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Christian Rohde

Abstract The continuous sedimentation process in a clarifier-thickener can be described by
a scalar nonlinear conservation law for the local solids volume fraction whose flux density
function is discontinuous with respect to spatial position due to feed and discharge mech-
anisms. In the applications of this model, which include mineral processing and wastwater
treatment, the rate and composition of the feed flow cannot be given deterministically. Effi-
cient numerical simulation is required to quantify the effect of uncertainty in these control
parameters in terms of the response of the clarifier-thickener system. Thus, the problem at
hand is one of uncertainty quantification for nonlinear hyperbolic problems with several ran-
dom perturbations. To solve it, a hybrid stochastic Galerkin (HSG) method is devised that
extends the classical polynomial chaos approximation by multiresolution discretization in
the stochastic space. The approach leads to a deterministic hyperbolic system for a finite
number of stochastic moments which is however partially decoupled and thus allows effi-
cient parallelisation. The complexity of the problem is further reduced by stochastic adap-
tivity. For the approximate solution of the resulting high-dimensional system a finite volume
scheme is introduced. Several numerical experiments are presented.
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Fig. 1 Principle of the clarifier-thickener (CT) model. The cylindrical unit of cross-sectional area A is as-
sumed to occupy the depth interval [x

L

, x

R

]. Suspension to be separated is fed at level x = 0 at rate Q
F

and
concentration u

F

. The feed flow is split into upwards- and downwards-directed bulk flows with respective
velocities q

L

 0 and q

R

� 0. Note that in the deterministic setting, u
F

, Q
F

and q

R

, and therefore also q

L

,
are known control parameters. Under normal circumstances, concentrated sediment forms on the bottom of
the thickening zone and is continuosly removed with the underflow while clarified liquid laves the unit with
the overflow. It is assumed that the solid-liquid separation takes place within the unit only, identified by the
x-interval (x

L

, x

R

), while outside, in the overflow and underflow streams, both phases move at the same
velocity.

1 Introduction

1.1 Scope

Modelling uncertainty is important in many technical applications in which one seeks to
quantify the stochastic variability of the response of a nonlinear system, usually defined by
the solution of a time-dependent partial differential equation (PDE), with respect to uncer-
tainty in input data such as initial conditions, control parameters and PDE coefficient func-
tions. Straightforward Monte Carlo (MC) sampling of solutions produced under stochastic
variation of the input data is easily implemented, but quantifying randomness via MC sam-
pling is computationally very inefficient due to the slow convergence of stochastics. The
quantification of randomness by stochastic Galerkin (SG) or collocation methods leads to
deterministic models for at least a finite number of stochastic moments (cf. [30] for an
overview), and seems to be a more promising technique in the present situation. While this
approach is supported by a meanwhile well-understood theory for models posed in terms of
linear PDEs, for nonlinear problems first steps have been done just recently [?,32,34,35].
One important subclass of nonlinear problems are hyperbolic conservation laws, on which
the present work is focused.

It is the purpose of this paper to extend the hybrid stochastic Galerkin (HSG) discretiza-
tion introduced in [9,25,26] to several stochastic dimensions, and to apply it to an applica-
tive model governed by a scalar, nonlinear hyperbolic conservation law. Specifically, we
consider a clarifier-thickener (CT) model for the continuous solid-liquid separation of sus-
pensions under gravity [5,16,18–21], see Figure 1. This model is a strongly idealized de-
scription of secondary settling tanks in wastewater treatment or of thickeners in mineral pro-
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cessing [7]. For so-called ideal suspensions of small solid, non-flocculent particles that do
not exhibit the effect of sediment compressibility, the governing PDE is a first-order scalar
conservation law with a flux density function that depends spatially on position, along with
suitable initial conditions and control variables. The well-posedness and numerical analysis
of this equation forms a research topic in itself [5,7,16,18–21], since the entropy solution
concept for this model does not emerge as a straightforward limit case of the theory a con-
servation law with smoothly varying coefficients [27], at least unless one imposes further
conditions on the relative sizes of the flux smoothing and the parabolic regularization of the
vanishing viscosity method (cf., e.g., [8,15,17]).

In the clarifier-thickener related multiphase flow models, many input parameters cannot
be described with deterministic accuracy but behave stochastically. For instance, in mineral
processing the uncertainty comes from the fact that the feed flow stems from other units that
are not under control of the CT operator, while in wastewater treatment weather conditions,
which may affect the operation of the unit, are unpredictable. In [9] we analyzed the effect
of uncertainty in one scalar quantity, namely the feed concentration u

F

. This uncertainty
produces a first-order scalar conservation law with a random flux function. In this work we
provide a new efficient method for evaluating the uncertainty of the response of the system,
that is, of the exact or numerical solution of the governing PDE, in terms of the uncertainty
in three control parameters, namely u

F

and the so-called bulk flows, denoted by q
L

and q
R

.
(Uncertainty in q

L

and q
R

can equivalently be expressed as uncertainty in the volume feed
flow, equivalent to q

R

� q
L

, and at the same time in CT control actions, which are expressed
by q

R

.)
As a by now classical approach in uncertainty quantification one could apply the SG

method where the random field is represented in terms of orthonormal polynomials. This
leads to a very accurate approximation in form of a strongly coupled, high-dimensional
deterministic system for a finite number of moments [32]. On the other hand, one might
apply the multi-wavelet stochastic discretization as e.g. in [35]. This approach still leads to
a full coupling of the polynomial basis, which is defined on the whole stochastic domain.
In contrast to this, the approach advanced in the present paper consists in the application
of a hybrid stochastic Galerkin (HSG) method that combines polynomial chaos (PC) and
multi-wavelet representations, such that each stochastic element is equipped with its own
polynomial basis. This combination has the decisive advantage that the HSG method leads to
a partially decoupled deterministic system that allows efficient parallelization. Furthermore,
we improve the efficiency of the HSG method by an adaptive multiresolution concept in
the stochastic space (see also [9,29] for an adaptive approach in the framework of multi-
resolution techniques).

1.2 Outline of the paper

The remainder of the paper is organized as follows. In Section 2 the governing model is de-
scribed. To this end we summarize in Section 2.1 a deterministic, spatially one-dimensional
CT model corresponding to Figure 1. In Section 2.2 we state the final form of the one-
dimensional model that also includes the random perturbations in two and three random
variables. In Section 3 we introduce an approximation for the random perturbations by the
SG and the new HSG approaches. Specifically, we review the PC approach in Section 3.1
and define in Section 3.3 the SG system. This leads after a finite volume discretization in the
one-dimensional physical space to the stochastic Galerkin finite volume (SG-FV) method.
In Section 3.4 we extend the SG stochastic discretisation to the hybrid stochastic Galerkin
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(HSG) approach. In Section 3.4.1 we explain how the coefficients of the HSG represen-
tation are calculated. Next, in Section 3.4.2 we discuss the extension of HSG to several
stochastic dimensions and consider their application to the clarifier-thickener model in Sec-
tion 3.4.3. A fully discrete finite volume formulation for the SG approaches, namely the
respective “HSG–system” is introduced in Section 3.4.4 (HSG-FV). The further improve-
ment of the method is stochastic adaptivity (denoted as HSG–adapt), which is introduced
in Section 4. The HSG-adapt method reduces the stochastic dimension and increases the
computational efficiency decisively. Section 4 starts with a short description of properties
of the multi-wavelet basis in Section 4.1 and proceeds with the extension to the multivari-
ate case in Section 4.2. In Section 4.3 we recapitulate the concept of the graded tree and
introduce a N

r

-adaptivity algorithm for the HSG-discretization based on this concept. Sec-
tion 5 is devoted to the presentation of numerical examples. In Section 5.1 we consider the
application of the FV methods introduced in Section 3.4.4. We present experiments in two
and three stochastic dimensions and compare the HSG-FV results with those of the Monte
Carlo approach. In Section 5.2 we discuss the benefits of the parallel application for HSG
methods. The numerical experiments in Section 5.3 confirm the efficiency and accuracy of
the HSG-adapt method. In Section 6 we present the application of the HSG approach on the
real world problem. Conclusions of the paper are summarized in Section 7.

2 Governing models

2.1 Deterministic version

Here we briefly summarize the one-dimensional clarifier-thickener (CT) model (Figure 1);
see, e.g., [5] for a detailed derivation. The model is based on the conservation equations
of the solid and the fluid. Both are considered as superimposed continuous phases with
velocities v

s

and v
f

, respectively. In terms of the solid-fluid relative velocity v
r

:= v
s

� v
f

and the volume-average velocity of the mixture q := uv
s

+ (1 � u)v
f

, where u = u(x, t)
is the local solids volume fraction, the continuity equations can be written as follows:

u
t

+
�

uq + u(1� u)v
r

�

x

= 0, q
x

= 0, x 2 D ⇢ R, t > 0. (1)

Here the first equation represents the conservation of mass of solids and the second that
of the mixture. Following the well-known kinematic theory of sedimentation [5,28], we
introduce the constitutive assumption that v

r

is a given function of u; specifically, we write

v
r

= v
r

(u) =
b(u)

u(1� u)
,

where b = b(u) is the so-called Kynch batch flux density function [28]. A common func-
tional form of b(u) is given by the Richardson-Zaki expression [33]:

bRZ(u) :=

(

u1u(1� u)nRZ for 0  u  u
max

,
0 for u < 0 and u > u

max

,

where u1 > 0 is the Stokes velocity, that is, the settling velocity of a single particle in an
unbounded domain, 0 < u

max

 1 is a maximal solids concentration, and n
RZ

� 1 is a
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Fig. 2 (a) Batch flux density function b(u) given by (2) with u1 = 10�4 m/s, n
RZ

= 5 and u⇤ = 0.55,
(b) Fluxes b(u) + q

R

(u � u

F

) in the thickening zone (blue) and b(u) + q

L

(u � u

F

) in the sedimentation
zone (red).

parameter. However, we herein define b(u) by the following modified form of bRZ(u):

b(u) =

8

>

<

>

:

u1u(1� u)nRZ for 0  u  u⇤,
p
2

(u) for u⇤ < u  u
max

:= u⇤ � bRZ(u⇤)/b
RZ

0
(u⇤),

0 for u > u
max

,
(2)

where p
2

(u) = ↵u2 + �u+ � is the unique second-order polynomial satisfying p
2

(u⇤) =
bRZ(u⇤), p0

2

(u⇤) = bRZ

0
(u⇤) and p

2

(u
max

) = 0. The insertion of p
2

between u⇤ and u
max

ensures that b is Lipschitz continuous with support on [0, u
max

], continuously differentiable
on (0, u

max

), and its left-sided derivative at u
max

is negative.
Realistic parameter values are u1 = 10�4 m/s and n

RZ

= 5. If we choose, moreover,
u⇤ = 0.55, then u

max

= 0.657608695652174, which is close to the maximum packing
density of equal-sized spheres. Figure 2(a) shows the resulting function b(u). This function
will be employed in the numerical experiments.

For a cylindrical vessel without sources and sinks, the equation q
x

= 0 in (1) means
that q is a constant with respect to x. For a continuously operated CT unit (see Figure 1),
we assume that the unit occupies the depth interval x 2 [x

L

, x
R

], where x
L

, x = 0 and
x
R

are the overflow, feed, and underflow levels, respectively. Moreover, the bulk velocity
q = q(x, t) (velocity of the mixture) is given by

q(x, t) =

(

q
L

(t) for x < 0,
q
R

(t) for x > 0,

where it is understood that q
L

(x, t)  0 and q
R

(x, t) � 0, and global conservation is
ensured by

Q
F

(t) = (q
R

� q
L

)A. (3)
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Under the present assumptions we may rewrite the first equation in (1) as a conservation law
u
t

+ h(x, t, u)
x

= 0 with the nonlinear flux

h(x, t, u) = �1(x, t)u(x, t) + �2(x)b(u),

where we define the discontinuous (with respect to x) parameters

�1(x, t) :=

(

q
L

(t) for x < 0,
q
R

(t) for x > 0,
�2(x) :=

(

1 for x 2 (x
L

, x
R

),
0 for x 62 (x

L

, x
R

).

Finally, representing the solids feed mechanism by a singular source term involving the
Dirac �-symbol, we arrive at the following governing equation for D

T

:= R⇥ (0, T ):

u
t

(x, t) +
�

h(x, t, u(x, t))
�

x

= �(x)
Q

F

(t)u
F

(t)
A

on D
T

, (4)

which is solved along with the initial condition

u(x, 0) = u
0

(x) for x 2 R.

The uncertainty in u
F

, q
L

and q
R

will be introduced in Section 2.2. If uncertainty is not
built in, then the presented model is equivalent to the one-dimensional clarifier-thickener
models studied in [5,6].

2.2 Random perturbation and final formulation of models

In this work we assume that the feed concentration u
F

exhibits stochastic variability and
that also the upward- and downward-directed bulk flows q

L

and q
R

are subject to random
perturbations. (In light of (3) this is equivalent to assume stochastic variability of Q

F

and of
one of the variables q

L

and q
R

.) In fact, for the probability measure P let (⌦,P,F) be the
probability space. We denote the random feed volume fraction by u

F

= u
F

(!
1

) 2 [0, 1],
where !

1

2 ⌦. The random perturbed upward- and downward-directed bulk flows are
denoted by q

L

(!
2

) and q
R

(!
3

), where !
2

, !
3

2 ⌦. The complete feed term in (4) can
be rewritten as part of the flux such that (4) becomes a nonlinear conservation law with
discontinuous flux. For this purpose we rewrite the source term as a part of the convective
flux via

�(x)Q
F

(t, !
2

, !
3

)u
F

(t, !
1

) =
�

H(x)Q
F

(t, !
2

, !
3

)u
F

(t, !
1

)
�

x

,

where H denotes the Heaviside function. Thus, defining the vector ! := (!
1

, !
2

, !
3

) 2
⌦3, the model can finally be cast into the following form: for a final time T > 0 we seek
the solids volume fraction u : D

T

⇥⌦3 ! [0, 1] as the solution of the initial value problem

u
t

(x, t,!) + g(x, t, u,!)
x

= 0 in D
T

⇥⌦3,
u(x, 0,!) = u

0

(x) for x 2 D,
(5)

where the flux function g is determined for t 2 (0, T ) and ! 2 ⌦3 by

g(x, t, u,!) = h(x, t, u,!)�H(x)
Q

F

(t, !
2

, !
3

)u
F

(t, !
1

)
A

.
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Considering that

Q
F

(t, !
2

, !
3

)
A

= q
R

(x, t, !
3

)� q
L

(x, t, !
2

),

the flux density function is given by

g(x, t, u,!) =

8

>

>

>

<

>

>

>

:

(u� u
F

(t, !
1

))q
L

(x, t, !
2

) for x < x
L

,
(u� u

F

(t, !
1

))q
L

(x, t, !
2

) + b(u) for x
L

< x < 0,
(u� u

F

(t, !
1

))q
R

(x, t, !
3

) + b(u) for 0 < x < x
R

,
(u� u

F

(t, !
1

))q
R

(x, t, !
3

) for x > x
R

.

(6)

The flux (6) has discontinuities for x 2 {x
L

, 0, x
R

}. We will not directly work with (5) and
the flux (6) but expand the PDE (5) into a system. To this end, we define the flux function

f(t, u, �1, �2,!) := �1(!
2

, !
3

)
�

u� u
F

(t, !
1

)
�

+ �2b(u),

where the vector of unknowns is now (u, �1, �2)T 2 R⇥ R2. This vector is a solution to
the system of balance laws

u(x, t,!)
t

+ f(t, u, �1, �2,!)
x

= 0,

�1
t

(x, t, !
2

, !
3

) = H(x)
�

q
R

(x, t, !
3

) +H(�x)q
L

(x, t)!
2

�

t

,

�2
t

(x, t) = 0,

(7)

subject to the initial conditions

u(x, 0,!) = u
0

(x),

�1(x, 0, !
2

, !
3

) = H(x)q
R

(x, 0, !
3

) +H(�x)q
L

(x, 0, !
2

),

�2(x) = �
(x

L

,x

R

)

(x).

3 A hybrid stochastic Galerkin (HSG) finite volume method

3.1 Preliminaries and polynomial chaos

Assume that for a real valued random variable ✓ = ✓(!) 2 L2(⌦) on the probability space
(⌦,P,F) its distribution and the corresponding probability density function ⇢ are known.
Then the expectation of ✓ is given by

E [✓] :=

Z

⌦

✓(!) dP (!) =

Z

⌦

✓ d⇢(✓).

Let {�
p

(✓)}
p2N

0

be a family of L2(⌦)-orthonormal polynomials with respect to ⇢, i.e.,

h�
p

(✓), �
q

(✓)i
L

2

(⌦)

:=

Z

⌦

�
p

�

✓(!)
�

�
q

�

✓(!)
�

dP (!) = �
p,q

for p, q 2 N
0

. (8)

Here �
p,q

denotes the Kronecker symbol. Of course, the choice of the polynomials �
p

de-
pends on ⇢. For example, Hermite polynomials are required for a Gauss distribution, and
Legendre polynomials allow us to use the approach of uniformly distributed random vari-
ables. For definitions of the polynomials and their properties we refer to [31].
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Let (with a slight abuse of notation) w = w(x, t, !) = w(x, t, ✓(!)), (x, t) 2 D
T

, be
a random variable with finite variance for each (x, t) 2 D

T

. Then w can be represented by
the series

w
�

x, t, ✓(!)
�

=
1
X

p=0

wp(x, t)�
p

�

✓(!)
�

, (x, t) 2 D
T

.

Here the coefficients wp = wp(x, t) are defined by

wp := hw, �
p

i
L

2

(⌦)

=

Z

⌦

w
�

✓(!)
�

�
p

�

✓(!)
�

dP (!) for p 2 N
0

.

Note that the expectation of the random field w is given by the coefficient w0 and its variance
is given by the series

P1
p=1

(wp)2. The truncation at the highest polynomial order N
o

2 N
yields a finite sum, namely

⇧N

o [w]
�

x, t, ✓(!)
�

:=
N

o

X

p=0

wp(x, t)�
p

�

✓(!)
�

, (x, t) 2 D
T

.

The Cameron-Martin theorem [14,37] ensures convergence of this series, i.e.,⇧N

o [w] ! w
in L2(⌦) for N

o

! 1. For further reading we refer to [23,30,32].

3.2 Extension to several stochastic dimensions

To extend the discussion from a one-dimensional stochastic discretization to that of N
stochastic dimensions, let us consider a vector ✓(!) := {✓

1

(!
1

), . . . ✓
N

(!
N

)}. We assume
that the random variables ✓

i

, i = 1, . . . , N , are i.i.d. (independent identically distributed).
For a multi-index p 2 NN

0

, p = (p
1

, · · · , p
N

), we define a multivariate polynomial

�p(✓) := �p
1

(✓
1

) · . . . · �pN (✓
N

).

The family of multivariate polynomials {�p}p2NN
0

defined in this way is orthonormal with
respect to the standard scalar product of L2(⌦

1

⇥ . . .⇥⌦
N

), i.e.,

h�p, �qi
L

2

(⌦

1

⇥···⇥⌦N )

:=
Z

⌦

1

· · ·
Z

⌦N

�p(✓(!))�q(✓(!)) dP
N

(!
N

) · · · dP
1

(!
1

) = �p,q, (9)

for p, q 2 NN

0

. Here �p,q denotes the Kronecker symbol. In what follows, we limit the
discussion to the case ⌦

1

= . . . = ⌦
N

=: ⌦ and P
1

= . . . = P
N

=: P , for which we
may simplify notation; for instance, (9) can be expressed as

h�p, �qi
L

2

(⌦

N
)

:=

Z

⌦

N

�p(✓(!))�q(✓(!)) dP(!) = �p,q.

Let w = w(x, t, ✓(!)), (x, t) 2 D
T

, ! 2 ⌦N be a random variable with finite vari-
ance. The PC expansion of w is given by

w
�

x, t, ✓(!)
�

=
1
X

p=0

X

|p|=p

wp(x, t)�p(✓), (x, t) 2 D
T

.
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Here the coefficients wp for p 2 NN

0

are given by wp := hw, �pi
L

2

(⌦

1

⇥···⇥⌦N )

, and the
order |p| of the multi-index p is defined by |p| :=

P

N

i=1

|p
i

|. The truncation at the highest
polynomial order |p| = N

o

2 N
0

yields a finite sum denoted by ⇧N

o [w], namely

⇧N

o [w]
�

x, t, ✓(!)
�

:=
N

o

X

|p|=0

wp(x, t)�p
�

✓(!)
�

, (x, t) 2 D
T

, ! 2 ⌦N .

Here and in what follows, we use for summands sp, p = (p
1

, . . . , p
N

) 2 NN

0

, the notation
N

o

X

|p|=0

sp :=
N

o

X

k=0

X

p=(p
1

,...,pN ):|p|=k

sp.

For later use we remark that the total number of terms in this sum is P +1, where we define

P :=
(N

o

+N)!
N

o

!N !
� 1. (10)

The expectation and variance of the truncated random field ⇧N

ow are given by

E ⇧N

o [w] =
D

⇧N

o [w] , �
0

E

= w0,

Var ⇧N

o [w] =

⌧

⇣

⇧N

o [w]� w0

⌘

2

, �
0

�

=
N

o

X

|p|=1

(wp)2.

3.3 The stochastic Galerkin finite volume (SG-FV) method

Similarly to the treatment in [13] we apply the PC framework to the governing model. The
resulting non-strictly hyperbolic system [9] allows us to use appropriate finite volume meth-
ods. Note that we have in this section N = 3.

3.3.1 Formulation of the stochastic Galerkin system

Multiplying the governing equation (7) by the multivariate polynomial �p, |p| = 0, . . . , N
o

and integrating the result over ⌦
3

we obtain the system
Z

⌦

3

⇣

u
t

(x, t,!) +
�

�1(x, t, !
2

, !
3

)
�

u(x, t,!)� u
F

(t, !
1

)
�

+ �2(x)b
�

u(x, t,!)
��

x

⌘

�p(!) dP(!) = 0 for |p| = 0, . . . , N
o

.

For ease of notation we keep here a strong formulation in the deterministic variables. We
replace u(x, t,!), u

F

(t, !
1

), �1(x, t, !
2

, !
3

) by their truncated PC expansions

⇧N

o [u] (x, t,!) =
N

o

X

|p|=0

up(x, t)�p(!),

⇧N

o [u
F

] (t,!) =
N

o

X

|p|=0,

up
F

(t)�p(!),

⇧N

o

h

�1
i

(x, t,!) =
N

o

X

|p|=0

(�1)p(x, t)�p
�

!)
�

.
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Since u
F

(!
1

) is independent of !
2

and !
3

and �1(x, t, !
2

, !
3

) is independent of !
1

, we
obtain up

F

= 0 for p
2

6= 0, p
3

6= 0 and (�1)p = 0 for p
1

6= 0. This property can be used for
the reduction of the computational effort.

Using now the orthogonality relation (8) we obtain the truncated SG system for the
coefficients up, |p| = 0, . . . , N

o

.

up
t

+

@
x

* 

N

o

X

|q|=0

(uq � uq
F

)�q

!

N

o

X

|q|=0

(�1)q�q + �2b

 

N

o

X

|q|=0

uq�q

!

, �p

+

L

2

(⌦

3

)

= 0. (11)

Finally, from (11) and the additional equations for �1 and �2 we obtain a strictly hyperbolic
system (cf. [36,9]).

3.3.2 Finite volume method

The system (11) is quite general and it appears hard to construct e.g. a Godunov-type solver
without further analytical knowledge. Furthermore, the common upwind-biased Engquist-
Osher flux [22], which is usually applied for scalar problems with discontinuous flux [5–7],
cannot be used for the higher-dimensional SG-system (11) since spectral information on the
Jacobian of the flux vector involved is difficult to obtain or unavailable. Therefore, at least
for the computations in one space dimension, as in [13], we use the simple Lax-Friedrichs
method on a uniform mesh with cells [x

i�1/2

, x
i+1/2

), i 2 Z and �x = x
i+1/2

�x
i�1/2

.
Restricting ourselves to the P +1 u-components uq for |q| = 0, . . . , N

o

, we have for a time
step �tn > 0 the following SG-FV scheme:

up,n+1

i

=up,n
i

� �tn

�x

⇣

F p,n
i+1/2

� F p,n
i�1/2

⌘

(i 2 Z, n 2 N, |p| = 0, . . . , N
o

),

F p,n
i+1/2

:=
1
2

⇣

fp�tn,
�

uq,n
i

 

|q|N

o

,
�

(�1)q,n
i

 

|q|N

o

, (�2)n
i

�

+ fp�tn,
�

uq,n
i+1

 

|q|N

o

,
�

(�1)q,n
i+1

 

|q|N

o

, (�2)n
i+1

�

⌘

+
�x

2�tn
�

up,n
i+1

� up,n
i

�

.

The function fp for |p| = 0, . . . , N
o

is defined by

fp�t,
�

uq,n 

|q|N

o

,
�

(�1)q,n
 

|q|N

o

, (�2)n
�

:=

*

N

o

X

|q|=0

(�1)q�q

 

N

o

X

|q|=0

(uq � uq
F

)�q

!

+ �2b

 

N

o

X

|q|=0

uq�q

!

, �p

+

L

2

(⌦

3

)

.

Initial values are obtained from u0,0

i

= u
0

and setting all other components equal to zero.

3.4 A hybrid stochastic Galerkin (HSG) finite volume method

The SG-FV method defined in Section 3.3.2 permits fast and accurate computations for a
small maximal polynomial order N

o

. Increasing N
o

will significantly increase the computa-
tional effort and the synchronisation costs that slow down computations. The HSG method
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to be introduced in this section allows us to reduce the maximal polynomial order N
o

and to
obtain a partially decoupled system of equations. This property decreases the synchronisa-
tion effort of the parallel computation considerably, and permits efficient parallel computing
on distributed memory machines.

3.4.1 Stochastic discretization

To focus on the main idea, let us concentrate for the moment on one single stochastic dimen-
sion (as in [9]) before passing to several stochastic dimensions. Let ✓ = ✓(!) 2 L2(⌦) be
a random variable on the probability space (⌦,P,F). For sake of brevity we assume that
✓ is uniformly distributed on the interval [0, 1], denoted by ✓ ⇠ U(0, 1). The main idea of
the method is the dyadical decomposition of the stochastic domain [0, 1]. For N

o

2 N
0

and
N

r

2 N
0

we define the interval

INr

l

:= [2�N

r l, 2�N

r(l + 1)] for l = 0, . . . , 2Nr � 1, (12)

and the following space of piecewise polynomial functions SN

o

, N

r :

SN

o

, N

r :=
n

w : [0, 1] ! R
�

�

�

w|
I

N
r

l
2 Q

N

o

[✓], 8 l 2 {0, . . . , 2Nr � 1}
o

. (13)

Here Q
N

o

[✓] denotes the space of real polynomials in ✓ with maximal degree N
o

. The
vector space SN

o

, N

r has the dimension 2Nr(N
o

+ 1). Note that the vector space SN

o

, 0

corresponds to the PC approach introduced in Section 3.1. The basis of SN

o

, 0 can be given
by rescaled Legendre polynomials �

p

, p = 0, . . . , N
o

, such that
⌦

�
p

(✓(!
1

)), �
q

(✓(!
1

))
↵

L

2

(⌦)

= �
p,q

for 0  p, q  N
o

. (14)

The space SN

o

, N

r is spanned by the polynomials �N

r

p,l

defined by

�N

r

p,l

(⇠) =

(

2Nr

/2�
p

(2Nr⇠ � l) for ⇠ 2 INr

l

,

0 otherwise

for p = 0, . . . , N
o

and l = 0, . . . , 2Nr � 1.

The polynomials �N

r

p,l

satisfy the orthogonality relation
⌦

�N

r

p,l

(✓(!
1

)), �N

r

q,k

(✓(!
1

))
↵

L

2

(⌦)

= �
p,q

�
k,l

for 0  p, q  N
o

and 0  k, l  2Nr � 1.

Let w be a random variable that satisfies w(x, t, ✓(·)) 2 L2(⌦), x 2 D
T

, t 2 [0, T ]. The
projection ⇧N

o

,N

r : L2(⌦) ! SN

o

, N

r is defined by

⇧N

o

,N

r [w] (x, t, ✓) :=
2

N
r�1

X

l=0

N

o

X

p=0

⌦

w(x, t, ✓), �N

r

p,l

↵

L

2

(⌦)

�N

r

p,l

(✓)

=
2

N
r�1

X

l=0

N

o

X

p=0

wN

r

p,l

(x, t)�N

r

p,l

(✓).

Here the coefficients wN

r

p,l

are given by

wN

r

p,l

:=
⌦

w, �N

r

p,l

↵

L

2

(⌦)

for 0  p  N
o

and 0  l  2Nr � 1.
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For the approximation property of the projection ⇧N

o

,N

r for N
o

, N
r

! 1 we refer to [3].
The expectation and variance of the projection ⇧N

o

,N

r [w] can be computed by

E
h

⇧N

o

,N

r [w] (x, t)
i

:=
2

N
r�1

X

l=0

N

o

X

p=0

wN

r

p,l

(x, t)
⌦

�N

r

p,l

, �0

0,0

↵

L

2

(⌦)

,

Var
h

⇧N

o

,N

r [w] (x, t)
i

:=
2

N
r�1

X

l=0

N

o

X

p=0

N

o

X

q=0

wN

r

p,l

(x, t)wN

r

q,l

(x, t)
⌦

�N

r

p,l

�N

r

q,l

, �0

0,0

↵

L

2

(⌦)

�
⇣

E
h

⇧N

o

,N

r [w] (x, t)
i⌘

2

.

If w ⇠ U(0, 1), then we have �0

0,0

⌘ 1. Together with the orthogonality of �N

r

q,l

, q =
0, . . . , N

o

, l = 0, . . . , 2Nr � 1 this implies

Var
h

⇧N

o

,N

r [w] (x, t)
i

:=
2

N
r�1

X

l=0

N

o

X

p=0

�

wN

r

p,l

(x, t)
�

2 �
⇣

E
h

⇧N

o

,N

r [w] (x, t)
i⌘

2

.

3.4.2 Extension to several stochastic dimensions

Let us consider an N -dimensional i.i.d. random vector ✓(!) := {✓
1

(!
1

), . . . ✓
N

(!
N

)} that
satisfies ✓(!) 2 L2(⌦N ). We assume that ✓

i

⇠ U(0, 1) for i = 1, . . . , N . (Other choices
of the distribution or the interval are possible by an appropriate choice of the polynomial
base.) The stochastic domain ⌦N is decomposed into 2NN

r stochastic elements

INr

N,l

:= INr

l

1

⇥ · · · ⇥ INr

lN
,

l = (l
1

, . . . , l
N

) 2 I = ĨN , Ĩ := {0, 1, . . . , 2Nr � 1}, (15)

where the one-dimensional intervals INr

li
are defined in (12). In the multivariate case, the

definition (13) of the space of piecewise polynomial functions SN

o

, N

r is replaced by

SN

o

, N

r

N

:=
n

w : [0, 1]N ! R
�

�

�

w|
I

N
r

N,l
2 QN

N

o

[✓], 8 l 2 I
o

.

Here QN

N

o

[✓] denotes the space of N -variate polynomials of degree |p|  N
o

.
The vector space SN

o

, 0

N

corresponds to the multivariate PC expansion introduced in
Section 3.2. Thus, its basis may be given by the N -variate polynomials {�p}p2NN

0

,|p|N

o

.
The space SN

o

, N

r

N

is spanned by the polynomials �N

r

p,l defined by

�N

r

p,l(✓) :=

8

>

<

>

:

2NN

r

/2

N

Y

k=1

�pk(2
N

r✓
k

� l
k

) for ✓ 2 INr

N,l

,

0 otherwise,

(16)

p 2 NN

0

, |p|  N
o

, l 2 I.

These polynomials satisfy the orthogonality relation
⌦

�N

r

p,l , �
N

r

q,k

↵

L

2

(⌦

N
)

= �p,q�
l,k

for p, q 2 NN

0

, |p|, |q|  N
o

, and l 2 I. (17)
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For the random field w(✓(!)) 2 L2(⌦N ) and (x, t) 2 D
T

, we define the projection
⇧N

o

,N

r : L2(⌦N ) ! SN

o

, N

r

N

by

⇧N

o

,N

r [w] (x, t, ✓) :=
X

l2I

N

o

X

|p|=0

wN

r

p,l(x, t)�
N

r

p,l(✓).

Here the coefficients wN

r

p,l are given by

wN

r

p,l =
⌦

w,�N

r

p,l

↵

L

2

(⌦N )

for 0  |p|  N
o

and l 2 I.

For the approximation property of the projection ⇧N

o

,N

r for N
o

, N
r

! 1 we refer to [3].
The expectation and variance of ⇧N

o

,N

r [w] can be directly computed as follows:

E
h

⇧N

o

,N

r [w] (x, t)
i

:=
X

l2I

N

o

X

|p|=0

wN

r

p,l(x, t)
⌦

�N

r

p,l , �
0

0,0

↵

L

2

(⌦N )

,

Var
h

⇧N

o

,N

r [w] (x, t)
i

:=
X

l2I

N

o

X

|p|=0

N

o

X

|q|=0

wN

r

p,l(x, t)w
N

r

q,l (x, t)
⌦

�N

r

p,l�
N

r

q,l , �
0

0,0

↵

L

2

(⌦N )

�
⇣

E
h

⇧N

o

,N

r [w] (x, t)
i⌘

2

.

(In the case that the random field w is uniformly distributed on [0, 1]N , we have �0

0,0

⌘ 1.)
In light of the orthogonality relation (17), we obtain

E
h

⇧N

o

,N

r [w] (x, t)
i

=
2

NN
r�1

X

l=0

wN

r

0,l

(x, t)
⌦

�N

r

0,l

, �0

0,0

↵

L

2

(⌦N )

,

Var
h

⇧N

o

,N

r [w] (x, t)
i

=
2

NN
r�1

X

l=0

N

o

X

|p|=0

�

wN

r

p,l(x, t)
�

2 �
⇣

E
h

⇧N

o

,N

r [w] (x, t)
i⌘

2

.

3.4.3 Application of the hybrid stochastic Galerkin approach to the clarifier-thickener

model

We now apply the stochastic discretization introduced above to the governing equation (7),
where we recall that N = 3 under the present assumptions. The basic idea is to replace
the stochastically perturbed parameters u

F

and �1 and the unknown solution u by their re-
spective projections onto SN

r

, N

o , denoted by ⇧N

o

,N

r [u
F

], ⇧N

o

,N

r

⇥

�1
⇤

and ⇧N

o

,N

r [u],
respectively, and to compute the coefficients uN

r

p,l of ⇧N

o

,N

r [u] for |p|  N
o

and l 2 I.
We now assume that N,N

r

, N
o

2 N
0

are fixed, and define for ease of notation

⇧ := ⇧N

r

,N

o .

Then the HSG approach (for the first equation in (7)) reads as follows:

find coefficients uN

r

q,k : D
T

! R for all |q|  N
o

and k 2 I such that
Z

⌦

3

⇣

⇧[u]
t

+
⇣

(⇧[u]�⇧[u
F

])⇧[�1] + �2b (⇧[u])
⌘

x

⌘

�N

r

p,l dP(!) = 0

for all |p|  N
o

and l 2 I.

(18)
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Since by (16)

supp�N

r

p,l ✓ INr

N,l

for all |p|  N
o

and l 2 I,

the system is decoupled in the stochastic element index l. This property is fundamental for
parallel computing.

For the convenient discussion of the final HSG-FV scheme we replace the index pair
(p, l) by ↵ 2 {0, 1, . . . ,M � 1}, where

M := dimSN

o

, N

r

N

= (P + 1)2NN

r =
(N

o

+N)!
N

o

!N !
2NN

r

(see (10)). Then (18) can be compactly written in the following form:

find coefficients uN

r

0

, . . . , uN

r

M�1

: D
T

! R for all |p|  N
o

and l 2 I such that
Z

⌦

⇣

⇧[u]
t

+
⇣

(⇧[u]�⇧[u
F

])⇧[�1] + �2b (⇧[u])
⌘

x

⌘

�N

r

↵

dP(!) = 0

for all ↵ = 0, . . . ,M � 1.

(19)

For the given stochastically one-dimensional approximation of u
F

(t, !
1

) we employ the
notation

⇧[u
F

](t, !
1

) ⌘ ⇧N

o

,N

r [u
F

] (t, !
1

),

and the stochastic approximation of �1(x, t, !
2

, !
3

) is denoted by

⇧[�1](x, t, !
2

, !
3

) ⌘ ⇧N

o

,N

r

h

�1
i

(x, t, !
2

, !
3

).

Using now the orthogonality from (14), we can rewrite (19) in the following form:

u↵

t

+
⇣D

⇧[�1] (⇧[u]�⇧[u
F

]) + �2b (⇧[u]) , �N

r

↵

E

L

2

(⌦

3

)

⌘

x

= 0,

↵ = 0, . . . ,M � 1. (20)

With the method introduced in [36,9] we finally obtain from (20) an (M+2)-dimensional
system for the determination of the unknown u. Using the (non-strict) hyperbolicity of (7)
and the decoupled structure it can be shown that this system (20) is non-strictly hyper-
bolic [9].

The system (20) is decoupled in the stochastic element index l 2 I. This allows the effi-
cient parallelisation on the distributed memory machines since the synchronisation between
decoupled nodes can be omitted.

3.4.4 Finite volume method

Similarly to the SG approach of Section 3.3.2 we use the Lax-Friedrichs scheme on a uni-
form mesh with cells [x

i�1/2

, x
i+1/2

), i 2 Z and �x = x
i+1/2

� x
i�1/2

for the compu-
tations in one space dimension. As mentioned above, the common upwind-biased Engquist-
Osher flux [22] to scalar problems with discontinuous flux [5–7] cannot be used for the
higher–dimensional stochastic Galerkin system. Restricting ourselves to the u-components
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u0, . . . , uM�1 we have for the time step �tn > 0 the following HSG-FV scheme adapted
to the CT model:

u↵,n+1

i

= u↵,n

i

� �tn

�x

�

F↵,n

i+1/2

� F↵,n

i�1/2

�

(i 2 Z, n 2 N, ↵ = 0, . . . ,M � 1),

F↵,n

i+1/2

:=
1
2

⇣

f↵

�

tn, u0,n

i

, . . . , uM�1,n

i

, (�1)0,n
i

, . . . , (�1)M�1,n

i

, (�2)n
i

�

+ f↵

�

tn, u0,n

i+1

, . . . , uM�1,n

i+1

, (�1)0,n
i+1

, . . . , (�1)M�1,n

i+1

, (�2)n
i+1

�

⌘

+
�x

2�tn
�

u↵,n

i

� u↵,n

i+1

�

.

The function f↵ for ↵ = 0, . . . ,M � 1 is defined by

f↵

⇣

t, u0, . . . , uM�1, (�1)0, . . . , (�1)M�1, �2
⌘

:=
D

⇧[�1] (⇧[u]�⇧[u
F

]) + �2b (⇧[u]) , �
↵

E

L

2

(⌦)

.

In light of (5), initial values are obtained from

u↵,0

i

= u
0

·
D

�N

r

↵

, �0

0,0

E

L

2

(⌦)

for ↵ = 0, . . . ,M � 1.

4 Adaptivity in the stochastic space

In this section we exploit the possibilities to further reduce computational effort by applying
adaptivity to the stochastic dimensions. We consider N

r

-adaptivity, which was introduced
in [9] for N = 1 and extend this method to several stochastic dimensions (N � 2). The
concept of N

r

-adaptivity requires a method for the computation of so-called ”details”. This
means the quantification of the information that will get lost by the re-coarsening step N

r

!
N

r

�1. We use the concept of a multi-wavelet basis for this purpose. For further reading we
refer to [4,12,24,?,?].

4.1 Multi-wavelet basis

Similarly to Section 3.4.1 we start with the explanation by limiting ourselves to the case of
a single stochastic dimension. Here ✓ = ✓(!) is again a random variable on the probability
space (⌦,P,F) that is assumed to satisfy ✓ 2 L2(⌦) and ✓ ⇠ U(0, 1). For N

o

2 N
0

and
N

r

2 N
0

the orthogonal basis of the space SN

o

, N

r defined in (13) is given by rescaled Leg-
endre polynomials �N

r

0,0

, . . . , �N

r

N

o

,2

N
r�1

. The multi-wavelet subspace WN

o

, N

r ⇢ SN

o

, N

r

+1

is defined as the orthogonal complement of SN

o

, N

r , i.e.,

WN

o

, N

r := (SN

o

, N

r)?.

(For a comprehensive description of the construction of the orthonormal wavelet basis we
refer to [2,3,29].) In what follows, we denote by { 

0

, . . . ,  
N

o

} an orthonormal basis of
WN

o

, 0. This means that

h 
i

,  
j

i = �
ij

for 0  i, j  N
o

.
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The relation SN

o

, 0?WN

o

, 0 implies
D

 
j

, xi

E

= 0 for 0  i, j  N
o

.

The space WN

o

, N

r is spanned by multi-wavelets  N

r

i,l

given by

 N

r

i,l

(⇠) = 2Nr

/2 
i

(2Nr⇠ � l), i = 0, . . . , N
o

, l = 0, . . . , 2Nr � 1, (21)

and their support is

supp( N

r

i,l

) ✓ INr

l

:= [2�N

r l, 2�N

r(l + 1)].

4.2 Multivariate multi-wavelets

Similarly to the extension to the multivariate polynomial �N

r

p,l in Section 3.4.2 we extend the
definition of the multi-wavelet to their multivariate version. For this purpose we define the
index vector

↵
i

:= (p
i

, l
i

, ⌘
i

)T 2 A := {0, . . . , N
o

} ⇥ {0, 1} ⇥ I for i = 1, . . . , N,

and extend the definition of the multi-wavelet  N

r

i,l

(defined by (21)) to

 N

r

↵i
(⇠) :=

(

 N

r

pi,li
(⇠) if ⌘

i

= 1,

�N

r

pi,li
(⇠) if ⌘

i

= 0,
↵i 2 A.

Here l
i

2 Ĩ denotes the index of the stochastic element INr

li
. Now we can define the multi-

variate multi-wavelet

 N

r

↵ (⇠) :=
N

Y

i=1

 N

r

↵i
(⇠

i

), ↵ := (↵
1

, . . . ,↵
N

) 2 AN .

The vector l 2 I is the index of the corresponding stochastic element INr

N,l

given by (15).
The multivariate multi-wavelets  N

r

↵ still remain orthonormal, namely
⌦

 N

r

↵ ,  N

r

�

↵

= �↵,� for ↵,� 2 AN .

Furthermore, for ↵ 2 AN we denote by |↵| := l 2 I.

4.3 N
r

-adaptivity

The algorithm of the adaptive multiresolution scheme for deterministic two-dimensional
problems was introduced in [10–12] and extended to random perturbed problems with one
random variable in [9]. Now we extend the method to the severally stochastic dimensions.

We first introduce the concept of a multi-dimensional graded tree for dealing with the
HSG-FV data structure. As usual, a node is an element of the tree that represents a control
volume of a mesh, defined by the stochastic element Im

N,l

for 0  m  L in (15). Here L
denotes the level with the finest mesh. The root is the basis of the tree, represented by the
stochastic element I0

N,0

. A node is called leaf when it has no children. Each parent node has
2N children. Fig. 3 shows an example for the structure of the graded tree for L = 3, N = 2.
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3
2,(0,1) I

3
2,(0,2) I

3
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I32,(7,7)I32,(7,0)

I32,(4,4)

(a) Mesh for N
r

= 3, N = 2
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3
2,(0,1) I

3
2,(0,2) I

3
2,(0,3)

I22,(3,0)

I12,(1,1)

I22,(0,3)

I32,(7,4)

(b) Resulting mesh

Fig. 3 Sketch of the adapted graded tree structure for N = 2, L = 3.

Let us proceed with the description of the re-meshing subroutine. In our notation, ⇤
denotes the set of the indices of the existing nodes, L(⇤) denotes the set of leaves and
N(L(⇤)) is the set of parents of the elements in L(⇤), and the set L(Im

N,k

) denotes the set
of leaves of the parent element Im

N,k

. The sets⇤del and⇤ref contain the indices of nodes that
should be deleted respectively refined. A basic idea of our re-meshing strategy is to consider
the difference of the data on the leaves and the projection of the data on their parent node
in each time step and spatial point. For the computing of that difference called “details”
we use the multivariate multi-wavelets introduced in Section. 4.2. The difference between
a leaf Im+1

N,l

and its parent node Im
N,k

for the random field w ⌘ w(x, t, ✓(!)) 2 L2(⌦) is
represented by the “detail” coefficient dm+1

k,l,r

in the direction r = 1, . . . , N given by the
following expression, where e

r

denotes the r-th N -dimensional unit vector:

dm+1

k,l,r

:=
X

|↵|=k,

(⌘

1

,...,⌘N )

T

=er

�

�

�

�

�

�

*

N

o

X

|p|=0

wl+1

p,l �
m+1

p,l ,  m

↵

+

�

�

�

�

�

�

=
X

|↵|=k,

(⌘

1

,...,⌘N )

T

=er

�

�

�

�

�

�

N

o

X

|p|=0

wl+1

p,l

⌦

�m+1

p,l ,  m

↵

↵

�

�

�

�

�

�

.

We define the tolerance " and the coarsest refinement level C � 0. In our computations
C is given by the number of MPI ranks used.

Algorithm 1 explains our re-meshing procedure. Together with the re-meshing algorithm
we can introduce an algorithm for the computation of the numerical solution (Algorithm 2).
For the computation of the numerical flux between spatial elements with the different re-
finement level we use virtual nodes with the finer refinement level.
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Algorithm 1 Re-meshing (⇤, "
ref

, "
coarse

)

for I

m

N,k

2 N(L(⇤)) do
for I

m+1

N,l

2 L(Im
N,k

) do
if dm+1

k,l,q

> "

ref

for one q = 1, . . . , N then
⇤

ref  ⇤

ref [ (l,m+ 1)
end if
if dm+1

k,l,q

< "

coarse

for all q = 1, . . . , N then
⇤

del  ⇤

del [ (l,m+ 1)
end if

end for
if ⇤del 6= ; and L(Im

N,k

) 6⇢ ⇤

del then
⇤

del  ⇤

del \ (⇤del \ L(Im
N,k

))
end if

end for
for (l,m) 2 ⇤

del do
if m > C then

⇤ ⇤ \ (l,m)
end if

end for
for (l,m) 2 ⇤

ref do
⇤ ⇤ [ (2N l,m+ 1) [ · · · [ (2N l + 2N � 1,m+ 1)

end for
return ⇤

Algorithm 2 Finite volume method with N
r

-adaptivity
while t < T do

Calculate4t.
Compute u(t+4t) for all leaves in L(⇤).
Re-meshing(⇤, "

ref

, "

coarse

) (Algorithm 1).
t t+4t

end while

5 Numerical experiments

5.1 Numerical experiments without stochastic adaptivity

We now illustrate the performance if the hybrid stochastic Galerkin finite volume (HSG-FV)
method described in Section 3.4 and compare results with a reference solution generated by
a Monte Carlo finite volume (MC-FV) scheme.

We start with the description of the scenarios considered for numerical experiments
with two and three stochastic dimensions, then we proceed with the results of the numerical
simulations and analyze the accuracy and efficiency of the method presented. The point of
interest for the application is the determination of steady-state solutions of (5) with respect to
the uncertainty represented by the random vector ✓ = (✓

1

, ✓
2

, ✓
3

). In particular, the random
input is given by the randomly perturbed parameters u

F

(✓
1

), q
L

(✓
2

) and q
R

(✓
3

) for random
variables ✓

1

, ✓
2

, ✓
3

⇠ U(0, 1). Thus, the unknown u depends on the random vector ✓, and
whether the solution indeed attains a steady state depends on the value of ✓. For example,
within the standard (deterministic) setting a steady state can be attained for the choice

u
F

= 0.15, q
L

= �7.2 · 10�6 m d�1, q
R

= 3.0 · 10�6 m s�1. (22)
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Fig. 4 Steady state for the parameter values u
F

, q
L

and q

R

given by (22) at T = 106. Blue line: (determin-
istic) numerical solution, red line: difference to previous time step.

No. N u

F

q

L

[m s�1] q

R

[m s�1]
1 1 0.15 + 0.05✓

1

�7.2 · 10�6 3.0 · 10�6

2 1 0.15 �7.2 · 10�6 � 10�6

✓

2

3.0 · 10�6

3 1 0.15 �7.2 · 10�6 3.0 · 10�6 + 2.0 · 10�6

✓

3

4 2 0.15 + 0.05✓
1

�7.2 · 10�6 � 10�6

✓

2

3.0 · 10�6

5 2 0.15 + 0.25✓
1

�7.2 · 10�6 � 5 · 10�6

✓

2

3.0 · 10�6

6 3 0.15 + 0.05✓
1

�7.2 · 10�6 � 10�6

✓

2

3.0 · 10�6 + 2.0 · 10�6

✓

3

7 3 0.15 + 0.25✓
1

�7.2 · 10�6 � 5 · 10�6

✓

2

3.0 · 10�6 + 10�5

✓

3

Table 1 Scenarios with radom perturbations for N = 1, 2, 3.

Figure 4 shows the numerical solution (blue line) for this case at time T = 106 s. The plot
of the difference to the previous time step (red line) shows that there is no difference to the
previous timestep. In other words the solution shown is stationary. For the discussion of the
appropriate conditions on �1, �2, u

F

and b we refer to Section 2.
In the numerical examples we consider problem (5) with several random perturbations

for N = 1, 2, 3, described by the scenarios listed in Table 1 and initial distribution u
0

⌘ 0.
For the spatial discretization we use 400 mesh points for the x-interval [�1.2, 1.2]. We
start with Scenario 4 that features two random perturbations (namely in u

F

and q
L

). The
expectation and variance of the numerical solution are presented in Figure 5. This test case
can be considered as a combination of two stochastically one-dimensional test cases, namely
Scenarios 1 and 2. Their expectation and variance at T = 2.5 ·105 s for N

r

= 4, N
o

= 4 are
shown in Figures 5 (c) to (f). The reconstruction of the numerical solution for Scenarios 1
and 2 is shown in Figure 6.

To analyze the accuracy of the method we compare the expectation computed by the
HSG-FV method with the Monte Carlo (MC) mean value, obtained by 106 samples. Fig-
ure 10(a) displays the comparison between the MC mean value computed with 106 samples
and the expectation computed with HSG-FV method for Scenarios 4 (Figure 7(a)) and 5
(Figure 7(b)) and different choices of N

r

and N
o

. We observe that for Scenario 4 the HSG-
FV results match the MC result exactly for most choices of N

r

and N
o

. Therefore to em-
phasize the influence of the random perturbation we use Scenario 5 for the analysis of con-
vergence. Table 2 shows the L1-error for N

r

= 0, . . . , 5 and N
o

= 0, . . . , 3. The presented



20 Andrea Barth et al.

(a) (b)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

x [m]

u 
[−

]

 

 

Expectation
100× difference to prev. timestep  

0 0.2 0.4 0.6 0.8 1 1.2
0

0.02

0.04

0.06

0.08

x [m]

u 
[−

]

 

 

Variance
100× difference to prev. timestep  

(c) (d)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x [m]

u 
[−

]

 

 

Expectation
100× difference to prev. timestep  

0 0.2 0.4 0.6 0.8 1 1.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x [m]

u 
[−

]

 

 

Variance
100× difference to prev. timestep  

(e) (f)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x [m]

u 
[−

]

 

 

Expectation
100× difference to prev. timestep  

0 0.2 0.4 0.6 0.8 1 1.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x [m]

u 
[−

]

 

 

Variance
100× difference to prev. timestep

Fig. 5 Numerical solution at T = 2.5 ·105 s computed with HSG-FV method (a, b) Scenario 4 for N
r

= 4,
N

o

= 3, (c, d) Scenario 1 for N

r

= 4, N
o

= 4, (e, f) Scenario 2 for N

r

= 4, N
o

= 4, (a, c, e)
expectation (blue line) and the difference to the previous time step (red line), (b, d, f) variance (blue line) and
the difference to the previous time step (red line).

results clearly indicate the convergence of the HSG-FV expectation to the MC mean for
increasing N

r

and N
o

.

In the next step we proceed with numerical examples for N = 3 random perturbations
given by Scenario 6. Figure 8 shows again the expectation and variance of the numerical
solution at T = 2.5 · 105 s. The single components of Scenario 6 are given by Scenarios 1,
2 and 3. Their expectation, variance and reconstruction are shown in Figures 5 (c)–(f), 6
and 9.
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(a) (b)

Fig. 6 Reconstruction of the numerical solution (a) for Scenario 1; (b) for Scenario 2 at T = 2.5 · 105 s
computed with HSG-FV method for N

r

= 4, N
o

= 4.
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Fig. 7 Expectation of the numerical solution (a) for Scenario 4; (b) for Scenario 5 at T = 2.5 · 105 s
computed with (1) N

r

= 0, N
o

= 1; (2) N
r

= 0, N
o

= 3; (3) N
r

= 1, N
o

= 2; (4) N
r

= 5, N
o

= 3; (5)
106 MC-samples.

The HSG-FV representation of the numerical solution allows a memory-efficient storage
of simulation data. We only save the coefficients u0, . . . , uP for each mesh point and time
step. But these data allow us to reconstruct the numerical solution for each value of ✓ 2
[0, 1]3. Par example Fig. 10 shows reconstructions for Scenarios 4 and 6 for several choices
of ✓ 2 [0, 1]N , N = 2, 3.

The simulations are performed on a computer cluster built up by 2⇥ Intel(R) Xeon(R)
CPU E5-2680 v2 (2.80GHz, 10 Cores) per node, by using MPI+OpenMP parallelisation for
N

r

> 0, N
o

> 0 and OpenMP, MPI only for N
r

= 0, N
o

= 0. The further reduction of
the computation time of the HSG-FV method by the parallelisation and adaptivity that is
introduced in Section 4. Numerical examples illustrating these improvements are discussed
in Section 5.2.
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Fig. 8 Numerical solution for Scenario 6 at T = 2.5 · 105 s computed with HSG-FV method for N
r

= 2,
N

o

= 2. (a) Expectation (blue line) and the difference to the previous time step (red line). (b) Variance (blue
line) and the difference to the previous time step (red line).

Table 2 L

1-error for Scenario 5, at T = 2.5 · 105 s. Compared with Monte Carlo result over 106 samples.

N

o

N

r

= 0 N

r

= 1 N

r

= 2 N

r

= 3 N

r

= 4 N

r

= 5
0 1.76e-01 4.37e-02 1.22e-02 2.74e-03 7.89e-04 5.56e-04
1 1.69e-01 5.94e-02 2.12e-02 4.40e-03 2.12e-03 1.30e-03
2 1.58e-01 4.89e-02 1.45e-02 4.53e-03 2.39e-03 1.24e-03
3 1.29e-01 3.50e-02 1.06e-02 4.85e-03 2.21e-03 1.01e-03

Table 3 L

1-error for Scenario 7, at T = 2.5 · 105 s. Compared with Monte Carlo result over 106 samples.

N

o

N

r

= 0 N

r

= 1 N

r

= 2 N

r

= 3
0 1.05e-01 2.67e-02 6.32e-03 1.59e-03
1 9.15e-02 3.34e-02 1.28e-02 4.83e-03
2 6.25e-02 4.04e-02 1.47e-02 5.41e-03

5.2 Efficiency and parallel application

The application of the HSG-FV approach yields a high-dimensional system. The structure
of this system allows the parallel computation of the coefficients u0, . . . , uP in each time
step. We now provide a brief overview of the implementation of the HSG-FV approach
from a parallelization point of view, and discuss the computational efficiency of the hybrid
parallelisation of the HSG-FV approach by MPI+OpenMP.

The dimension of the system resulted from the HSG discretisation for a given stochastic
dimension N depends on the two parameters N

r

and N
o

. The first parameter N
r

deter-
mines the number of the stochastic elements (SE) INr

N,l

, where l = 0, . . . , 2NN

r � 1. The
decoupled structure of the stochastic elements allows an efficient parallelization on the dis-
tributed memory architectures e.g. MPI, by restriction of each computation node to one
or several certain stochastic elements. This restriction allows to reduce or omit the com-
munication between the computation nodes, because the computations on each stochastic
element could be performed independently from the other stochastic elements. The poly-
nomial order N

o

determines the size of the system on each stochastic element INr

N,l

, given
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(c)

Fig. 9 Numerical solution for Scenario 3 at T = 2.5·105 s computed with the HSG-FV method for N
r

= 2,
N

o

= 1. (a) Expectation (blue line) and the difference to the previous time step (red line). (b) Variance (blue
line) and the difference to the previous time step (red line). (c) Reconstruction of the numerical solution.

by (N
o

+N)!/[N
o

!N !]. Computations of entries of the Jacobian and fluxes in each dimen-
sion can be also performed in parallel, but since the system is not decoupled the coefficients
u0, . . . , uP should be synchronised in each time step. This implies that the efficient paral-
lelisation requires fast communication. In particular, this can be achieved by using shared
memory machines and OpenMP. For these reasons we use the hybrid parallelisation with
MPI parallelisation over stochastic elements and OpenMP parallelisation over the polyno-
mial order.

As a first example, consider the computations for N = 2 and Scenario 5. The com-
putational times are presented in Table 4. The computations are performed on one node
2⇥Intel(R) Xeon(R) CPU E5-2680 v2 (2.80GHz) (10 cores with hyper-threading). For
N

r

= 0 we use one MPI rank with up to 10 OpenMP threads, for N
r

= 1 we use 4
MPI ranks each with up to 5 OpenMP threads and for N

r

� 2 we use 16 MPI ranks each
with up to 2 OpenMP threads.

Let us proceed with Scenario 7 for N = 3. Tab. 5 shows the computational times for
N

r

= 0, . . . , 3 and N
o

= 0, . . . , 2 on 1-4 nodes. For N
r

= 0 we use one MPI rank and up
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Fig. 10 Reconstructions of the numerical solutions at T = 2.5·105 s computed with the HSG-FV method for
N

r

= 3, N
o

= 1. (a) Reconstructions for the scenario 4 for several values of ✓ 2 [0, 1]2. (b) Reconstructions
for the scenario 6 for several values of ✓ 2 [0, 1]3.

Table 4 Duration (in seconds) of HSG-FV computation on Intel(R) Xeon(R) CPU E5-2680 v2 (2.80GHz),
using one node (20 cores with hyper-threading), for Scenario 5 at T = 2.5 · 105 s.

N

r

/ #SE 0 / 1 1 / 4 2 / 16 3 / 64 4 / 256 5 / 1024
N

o

=0 108 113 114 489 1976 8143
N

o

=1 523 387 6168 2672 10537 42243
N

o

=2 1472 1085 2913 12415 47468 202641
N

o

=3 3209 3208 9369 38150 147541 616596

Table 5 Duration (in seconds) of HSG-FV computation on Intel(R) Xeon(R) CPU E5-2680 v2 (2.80GHz),
using 1-4 nodes (20 cores with hyper-threading) for Scenario 7 at T = 2.5 · 105 s.

N

r

/ #SE 0 / 1 1 / 8 2 / 64 3 / 512
N

o

=0 1322 1497 11254 13657
N

o

=1 8204 8470 67480 113220
N

o

=2 33670 45531 348102 714583

Table 6 Duration (in seconds) of HSG-FV computation on 1-16 nodes (2⇥Intel(R) Xeon(R) CPU E5-2680
v2 (2.80GHz)) for Scenario 5 with N

r

= 4, at T = 2.5 · 105 s.

#Nodes / #CPU 1 / 20 2 / 40 4 / 80 8 / 160 16 /320
N

o

=2 57073 28853 14329 7558 3536
N

o

=3 180930 91874 45262 23217 10736

to 5 OpenMP threads, for N
r

= 1, 2 we use 8 MPI ranks each with up to 5 OpenMP threads
on one computing node, for N

r

= 3 we use 64 MPI ranks each with up to 2 OpenMP threads
on 4 computing nodes.

In the next step let us discuss the strong scaling of the parallel execution of the method.
For this purpose let us again consider Scenario 5 with N

r

= 4, N
o

= 2, 3. Table 6 shows
the computational times on 20-320 CPU cores.

The computational times presented show that the strong scaling of the method is almost
linear for an appropriate number of cores. We can see that hybrid parallelisation allows us
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Fig. 11 Expectation of the numerical solution with N

r

-adaptivity (a) for Scenario 4; (b) for Scenario 5 at
T = 2.5 · 105 s computed with (1) N

r

= 3, N
o

= 1; (2) N
r

= 4, N
o

= 1; (3) N
r

= 5, N
o

= 3; (4) 106
MC-samples.

to perform efficient computations on single nodes and distributed systems. In particular,
the MPI parallelisation over stochastic elements allows the use of several nodes without
necessary of the fast communication between MPI ranks. Since the parallelisation over the
polynomial order requires the complete synchronisation in each time step, the synchronisa-
tion effort increases significantly with the increasing number of threads. Therefore it is most
promising to use the maximal possible number of MPI ranks together with a low number of
the OpenMP threads.

5.3 Numerical experiments including stochastic adaptivity

Now we apply the stochastic adaptivity method presented in Section 4 to several examples
for N = 2, 3.

We start with two numerical scenarios for N = 2: The scenario with low random per-
turbation given by Scenario 4, and the scenario with higher random perturbation is given by
Scenario 5. For the presented computations we use one node build by 2⇥ Intel(R) Xeon(R)
CPU E5-2680 v2 (2.80GHz). We use 16 MPI ranks each up to two OpenMP threads on 20
CPU cores.

Figure 11 shows the plots of the expectations of the N
r

-adaptive HSG solutions for Sce-
narios 4 and 5 compared with appropriate MC solutions for 106 samples. We then consider
the accuracy and computing time. Tables 7 and 8 show the L1-error and computing times for
the scenario with low random perturbation given by Scenario 4. Then we increase the ran-
dom perturbation and consider Scenario 5. Tables 9 and 10 show the L1-error and computing
times for this test case. In both cases the HSG-FV method with and without N

r

-adaptivity
provides a similar accuracy. In case with lower random perturbation computations with N

r

-
adaptivity are up to four times faster then without. For stronger random perturbation the
computations with N

r

-adaptivity are up to two times faster.
Now let us discuss the application of the N

r

-adaptivity for N = 3. For this purpose
we use Scenario 6. Tab. 11 and 12 shows the L1-error and computing times of the compu-
tations with and without N

r

-adaptivity. Fig. 12 shows the plots of the expectations of the
N

r

-adaptive HSG solutions for Scenarios 6 and 7 compared with appropriate MC solutions



26 Andrea Barth et al.

Table 7 L

1-error for Scenario 4 computed (a) without N
r

-adaptivity; (b) with N

r

-adaptivity threshold
parameter 0.001 at T = 2.5 · 105 s. Compared with Monte Carlo result over 106 samples.

(a)
N

o

N

r

= 3 N

r

= 4 N

r

= 5
0 7.56e-05 7.28e-05 3.93e-05
1 7.11e-05 8.23e-05 4.25e-05
2 7.92e-05 8.70e-05 4.44e-05
3 8.44e-05 8.96e-05 4.56e-05

(b)
N

o

N

r

= 3 N

r

= 4 N

r

= 5
0 8.36e-05 7.65e-05 7.65e-05
1 7.06e-05 6.90e-05 6.89e-05
2 7.87e-05 7.86e-05 7.86e-05
3 8.39e-05 1.08e-04 8.71e-05

Table 8 Duration (in seconds) of HSG-FV computation on Intel(R) Xeon(R) CPU E5-2680 v2 (2.80GHz),
using 1 node (20 cores with hyper-threading), for Scenario 4, at T = 2.5 · 105 s. (a) Without N

r

-adaptivity;
(b) with N

r

-adaptivity (cf. Sect. 4).

(a)
N

o

N

r

=3 N

r

=4 N

r

=5
0 492 2040 8138
1 2672 9547 41833
2 12415 48588 203340
3 39354 149530 624270

(b)
N

o

N

r

=3 N

r

=4 N

r

=5
0 320 1049 1965
1 1657 5738 9184
2 7823 25079 37391
3 23510 81283 308670

Table 9 L

1-error for Scenario 5 computed (a) without N
r

-adaptivity; (b) with N

r

-adaptivity threshold
parameter 0.001 at T = 2.5 · 105. Compared with Monte Carlo result over 106 samples.

(a)
N

o

N

r

= 3 N

r

= 4 N

r

= 5
0 2.74e-03 7.89e-04 5.56e-04
1 4.40e-03 2.12e-03 1.30e-03
2 4.53e-03 2.39e-03 1.24e-03
3 4.85e-03 2.21e-03 1.01e-03

(b)
N

o

N

r

= 3 N

r

= 4 N

r

= 5
0 4.41e-03 4.35e-03 4.36e-03
1 3.98e-03 3.33e-03 3.29e-03
2 3.92e-03 3.34e-03 3.28e-03
3 4.46e-03 3.33e-03 3.09e-03

Table 10 Duration (in seconds) of HSG-FV computation on Intel(R) Xeon(R) CPU E5-2680 v2 (2.80GHz),
using 1 Node (20 cores with hyper-threading), for Scenario 5, at T = 2.5 · 105. (a) Without N

r

-adaptivity;
(b) with N

r

-adaptivity (cf. Sect. 4).

(a)
N

o

N

r

=3 N

r

=4 N

r

=5
0 489 1976 8143
1 2622 10537 42243
2 11747 47468 202641
3 38150 147541 616596

(b)
N

o

N

r

=3 N

r

=4 N

r

=5
0 315 1054 4234
1 1655 5572 20633
2 7703 25613 91859
3 24454 82154 307937

for 106 samples. Similar to numerical experiments for N = 2 the N
r

-adaptivity provides
up to two times faster computations with the comparable accuracy.
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Table 11 L

1-error for the test case Scenario 6 computed (a) without adaptivity; (b) with N

r

-adaptivity
threshold parameter 0.001 at T = 2.5 · 105 s. Compared with Monte Carlo result over 106 samples.

(a)
N

o

N

r

= 2 N

r

= 3
0 3.01e-04 7.39e-05
1 1.68e-04 5.60e-05
2 1.12e-04 5.36e-05

(b)
N

o

N

r

= 2 N

r

= 3
0 2.45e-04 2.71e-04
1 1.67e-04 5.54e-05
2 1.12e-04 5.10e-05

Table 12 Duration (in seconds) of HSG-FV computation on Intel(R) Xeon(R) CPU E5-2680 v2 (2.80GHz),
using 1-4 Node (20 cores with hyper-threading), for Scenario 6, at T = 2.5 ·105. (a) Without N

r

-adaptivity;
(b) with N

r

-adaptivity (cf. Sect. 4).

(a)
N

o

N

r

=2 N

r

=3
0 11480 12739
1 66258 116352
2 353577 699396

(b)
N

o

N

r

=2 N

r

=3
0 6546 5901
1 39894 62229
2 193146 377307
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Fig. 12 Expectation of the numerical solution with N

r

-adaptivity (a) for Scenario 6; (b) for Scenario 7 at
T = 2.5 · 105 s computed with (1) 106 MC-samples; (2) N

r

= 2, N
o

= 0; (3) N
r

= 3, N
o

= 2.

6 Application on the real-world problem

In this section we consider the application of the HSG-FV method on a realistic setting. Our
point of interest in this section is the influence of the random perturbed parameters on the
steady state solution. Therefore we start with a following deterministic scenario

u
F

= 0.35, q
L

= �7.2 · 10�6 m s�1, q
R

= 1.25 · 10�5 m s�1, (23)

that yields the steady-state solution presented in Figure 13.
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Fig. 13 Steady-state numerical solution at T = 106 for the scenario given in (23).
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Fig. 14 Expectation (a) and variance (b) of the numerical solution for Scenario given in (24) at T = 2.5 ·
105 s computed with N

r

= 2, N
o

= 1.

In the next step we extend this scenario by three random parameters ✓
1

, ✓
2

, ✓
3

2 U(0, 1)
and obtain the following setting that provides three random perturbations of the setting (23)

u
F

= 0.35 + 0.05(✓
1

� 0.5), q
L

= �7.2 · 10�6 � (✓
2

� 0.5) · 10�6 ms�1,

q
R

= 1.25 · 10�5 + (✓
3

� 0.5) · 10�5 ms�1. (24)

Now we can apply the HSG-FV method on the presented random disturbed setting, where
the initial value in the numerical experiment below is given by the steady state solution of the
Scenario (23) shown in Figure 13. A further advantage of the HSG method, is the possibility
to compute a reconstruction of the numerical solution for each choice of ✓ 2 [0, 1]3 during
the post-processing. The results of the numerical experiments are presented in Figures 14
and 15, where Figure 14 shows the expectation and variance at T = 2.5·105 s and Figure 15
shows the reconstruction of the numerical solution for several choices of ✓ 2 [0, 1]3 at T =
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Fig. 15 Reconstruction of the numerical solution for Scenario (24) and several choices of ✓ 2 [0, 1]3 at
T = 2.5 · 105 s with initial value given by steady state solution in Fig. 13.

2.5 · 105 s. We can see that the random-perturbed Scenario (24) yields a solution with non-
stationary expectation and variance. In practical terms this means that if some of the control
parameters are subject to stochastic variability expressed, for instance, by the parameters
(✓

1

, ✓
2

, ✓
3

) = (0.8, 0.4, 0), then one should expect that instead of attaining a state, the
sediment in the thickening zone will start to rise, solid material enters the clarification zone,
and the unit may overflow. It is precisely the purpose of the present approach to provide a
tool that helps quantifying efficiently, and based on the uncertainty of the control or other
parameters, whether this or other events are likely to occur.

7 Conclusions

In this paper, we discuss the application of the HSG-FV method on a clarifier-thickener prob-
lem with up to three random sources. Our numerical examples show, that the method allows
us to obtain a fast and accurate approach. Further, the structure of the proposed stochastic
discretisation allows efficient hybrid (MPI+OpenMP) parallelisation, that plays an impor-
tant role for the computing on state-of-the-art cluster hardware. We complete our work with
an stochastic adaptivity method, that allows us to reduce the computational effort, and in the
same time still allows efficient parallel computation.

While the adaptive parallel HSG methods gives good numerical results for the CT op-
erator it must be pointed out that the overall approach can be applied to a wide range of
conservation laws with uncertain coefficients.
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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