δ(ǫ) =⇒ |f(λx)− f(x)| < ǫ.
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In other words, δλf tends to f uniformly inB(0, R) as λ tends to 1, whence limλ→1

∫
B(0,R)

|f − δλf |
p
=

0. On the other hand,
∫

Rd\B(0,R)

|f − δλf |
p
=

∫

B(0,R/λ)\B(0,R)

|δλf |
p
≤ |B(0, R/λ) \B(0, R)| ‖f‖

p
L∞(Rd)

which also tends to 0 as λ → 1, so δλf tends to f in Lp(Rd).
Let now f be an arbitrary member of Lp(Rd) and let ǫ > 0. As C∞

0 (Rd) is dense in Lp(Rd) (cf.
[5, Corollary 4.2.2]) there exists g ∈ C∞

0 (Rd) such that ‖f − g‖Lp(Rd) < ǫ/6. From the argument

above we also know that there exists some δ∗ such that ‖g − δλg‖Lp(Rd) < ǫ/2 if |λ− 1| < δ∗.

Now, if |λ− 1| < 1− 2−p/d, 1 + λ−d/p < 3. Thus, if |λ− 1| < min(δ∗, 1− 2−p/d),

‖f − δλf‖Lp(Rd) + ‖δλ(f − g)‖Lp(Rd) + ‖δλg − g‖Lp(Rd)

= (1 + λ−d/p) ‖f − g‖Lp(Rd) + ‖g − δλg‖Lp(Rd) < 3ǫ/6 + ǫ/2 = ǫ.

�

Lemma A.2. Let α ≥ 0 and f ∈ WZα(B
d). Then, δλf

λ→1−
−−−−→ f in WZα.

Proof. This proof is based on the proof of [25, Theorem 7.2]. From the structure of the norm
of WZα(B

d), the differentiation rules (A.1) and the obvious fact that limλ→1− λ = 1 our desired
result would follow from

lim
λ→1−1

‖f − δλf‖L2
ρα

(Bd) = 0, (A.2a)

(∀ i ∈ {1, . . . , d}) lim
λ→1−

‖∂if − δλ(∂if)‖L2
ρα+1 (B

d) = 0 (A.2b)

and

(∀ (i, j) ∈ I) lim
λ→1−

‖Di,jf − δλ(Di,jf)‖L2
ρα

(Bd) = 0, (A.2c)

all of which we prove in the sequel. Let (g, w) be any of (f, ρα), (∂if, ρ
α+1) (for i ∈ {1, . . . , d}) or

(Di,jf, ρ
α) (for (i, j) ∈ I) and let ǫ > 0. Upon introducing

J(λ) :=

∫

Bd

|g(x)− g(λx)|
2
w(x) dx,

J1(λ) :=

∫

Bd

∣∣∣g(x)w(x)1/2 − g(λx)w(λx)1/2
∣∣∣
2

dx

and

J2(λ) :=

∫

Bd

|g(λx)|
2
∣∣∣w(λx)1/2 − w(x)1/2

∣∣∣
2

dx =

∫

Bd

|g(λx)|
2
w(λx)

∣∣∣∣
w(x)1/2

w(λx)1/2
− 1

∣∣∣∣
2

dx

we find that J(λ) ≤ 2 [J1(λ) + J2(λ)]. Now, applying Proposition A.1 to the extension by zero of
w1/2g ∈ L2(Bd) we find that there exists λ1 ∈ (0, 1) such that λ1 < λ < 1 implies J1(λ) < ǫ2/4.
From now on we assume that λ ∈ (λ1, 1). Now, given ζ ∈ (0, 1), the integral defining J2(λ) is the
sum of the integral over B(0, 1) \ B(0, ζ) and the integral over B(0, ζ); we denote the former by
J2,1(λ, ζ) and the latter by J2,2(λ, ζ). As λ ∈ (0, 1) and w is monotonically non-increasing with
respect to the modulus of its argument,

w(x)

w(λx)
≤ 1 and 1−

[
w(x)

w(λx)

]1/2
≤ 1.

Thus,

J2,1(λ, ζ) ≤

∫

B(0,1)\B(0,ζ)

|g(λx)|
2
w(λx) dx = λ−d

∫

B(0,λ)\B(0,λζ)

|g(x)|
2
w(x) dx.

If ζ is close enough to 1 the measure of the region B(0, λ) \ B(0, λζ) can be made arbitrarily
small. This, the fact that w1/2g ∈ L2(Bd), the absolute continuity of the Lebesgue integral (cf. [5,
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Theorem 2.5.7]) and 0 < λ1 < λ < 1 imply that there exists ζ ∈ (0, 1) such that J2,1(λ, ζ) < ǫ2/8.
Let us fix such ζ. Then,

J2,2(λ, ζ) ≤ sup
x∈B(0,ζ)

∣∣∣∣
w(x)1/2

w(λx)1/2
− 1

∣∣∣∣
2 ∫

B(0,ζ)

|g(λx)|
2
w(λx) dx

= sup
x∈B(0,ζ)

∣∣∣∣
w(x)1/2

w(λx)1/2
− 1

∣∣∣∣
2

λ−d

∫

B(0,λζ)

|g(x)|
2
w(x) dx.

As the integral in the last expression is bounded by ‖g‖L2
w(Bd), λ

−d < λ−d
1 and

lim
λ→1−

(
1−

[
w(x)

w(λx)

]1/2)
= 0

uniformly in B(0, ζ), we conclude that there exists λ2 ∈ (λ1, 1) such that J2,2(λ, ζ) < ǫ2/8 if λ2 <

λ < 1. Combining this with the other obtained bounds we have that J(λ) = ‖g − δλg‖
2
L2
w(Bd) < ǫ2

if λ2 < λ < 1 and thus all the limits appearing in (A.2) have been proved. �

Corollary A.3. If α ≥ 0, then C∞(Bd) is dense in WZα(B
d).

Proof. Let f ∈ WZα(B
d) and let ǫ > 0. From Lemma A.2 we know there exists some λ ∈ (0, 1)

such that ‖f − δλf‖WZα(Bd) < ǫ. Because of the scaling of the argument, ∂λf belongs to the

standard Sobolev space H1(Bd), whence there exists ϕ ∈ C∞(Bd) such that ‖δλf − ϕ‖H1(Bd) ≤ ǫ

(cf. [1, Theorem 3.22]). As (because α ≥ 0) all the weight functions involved are bounded by 1 and
the functions x 7→ xj appearing in the definition of the differential operators Di,j are bounded,
WZα(B

d) ⊂ H1(Bd) with continuous embedding. Thus, ‖f − ϕ‖WZα(Bd) ≤ (1 + C)ǫ, where C is

the constant of the aforementioned embedding. �
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