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Ricardo Oyarzúa, Ricardo Ruiz-Baier

PREPRINT 2015-41

SERIE DE PRE-PUBLICACIONES





Locking-free finite element methods for poroelasticity ∗
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Abstract

We propose a new formulation along with a family of finite element schemes for the
approximation of the interaction between fluid motion and linear mechanical response
of a porous medium, known as Biot’s consolidation problem. The system is recast in
terms of displacement, pressure, and volumetric stress, and both continuous and discrete
formulations are analyzed as compact perturbations of invertible problems employing
a Fredholm argument. Numerical results indicate the satisfactory performance and
competitive accuracy of the introduced methods.
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1 Introduction

Linear poroelasticity equations consist of a momentum conservation for a porous skele-
ton, coupled with mass conservation of a diffusive flow within the medium. In its basic
form introduced in [4], the system allows to describe physical loading of porous layers and
the change of hydraulic equilibrium in a fluid-structure system; and serves as the classi-
cal model for subsurface consolidation processes and it has applications in many scenarios
of high practical importance, such as petroleum production, geological CO2 sequestration,
waste disposal, pile foundations, perfusion of bones and soft living tissues, etc. The success
in accurately replicating poroelasticity solutions using numerical methods is often affected
by the presence of two unphysical scenarios: spurious pressure modes and locking phe-
nomena. Here we propose a three-field formulation of the model problem, where classical
finite element methods can be employed straightforwardly without the risk of producing
the aforementioned phenomena. We remark that the additional third unknown introduced
in the model is a scalar field (and contains information about stresses), which makes the
formulation very appealing from the computational viewpoint.
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Related work and specifics of this contribution. The stability of a semidiscrete finite el-
ement (FE) method applied to linear poroelasticity was studied in the early work [21].
Mixed-primal FE formulations to approximate the solid displacement, the fluid flux and
the pore pressure were introduced in [22, 26]. Primal and primal-mixed discontinuous
Galerkin (DG) approximations of linear poroelasticity were proposed and analyzed in [7, 19],
least-squares mixed FE methods were also applied for Biot’s consolidation system in [18],
pressure-stabilized methods have been employed in [27, 3], and [28] presents a mixed-mixed
formulation for the same problem, where the unknowns are the Cauchy stress, the displace-
ment, the pressure and the fluid flux, and a mixed-mixed FE method follows the same
continuous setting.

Our goal is to present a stable and convergent conforming FE method for the discretiza-
tion of the model problem, where the volumetric contributions to the total stress are merged
into an additional unknown, yielding a saddle point formulation that can be analyzed by
means of a Fredholm alternative, after realizing that the problem is a compact perturbation
of a Stokes-like invertible system. More precisely, in the coupled variational formulation
there is a zero order term with a “wrong sign” which causes the loss of invertibility of the
associated operator. However, the compactness of the embedding H1(Ω) ↪→ L2(Ω) allows
one to make use of a Fredholm alternative to analyze its solvability (see similar approaches
in [8, 13, 14]). In addition, a generic Galerkin scheme is constructed, whose solvability
properties follow closely those from the continuous variational form, and more importantly,
given that specific FE spaces are chosen adequately, it is stable even in the incompressible
limit (λ → ∞). We emphasize that the latter means that all constants in the estimates
below are independent of the Lamé parameter λ.

Outline. The layout of this paper is as follows. In the remainder of this section we recall
some needed notation and general definitions. Section 2 summarizes the model equations
of linear poroelasticity, including its strong and weak forms, and boundary conditions con-
sidered in the subsequent analysis. The Galerkin scheme is introduced in Section 3, where
also the corresponding stability analysis and convergence are derived. In particular, in
Section 3.3 we make precise the definition of the involved discrete spaces, recall some ap-
proximation properties, and state the theoretical error bounds. Finally, Section 4 collects
several numerical results and benchmark test cases illustrating the accuracy of the proposed
methods.

Preliminaries. Standard notation will be adopted for Lebesgue and Sobolev spaces. More-
over, M and M will denote the corresponding vectorial and tensorial counterparts of the
generic scalar functional space M and ‖ · ‖, with no subscripts, will stand for the natural
norm of either an element or an operator in any product functional space. For instance,
if Θ ⊆ Rd, d = 2, 3 is a domain, Λ ⊆ Rd is a Lipschitz surface, and r ∈ R, we define
Hr(Θ) := [Hr(Θ)]d and Hr(Λ) := [Hr(Λ)]d. By 0 we will refer to the generic null vec-
tor (including the null functional and operator), and we will denote by C and c, with or
without subscripts, bars, tildes or hats, generic constants independent of the discretization
parameters, which may take different values at different occurrences.
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2 Governing equations and well-posedness analysis

2.1 Proposed three-field formulation and boundary conditions

Let us consider a homogeneous porous matrix containing a mixture of incompressible grains
and interstitial fluid. We assume that this material body occupies a bounded and simply
connected domain Ω ⊂ Rd, d = 2, 3. For all t > 0, given a body force f(t) : Ω → Rd and
a volumetric fluid source (or sink) s(t) : Ω → R, the classical Biot consolidation problem
(cf. [4]) consists in finding the displacements of the porous skeleton, u(t) : Ω→ Rd and the
pore pressure of the fluid, p(t) : Ω→ R, such that

∂t
(
c0p+ α(divu)

)
− 1

η
div[κ(∇p− ρg)] = s in Ω, (2.1)

σ = λ(divu)I + 2µε(u)− pI in Ω, (2.2)

−divσ = f in Ω, (2.3)

where σ is the total Cauchy solid stress, ε(u) = 1
2(∇u + ∇uT ) is the infinitesimal strain

tensor (symmetrized gradient of displacements), κ is the permeability of the porous solid
(here assumed isotropic and satisfying 0 < κ1 ≤ κ(x) ≤ κ2 < ∞, for all x ∈ Ω), λ, µ are
the Lamé constants of the solid, c0 > 0 is the constrained specific storage coefficient, α > 0
is the so-called Biot-Willis parameter, g is the gravity acceleration (constant and aligned
with the vertical direction), η > 0, ρ > 0 are the viscosity and density of the pore fluid, and
the term c0p+α(divu) represents the total fluid content in the domain (fluid pressure plus
the material volume).

Notice that (2.2) states the constitutive law of the solid (differing from the classical linear
elastic model in that here p is the fluid pressure), equation (2.3) represents momentum
conservation of the porous medium (under the assumption that the solid deformations are
much slower than the fluid flow rate), whereas mass conservation of the fluid obeying a
Darcy regime, is accounted for by (2.1). Using Hölder continuity assumptions for rather
standard boundary and initial data, the solvability of (2.1)-(2.3) has been established in
[23].

In order to illustrate the main ideas of the new formulation and its discretization, we will
restrict the discussion to a static problem consisting of (2.2),(2.3) coupled with the relation

c0p+ α(divu)− 1

η
div[κ(∇p− ρg)] = s in Ω, (2.4)

arising from e.g. Euler time discretization of (2.1) (and making abuse of notation in s).
Time dependence of field variables and data can be therefore dropped. Let us further
consider the auxiliary unknown representing the volumetric part of the total stress (also
may be regarded as a pseudo total pressure) defined as

φ := p− λdivu. (2.5)

Therefore (2.2) and (2.4) read, respectively,

σ = 2µε(u)− φI,

(
c0 +

α

λ

)
p− α

λ
φ− 1

η
div[κ(∇p− ρg)] = s in Ω. (2.6)
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We assume that the domain boundary is disjointly split into a part where fluid pressure
is specified and a part where displacements are imposed ∂Ω = Γp∪Γu, Γp∩Γu = ∅. System
(2.5)-(2.6) is then complemented with suitable boundary conditions

p = pΓ, σn = h on Γp, and u = uΓ, (κ∇p) · n = j on Γu, (2.7)

where n is the exterior unit normal vector on ∂Ω, h is a known load vector, and j is an
imposed pressure flux.

2.2 Weak formulation

Homogeneous boundary data will be assumed for sake of conciseness of the presentation,
but we stress that (2.7) can be incorporated later on, using classical lifting arguments. Let
us multiply (2.3),(2.5),(2.6) by adequate test functions and proceed to integrate by parts in
such a way that second order derivatives are removed, and the following weak formulation
holds: Find u ∈ H, p ∈ Q, φ ∈ Z such that

a1(u,v) + b1(v, φ) = F (v) ∀v ∈ H, (2.8)

a2(p, q) − b2(q, φ) = G(q) ∀q ∈ Q, (2.9)

b1(u, ψ) + b2(p, ψ) − c(φ, ψ) = 0 ∀ψ ∈ Z, (2.10)

where the boundary treatment suggests to define the involved functional spaces as

H := H1
Γu

(Ω) = {v ∈ H1(Ω) : v|Γu = 0}, Z := L2(Ω),

Q := H1
Γp

(Ω) = {q ∈ H1(Ω) : q|Γp = 0},

and the bilinear forms a1 : H×H→ R, a2 : Q×Q→ R, b1 : H× Z→ R, b2 : Q× Z→ R,
c : Z× Z→ R, and linear functionals F : H→ R, G : Q→ R are specified in the following
way

a1(u,v) := 2µ

∫
Ω
ε(u) : ε(v), a2(p, q) :=

(
c0

α
+

1

λ

)∫
Ω
pq +

1

αη

∫
Ω
κ∇p · ∇q, (2.11)

b1(v, ψ) := −
∫

Ω
ψ div v, b2(q, ψ) :=

1

λ

∫
Ω
qψ, c(φ, ψ) :=

1

λ

∫
Ω
φψ, (2.12)

F (v) :=

∫
Ω
f · v, G(q) :=

ρ

αη

∫
Ω
κg · ∇q − ρ

αη
〈κg · n, q〉Γu

+
1

α

∫
Ω
sq, (2.13)

where 〈·, ·〉Γu
stands for the duality pairing between H

−1/2
00 (Γu) and H

1/2
00 (Γu) and

H
1/2
00 (Γu) := {q|Γu : q ∈ H1(Ω), q = 0 on Γp}.

In addition, we also define an auxiliary uncoupled displacement-volumetric stress prob-
lem as: find (u, φ) ∈ H× Z such that

M±((u, φ), (v, ψ)) = H(v, ψ), ∀(v, ψ) ∈ H× Z, (2.14)

where

M±((u, φ), (v, ψ)) := a1(u,v) + b1(v, φ)± b1(u, ψ), and H(v, ψ) = F (v),

for all (u, φ), (v, ψ) ∈ H× Z.
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2.3 Stability

Let us now discuss the stability properties of the bilinear forms and functionals appearing
in (2.8)–(2.10). We start by observing that all the bilinear forms are bounded:

|a1(u,v)| ≤ 2µCk,2‖u‖1,Ω‖v‖1,Ω, u,v ∈ H,

|a2(p, q)| ≤ max

{
c0

α
+

1

λ
,
κ2

αη

}
‖p‖1,Ω‖q‖1,Ω, p, q ∈ Q,

|b1(v, ψ)| ≤
√
n‖v‖1,Ω‖ψ‖0,Ω, v ∈ H, ψ ∈ Z,

|b2(q, ψ)| ≤ λ−1‖q‖1,Ω‖ψ‖0,Ω, q ∈ Q, ψ ∈ Z,

|c(φ, ψ)| ≤ λ−1‖φ‖0,Ω‖ψ‖0,Ω, φ, ψ ∈ Z.

(2.15)

Above, Ck,2 is one of the positive constant satisfying

Ck,1‖v‖21,Ω ≤ ‖ε(v)‖20,Ω ≤ Ck,2‖v‖21,Ω, ∀v ∈ H. (2.16)

In turn, the functionals F and G are also bounded:

|F (v)| ≤ ‖f‖0,Ω‖v‖1,Ω, v ∈ H,

|G(q)| ≤ α−1
(
ρη−1κ2‖g‖0,Ω + ρη−1κ2CΓ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
‖q‖1,Ω, q ∈ Q,

(2.17)
where CΓ > 0 is the continuity constant of the trace operator.

We now review the positivity of the forms a1, a2 and c. By using the inequality (2.16),
the uniform lower bound of κ, and according to the definition of the forms a1, a2 and c, it
readily follows that

a1(v,v) ≥ 2µCk,1‖v‖21,Ω, ∀v ∈ H,

a2(q, q) ≥ α−1 max{c0, κ1η
−1}‖q‖21,Ω + λ−1‖q‖20,Ω, ∀ q ∈ Q

c(ψ,ψ) = λ−1‖ψ‖20,Ω, ∀ψ ∈ Z.

(2.18)

Finally, the bilinear form b1 satisfies the continuous inf-sup condition (see e.g. [17]):

sup
v∈H\0

b1(v, ψ)

‖v‖1,Ω
≥ β‖ψ‖0,Ω ∀ψ ∈ Z, (2.19)

with β > 0 only depending on Ω.

2.4 Solvabilty and continuous dependence result

Now, we establish the well-posedness of problem (2.8)–(2.10). We start with the corre-
sponding continuous dependence result.

Lemma 2.1 Let (u, p, φ) ∈ H×Q×Z be a solution of the system (2.8)–(2.10). Then there
exists Cstab > 0 independent of λ, such that

‖u‖1,Ω + ‖p‖1,Ω + ‖φ‖0,Ω ≤ Cstab
(
‖f‖0,Ω + ‖g‖0,Ω + ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
.
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Proof. First, choosing v = u in (2.8) and ψ = φ in (2.10), and combining both equations,
we easily obtain

a1(u,u)− b2(p, φ) + c(φ, φ) = F (u),

which together with the positivity of a1 and c in (2.18), and the continuity of b2 and F in
(2.15) and (2.17), respectively, implies

2µCk,1‖u‖21,Ω − λ−1‖p‖1,Ω‖φ‖0,Ω + λ−1‖φ‖20,Ω ≤ ‖f‖0,Ω‖u‖1,Ω. (2.20)

In turn, choosing q = p in (2.9), we have

a2(p, p)− b2(p, φ) = G(p),

which in combination with the positivity of a2 in (2.18) and the continuity of b2 and G in
(2.15) and (2.17), respectively, implies

α−1 max{c0, κ1η
−1}‖p‖21,Ω + λ−1‖p‖20,Ω − λ−1‖p‖1,Ω‖φ‖0,Ω

≤ α−1
(
ρη−1κ2‖g‖0,Ω + ρη−1κ2CΓ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
‖p‖1,Ω.

(2.21)

Then, adding (2.20) and (2.21), and utilizing the inequality −2ab ≥ −a2 − b2, we get

2µCk,1‖u‖21,Ω + α−1 max{c0, κ1η
−1}‖p‖21,Ω

≤ ‖f‖0,Ω‖u‖1,Ω + α−1
(
ρη−1κ2‖g‖0,Ω + ρη−1κ2CΓ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
‖p‖1,Ω,

(2.22)
which readily gives

‖u‖1,Ω + ‖p‖1,Ω ≤ c
(
‖f‖0,Ω + ‖g‖0,Ω + ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
, (2.23)

with c > 0 independent of λ.

Now, from the inf-sup condition (2.19) with ψ = φ and using (2.8), we obtain

β‖φ‖0,Ω ≤ sup
v∈H\0

b1(v, φ)

‖v‖1,Ω
= sup

v∈H\0

F (v)− a1(u,v)

‖v‖1,Ω
≤ ‖f‖0,Ω + 2µCk,2‖u‖1,Ω, (2.24)

which combined with (2.23), implies

‖φ‖0,Ω ≤ c̃
(
‖f‖0,Ω + ‖g‖0,Ω + ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
.

The latter bound and inequality (2.23) imply the desired estimate, which concludes the
proof. �

Next, we address the unique solvability of (2.8)–(2.10). To that end, we first observe that
due to the nonsymmetry of (2.8)-(2.10), its solvability analysis cannot be straightforwardly
placed in the framework of the classical Babuška-Brezzi theory. We therefore redefine system
(2.8)–(2.10) as the following operator problem: Find ~u := (u, p, φ) ∈ V := H×Q× Z, such
that

(A+K)~u = F , (2.25)
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where A : V→ V, K : V→ V and F ∈ V are defined as:

〈A(~u), ~v〉V×V := a1(u,v) + b1(v, φ)− b1(u, ψ) + c(φ, ψ) + a2(p, q)

〈K(~u), ~v〉V×V := b2(p, ψ)− b2(q, φ)

〈F , ~v〉V×V := F (v) +G(q),

(2.26)

for all ~u = (u, p, φ), ~v = (v, q, ψ) ∈ V.

In this way, similarly to [9, 13], if one proves that A is invertible, K is compact and
(A + K) is injective, then the Fredholm alternative theory implies unique solvability of
(2.25), and equivalently of (2.8)–(2.10).

We begin by proving the compactness of K.

Lemma 2.2 The operator K defined in (2.26) is compact.

Proof. Let B2 : Q→ Z be the operator induced by the bilinear form b2, that is, the operator
defined by

〈B2(q), ψ〉0,Ω = b2(q, ψ) =
1

λ

∫
Ω
qψ ∀ q ∈ Q, ∀ψ ∈ Z,

where 〈·, ·〉0,Ω denotes the inner product in L2(Ω). Moreover, let I : L2(Ω) → L2(Ω) be

the identity operator and ic be the compact embedding from H1(Ω) into L2(Ω). Then, it is
straightforward to realize that B2 = λ−1I ◦ ic, which implies that B2 is a compact operator,
and so is B∗2.

Owing to the above, and noting that K(~u) = (0,B2(p),−B∗2(φ)) for all ~u = (u, p, φ), we
conclude the proof. �

We continue with the invertibility of A.

Lemma 2.3 The operator A defined in (2.26) is invertible.

Proof. Given F := (FH,FQ,FZ) ∈ V, we first observe that proving the invertibility of A, is
equivalent to proving the existence of a unique ~u ∈ V, such that

A(~u) = F , (2.27)

which in turn is equivalent to proving the unique solvability of the two uncoupled problems:
Find (u, φ) ∈ H× Z, such that

a1(u,v) + b1(v, φ) = FH(v) ∀v ∈ H,

b1(u, ψ)− c(φ, ψ) = FZ(ψ) ∀ψ ∈ Z,
(2.28)

and: Find p ∈ Q, such that

a2(p, q) = FQ(q) ∀ q ∈ Q, (2.29)

where FH, FQ and FZ are the functionals induced by FH, FQ and FZ, respectively.

According to the stability properties of the forms a1, b1 and c discussed above, namely,
continuity of a1, b1, and c, inf-sup of b1, ellipticity of a1 and positive-semidefinitivity of c,
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the well-posedness of (2.28) follows from a straightforward application of [16, Lemma 3.4].
In turn, owing to the ellipticity and continuity of a2, the unique solvability of (2.29) holds
by virtue of the Lax–Milgram lemma. �

The last step consists in proving injectivity of the full operator (A+K).

Lemma 2.4 The map (A+K) is one-to-one.

Proof. It suffices to show that the unique solution to the homogeneous problem

a1(u,v) + b1(v, φ) = 0 ∀v ∈ H, (2.30)

a2(p, q) − b2(q, φ) = 0 ∀q ∈ Q, (2.31)

b1(u, ψ) + b2(p, ψ) − c(φ, ψ) = 0 ∀ψ ∈ Z, (2.32)

is the null vector in V. To that end, we apply basically the same steps in the proof of
Lemma 2.1. In fact, we let (u, p, φ) ∈ V be the solution of (2.30)–(2.32), choose v = u and
ψ = φ in (2.30) and (2.32), respectively, and combine the two equations, to obtain

a1(u,u)− b2(p, φ) + c(φ, φ) = 0. (2.33)

Then, by choosing q = p in (2.30) and adding the resulting equation to (2.33), we obtain

a1(u,u) + a2(p, p)− 2b2(p, φ) + c(φ, φ) = 0,

which, along with the positivity of a1, a2 and c in (2.18), the continuity of b2 in (2.15), and
the inequality −2ab ≥ −a2 − b2, implies

2µCk,1‖u‖21,Ω + α−1 max{c0, κ1η
−1}‖p‖21,Ω ≤ 0.

From the previous inequality we readily infer that u = 0 and p = 0. In turn, by applying
the inf-sup condition of b1 in (2.19) with ψ = φ, and using (2.30) and the continuity of a1,
we easily obtain

β‖φ‖0,Ω ≤ sup
v∈H\0

|b1(v, φ)|
‖v‖1,Ω

= sup
v∈H\0

|a1(u,v)|
‖v‖1,Ω

≤ 2µCk,2‖u‖1,Ω,

which implies that φ = 0 and concludes the proof. �

Combination of Lemmas 2.1, 2.2, 2.3 and 2.4 with the Fredholm alternative theory for
compact operators, implies the main result of this section, stated in the following theorem.

Theorem 2.5 Given f ∈ L2(Ω), g ∈ L2(Ω) and s ∈ L2(Ω), there exists a unique solution
(u, p, φ) ∈ H×Q× Z to the coupled problem (2.8)-(2.10). Moreover, there exists a positive
constant Cstab, independent of λ, such that

‖u‖1,Ω + ‖p‖1,Ω + ‖φ‖0,Ω ≤ Cstab
(
‖f‖0,Ω + ‖g‖0,Ω + ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
.
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3 The Galerkin method

In this section we introduce the Galerkin scheme of (2.8)–(2.10). By considering arbitrary
finite dimensional subspaces we analyze its solvability and provide the corresponding Céa’s
estimate. We begin by introducing the generic discrete spaces

Hh ⊆ H, Qh ⊆ Q, and Zh ⊆ Z,

where the subscript h stands for the size of a regular triangulation Th of Ω̄ made up of
triangles K (when d = 2) or tetrahedra K, (when d = 3) of diameter hK , that is h :=
max {hK : K ∈ Th}.

In this way, the Galerkin scheme associated to (2.8)–(2.10) reads: Find uh ∈ Hh, ph ∈ Qh

and φh ∈ Zh, such that

a1(uh,vh) + b1(vh, φh) = F (vh) ∀vh ∈ Hh, (3.1)

a2(ph, qh) − b2(qh, φh) = G(qh) ∀qh ∈ Qh, (3.2)

b1(uh, ψh) + b2(ph, ψh) − c(φh, ψh) = 0 ∀ψh ∈ Zh, (3.3)

where the bilinear forms a1, a2, b1, b2, c and the functionals F and G are defined in (2.11)–
(2.13).

3.1 Existence and uniqueness of solution

It is clear that all the bilinear forms and functionals preserve the stability properties (2.15)
and (2.17) on the corresponding discrete spaces. In addition, the bilinear forms a1, a2 and
c preserve the positivity properties (2.18) on Hh, Qh and Zh, respectively. However, the
inf-sup condition (2.19) is not necessarily inherited at the discrete level, reason why, from
now on we assume that there exists a positive constant β̂, independent of h, such that

sup
vh∈Hh\0

b1(vh, ψh)

‖vh‖1,Ω
≥ β̂‖ψ‖0,Ω ∀ψh ∈ Zh. (3.4)

As we will see next in Section 3.3, the pair (Hh,Zh) can be chosen as a pair of stable finite
element subspaces for the Stokes problem.

The following theorem establishes the well-posedness of the Galerkin scheme (3.1)-(3.3).

Theorem 3.1 Assume that the discrete inf-sup condition (3.4) holds. Then, given f ∈
L2(Ω), g ∈ L2(Ω) and s ∈ L2(Ω), there exists a unique solution (uh, ph, φh) ∈ Hh×Qh×Zh
to the discrete coupled problem (3.1)-(3.3). Moreover, there exists a positive constant Ĉstab,
independent of h and λ, such that

‖uh‖1,Ω + ‖ph‖1,Ω + ‖φh‖0,Ω ≤ Ĉstab
(
‖f‖0,Ω + ‖g‖0,Ω + ‖g · n‖−1/2,Γu

+ ‖s‖0,Ω
)
. (3.5)

Proof. Since Hh, Qh and Zh are finite dimensional spaces, for the solvability analysis it
suffices to prove that the solution of the homogeneous problem is the trivial one. To do
that, we let uh ∈ Hh, ph ∈ Qh and φh ∈ Zh be the solution of (3.1)-(3.3) with f = 0, g = 0
and s = 0. Then, proceeding identically as in the proof of Lemma 2.4, that is, combining
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equations (3.1) and (3.3) with vh = uh and ψh = φh, respectively, adding (3.3) with qh = ph
to the resulting equation, and using the positivity of a1, a2 and c in (2.18), the continuity
of b2 in (2.15), and the inequality −2ab ≥ −a2 − b2, we obtain

2µCk,1‖uh‖21,Ω + α−1 max{c0, κ1η
−1}‖ph‖21,Ω ≤ 0,

from which uh = 0 and ph = 0. Furthermore, from the inf-sup condition (3.4) with ψh = φh,
and the first equation of (3.1), we easily obtain φh = 0.

Similarly, the continuous dependence result (3.5) can be derived following exactly the
same steps of the proof of Lemma 2.1. We omit further details. �

3.2 A priori error estimate

We now derive the corresponding Céa’s estimate. This result is established next.

Theorem 3.2 Assume that the discrete inf-sup condition (3.4) holds. Let (u, p, φ) ∈ H×
Q×Z and (uh, ph, φh) ∈ Hh×Qh×Zh be the unique solutions of the continuous and discrete
coupled problems (2.8)-(2.10) and (3.1)-(3.3), respectively. Then, there exists CCéa > 0,
independent of h and λ, such that

‖u−uh‖1,Ω+‖p−ph‖1,Ω+‖φ−φh‖0,Ω ≤ CCéa

(
dist(u,Hh)+dist(p,Qh)+dist(φ,Zh)

)
. (3.6)

Proof. Let us first introduce the discrete space

Kh :=
{
vh ∈ Hh : b1(vh, ψh) = −b2(ph, ψh) + c(φh, ψh), ∀ψh ∈ Zh

}
,

which is clearly non-empty since uh ∈ Kh and since the discrete inf-sup condition (3.4)
holds. In addition, it is not difficult to see that the following inequality holds (see for
instance [12, Theorem 2.6]):

dist(u,Kh) ≤ C dist(u,Hh). (3.7)

Next, in order to simplify the subsequent analysis, we write eu = u−uh, ep = p−ph and

eφ = φ − φh. As usual, for arbitrary v̂h ∈ Kh, q̂h ∈ Qh and ψ̂h ∈ Zh, we shall decompose
these errors into

eu = ru + χu, ep = rp + χp, and eφ = rφ + χφ, (3.8)

with
ru := u− v̂h ∈ H, χu := v̂h − uh ∈ Hh,

rp := p− q̂h ∈ Q, χp := q̂h − ph ∈ Qh,

rφ := φ− ψ̂h ∈ Z, χφ := ψ̂h − φh ∈ Zh.

(3.9)

Notice that χu ∈ Kerh(b1) :=
{
vh ∈ Hh : b1(vh, ψh) = 0, ∀ψh ∈ Zh

}
. Observe also that

proving the existence of a positive constant C, independent of h and λ, such that

‖χu‖1,Ω + ‖χp‖1,Ω + ‖χφ‖0,Ω ≤ C(‖ru‖1,Ω + ‖rp‖1,Ω + ‖rφ‖0,Ω), (3.10)
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then we can simply use the triangle inequality and the fact that v̂h, q̂h and ψ̂h are arbitrary,
to obtain

‖eu‖1,Ω + ‖ep‖1,Ω + ‖eφ‖0,Ω ≤ (1 + C)
(

dist(u,Kh) + dist(p,Qh) + dist(φ,Zh)
)
,

which together to (3.7) implies (3.6). Therefore, in the sequel we focus on proving (3.10).
To that end, we first establish the corresponding Galerkin orthogonality property:

a1(eu,vh) + b1(vh, eφ) = 0 ∀vh ∈ Hh, (3.11)

a2(ep, qh) − b2(qh, eφ) = 0 ∀qh ∈ Qh, (3.12)

b1(eu, ψh) + b2(ep, ψh) − c(eφ, ψh) = 0 ∀ψh ∈ Zh. (3.13)

Then, from (3.11) with vh = χu ∈ Kerh(b1), and considering the decomposition (3.8), we
have

a1(χu,χu) = −a1(ru,χu)− b1(χu, rφ),

which together to the ellipticity of a1 (cf. (2.18)) and the continuity of a1 and b1 (cf. (2.15)),
implies

‖χu‖1,Ω ≤ C1{‖ru‖1,Ω + ‖rφ‖0,Ω}, (3.14)

with C1 > 0, independent of h and λ. Notice that the latter inequality implies

‖eu‖1,Ω ≤ (1 + C1)‖ru‖1,Ω + C1‖rφ‖0,Ω}. (3.15)

In turn, from the inf-sup condition (3.4), the first equation of (3.11) and the continuity
of a1 and b1 (cf. (2.15)), we have

‖χφ‖0,Ω ≤ β−1 sup
vh∈Hh\0

|b1(vh, χφ)|
‖vh‖1,Ω

= β−1 sup
vh∈Hh\0

|a1(eu,vh) + b1(vh, rφ)|
‖vh‖1,Ω

≤ β−1 (2µCk,2‖eu‖1,Ω +
√
n‖rφ‖0,Ω) ,

which together to (3.15), implies

‖χφ‖0,Ω ≤ C2(‖ru‖1,Ω + ‖rφ‖0,Ω), (3.16)

with C2 > 0, independent of h and λ. In addition, similarly as before, we observe that
(3.16) and the triangle inequality imply

‖eφ‖0,Ω ≤ C2‖ru‖1,Ω + (1 + C2)‖rφ‖0,Ω. (3.17)

Finally, from (3.12), the ellipticity of a2 (cf. (2.18)), and the continuity of a2 and b2, we
obtain

α−1 max{c0, κ1η
−1}‖χp‖21,Ω ≤ a2(χp, χp) = −a2(rp, χp) + b2(χp, eφ)

≤ 1

α
max{c0 +

α

λ
,
κ2

η
}‖rp‖1,Ω‖χp‖1,Ω + λ−1‖eφ‖0,Ω‖χp‖1,Ω,

which together to (3.17), implies

‖χp‖1,Ω ≤ C3

(
max{c0 +

α

λ
,
κ2

η
}‖rp‖1,Ω + λ−1‖ru‖1,Ω + λ−1‖rφ‖0,Ω

)
. (3.18)
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Therefore, summing up inequalities (3.14), (3.16) and (3.18), we get

‖χu‖1,Ω + ‖χp‖1,Ω + ‖χφ‖0,Ω ≤ (C1 + C2 + λ−1C3)‖ru‖1,Ω + C3 max{c0 + α
λ ,

κ2
η }‖rp‖1,Ω

+(C1 + C2 + λ−1C3)‖rφ‖0,Ω,

which yields the result. �

Remark 3.1 max{c0 + α
λ ,

κ2
η } and (C1 + C2 + λ−1C3) in the previous inequality must be

understood as constants independent of λ since, if λ goes to infinity (when the locking
phenomenon occurs), λ−1C3 and λ−1α are negligible.

3.3 Particular choice of finite elements

Now, we provide three concrete examples of finite elements subspaces to approximate the
solution of (2.8)–(2.10). To do that, given an integer k ≥ 0 and a set S of Rd, in the sequel
we denote by Pk(S) the space of polynomial functions on S of degree ≤ k.

Hood-Taylor + Lagrange. Let k ≥ 0 be an integer. Then, the well known Hood-Taylor
element (see, e.g. [17]) consists of the pair (Hh,Zh), where

Hh :=
{
vh ∈ [C(Ω)]d : vh

∣∣
K
∈ [Pk+2(K)]d ∀K ∈ Th, vh = 0 on Γu

}
and

Zh :=
{
ψh ∈ C(Ω) : ψh

∣∣
K
∈ Pk+1(K) ∀K ∈ Th

}
.

In turn, given an integer l ≥ 0, to approximate the variable p we can simply choose the
discrete space

Qh :=
{
qh ∈ C(Ω) : qh

∣∣
K
∈ Pl+1(K) ∀K ∈ Th, qh = 0 on Γp

}
. (3.19)

It is well known that the pair (Hh,Zh) satisfies the inf-sup condition (3.4) (see, for
instance [5, 6, 17]). This fact and Theorem 3.1 imply the well-posedness of problem (3.1)–
(3.3).

Let us now recall the approximation properties of the subspaces specified above.

(APu
h ) There exits C > 0, independent of h, such that for all u ∈ Hk+3(Ω), there holds

inf
vh∈Hh

‖u− vh‖1,Ω ≤ Chk+2‖u‖k+3,Ω.

(APp
h) There exits C > 0, independent of h, such that for all p ∈ Hl+2(Ω), there holds

inf
qh∈Qh

‖p− qh‖1,Ω ≤ Chl+1‖p‖l+2,Ω.

(APφ
h) There exits C > 0, independent of h, such that for all φ ∈ Hk+2(Ω), there holds

inf
ψh∈Zh

‖φ− ψh‖0,Ω ≤ Chk+2‖φ‖k+2,Ω.
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Owing to these approximation properties, we now can establish the theoretical rate of
convergence of our method.

Theorem 3.3 Let (u, p, φ) ∈ H × Q × Z and (uh, ph, φh) ∈ Hh × Qh × Zh be the unique
solutions of (2.8)–(2.10) and (3.1)–(3.3), respectively. Given, k, l ≥ 0, assume that u ∈
Hk+3(Ω), p ∈ Hl+1(Ω) and φ ∈ Hk+2(Ω). Then, there exist C1, C2, > 0, independent of h
and λ, such that

‖u−uh‖1,Ω + ‖p− ph‖1,Ω + ‖φ−φh‖0,Ω ≤ C1h
k+2
{
‖u‖k+3,Ω + ‖φ‖k+2,Ω

}
+C2h

l+1‖p‖l+2,Ω.
(3.20)

Proof. It follows from the Céa estimate (3.6), and the approximation properties (APu
h ),

(APp
h) and (APφ

h).

�

MINI–element + Lagrange. In what follows, for the sake of conciseness of the presen-
tation we restrict ourselves to the 2D case. For each K ∈ Th, we let P1,b(K) be the space
(see, e.g. [17])

P1,b(K) := [P1(K)⊕ span{bK}]2,

where bK := ϕ1ϕ2ϕ3 is a P3 bubble function in K, and ϕ1, ϕ2 , ϕ3 are the barycentric
coordinates of K. Then, the MINI-element (see, e.g. [17]) is the pair (Hh,Zh), where

Hh :=
{
vh ∈ [C(Ω)]2 : vh

∣∣
K
∈ P1,b(K) ∀K ∈ Th, vh = 0 on Γu

}
and

Zh :=
{
ψh ∈ C(Ω) : ψh

∣∣
K
∈ P1(K) ∀K ∈ Th

}
.

In addition, to approximate the variable p we now choose the discrete space

Qh :=
{
qh ∈ C(Ω) : qh

∣∣
K
∈ P1(K) ∀K ∈ Th, qh = 0 on Γp

}
.

As for the Hood–Taylor element defined above, it is well-known that the pair (Hh,Zh)
satisfies the inf-sup condition (3.4) (see, for instance [10, 17]). Then, owing to Theorem 3.1,
the discrete problem (3.1)–(3.3) defined with the subspaces above is clearly well posed.

Let us now recall the approximation properties of these subspaces.

(ÂP
u

h ) There exits C > 0, independent of h, such that for all u ∈ H2(Ω), there holds

inf
vh∈Hh

‖u− vh‖1,Ω ≤ Ch‖u‖2,Ω.

(ÂP
p

h) There exits C > 0, independent of h, such that for all p ∈ H2(Ω), there holds

inf
qh∈Qh

‖p− qh‖1,Ω ≤ Ch‖p‖2,Ω.

(ÂP
φ

h) There exits C > 0, independent of h, such that for all φ ∈ H1(Ω), there holds

inf
ψh∈Zh

‖φ− ψh‖0,Ω ≤ Ch‖φ‖1,Ω.
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Owing to these approximation properties, we now can establish the theoretical rate of
convergence of our method.

Theorem 3.4 Let (u, p, φ) ∈ H × Q × Z and (uh, ph, φh) ∈ Hh × Qh × Zh be the unique
solutions of (2.8)–(2.10) and (3.1)–(3.3), respectively. Assume that u ∈ H2(Ω), p ∈ H2(Ω)
and φ ∈ H1(Ω). Then, there exist C > 0, independent of h and λ, such that

‖u− uh‖1,Ω + ‖p− ph‖1,Ω + ‖φ− φh‖0,Ω ≤ Ch
{
‖u‖2,Ω + ‖p‖2,Ω + ‖φ‖1,Ω

}
. (3.21)

Proof. It follows from the Céa estimate (3.6), and the approximation properties (ÂP
u

h ),

(ÂP
p

h) and (ÂP
φ

h).

�

Stabilized Lagrange + Lagrange. It is often desirable to provide approximations where
the pair (Hh,Zh) would not necessarily fulfil the discrete inf-sup condition (3.4), but it
would achieve a more general concept of stability (weak coercivity, see (3.22) below). The
stabilization consists in adding terms to the discrete problem to enforce such a condition
(see [11]). The most appealing particular advantage is that equal-order discretizations for
u and φ are allowed. Therefore, for an integer k ≥ 1 we will consider the spaces

Hh :=
{
vh ∈ [C(Ω)]d : vh

∣∣
K
∈ [Pk(K)]d ∀K ∈ Th, vh = 0 on Γu

}
,

Zh :=
{
ψh ∈ C(Ω) : ψh

∣∣
K
∈ Pk(K) ∀K ∈ Th

}
.

Lemma 3.5 (See [1]) Assume H : W → R is a continuous an linear functional, Wh is
a closed subspace of W, and the bilinear form M(·, ·) is either coercive or it satisfies the
discrete weak coercivity conditions:

sup
sh∈Wh\0

M(wh, sh)

‖sh‖W
≥ CW

1 ‖wh‖W and sup
wh∈Wh

M(wh, sh) > 0, (3.22)

∀wh ∈Wh and ∀ sh ∈Wh\0, respectively. Then the problem: find wh ∈Wh such that

M(wh, sh) = H(sh) ∀sh ∈Wh

has a unique solution satisfying ‖wh‖W ≤ CW
2 ‖H‖W′. Moreover

‖w −wh‖W ≤
(

1 +
CW

1

CW
2

)
inf

sh∈Wh

‖w − sh‖W .

In general, embedding the additional terms into expressions that vanish when the solu-
tion is sufficiently regular (for instance, residual contributions), leads to strong consistency
of the stabilized scheme. A rich variety of stabilized methods targeted for Stokes equations
is available from the literature (including e.g. pressure-projection stabilizations, variational
multiscale methods, etc) but here we focus only on one family of methods known as Reflected
Galerkin Least Squares (RGLS) schemes (see e.g. the review paper [2]). They consist in
approximating the problem for displacement and volumetric stress (2.14) by the augmented
discrete problem

M−RGLS

(
(uh, φh), (vh, ψh)

)
= H−RGLS(vh, ψh), ∀(vh, ψh) ∈ Hh × Zh, (3.23)
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where
M±RGLS

(
(uh, φh), (vh, ψh)

)
:= M±

(
(uh, φh), (vh, ψh)

)
+τ

∑
K∈Th

h2
K

(
−2µdiv[ε(uh)] +∇φh,−2µdiv[ε(vh)]∓∇ψh

)
0,K

and
H±RGLS(vh, ψh) := H(vh, ψh) + τ

∑
K∈Th

h2
K

(
f ,−2µdiv[ε(vh)]∓∇ψh

)
0,K

,

for a given stabilization constant τ > 0. It can be proved that the nonsymmetric form
M−RGLS(·, ·) is strongly coercive for any positive τ , and therefore problem (3.23) is uniquely
solvable and unconditionally stable in the sense of Lemma 3.5 using W = H×Z (see also [2,
Sect. 3.1]). If we takeM+ in definition of scheme (3.23), then we end up with the classical
Douglas-Wang scheme, and for k = 1, the problem (3.23) boils down to

a1(uh,vh) + b1(φh,vh)− b1(ψh,uh) + τ
∑
K∈Th

h2
K(∇φh,∇ψh)0,K

= F (vh) + τ
∑
K∈Th

h2
K(∇φh,∇ψh)0,K .

(3.24)

If one drops the last term in the RHS of (3.24), then we recover the reflected version of the
classical Brezzi-Pitkäranta method.

Convergence rates for stabilized methods depend on the stabilization parameters and on
the order of the approximations k. For RGLS discretizations, the choice of τ does not affect
the expected convergence rates: O(hk+1) for displacements in the L2−norm and O(hk) in
the H1−norm, whereas a decay of O(hk) is expected for the volumetric stress error in the
L2−norm (see [11]). Looking now at the pressure approximation, we choose Qh as in the
previous two FE families, and therefore the following convergence result holds

Theorem 3.6 Let (u, p, φ) ∈ H × Q × Z and (uh, ph, φh) ∈ Hh × Qh × Zh be the unique
solutions of (2.8)–(2.10) and (3.1)–(3.3), respectively. Assume that u ∈ Hk+1(Ω), p ∈
Hk+1(Ω) and φ ∈ Hk(Ω). Then, there exists C > 0, independent of h and λ, such that

‖u− uh‖1,Ω + ‖p− ph‖1,Ω + ‖φ− φh‖0,Ω ≤ Chk
{
‖u‖k+1,Ω + ‖p‖k+1,Ω + ‖φ‖k,Ω

}
.

Finally, we stress that regarding poroelasticity formulations, only a few stabilization strate-
gies have been applied to Biot consolidation problem, including a Galerkin least squares
method [25], and a pressure-projection scheme [3].

Remark 3.2 We end this section by pointing out that the continuous and discrete inf-sup
conditions (resp. (2.19) and (3.4)), are strictly necessary to obtain all the required estimates
independent of the parameter λ. In other words, without requiring these inf-sup conditions,
it is still possible to prove well-posedness of the continuous and discrete problems and the
corresponding Céa estimate. In fact, after simple computations, and without using the inf-
sup conditions, one can readily obtain that the operator A (cf. (2.26)) is invertible and A+K
is injective. However, by doing so one unfortunately obtain the continuous dependence result
and the Céa estimate with constants depending on λ which leads to unstable methods when
using, for example, a [P1]d×P1×P0 approximation, and λ is large (see Example 1 in Section
4 below).
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4 Numerical tests

We now provide a set of numerical examples putting into evidence some of the features
analyzed above. Namely, optimal convergence in the sense of Theorems 3.3,3.4 and 3.6, and
the locking-free property.

Example 1: convergence rates for a manufactured solution in 2D. Let us consider
a cantilever bracket with curved boundary where we propose the following smooth exact
solutions to (2.3),(2.5),(2.6)

u = a

(
sin2(πx1) sin(πx2) cos(πx2)
sin2(πx2) sin(πx1) cos(πx1)

)
, p = b sin(πx1) sin(πx2), φ = p− λ divu, (4.1)

and where the body force f and fluid source s can be simply determined from (4.1). We
choose the following set of model parameters: displacement and pressure scalings a =1e-4,
b = π; Young modulus E = 1e4, material permeability κ = 1e-7, Biot-Willis coefficient
α = 0.1, constrained specific storage c0 = 1e-5, and the Lamé constants are λ = Eν(1 +
ν)−1(1 − 2ν)−1, µ = E/(2 + 2ν). Here, and in all subsequent tests, we consider zero
gravitational forces.

The domain Ω is delimited by four curved boundaries parametrized as

Γ1 = {ω ∈ [0, 1] : x1 = ω + γ cos(πω) sin(πω), x2 = −γ cos(πω) sin(πω)},
Γ2 = {ω ∈ [0, 1] : x1 = 1 + γ cos(πω) sin(πω), x2 = ω − γ cos(πω) sin(πω)},
Γ3 = {ω ∈ [1, 0] : x1 = ω + γ cos(πω) sin(πω), x2 = 1− γ cos(πω) sin(πω)},
Γ4 = {ω ∈ [1, 0] : x1 = γ cos(πω) sin(πω), x2 = ω − γ cos(πω) sin(πω)},

where we take γ = −0.08. Boundary conditions are assigned as follows: nonhomogeneous
Dirichlet displacements and pressure normal fluxes j are set according to (4.1) on Γu =
Γ3 ∪ Γ4; nonhomogeneous Dirichlet pressure and Cauchy normal fluxes h are set according
to (4.1) on Γp = Γ1 ∪ Γ2.

The accuracy of the numerical approximation using the FE families listed in Section 3.3
(Hood-Taylor, MINI-element, and stabilized scheme (3.24)) can be assessed by partitioning
Ω into unstructured triangulations generated putting 2n+1 (n = 0, 1, . . . , 8) vertices on each
curve of the domain boundary. Relative errors between exact and approximate solutions
are to be computed on each refinement level according to

e(w) =
‖w − wh‖i,Ω
‖w‖i,Ω

, i = 0, 1,

where w denotes a generic non-zero scalar or vector field. Two sets of simulations were
performed in order to study the influence of the Poisson ratio. The first case corresponds
to a mild incompressibility ν = 0.4 and λ = 14285.7, whereas the second case focuses on a
quasi-incompressible regime with ν = 0.49999 and λ = 1.66e8. In the first case, we observe
optimal convergence rates for all methods, even for the lowest order discretization (see left
panels in Figure 1). While the orders of convergence of pressure and volumetric stress
approximations seem invariant to the drastic increase of ν, irrespective of the FE family
employed, the displacements are severely affected in the incompressibility limit when using
the lowest order approximation. This is clearly observed in the top-right plot of Figure 1,
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where the relative displacement error does not attain even a O(h) convergence with the
lowest order method. In Figure 2 we illustrate the converged numerical solution obtained
with the stabilized method (3.24), with stabilization constant τ = 1/60. These snapshots
correspond to the case ν = 0.49999 and λ = 1.66e8.

Example 2: footing problem. We now focus on the behaviour of the proposed meth-
ods when applied to the solution of the 2D footing test. The goal is to observe pressure,
volumetric stress and displacements incurred after that a rectangular block of porous soil
undergoes a load of intensity σ0 along a strip on top of it. The model parameters are
Ω = (−50, 50) × (0, 75), E =3e4 N/m2, κ =1e-4 m2/Pa, σ0 =1.5e4 N/m2 (see a similar
test in [15] for moderate Poisson ratios). In addition we put c0 =1e-3, α = 0.1, and here
we force the incompressibility limit by setting ν = 0.4995. Boundary conditions are set as
follows (see a sketch in the bottom right panel of Figure 3): u = 0 on Γ3 (left, right, and
bottom sides of the block); σn = h on Γ1 ∪ Γ2, where h = (0,−σ0)T on Γ1 and h = 0
otherwise; and p = 0 on ∂Ω. The domain is partitioned into 71272 unstructured triangles
using 35637 vertices.

The value of the Poisson ratio suggests that inf-sup unstable discretizations of displace-
ment and volumetric stress will produce spurious pressure modes. This phenomenon is
evidenced in Figure 3, where we depict the numerical solution obtained with the lowest or-
der discretization. Both the volumetric stress and the pressure profiles are populated with
oscillations, even with a quite fine mesh. On the other hand, at least in this particular case,
the computed displacements do not appear to suffer from locking. Next we perform again
the same test, this time using the MINI-element for the discretization of displacement and
volumetric stress, whereas the pressure field is approximated with piecewise linear continu-
ous elements. In contrast with the results collected in Figure 3, now in Figure 4 the pressure
and volumetric stress fields are stable and completely free from spurious oscillations.

Example 3: swelling of a sponge. Next, the implementation of the proposed schemes in
3D is tested by looking at the displacements incurred by swelling a porous block occupying
the domain Ω = (0, 1) × (0, 1) × (0, 1

2). The driving effect is simply a pressure difference
between the sides x1 = 0 and x1 = 1, going from p = 1e4 at x1 = 0 to zero pressure on
x1 = 1. Zero-flux conditions are imposed for pressure on the remainder of the boundary.
The normal components of the displacements are set to zero on the sides x1 = 0, x2 = 0
and x3 = 0, whereas zero normal stress is considered elsewhere on ∂Ω. Other model and
discretization parameters are listed in what follows: E = 8000, ν = 0.3, c0 = 0.001,
κ = 1e-5, ρ = α = 1, τ = 1/60. No external or internal forces are considered, and
neither fluid sources or sinks. The domain is partitioned into a structured tetrahedral mesh
of 62586 elements and 10976 vertices, and a stabilized method using (3.24) is employed
for the numerical approximation of displacements, volumetric stress and pressure. The
obtained results are depicted in Figure 5, where no pressure oscillations nor unphysically
small displacements are observed. We also simulate the swelling of an heterogeneous porous
medium, where we consider that the permeability is zero in the strip 0.45 ≤ x1 ≤ 0.55 and
otherwise we take κ = 1 (that is, five orders of magnitude larger than in the previous test).
The results are collected in the last row of Figure 5, where a much more pronounced swelling
is observed far from the slip-displacement boundaries, whereas on the non-porous region,
the material is swelling only due to the elastic compliance behaviour.

Example 4: one-dimensional consolidation benchmark. In our last test we focus
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on the consolidation behaviour of a thin porous column of height H and cross area W .
The top and bottom surfaces of the column are endowed with pervious (zero pore pressure
p = 0, constant mechanical load in the vertical direction σn = −σ0e3, and free to drain)
and impervious (zero pressure flux κ∇p · n = 0 and zero displacement u = 0) filtration
conditions, respectively. On the lateral walls we enforce zero horizontal displacements (in
both x1 and x2 directions), therefore Γp is the top side of the column, whereas Γu = ∂Ω\Γp.
Moreover, we now consider the general time-dependent system (2.1)-(2.3), and our goal is
to compare the obtained numerical approximations against the following exact solutions to
the adimensional pseudo-1D version of this problem (see e.g. [24, 20])

u∗ = 1− x∗ −
∞∑
k=0

2

M2
cos(Mx∗) exp(−M2t∗), p∗ =

∞∑
k=0

2

M
sin(Mx∗) exp(−M2t∗),

where the superscript ∗ denotes adimensional quantities and variables as follows x∗ = x3/H,
t∗ = (λ+ 2µ)κtH2, M = 1

2π(2k + 1), u∗ = u3(λ+ 2µ)/σ0H, p∗ = p/σ0.

As it stands, our analysis clearly does not cover the original time-dependent system, and
our goal is only to illustrate the performance of the proposed schemes applied to (2.1)-(2.3).
A semidiscretization of this problem using a backward Euler method with a fixed time-step
∆t yields

a1(un+1
h ,vh) + b1(vh, φ

n+1
h ) = Fn+1(vh) ∀vh ∈ Hh,

ã2(pn+1
h , qh)− b2(qh, φ

n+1
h ) = ∆tGn+1(qh) +

(
c0

α
+

1

λ

)∫
Ω
pnhqh − b2(qh, φ

n
h) ∀qh ∈ Qh,

b1(un+1
h , ψh) + b2(pn+1

h , ψh)− c(φn+1
h , ψh) = 0 ∀ψh ∈ Zh,

with ã2(p, q) :=

(
c0
α + 1

λ

)∫
Ω pq + ∆t

αη

∫
Ω κ∇p · ∇q, which implies that at each time-step we

need to solve a system of the form (3.1)-(3.3). Notice that the coefficients in the LHS of the
system are constant and so only the RHS needs to be re-assembled at each time iteration.
We choose the MINI-element + Lagrange approximation of displacement, volumetric stress
and pressure, and the thin column with H = 1[m], W = 0.1[m2] is discretized into a
structured tetrahedral mesh containing 3312 elements. Model and numerical parameters
assume the values σ0 = 1e4 [Pa], E = 3e4 [N/m2], ν = 0.2, κ = 1e-10 [m2], η = 1e-3 [Pa s],
c0 = 0, α = 1, ρ = 1, T = 10 [s], ∆t = 0.1 [s], and the initial data for displacement and
pressure are set according to the idealized 1D solutions with the Fourier series truncated at
k = 350. Figure 6 presents snapshots of the numerical solutions at early and advanced times,
along with profiles of the computed approximations and exact adimensional solutions at the
centerline (x3−axis) of the column, showing good accuracy throughout the time horizon.
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Figure 1: Example 1: error history associated to four different discretizations of the three-
field poroelasticity equations. Panels on the left report errors incurred when the Poisson
ratio is ν = 0.4, yielding a Lamé constant of λ = 14285.7. The second round of tests, with
ν = 0.49999 and λ = 1.66e8 is shown in the right plots.
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Figure 2: Example 1: three-field poroelasticity equations discretized with a stabilized
method. Contour plots of the approximate displacement components, displacement mag-
nitude and vectors, volumetric stress, and pressure profiles in the case where η = 0.49999
and λ = 1.66e8.
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Figure 3: Example 2: footing of a porous block using the lowest order discretization.
From top left to bottom right: approximation of displacement components and magnitude,
volumetric stress, and pressure; and a sketch of the undeformed domain and boundary
splitting.

Figure 4: Example 2: footing of a porous block using the MINI-element method. From top
left to bottom right: approximation of displacement components and magnitude, volumetric
stress, and pressure distribution.
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Figure 5: Example 3: swelling of a sponge using a stabilized method. Displacement com-
ponents and magnitude, volumetric stress, and pressure distribution (top and middle row).
The last row shows approximate solutions when a strip of zero permeability is present in
the domain. All fields are represented on the deformed configuration, and the skeleton
tetrahedral undeformed mesh is also depicted.
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Figure 6: Example 4: consolidation benchmark using the MINI-element + Lagrange approx-
imation together with a backward Euler time stepping. The first two rows show snapshots
of the numerical solutions at t = 5 [s] (top) and t = 20 [s]. The bottom row displays mid-line
profiles of the computed vs. exact nondimensional vertical displacement and pressure at
five time instants t∗ = 0.2, 0.4, . . . , 1.
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