
UNIVERSIDAD DE CONCEPCIÓN

Centro de Investigación en
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Abstract

In this paper we develop an a posteriori error analysis for an augmented mixed–primal finite
element approximation of a stationary viscous flow and transport problem. The governing system
corresponds to a scalar, nonlinear convection-diffusion equation coupled with a Stokes problem with
variable viscosity, and it serves as a prototype model for sedimentation-consolidation processes and
other phenomena where the transport of species concentration within a viscous fluid is of interest.
The solvability of the continuous mixed–primal formulation along with a priori error estimates for
a finite element scheme using Raviart-Thomas spaces of order k for the stress approximation, and
continuous piecewise polynomials of degree ≤ k+ 1 for both velocity and concentration, have been
recently established in [M. Alvarez et al., ESAIM: Math. Model. Numer. Anal. 49 (5) (2015)
1399–1427]. Here we derive two efficient and reliable residual-based a posteriori error estimators
for that scheme: For the first estimator, and under suitable assumptions on the domain, we apply
a Helmholtz decomposition and exploit local approximation properties of the Clément interpolant
and Raviart-Thomas operator to show its reliability. On the other hand, its efficiency follows
from inverse inequalities and the localization arguments based on triangle-bubble and edge-bubble
functions. Secondly, an alternative error estimator is proposed, whose reliability can be proved
without resorting to Helmholtz decompositions. Our theoretical results are then illustrated via
some numerical examples, highlighting also the performance of the scheme and properties of the
proposed error indicators.

Key words: Stokes–transport coupled problem, viscous flow, augmented mixed–primal formulation,
sedimentation-consolidation process, finite element methods, a posteriori error analysis.
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1 Introduction

We have recently analyzed in [2] the solvability of a three-field flow-transport problem given by the cou-
pling of a scalar nonlinear convection-diffusion problem with the Stokes equations where the viscosity
depends on the distribution of the solution to the transport problem. There, an augmented mixed–
primal variational formulation was proposed, where the Cauchy stresses are sought in H(div; Ω), the

∗This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, and
project Anillo ACT1118 (ANANUM); by the Ministery of Education through the project REDOC.CTA of the Graduate
School, Universidad de Concepción; and by Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de
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velocity is in H1(Ω), and the solution to the transport problem has H1(Ω) regularity. The associated
numerical scheme employed Raviart-Thomas spaces of order k for the Cauchy stress, whereas the
velocity and the scalar field (e.g. concentration as in [3], or temperature) were approximated with
continuous piecewise polynomials of degree ≤ k+1. Optimal a priori error estimates were also derived.

Our goal in this paper is to propose reliable and efficient residual-based a posteriori error estimators
for the coupled flow–transport problem studied in [2]. Estimators of this kind are typically used to
guide adaptive mesh refinement in order to guarantee an adequate convergence behavior of the Galerkin
approximations, even under the eventual presence of singularities. The global estimator θ depends on
local estimators θT defined on each element T of a given mesh Th. Then, θ is said to be efficient (resp.
reliable) if there exists a constant Ceff > 0 (resp. Crel > 0), independent of meshsizes, such that

Ceff θ + h.o.t. ≤ ‖error‖ ≤ Crel θ + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order. A number of
a posteriori error estimators specifically targeted for non-viscous (e.g., Darcy) flow coupled with
transport problems area available in the literature (see, e.g. [10, 17, 27, 32, 36]). However, only
a couple of contributions deal with a posteriori error analysis for coupled viscous flow-transport
problems. In particular, we mention the reactive flow equations studied in [11] and the adaptive finite
element method for heat transfer in incompressible fluid flow proposed in [28], which is based on dual
weighted residual error estimation.

In contrast, here we apply a Helmholtz decomposition, local approximation properties of the
Clément interpolant and Raviart-Thomas operator, and known estimates from [4], [18], [21], [23] and
[24], to prove the reliability of a residual-based estimator. Then, inverse inequalities, the localization
technique based on triangle-bubble and edge-bubble functions imply the efficiency of the estimator. An
alternative (also reliable and efficient) residual-based a posteriori error estimator is proposed, where
the Helmholtz decomposition is not employed in the corresponding proof of reliability. The remainder
of this paper is structured as follows. In Section 2, we first recall from [2] the model problem and
a corresponding augmented mixed-primal formulation as well as the associated Galerkin scheme. In
Section 3, we derive a reliable and efficient residual-based a posteriori error estimator for our Galerkin
scheme. A second estimator is introduced and studied in Section 4. Finally, in Section 5 we provide
some numerical results confirming the reliability and efficiency of the estimators, and illustrating the
good performance of the associated adaptive algorithm for the augmented mixed-primal finite element
method.

2 A coupled viscous flow–transport problem

Let us denote by Ω ⊆ Rn, n = 2, 3 a given bounded domain with polyhedral boundary Γ = Γ̄D ∪ Γ̄N,
with ΓD∩ΓN = ∅ and |ΓD|, |ΓN| > 0, and denote by ν the outward unit normal vector on Γ. Standard
notation will be adopted for Lebesgue spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖·‖s,Ω and

seminorm | · |s,Ω. In particular, H1/2(Γ) is the space of traces of functions of H1(Ω) and H−1/2(Γ)
denotes its dual. By M,M we will denote the corresponding vectorial and tensorial counterparts of
the generic scalar functional space M. We recall that the space

H(div; Ω) := {τ ∈ L2(Ω) : div τ ∈ L2(Ω)} ,

equipped with the usual norm

‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω
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is a Hilbert space. As usual, I stands for the identity tensor in Rn×n, and | · | denotes both the
Euclidean norm in Rn and the Frobenius norm in Rn×n.

2.1 The three-field formulation

The following system of partial differential equations describes the stationary state of the transport
of species φ in an immiscible fluid occupying the domain Ω (cf. [2]):

1

µ(φ)
σd = ∇u in Ω , −divσ = fφ in Ω ,

σ̃ = ϑ(|∇φ|)∇φ − φu − γ(φ)k in Ω , − div σ̃ = g in Ω ,

(2.1)

u = uD on ΓD , σν = 0 on ΓN ,

φ = φD on ΓD , and σ̃ · ν = 0 on ΓN .
(2.2)

where the sought quantities are the Cauchy fluid stress σ, the local volume-average velocity of the
fluid u, and the local concentration of species φ. In this model, the kinematic effective viscosity, µ; the
diffusion coefficient, ϑ; and the one-directional flux function describing hindered settling, γ; depend
nonlinearly on φ. In turn, k is a vector pointing in the direction of gravity and f ∈ L∞(Ω), uD ∈
H1/2(ΓD), g ∈ L2(Ω) are given functions. For sake of the subsequent analysis, the Dirichlet datum
for the concentration will be assumed homogeneous, that is φD = 0, ϑ is assumed of class C1, and we
suppose that there exist positive constants µ1, µ2, γ1, γ2, ϑ1, ϑ2, Lµ and Lγ , such that

µ1 ≤ µ(s) ≤ µ2 and γ1 ≤ γ(s) ≤ γ2 ∀ s ∈ R , (2.3)

ϑ1 ≤ ϑ(s) ≤ ϑ2 and ϑ1 ≤ ϑ(s) + s ϑ′(s) ≤ ϑ2 ∀ s ≥ 0, (2.4)

|µ(s)− µ(t)| ≤ Lµ |s− t| ∀ s, t ∈ R , (2.5)

|γ(s)− γ(t)| ≤ Lγ |s− t| ∀ s, t ∈ R . (2.6)

2.2 The augmented mixed–primal formulation

The homogeneous Neumann boundary condition for σ on ΓN and the Dirichlet datum for φ (cf. second
and third relations of (2.2), respectively) suggest the introduction of the spaces

HN (div; Ω) :=
{
τ ∈ H(div; Ω) : τν = 0 on ΓN

}
,

H1
ΓD

(Ω) :=
{
ψ ∈ H1(Ω) : ψ = 0 on ΓD

}
.

Also, due to the generalized Poincaré inequality, there exists cp > 0, depending only on Ω and ΓD,
such that

‖ψ‖1,Ω ≤ cp |ψ|1,Ω ∀ψ ∈ H1
ΓD

(Ω) . (2.7)

An augmented mixed-primal formulation for our original coupled problem (2.1) reads as follows:
Find (σ,u, φ) ∈ HN (div; Ω)×H1(Ω)×H1

ΓD
(Ω) such that

Bφ((σ,u), (τ ,v)) = Fφ(τ ,v) ∀(τ ,v) ∈ HN (div; Ω)×H1(Ω) ,

Au(φ, ψ) = Gφ(ψ) ∀ψ ∈ H1
ΓD

(Ω)
(2.8)
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where

Bφ((σ,u), (τ ,v)) :=

∫
Ω

1

µ(φ)
σd : τ d +

∫
Ω
u · divτ −

∫
Ω
v · divσ (2.9)

+ κ1

∫
Ω

(
∇u − 1

µ(φ)
σd

)
: ∇v + κ2

∫
Ω

divσ · divτ + κ3

∫
ΓD

u · v ,

Fφ(τ ,v) := 〈τν,uD〉ΓD
+

∫
Ω
fφ · v − κ2

∫
Ω
fφ · divτ + κ3

∫
ΓD

uD · v , (2.10)

Au(φ, ψ) :=

∫
Ω
ϑ(|∇φ|)∇φ · ∇ψ −

∫
Ω
φu · ∇ψ ∀φ, ψ ∈ H1

ΓD
(Ω), (2.11)

Gφ(ψ) :=

∫
Ω
γ(φ)k · ∇ψ +

∫
Ω
gψ ∀ψ ∈ H1

ΓD
(Ω) ,

where κi, i ∈ {1, 2, 3}, are the stabilization parameters specified in [2, Lemma 4.1]. Further details
yielding the weak formulation (2.8) can be found in [2, Section 3.1], whereas its solvability follows
from the fixed point strategy developed in [2, Theorem 3.13].

2.3 The augmented mixed–primal finite element method

We denote by Th a regular partition of Ω into triangles T (resp. tetrahedra T in R3) of diameter hT ,

and meshsize h := max
{
hT : T ∈ Th

}
. In addition, given an integer k ≥ 0, the space Pk(T ) contains

polynomial functions on T of degree ≤ k, and we define the corresponding local Raviart-Thomas space
of order k as RTk(T ) := Pk(T ) ⊕ Pk(T )x , where, according to the notations described in Section
1, Pk(T ) = [Pk(T )]n, and x ∈ Rn. Then, the Galerkin scheme associated to (2.8) is as follows: Find

(σh,uh, φh) ∈ Hσh ×Hu
h ×Hφ

h such that

Bφh((σh,uh), (τ h,vh)) = Fφh(τ h,vh) ∀(τ h,vh) ∈ Hσh ×Hu
h ,

Auh
(φh, ψh) =

∫
Ω
γ(φh)k · ∇ψh +

∫
Ω
gψh ∀ψh ∈ Hφ

h ,
(2.12)

where the involved finite element spaces are defined as

Hσh :=
{
τ h ∈ HN (div; Ω) : ct τ h|T ∈ RTk(T ) ∀ c ∈ Rn , ∀T ∈ Th

}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|T ∈ Pk+1(T ) ∀T ∈ Th

}
,

Hφ
h :=

{
ψh ∈ C(Ω) ∩H1

ΓD
(Ω) : ψh|T ∈ Pk+1(T ) ∀T ∈ Th

}
.

The solvability analysis and a priori error bounds for (2.12) are established in [2, Section 5].

3 A residual-based a posteriori error estimator

In this section we derive a reliable and efficient residual-based a posteriori error estimator for the
Galerkin scheme (2.12). The analysis will be restricted to the two-dimensional case, with the discrete
spaces introduced in Section 2. Let us point out that a straightforward extension of our analysis to
3D would only apply to either convex polyhedral regions or piecewise smooth non-convex regions since
the stability of the corresponding Helmholtz decomposition (see (3.35) below for our 2D case) is valid
for these types of domains (see [35, Proposition 4.52] or [9, Theorems 2.17 and 3.12]).
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Now, given a suitable chosen r > 0 (see [2] for details), we define the balls

W := {φ ∈ HΓD
: ‖φ‖1,Ω ≤ r} and Wh := {φh ∈ Hφ

h : ‖φh‖1,Ω ≤ r} , (3.1)

and throughout the rest of the paper we let (σ,u, φ) ∈ HN (div; Ω) ×H1(Ω) × H1
ΓD

(Ω) with φ ∈ W
and (σh,uh, φh) ∈ Hσh × Hu

h × Hφ
h with φh ∈ Wh be the solutions of the continuous and discrete

formulations (2.8) and (2.12), respectively. In addition, we recall from [2, Theorems 3.13 and 4.7] that
the following a priori estimates hold

‖(σ,u)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖φ‖1,Ω ‖f‖∞,Ω
}
,

‖(σh,uh)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖φh‖1,Ω ‖f‖∞,Ω
}
,

(3.2)

where CS is a positive constant independent of φ and φh.

3.1 The local error indicator

Given T ∈ Th, we let Eh(T ) be the set of its edges, and let Eh be the set of all edges of the triangulation
Th. Then we write Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω}, Eh(ΓD) := {e ∈
Eh : e ⊆ ΓD} and Eh(ΓN) := {e ∈ Eh : e ⊆ ΓN}. Also, for each edge e ∈ Eh we fix a unit normal
vector νe := (ν1, ν2)t, and let se := (−ν2, ν1)t be the corresponding fixed unit tangential vector along
e. Then, given e ∈ Eh(Ω) and τ ∈ L2(Ω) such that τ |T ∈ [C(T )]2 on each T ∈ Th, we let Jτ · νeK
be the corresponding jump across e, that is, Jτ · νeK := (τ |T − τ |T ′)|e · νe, where T and T ′ are the
triangles of Th having e as a common edge. Similarly, given τ ∈ L2(Ω) such that τ |T ∈ [C(T )]2×2 on
each T ∈ Th, we let JτseK be the corresponding jump across e, that is, JτseK := (τ |T − τ |T ′)|e se. If
no confusion arises, we will simple write s and ν instead se and νe, respectively. The curl operator
applied to scalar, vector and tensor valued fields v, ϕ := (ϕ1, ϕ2) and τ := (τij), respectively, will be
denoted as

curl(v) :=

(
∂v
∂x2

− ∂v
∂x1

)
, curl(ϕ) :=

(
curl(ϕ1)t

curl(ϕ2)t

)
, and curl(τ ) :=

(
∂τ12
∂x1
− ∂τ11

∂x2
∂τ22
∂x1
− ∂τ21

∂x2

)
.

Then, we let σ̃h := ϑ(|∇φh|)∇φh − φhuh − γ(φh)k and define for each T ∈ Th a local error indicator
θT as follows

θ2
T := ‖fφh + divσh‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ h2
T ‖g + div σ̃h‖20,T

+ h2
T

∥∥∥∥curl

{
1

µ(φh)
σd
h

}∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(Ω)

he

∥∥∥∥s 1

µ(φh)
σd
h s

{∥∥∥∥2

0,e

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e

+
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖20,e +
∑

e∈Eh(T )∩Eh(ΓD)

he

∥∥∥∥duDds − 1

µ(φh)
σd
h s

∥∥∥∥2

0,e

.

(3.3)

The residual character of each term defining θ2
T is clear, and hence, proceeding as usual, a global

residual error estimator can be defined as

θ :=

∑
T∈Th

θ2
T


1/2

. (3.4)
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Note that the last term defining θ2
T requires that

duD
ds

∣∣∣
e
∈ L2(e) for each e ∈ Eh(ΓD). This is

ensured below by assuming that uD ∈ H1
0(ΓD). We also emphasize, with regards to the remark at the

beginning of this section, that in the 3D case the convexity assumption on the domain Ω is required
only for the reliability of θ.

3.2 Reliability

The following theorem constitutes the main result of this section

Theorem 3.1 Assume that Ω is a connected domain and that ΓN is the boundary of a convex part of
Ω, that is Ω can be extended to a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B (see Figure 3.1
below). In addition, assume that uD ∈ H1

0(ΓD) and that for some ε ∈ (0, 1) (when n = 2) or some
ε ∈ (1/2, 1)(when n = 3) there holds

C3 |k| + C6 ‖uD‖1/2+ε,ΓD
+ C7 ‖f‖∞,Ω <

1

2
,

where C3, C6 and C7 are the constants given below in (3.21). Then, there exists a constant Crel > 0,
which depends only on parameters, ‖uD‖1/2,ΓD

, ‖f‖∞,Ω, and other constants, all them independent of
h, such that

‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H ≤ Crel θ, (3.5)

where H := HN (div,Ω)×H1(Ω).

We begin the proof of (3.5) with the upper bounds derived in the following two subsections.

3.2.1 A preliminary estimate for ‖(σ,u)− (σh,uh)‖H

In order to simplify the subsequent writing, we first introduce the following constants

C0 :=
1

α
, C1 := 2C0Cε C̃ε C̃S(r)

Lµ(1 + κ2
1)1/2

µ2
1

, C2 := C0 (1 + κ2
2)1/2 + r C1, (3.6)

where C̃S(r) and Cε, C̃ε are defined in [2, cf. (3.22) ] and [2, Lemma 3.9 and Theorem 3.13], respec-
tively.

Lemma 3.2 Let θ2
0 :=

∑
T∈Th

θ2
0,T , where for each T ∈ Th we set

θ2
0,T := ‖fφh + divσh‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖20,e . (3.7)

Then there exists C̄ > 0, depending on C0, κ1, κ3, and the trace operator in H1(Ω), such that

‖(σ,u)− (σh,uh)‖H

≤ C̄
{
θ0 + ‖Eh‖HN (div,Ω)′

}
+
{
C1 ‖uD‖1/2+ε,ΓD

+ C2 ‖f‖∞,Ω
}
‖φ− φh‖1,Ω ,

(3.8)

where C1 and C2 are given by (3.6), and Eh ∈ HN (div,Ω)′, defined for each ζ ∈ HN (div,Ω) by

Eh(ζ) := 〈ζ ν,uD〉ΓD
−
∫

Ω

1

µ(φh)
σd
h : ζ −

∫
Ω
uh · divζ − κ2

∫
Ω

(fφh + divσh) · divζ , (3.9)
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satisfies
Eh(ζh) = 0 ∀ ζh ∈ Hσh . (3.10)

Proof. We first deduce from the H-ellipticity of Bφ (cf. [2, Lemma 3.4]) that there holds the global
inf-sup condition

α ‖(τ ,v)‖H ≤ sup
(ζ,w)∈H

(ζ,w)6=0

Bφ((τ ,v), (ζ,w))

‖(ζ,w)‖H
∀ (τ ,v) ∈ H, (3.11)

where α is the constant of ellipticity, which depends only on µ1, µ2,Ω,ΓN and ΓD (see [2, Lemma 3.4]).
Then, applying (3.11) to the error (τ ,v) := (σ − σh,u− uh), we find that

α ‖(σ,u)− (σh,uh)‖H ≤ sup
(ζ,w)∈H

(ζ,w) 6=0

Fφ(ζ,w)−Bφ((σh,uh), (ζ,w))

‖(ζ,w)‖H
. (3.12)

Next, using the definitions of Bφ (cf. (2.9)) and Fφ (cf. (2.10)), and adding and subtracting suitable
terms, we can write

Fφ(ζ,w) − Bφ((σh,uh), (ζ,w)) = Fφh(ζ,w) − Bφh((σh,uh), (ζ,w))

+ Bφh((σh,uh), (ζ,w)) − Bφ((σh,uh), (ζ,w)) + Fφ(ζ,w) − Fφh(ζ,w) .
(3.13)

In this way, employing the estimate for |Bφh( · , (ζ,w)) − Bφ( · , (ζ,w))| (see [2, eq. (3.29)]) and
|Fφ(ζ,w)− Fφh(ζ,w)| (see [2, eq. (3.28)]), we deduce from (3.12) and (3.13) that

‖(σ,u)− (σh,uh)‖H ≤ C0 ‖Fφh( · )−Bφh((σh,uh), · )‖H′

+
{
C1 ‖uD‖1/2+ε,ΓD

+ C2 ‖f‖∞,Ω
}
‖φ− φh‖1,Ω,

(3.14)

where, bearing in mind (3.9), there holds

Fφh(ζ,w) − Bφh((σh,uh), (ζ,w)) = Eh(ζ) + Êh(w) ∀ (ζ,w) ∈ H , (3.15)

with Êh ∈ H1(Ω)′ defined for each w ∈ H1(Ω) by

Êh(w) := =

∫
Ω

(fφh + divσh) ·w + κ1

∫
Ω

(
∇uh −

1

µ(φh)
σd
h

)
: ∇w + κ3

∫
ΓD

(uD − uh) ·w .

Then, applying the Cauchy-Schwarz inequality we readily deduce the existence of a constant ĉ > 0,
depending on κ1, κ3, and the trace operator in H1(Ω), such that

‖Êh‖H1(Ω)′ ≤ ĉθ0 ,

which, together with (3.14) and (3.15), imply the main inequality (3.8). Moreover, using the fact that

Fφh(ζh,wh)−Bφh((σh,uh), (ζh,wh)) = 0 ∀ (ζh,wh) ∈ Hh ,

and taking in particular wh = 0, we deduce (3.10), which completes the proof. �

Observe, according to (3.10), that for each ζ ∈ HN (div,Ω) there holds

Eh(ζ) = Eh(ζ − ζh) ∀ ζh ∈ Hσh ,

and hence the upper bound of ‖Eh‖HN (div,Ω)′ to be derived below (see Subsection 3.2.3) will employ
the foregoing expression with a suitable choice of ζh ∈ Hσh .
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3.2.2 A preliminary estimate for ‖φ− φh‖1,Ω

We begin with the following results.

Lemma 3.3 The nonlinear operator Au : H1
ΓD

(Ω)→ [H1
ΓD

(Ω)]′ induced by Au (cf. (2.11)), that is

[Au(φ), ψ] :=

∫
Ω
ϑ(|∇φ|)∇φ · ∇ψ −

∫
Ω
φu · ∇ψ ∀ψ ∈ H1

ΓD
(Ω) , (3.16)

where [·, ·] is the duality pairing between H1
ΓD

(Ω) and [H1
ΓD

(Ω)]′, is Gâteaux differentiable in H1
ΓD

(Ω).

Proof. We begin by observing, thanks to simple computations and the C1-regularity of ϑ, that for all
φ̂, ψ, ϕ ∈ H1

ΓD
(Ω), with ∇φ̂ 6= 0 there holds

lim
ε→0

[Au(φ̂+ ε ψ)−Au(φ̂), ϕ]

ε
=

∫
Ω
ϑ′(|∇φ̂|)

(
∇φ̂ · ∇ψ

)
|∇φ̂|

∇φ̂ · ∇ϕ

+

∫
Ω
ϑ(|∇φ̂|)∇ψ · ∇ϕ −

∫
Ω
ψu · ∇ϕ,

(3.17)

whereas for ∇φ̂ = 0, we find that

lim
ε→0

[Au(φ̂+ ε ψ)−Au(φ̂), ϕ]

ε
=

∫
Ω
ϑ(0)∇ψ · ∇ϕ −

∫
Ω
ψu · ∇ϕ. (3.18)

In this way, the identities (3.17) and (3.18) show that Au is Gâteaux differentiable at φ̂. Moreover,
DAu(φ̂) is the bounded linear operator of H1

ΓD
(Ω) into [H1

ΓD
(Ω)]′ that can be identified with the

bilinear form DAu(φ̂) : H1
ΓD

(Ω)×H1
ΓD

(Ω)→ R defined by

DAu(φ̂)(ψ,ϕ) := lim
ε→0

[Au(φ̂+ ε ψ)−Au(φ̂), ϕ]

ε
∀ψ,ϕ ∈ H1

ΓD
(Ω). (3.19)

�

Lemma 3.4 Let cp and c(Ω) be the constants given by (2.7) and [2, eq. (3.5)], respectively, and let
u ∈ H1(Ω) be such that

‖u‖1,Ω <
ϑ1

2 cp c(Ω)
.

Then, the family of Gâteaux derivates {DAu(φ̂)}
φ̂∈H1

ΓD
(Ω)

is uniformly bounded and uniformly elliptic

on H1
ΓD

(Ω)×H1
ΓD

(Ω). More precisely, there exist positive constants λ̃, α̃, depending only on ϑ1, ϑ2 (cf.

(2.4)), c(Ω), and cp, such that for all φ̂, ϕ, ψ ∈ H1
ΓD

(Ω), there holds

|DAu(φ̂)(ψ,ϕ)| ≤ λ̃ ‖ψ‖1,Ω ‖ϕ‖1,Ω and DAu(φ̂)(ψ,ψ) ≥ α̃ ‖ψ‖21,Ω.

Proof. It proceeds similarly to the proof of [18, Lemma 5.1]. �

As a consequence of the ellipticity of the family {DAu(φ̂)}
φ̂∈H1

ΓD
(Ω)

, we obtain the following global

inf-sup condition

α̃ ‖ψ‖1,Ω ≤ sup
ϕ∈H1

ΓD
(Ω)

ϕ6=0

DAu(φ̂)(ψ,ϕ)

‖ϕ‖1,Ω
∀ψ ∈ H1

ΓD
(Ω). (3.20)
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Next, similarly as before, we simplify the subsequent writing by introducing the following constants

C̃ :=
2

α̃
, C3 := C̃ Lγ , C4 := r c(Ω) C̄, C5 := r c(Ω) C̃, C6 := C1C5 C7 := C2C5 , (3.21)

where C̄ is the constant provided by Lemma 3.2.

Lemma 3.5 Assume that

C3 |k| + C6 ‖uD‖1/2+ε,ΓD
+ C7 ‖f‖∞,Ω <

1

2
. (3.22)

Then, there exists Ĉ > 0, depending on C̃ and C4 (cf. (3.21)), such that

‖φ− φh‖1,Ω ≤ Ĉ
{
θ0 + ‖Eh‖HN (div,Ω)′ + ‖Ẽh‖H1

ΓD
(Ω)′

}
, (3.23)

where θ0 and Eh are given in the statement of Lemma 3.2 and (3.9), respectively, and Ẽh ∈ H1
ΓD

(Ω)′,

defined for each ϕ ∈ H1
ΓD

(Ω) by

Ẽh(ϕ) :=

∫
Ω
g ϕ −

∫
Ω

{
ϑ(|∇φh|)∇φh − φh uh − γ(φh)k

}
· ∇ϕ , (3.24)

satisfies
Ẽh(ϕh) = 0 ∀ϕh ∈ Hφ

h . (3.25)

Proof. Since φ and φh belong to H1
ΓD

(Ω), a straightforward application of the mean value theorem

yields the existence of a convex combination of φ and φh, say φ̂h ∈ H1
ΓD

(Ω), such that

DAu(φ̂h)(φ− φh, ϕ) = [Au(φ)−Au(φh), ϕ] ∀ϕ ∈ H1
ΓD

(Ω).

Next, applying (3.20) to the Galerkin error ψ := φ− φh, we find that

α̃ ‖φ− φh‖1,Ω ≤ sup
ϕ∈H1

ΓD
(Ω)

ϕ 6=0

[Au(φ)−Au(φh), ϕ]

‖ϕ‖1,Ω
.

(3.26)

Now, using the fact that [Au(φ), ϕ] = [Gφ, ϕ], the definition of Au (cf. (3.16)), and adding and
substracting suitable terms, it follows that

[Au(φ)−Au(φh), ϕ] = [Gφh − Auh
(φh), ϕ] + [Gφ − Gφh , ϕ] + [Auh

(φh) − Au(φh), ϕ]. (3.27)

In this way, applying the estimate for |[Gφ − Gφh , ϕ]| (see [2, eq. (5.5)]) and |[Au(φh) − Auh
(φh), ϕ]|

(see [2, eq. (5.6)]), we deduce from (3.26) and (3.27) that

‖φ− φh‖1,Ω ≤ C̃ ‖Gφh −Auh
(φh)‖[H1

ΓD
(Ω)]′ + C̃ Lγ |k| ‖φ− φh‖1,Ω + r c(Ω) C̃ ‖u− uh‖1,Ω. (3.28)

Then, bounding ‖u − uh‖1,Ω by the error estimate provided by (3.8) (cf. Lemma 3.2), and then
employing (3.22), we arrive at

‖φ− φh‖1,Ω ≤ 2 C̃
{
‖Gφh −Auh

(φh)‖[H1
ΓD

(Ω)]′ + C4

(
θ0 + ‖Eh‖HN (div,Ω)′

)}
,

where, bearing in mind (3.24), there holds

[Gφh −Auh
(φh), ϕ] = Ẽh(ϕ) ∀ϕ ∈ H1

ΓD
(Ω).
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Finally, using the fact that [Gφh − Auh
(φh), ϕh] = 0 ∀ϕh ∈ Hφ

h, we obtain (3.25) and the proof
concludes. �

At this point we remark, similarly as we did at the end of Section 3.2.1, and thanks now to (3.25),
that for each ϕ ∈ H1

ΓD
(Ω) there holds

Ẽh(ϕ) = Ẽh(ϕ− ϕh) ∀ϕh ∈ Hφ
h ,

and therefore ‖Ẽh‖H1
ΓD

(Ω)′ will be estimated below (see Subsection 3.2.3) by employing the foregoing

expression with a suitable choice of ϕh ∈ Hφ
h.

3.2.3 A preliminary estimate for the total error

We now combine the inequalities provided by Lemmas 3.2 and 3.5 to derive a first estimate for the
total error ‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H . To this end, we now introduce the constants

C(uD,f) := Ĉ
{
C1 ‖uD‖1/2+ε,ΓD

+ C2 ‖f‖∞,Ω + 1
}

and c(uD,f) := C̄ + C(uD,f) ,

where C̄ and Ĉ are provided by Lemmas 3.2 and 3.5, respectively, and C1 and C2 are given by (3.6).

Theorem 3.6 Assume that

C3 |k| + C6 ‖uD‖1/2+ε,ΓD
+ C7 ‖f‖∞,Ω <

1

2
.

Then there holds

‖φ−φh‖1,Ω + ‖(σ,u)−(σh,uh)‖H ≤ C(uD,f) ‖Ẽh‖H1
ΓD

(Ω)′ + c(uD,f)
{
θ0+‖Eh‖HN (div,Ω)′

}
. (3.29)

Proof. It suffices to replace the upper bound for ‖φ− φh‖1,Ω given by (3.23) into the second term on
the right hand side of (3.8), and then add the resulting estimate to the right hand side of (3.23). We
omit further details. �

It is clear from (3.29) that, in order to obtain an explicit estimate for the total error, it only remains
to derive suitable upper bounds for ‖Ẽh‖H1

ΓD
(Ω)′ and ‖Eh‖HN (div,Ω)′ . This is precisely the purpose of

the next subsection.

3.2.4 Upper bounds for ‖Ẽh‖H1
ΓD

(Ω)′ and ‖Eh‖HN (div,Ω)′

In what follows we make use of the Clément interpolation operator Ih : H1(Ω)→ Xh (cf. [16]), where
Xh is given by

Xh := {vh ∈ C(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th}.

The following Lemma establishes the local approximation properties of Ih.

Lemma 3.7 There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there hold

‖v − Ih(v)‖0,T ≤ c1hT ‖v‖1,∆(T ) ∀T ∈ Th, (3.30)

and
‖v − Ih(v)‖0,e ≤ c2h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh, (3.31)

where ∆(T ) and ∆(e) are the union of all elements intersecting with T and e, respectively.
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Proof. See [16]. �

We now recall from Subsection 3.1 that we have defined there

σ̃h := ϑ(|∇φh|)∇φh − φhuh − γ(φh)k . (3.32)

Then, the following lemma provides an upper bound for ‖Ẽh‖H1
ΓD

(Ω)′ .

Lemma 3.8 Let θ̃
2

:=
∑
T∈Th

θ̃2
T , where for each T ∈ Th we set

θ̃2
T := h2

T ‖g + div σ̃h‖20,T +
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e .

Then there exists c > 0, independent of h, such that

‖Ẽh‖H1
ΓD

(Ω)′ ≤ c θ̃ . (3.33)

Proof. Given ϕ ∈ H1
ΓD

(Ω) we let ϕh := Ih(ϕ) ∈ Hφ
h, and observe, according to (3.24), (3.25), and

(3.32), that

Ẽh(ϕ) = Ẽh(ϕ− ϕh) =
∑
T∈Th

∫
T
g (ϕ− ϕh) −

∑
T∈Th

∫
T
σ̃h · ∇(ϕ− ϕh) .

Next, integrating by parts on each T ∈ Th in the last term on the right hand side of the foregoing
equation, we find that

Ẽh(ϕ) =
∑
T∈Th

∫
T

(g + div σ̃h) (ϕ− ϕh) −
∑

e∈Eh(Ω)

∫
e
(ϕ− ϕh) Jσ̃h · νeK −

∑
e∈Eh(ΓN)

∫
e
(ϕ− ϕh) σ̃h · ν ,

from which, applying Cauchy-Schwarz inequality, employing the approximation properties of the
Clément operator given by (3.30) and (3.31), and performing some algebraic rearrangements, we
readily conclude that

|Ẽh(ϕ)| ≤ c θ̃ ‖ϕ‖1,Ω ,

which yields (3.33) and finishes the proof. �

We now aim to provide an upper bound for ‖Eh‖HN (div,Ω)′ (cf. (3.9)), which, being less straight-
forward than Lemma 3.8, requires several preliminary results and estimates. We begin by introducing
the space

H1
ΓN

(Ω) :=
{
ϕ ∈ H1(Ω) : ϕ = 0 on ΓN

}
,

and establishing a suitable Helmholtz decomposition of our space HN (div,Ω).

Lemma 3.9 Assume that Ω is a connected domain and that ΓN is contained in the boundary of a
convex part of Ω, that is there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B (see Figure
3.1). Then, for each ζ ∈ HN (div,Ω), there exist τ ∈ H1(Ω) and χ ∈ H1

ΓN
(Ω) such that

ζ = τ + curl(χ) in Ω , (3.34)

and
‖τ‖1,Ω + ‖χ‖1,Ω ≤ C ‖ζ‖div,Ω , (3.35)

with a positive constant C independent of ζ.
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ΓD

ΓN
Ω

∂B

B

Figure 3.1: Extension of Ω to a convex domain B for the Helmholtz decomposition.

Proof. Given ζ ∈ HN (div,Ω), we let z ∈ H2(B) be the unique weak solution of the boundary value
problem:

∆z =


divζ in Ω

−1

|B\Ω |

∫
Ω

divζ in B\Ω
, ∇z ν = 0 on ∂B,

∫
Ω
z = 0. (3.36)

Thanks to the elliptic regularity result of (3.36) we have that z ∈ H2(B) and

‖z‖2,B ≤ c ‖divζ‖0,Ω , (3.37)

where c > 0 is independent of z. In addition, it is clear that τ := (∇z)|Ω ∈ H1(Ω), divτ = ∆z =
divζ in Ω, τ ν = 0 on ∂B (which certainly yields τ ν = 0 on ΓN), and

‖τ‖1,Ω ≤ ‖z‖2,Ω ≤ ‖z‖2,B ≤ c ‖divζ‖0,Ω . (3.38)

On the other hand, since div(ζ − τ ) = 0 in Ω, and Ω is connected, there exists χ ∈ H1(Ω) such that

ζ − τ = curl(χ) in Ω . (3.39)

In turn, noting that 0 = (ζ − τ )ν = curl(χ)ν = dχ
ds on ΓN, we deduce that χ is constant on ΓN,

and therefore χ can be chosen so that χ ∈ H1
ΓN

(Ω), which, together with (3.39), gives (3.34). In
addition, from the equivalence between ‖χ‖1,Ω and |χ|1,Ω = ‖curl(χ)‖0,Ω (which is a consequence of
the generalized Poincaré inequality), and employing (3.38) and (3.34), we deduce that there exists a
constant c̃ > 0 such that

‖χ‖1,Ω ≤ c̃ ‖ζ‖div,Ω . (3.40)

Finally, it is clear that (3.38) and (3.40) yield (3.35), which is the stability estimate for (3.34). �

We remark here that estimates (3.37) and (3.38) are still valid for an arbitrary 3D polyhedral region
Ω, whereas (3.40) requires the convexity of this domain (see [35, Proposition 4.52] or [9, Theorems
2.17 and 3.12]). This explains, as already announced, that the present a posteriori error analysis can
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be extended only to convex polyhedral domains in R3. Nevertheless, as observed in [22] for the a
posteriori error analysis of a pseudostress-based formulation of the linear elasticity problem, we claim
that the aforementioned geometric condition might very well be just a technical assumption for the
3D analysis. We plan to report on numerical results supporting this conjecture in a separate work.

We now consider the finite element subspace of HΓN
(Ω) given by

Xh,N :=
{
ϕh ∈ C(Ω) : ϕh|T ∈ P1(T ) ∀ T ∈ Th, ϕh = 0 on ΓN

}
,

and introduce, analogously as before, the Clément interpolation operator Ih,N : HΓN
(Ω) → Xh,N .

In addition, we let Πk
h : H1(Ω) → Hσh be the Raviart-Thomas interpolation operator (see [12],[30]),

which, given τ̄ ∈ H1(Ω), is characterized by the identities:∫
e

Πk
h(τ̄ )ν · p =

∫
e
τ̄ ν · p, ∀ edge e ∈ Th, ∀p ∈ Pk(e), when k ≥ 0, (3.41)

and ∫
T

Πk
h(τ̄ ) : ρ =

∫
T
τ̄ : ρ, ∀ T ∈ Th, ∀ρ ∈ Pk−1(T ), when k ≥ 1, (3.42)

where Pk(e) := [Pk(e)]
2 and Pk−1(T ) := [Pk−1(T )]2×2. It is easy to show, using (3.41) and (3.42),

that (see, e.g. [20, Lemma 3.7], [29, eq. (3.4.23)])

div(Πk
h(τ̄ )) = Pkh(divτ̄ ) , (3.43)

where Pkh : L2(Ω)→ Qh is the L2(Ω)-orthogonal projector and

Qh :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀ T ∈ Th

}
.

Note that Pkh can also be indentified with (P kh , P
k
h ), where P kh is the orthogonal projector from L2(Ω)

into Qh with Qh := {v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀ T ∈ Th}. Furthermore, the following approxima-
tion properties hold (cf. [15], [20], [12], [30]):

‖v − P kh (v)‖0,T ≤ c hmT |v|m,T ∀T ∈ Th , (3.44)

for each v ∈ Hm(Ω), with 0 ≤ m ≤ k + 1,

‖τ̄ −Πk
h(τ̄ )‖0,T ≤ c hmT |τ̄ |m,T ∀T ∈ Th , (3.45)

for each τ̄ ∈ Hm(Ω), with 1 ≤ m ≤ k + 1,

‖div(τ̄ −Πk
h(τ̄ ))‖0,T ≤ c hmT |divτ̄ |m,T ∀T ∈ Th , (3.46)

for each τ̄ ∈ H1(Ω) such that divτ̄ ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, and

‖τ̄ ν −Πk
h(τ̄ )ν‖0,e ≤ c h1/2

e ‖τ̄‖1,Te ∀ edge e ∈ Th , (3.47)

for each τ̄ ∈ H1(Ω), where Te ∈ Th contains e on its boundary.

Then, given ζ ∈ HN (div,Ω) and its Helmholtz decomposition (3.34), we define χh := Ih,N (χ),
and set

ζh := Πk
h(τ ) + curl(χh) ∈ Hσh (3.48)
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as its associated discrete Helmholtz decomposition. It follows that

ζ − ζh = τ − Πk
h(τ ) + curl(χ− χh) ,

from which, using (3.43) and the fact that div τ = ∆z = div ζ in Ω, yields

div(ζ − ζh) = div(τ −Πk
h(τ )) = (I− Pkh)(divζ) . (3.49)

Hence, according to (3.9) and (3.10), and noting from (3.49) that∫
Ω
uh · div(τ −Πk

h(τ )) =

∫
Ω
uh · (I − Pkh)(div ζ) = 0 ,

we find that
Eh(ζ) = Eh(ζ − ζh) = Eh,1(τ ) + Eh,2(χ) , (3.50)

where

Eh,1(τ ) := 〈(τ −Πk
h(τ ))ν,uD〉ΓD

−
∫

Ω

1

µ(φh)
σd
h :
(
τ −Πk

h(τ )
)

+ κ2

∫
Ω

(fφh + divσh) · (I− Pkh)(div τ )) ,

(3.51)

and

Eh,2(χ) := 〈curl(χ− χh)ν,uD〉ΓD
−
∫

Ω

1

µ(φh)
σd
h : curl(χ− χh) . (3.52)

It is now evident from (3.50) that, in order to estimate ‖Eh‖HN (div,Ω)′ , it only remains to bound
|Eh,1(τ )| and |Eh,2(χ)| in terms of a multiple of ‖ζ‖div,Ω, which is indeed the purpose of the following
two lemmas.

Lemma 3.10 Let θ2
1 :=

∑
T∈Th

θ2
1,T , where for each T ∈ Th we set

θ2
1,T := h2

T

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ ‖fφh + divσh‖20,T +
∑

e∈Eh(T )∩Eh(ΓD)

he ‖uD − uh‖20,e .

Then there exists c > 0, independent of h, such that

|Eh,1(τ )| ≤ cθ1 ‖ζ‖div,Ω . (3.53)

Proof. The analysis for the first two terms defining Eh,1 (cf. (3.51)) follows as in the proof of [23,
Lemma 4.4], after replacing Γ by ΓD, and then employing the characterization (3.41) - (3.42), the
Cauchy-Schwarz inequality, the approximation properties (3.45) and (3.47), and the stability estimate
(3.35). In turn, for the corresponding third term it suffices to see that∣∣∣∣∫

Ω
(fφh + divσh) · (I− Pkh)(div τ ))

∣∣∣∣
≤ ‖fφh + divσh‖0,Ω ‖div τ‖0,Ω ≤ ‖fφh + divσh‖0,Ω ‖ζ‖div,Ω ,

which concludes the proof. �
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Lemma 3.11 Assume that uD ∈ H1
0(ΓD), and let θ2

2 :=
∑
T∈Th

θ2
2,T , where for each T ∈ Th we set

θ2
2,T := h2

T

∥∥∥∥curl

{
1

µ(φh)
σd
h

}∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(Ω)

he

∥∥∥∥s 1

µ(φh)
σd
hs

{∥∥∥∥2

0,e

+
∑

e∈Eh(T )∩Eh(ΓD)

he

∥∥∥∥duDds − 1

µ(φh)
σd
h s

∥∥∥∥2

0,e

.

Then there exists c > 0, independent of h, such that

|Eh,2(χ)| ≤ cθ2 ‖ζ‖div,Ω . (3.54)

Proof. We proceed similarly as in the proof of [23, Lemma 4.3]. In fact, using that curl(χ−χh)ν =

d
ds(χ− χh), noting that

duD
ds
∈ L2(ΓD), and then integrating by parts on ΓD, we find that

〈curl(χ− χh)ν,uD〉ΓD
= −〈χ− χh,

duD
ds
〉ΓD

= −
∑

e∈Eh(ΓD)

∫
e
(χ− χh)

duD
ds

.

On the other hand, integrating by parts on each T ∈ Th, we obtain that∫
Ω

1

µ(φh)
σd
h : curl(χ− χh) =

∑
T∈Th

{∫
T

curl

{
1

µ(φh)
σd
h

}
· (χ− χh) −

∫
∂T

1

µ(φh)
σd
h s · (χ− χh)

}
=
∑
T∈Th

∫
T

curl

{
1

µ(φh)
σd
h

}
· (χ− χh) −

∑
e∈Eh(Ω)

∫
e

s
1

µ(φh)
σd
hs

{
· (χ− χh)

−
∑

e∈Eh(ΓD)

∫
e

1

µ(φh)
σd
h s · (χ− χh) −

∑
e∈Eh(ΓN)

∫
e

1

µ(φh)
σd
h s · (χ− χh).

Then, replacing the above expressions on the right hand side of (3.52), and using the fact that
χ|ΓN

= χh|ΓN
= 0, we deduce that

Eh,2(χ) =
∑

e∈Eh(Ω)

∫
e

s
1

µ(φh)
σd
hs

{
· (χ− χh) −

∑
T∈Th

∫
T

curl

{
1

µ(φh)
σd
h

}
· (χ− χh)

−
∑

e∈Eh(ΓD)

∫
e

{
duD
ds
− 1

µ(φh)
σd
h

}
· (χ− χh) .

Next, since χh := Ih,N (χ), the approximation properties of Ih,N (cf. Lemma 3.7) yield

‖χ− χh‖0,T ≤ c1 hT ‖χ‖1,∆(T ) ∀T ∈ Th, (3.55)

and
‖χ− χh‖0,e ≤ c2 h

1/2
e ‖χ‖1,∆(e) ∀ e ∈ Eh. (3.56)

In this way, applying the Cauchy-Schwarz inequality to each term in the above expression for Eh,2(χ),
and making use of (3.55), (3.56), and (3.35), together with the fact that the number of triangles in
∆(T ) and ∆(e) are bounded, the proof is finished. �

As a consequence of Lemmas 3.10 and 3.11 we conclude the following upper bound for ‖Eh‖HN (div,Ω)′ .
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Lemma 3.12 There exists c > 0, independent of h, such that

‖Eh‖HN (div,Ω)′ ≤ c
{
θ1 + θ2

}
.

Proof. It follows straightforwardly from (3.50) and the upper bounds (3.53) and (3.54). �

We end this section by observing that the terms h2
T ‖∇uh −

1
µ(φh)σ

d
h‖20,T and he‖uD − uh‖20,e,

which appear in the definition of θ2
1,T (cf. Lemma 3.10), are dominated by ‖∇uh − 1

µ(φh)σ
d
h‖20,T and

‖uD − uh‖20,e, respectively, which form part or θ2
0,T (cf. (3.7)). In this way, the reliability estimate

(3.5) (cf. Theorem 3.1) is a direct consequence of Theorem 3.6, the definition of θ0 (cf. Lemma 3.2),
and Lemmas 3.8, 3.10, 3.11, and 3.12.

3.3 Efficiency

The following theorem is the main result of this section.

Theorem 3.13 There exists a constant Ceff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD
,

‖f‖∞,Ω, and other constants, all them independent of h, such that

Ceff θ ≤ ‖φ−φh‖1,Ω + ‖u−uh‖1,Ω + ‖div(σ−σh)‖0,Ω +

∥∥∥∥ 1

µ(φ)
σd− 1

µ(φh)
σd
h

∥∥∥∥
0,Ω

+ h.o.t. (3.57)

where h.o.t. stands for one or several terms of higher order. Moreover, under the assumption that
σ ∈ L4(Ω), there exists a constant Ceff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD

,
‖f‖∞,Ω, ‖σ‖L4(Ω), and other constants, all them independent of h, such that

Ceff θ ≤ ‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H + h.o.t. (3.58)

Throughout this and the following sections we assume for simplicity that the nonlinear functions µ,

ϑ, and γ are such that
1

µ(φh)
, ϑ(|∇φh|), γ(φh), and hence σ̃h as well, are all piecewise polynomials.

The same is assumed for the data uD and g. Otherwise, and if µ−1, ϑ, γ, uD, and g are sufficiently
smooth, higher order terms given by the errors arising from suitable polynomial approximations of
these expressions and functions would appear in (3.57) and (3.58) (cf. Theorem 3.13), which explains
the eventual h.o.t. in these inequalities. In this regard, we remark that (3.57) constitutes what we
call a quasi-efficiency estimate for the global residual error estimator θ (cf. (3.4)). Indeed, the quasi-
efficiency concept refers here to the fact that the expression appearing on the right hand side of
(3.57) is not exactly the error, but part of it plus the nonlinear term given by ‖ 1

µ(φ)σ
d − 1

µ(φh)σ
d
h‖0,Ω.

However, assuming additionally that σ ∈ L4(Ω), we show at the end of this section that the latter can
be bounded by ‖σ − σh‖0,Ω + ‖φ− φh‖1,Ω, thus yielding the efficiency estimate given by (3.58).

In order to prove (3.57) and (3.58), in what follows we derive suitable upper bounds for the ten
terms defining the local error indicator θ2

T (cf. (3.3)). We first notice, using that fφ = −divσ in Ω,
that there holds

‖fφh + divσh‖20,T ≤ 2 ‖f(φ− φh)‖20,T + 2 ‖div(σ − σh)‖20,T

≤ 2 ‖f‖∞,Ω ‖φ− φh‖20,T + 2 ‖div(σ − σh)‖20,T .
(3.59)
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In addition, since ∇u = 1
µ(φ)σ

d in Ω, we find that∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

≤ 2 ‖∇u−∇uh‖20,T + 2

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

. (3.60)

Furthermore, employing that u = uD on ΓD and applying the trace theorem, we obtain that∑
e∈Eh(ΓD)

‖uD − uh‖20,e = ‖u− uh‖20,ΓD
≤ c2

0 ‖u− uh‖21,Ω , (3.61)

where c0 is the norm of the trace operator in H1(Ω).

The upper bounds of the remaining seven terms, which depend on the mesh parameters hT and
he, will be derived next. We proceed as in [13] and [14] (see also [19]) , and apply results ultimately
based on inverse inequalities (see [15]) and the localization technique introduced in [34], which is based
on triangle-bubble and edge-bubble functions. To this end, we now introduce further notations and
preliminary results. In fact, given T ∈ Th and e ∈ Eh(T ), we let ψT and ψe be the usual triangle-bubble
and edge-bubble functions, respectively (see [34, eqs. (1.4) and (1.6)]), which satisfy:

i) ψT ∈ P3(T ), supp(ψT ) ⊆ T, ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T .

ii) ψe|T ∈ P2(T ), supp(ψe) ⊆ ωe := ∪{T ′ ∈ Th : e ∈ Eh(T ′)}, ψe = 0 on ∂T\{e}, and 0 ≤ ψe ≤ 1 in
ωe.

We also recall from [33] that, given k ∈ N ∪ {0}, there exists a linear operator L : C(e)→ C(T ) that
satisfies L(p) ∈ Pk(T ) and L(p)|e = p ∀p ∈ Pk(e). A corresponding vectorial version of L, that is the
component-wise application of L, is denoted by L. Additional properties of ψT , ψe and L are collected
in the following Lemma.

Lemma 3.14 Given k ∈ N∪{0}, there exist positive constants c1, c2, c3, and c4, depending only on k
and the shape regularity of the triangulations (minimum angle condition), such that for each T ∈ Th
and e ∈ Eh(T ), there hold

‖ψT q‖20,T ≤ ‖q‖20,T ≤ c1 ‖ψ1/2
T q‖20,T ∀ q ∈ Pk(T ),

‖ψe L(p)‖20,T ≤ ‖p‖20,e ≤ c2 ‖ψ1/2
e p‖20,e ∀ p ∈ Pk(e),

c3 he ‖p‖20,e ≤ ‖ψ1/2
e L(p)‖20,T ≤ c4 he ‖p‖20,e ∀ p ∈ Pk(e).

(3.62)

Proof. See [33, Lemma 4.1]. �

The following inverse estimate is also needed.

Lemma 3.15 Let l,m ∈ N∪ {0} such that l ≤ m. Then, there exists c > 0, depending only on k, l,m
and the shape regularity of the triangulations, such that for each T ∈ Th there holds

|q|m,T ≤ c hl−mT |q|l,T ∀ q ∈ Pk(T ). (3.63)

Proof. See [15, Theorem 3.2.6]. �

The following Lemma is required for the terms involving the curl operator and the tangential jumps
across the edges of Th. It proofs, which makes use of Lemmas 3.14 and 3.15, can be found in [13].
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Lemma 3.16 Let ρh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. In addition,
let ρ ∈ L2(Ω) be such that curl(ρ) = 0 on each T ∈ Th. Then, there exist c, c̃ > 0, independent of h,
such that

‖curl(ρh)‖0,T ≤ c h−1
T ‖ρ− ρh‖0,T ∀T ∈ Th

and
‖JρhseK‖0,e ≤ c̃ h−1/2

e ‖ρ− ρh‖0,ωe ∀ e ∈ Eh .

Proof. For the first estimate we refer to [13, Lemma 4.3], whereas the second one follows from a slight
modification of the proof of [13, Lemma 4.4]. Further details are omitted. �

We now apply Lemma 3.16 to obtain upper bounds for two other terms defining θ2
T .

Lemma 3.17 There exist c̃1, c̃2 > 0, independent of h such that

h2
T

∥∥∥∥curl

{
1

µ(φh)
σd
h

}∥∥∥∥2

0,T

≤ c̃1

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

∀T ∈ Th,

he

∥∥∥∥s 1

µ(φh)
σd
h s

{∥∥∥∥2

0,e

≤ c̃2

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,ωe

∀ e ∈ Eh(Ω).

Proof. It suffices to apply Lemma 3.16 to ρh := 1
µ(φh)σ

d
h and ρ := 1

µ(φ)σ
d = ∇u. �

Lemma 3.18 There exists c̃3 > 0, independent of h, such that

he

∥∥∥∥duDds − 1

µ(φh)
σd
h s

∥∥∥∥2

0,e

≤ c̃3

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,Te

∀ e ∈ Eh(ΓD). (3.64)

Proof. We proceed similarly as in the proof of [23, Lemma 4.15], by replacing g, Γ, and 1
µσ

d
h by uD,

ΓD, and 1
µ(φh)σ

d
h, respectively. �

Finally, it only remains to provide upper bounds for the three terms completing the definition of
the local error indicator θ2

T (cf. (3.3)). This requires, however, the preliminary result given by the
following a priori estimate for the error ‖σ̃ − σ̃h‖20,T .

Lemma 3.19 There exists C > 0, depending on ϑ1, ϑ2, Lγ (cf. (2.4), (2.6)), and |k|, such that

‖σ̃ − σ̃h‖20,T ≤ C
{
‖φ− φh‖21,T + ‖u(φ− φh)‖20,T + ‖φh(u− uh)‖20,T

}
. (3.65)

Proof. According to the definitions of σ̃ (cf. (2.1)) and σ̃h (cf. Subsection 3.1), and applying the
triangle inequality, we obtain that

‖σ̃ − σ̃h‖20,T ≤ 2

{
‖ϑ(|∇φ|)∇φ− ϑ(|∇φh|)∇φh‖20,T + 2 ‖k(γ(φ)− γ(φh))‖20,T

+ 4 ‖u(φ− φh)‖20,T + 4 ‖φh(u− uh)‖20,T
}
.

(3.66)

We now recall from [25, Theorem 3.8] that the nonlinear operator induced by the first term defining
Au (cf. (3.16)) is Lipschitz-continuous with constant L := max{ϑ2, 2ϑ2 − ϑ1}. In this way, applying
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the aforementioned Lipschitz continuity, but restricted to each triangle T ∈ Th instead of Ω, and using
the Lipschitz continuity assumption for γ (cf. (2.6)), we deduce from (3.66) that

‖σ̃ − σ̃h‖20,T ≤ 2

{
L2 ‖∇φ−∇φh‖20,T + 2L2

γ |k|2 ‖φ− φh‖20,T

+ 4 ‖u(φ− φh)‖20,T + 4 ‖φh(u− uh)‖20,T
}
,

(3.67)

which readily yields (3.65) and ends the proof. �

Having proved the previous result we now establish the efficiency estimates given by the following
three lemmas.

Lemma 3.20 There exists c̃4 > 0, which depends only on L, Lγ, |k|, and other constants, all them
independent of h, such that

h2
T ‖g + div σ̃h‖20,T ≤ c̃4

{
‖φ− φh‖21,T + ‖u(φ− φh)‖20,T + ‖φh(u− uh)‖20,T

}
. (3.68)

Proof. We proceed as in the proof of [4, Lemma 4.4]. In fact, given T ∈ Th we first observe, using
that div σ̃h = −g in Ω, and integrating by parts, that

‖g + div σ̃h‖20,T ≤ c1 ‖ψ1/2
T (g + div σ̃h)‖20,T = −c1

∫
T
∇
(
ψT (g + div σ̃h)

)
· (σ̃ − σ̃h) .

Next, the Cauchy-Schwarz inequality, the inverse estimate (3.63), the fact that 0 ≤ ψT ≤ 1, and the
triangle inequality imply that

‖g + div σ̃h‖20,T ≤ c1 |ψT (g + div σ̃h)|1,T ‖σ̃ − σ̃h‖0,T ≤ C h−1
T ‖g + div σ̃h‖0,T ‖σ̃ − σ̃h‖0,T ,

which gives
‖g + div σ̃h‖0,T ≤ C h−1

T ‖σ̃ − σ̃h‖0,T .

The foregoing inequality and (3.65) (cf. Lemma 3.19) imply (3.68) and complete the proof. �

Lemma 3.21 There exists c̃5 > 0, which depends only on L, Lγ, |k|, and other constants, all them
independent of h, such that for each e ∈ Eh(Ω) there holds

he ‖Jσ̃h · νeK‖20,e ≤ c̃5

∑
T⊆ωe

{
‖φ− φh‖21,T + ‖u(φ− φh)‖20,T + ‖φh(u− uh)‖20,T

}
, (3.69)

where ωe is the union of the two triangles in Th having e as an edge.

Proof. Proceeding analogously as in the proof of [4, Lemma 4.5], we find that

he ‖Jσ̃h · νeK‖20,e ≤ c
∑
T⊆ωe

{
h2
T ‖g + div σ̃h‖20,T + ‖σ̃h − σ̃‖20,T

}
,

which, together with (3.65) and (3.68) (cf. Lemmas 3.19 and 3.20), yields (3.69) and ends the proof.

�
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Lemma 3.22 There exists c̃6 > 0, which depends only on L, Lγ, |k|, and other constants, all them
independent of h, such that for each e ∈ Eh(ΓN) there holds

he ‖σ̃h · ν‖20,e ≤ c̃6

{
‖φ− φh‖21,T + ‖u(φ− φh)‖20,T + ‖φh(u− uh)‖20,T

}
, (3.70)

where T is the triangle of Th having e as an edge.

Proof. Following a similar reasoning to the proof of [4, Lemma 4.6], we find that

he ‖σ̃h · ν‖20,e ≤ c
{
h2
T ‖g + div σ̃h‖20,T + ‖σ̃h − σ̃‖20,T

}
,

which, thanks again to (3.65) and (3.68), provides (3.70) and ends the proof. �

In order to complete the global efficiency given by (3.57), we now need to estimate the terms
‖u(φ−φh)‖20,T and ‖φh(u−uh)‖20,T appearing in the upper bounds provided by the last three lemmas.
In fact, applying Cauchy-Schwarz’s inequality, the compactness (and hence continuity) of the injections
i : H1(Ω)→ L4(Ω) and i : H1(Ω)→ L4(Ω) (cf. [1, Theorem 6.3], [29, Theorem 1.3.5]), and the a priori
bound for ‖u‖1,Ω given by (3.2), we find that∑

T∈Th

‖u(φ− φh)‖20,T ≤
∑
T∈Th

‖u‖2L4(T ) ‖φ− φh‖
2
L4(T )

≤ ‖u‖2L4(Ω) ‖φ− φh‖
2
L4(Ω) ≤ C ‖φ− φh‖21,Ω ,

(3.71)

where C is a positive constant, independent of h, that depends only on ‖i‖, ‖i‖, ‖uD‖1/2,ΓD
, ‖f‖∞,Ω,

and r (cf. (3.1)). Similar arguments allow to establish the existence of another constant C > 0, also
independent of h, and depending now on ‖i‖, ‖i‖, and r, such that∑

T∈Th

‖φh(u− uh)‖20,T ≤ C ‖u− uh‖21,Ω . (3.72)

Consequently, it is not difficult to see that (3.57) follows straightforwardly from (3.59), (3.60),
(3.61), Lemmas 3.17, 3.18, 3.20, 3.21, and 3.22, and the final estimates given by (3.71) and (3.72).
Furthermore, adding and subtracting a suitable term, using the lower bound (cf. (2.3)) and the
Lipschitz continuity (cf. (2.5)) of µ, and applying the boundedness of τ → τ d, we find that∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥
0,Ω

≤ 1

µ1
‖σ − σh‖0,Ω +

Lµ
µ2

1

‖(φ− φh)σ‖0,Ω , (3.73)

from which, assuming now that σ ∈ L4(Ω), and estimating ‖(φ − φh)σ‖0,Ω almost verbatim as we
derived (3.71) and (3.72), we arrive at (3.58), thus concluding the proof of Theorem 3.13.

4 A second a posteriori error estimator

In this section we introduce and analyze another a posteriori error estimator for our augmented
mixed-primal finite element scheme (2.12), which is not based on the Helmholtz decomposition. More
precisely, this second estimator arises simply from a different way of bounding ‖Eh‖HN (div,Ω)′ in the
preliminary estimate for the total error given by (3.29) (cf. Theorem 3.6). Then, with the same

20



notations and discrete spaces introduced in Sections 2 and 3, we now set for each T ∈ Th the local
error indicator

θ̃2
T := ‖fφh + divσh‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ h2
T ‖g + div σ̃h‖20,T

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e +
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖20,e ,

and define the following global residual error estimator

θ̃
2

:=
∑
T∈Th

θ̃2
T + ‖uD − uh‖21/2,ΓD

. (4.1)

In what follows we establish quasi-local reliability and efficiency for the estimator θ̃. The name
quasi-local refers here to the fact that the last term defining θ̃ can not be decomposed into local
quantities associated to each triangle T ∈ Th (unless it is either conveniently bounded or previously
modified, as we will see below).

Theorem 4.1 Assume that uD ∈ H1
0(ΓD) and

C3 |k| + C6 ‖uD‖1/2+ε,ΓD
+ C7 ‖f‖∞,Ω <

1

2
,

where C3, C6 and C7 are the constants given in (3.21). Then, there exists a constant C̃rel > 0, which
depends only on ‖uD‖1/2,ΓD

, ‖f‖∞,Ω and other constants, all them independent of h, such that

‖φ− φh‖21,Ω + ‖(σ,u)− (σh,uh)‖2H ≤ C̃rel θ̃
2
. (4.2)

Proof. As mentioned at the beginning of this section, the proof reduces basically to derive another
upper bound for ‖Eh‖HN (div,Ω)′ . Indeed, Integrating by parts the third term defining Eh (cf. (3.9)),
and then using the homogeneous Neumann boundary condition on ΓN, we find that for each ζ ∈
HN (div,Ω) there holds

Eh(ζ) = 〈ζ ν,uD − uh〉ΓD
+

∫
Ω

(
∇uh −

1

µ(φh)
σd
h

)
: ζ − κ2

∫
Ω

(fφh + divσh) · divζ ,

from which, applying the Cauchy-Schwarz inequality, we readily deduce that

‖Eh‖HN (div,Ω)′ ≤ C

{
‖uD − uh‖1/2,ΓD

+
∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥
0,Ω

+ ‖fφh + divσh‖0,Ω
}
, (4.3)

where C is a positive constant independent of h. In this way, replacing (4.3) back into (3.29) (cf.
Theorem 3.6), and employing again the upper bound for ‖Ẽh‖H1

ΓD
(Ω)′ (cf. Lemma 3.8), and the

definition of θ0 (cf. Lemma 3.2), we obtain (4.2) and finish the proof. �

Theorem 4.2 There exists a constant C∗eff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD
,

‖f‖∞,Ω, and other constants, all them independent of h, such that

C∗eff θ̃
2
≤ ‖φ−φh‖21,Ω + ‖u−uh‖21,Ω + ‖div(σ−σh)‖20,Ω +

∥∥∥∥ 1

µ(φ)
σd− 1

µ(φh)
σd
h

∥∥∥∥2

0,Ω

+ h.o.t. (4.4)
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where h.o.t. stands for one or several terms of higher order. Moreover, assuming σ ∈ L4(Ω), there
exists a constant C̃eff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD

, ‖f‖∞,Ω, ‖σ‖L4(Ω),
and other constants, all them independent of h, such that

C̃eff θ̃
2
≤ ‖φ− φh‖21,Ω + ‖(σ,u)− (σh,uh)‖2H + h.o.t. (4.5)

Proof. We simply observe, thanks to the trace theorem in H1(Ω), that there exists c > 0, depending
on ΓD and Ω, such that

‖uD − uh‖21/2,ΓD
≤ c ‖u− uh‖21,Ω . (4.6)

The rest of the arguments are contained in the proof of Theorem 3.13 (cf. Subsection 3.3), and hence
we omit further details. �

At this point we remark that the eventual use of θ̃ (cf. (4.1)) in an adaptive algorithm solving
(2.12) would be discouraged by the non-local character of the expression ‖uD−uh‖21/2,ΓD

. In order to
circumvent this situation, we now apply an interpolation argument and replace this term by a suitable
upper bound, which yields a reliable and fully local a posteriori error estimate.

Theorem 4.3 Assume that uD ∈ H1
0(ΓD) and that

C3 |k| + C6 ‖uD‖1/2+ε,ΓD
+ C7 ‖f‖∞,Ω <

1

2
,

where C3, C6 and C7 are given in (3.21). In turn, let θ̂
2

:=
∑
T∈Th

θ̂2
T , where for each T ∈ Th we set

θ̂2
T := ‖fφh + divσh‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ h2
T ‖g + div σ̃h‖20,T

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e +
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖21,e .

Then, there exists a constant Ĉrel > 0, which depends only on parameters, ‖uD‖1/2,ΓD
, ‖f‖∞,Ω, and

other constants, all them independent of h, such that

‖φ− φh‖21,Ω + ‖(σ,u)− (σh,uh)‖2H ≤ Ĉrel θ̂
2
. (4.7)

Proof. It reduces to bound ‖uD − uh‖1/2,ΓD
. In fact, since H1/2(ΓD) is the interpolation space with

index 1/2 between H1(ΓD) and L2(ΓD), there exists a constant cD > 0, depending on ΓD, such that

‖uD − uh‖21/2,ΓD
≤ cD ‖uD − uh‖0,ΓD

‖uD − uh‖1,ΓD

≤ cD ‖uD − uh‖21,ΓD
= cD

∑
e∈Eh(ΓD)

‖uD − uh‖21,e ,
(4.8)

which, together with (4.2), implies (4.7) and finishes the proof. �

5 Numerical tests

This section serves to illustrate the properties of the estimators introduced in Sections 3-4. The domain
of each example to be considered below is discretized into a series of nested uniform triangulations,
where errors and experimental convergence rates will be computed as usual

e(σ) := ‖σ − σh‖div,Ω, e(u) := ‖u− uh‖1,Ω, e(φ) := ‖φ− φh‖1,Ω,
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h e(σ) r(σ) e(u) r(u) e(φ) r(φ) iN iP eff(θ) qeff(θ) eff(θ̃) qeff(θ̃)

Augmented RT0 − P1 − P1 scheme

0.7071 99.1853 – 10.1168 – 1.5980 – 4 12 1.8570 1.8603 1.8740 1.8773
0.4714 83.1416 0.4351 8.6706 0.3804 1.1558 0.7990 3 15 1.5604 1.5627 1.5950 1.5973
0.2828 56.1085 0.7698 6.1721 0.6653 0.7191 0.9288 5 17 1.2142 1.2158 1.2474 1.2490
0.1571 31.7872 0.9667 2.9676 1.2458 0.4035 0.9828 4 16 1.0694 1.0707 1.1021 1.1034
0.0831 16.7731 1.0051 1.3190 1.2749 0.2136 0.9998 4 16 1.0088 1.0101 1.0409 1.0421
0.0428 8.5927 1.0083 0.6226 1.1316 0.1100 1.0009 4 16 0.9861 0.9873 1.0180 1.0193
0.0217 4.3466 1.0053 0.3071 1.0422 0.0558 1.0003 5 16 0.9777 0.9789 1.0097 1.0110

Augmented RT1 − P2 − P2 scheme

0.7071 51.6128 – 7.1534 – 0.4563 – 5 13 1.0353 1.0370 1.1487 1.1506
0.4714 29.6423 1.3677 3.2044 1.9805 0.2157 1.8475 4 14 0.9638 0.9650 1.0549 1.0562
0.2828 15.2131 1.3058 1.2003 1.9222 0.0799 1.9439 4 16 0.9573 0.9580 1.0198 1.0205
0.1571 4.9972 1.8940 0.3289 2.2022 0.0249 1.9837 5 15 0.9525 0.9532 1.0088 1.0095
0.0831 1.4251 1.9726 0.0868 2.0947 0.0070 1.9944 5 16 0.9515 0.9522 1.0045 1.0052
0.0428 0.3799 1.9928 0.0225 2.0320 0.0018 1.9984 4 16 0.9488 0.9495 1.0003 1.0011
0.0217 0.0980 1.9983 0.0057 2.0070 0.0004 1.9996 5 16 0.9396 0.9403 0.9895 0.9902

Table 1: Test 1: convergence history, average Newton iteration count, Picard steps to reach the
desired tolerance, effectivity and quasi-effectivity indexes for the mixed–primal RTk − Pk+1 − Pk+1

approximations of concentration, Cauchy stress, and velocity, with k = 0, 1.

r(σ) :=
log(e(σ)/ê(σ))

log(h/ĥ)
, r(u) :=

log(e(u)/ê(u))

log(h/ĥ)
, r(φ) :=

log(e(φ)/ê(φ))

log(h/ĥ)
,

with e and ê denoting errors associated to two consecutive meshes of sizes h and ĥ, respectively. In
addition, the total error, the modified error suggested by (3.57) and (4.4), and the effectivity and
quasi-effectivity indexes associated to a given global estimator η are defined, respectively, as

e =
{

[e(σ)]2 + [e(u)]2 + [e(φ)]2
}1/2

, eff(η) =
e

η
,

m =

{
[e(u)]2 + [e(φ)]2 + ‖divσ − divσh‖20,Ω +

∥∥∥∥ σd

µ(φ)
−

σd
h

µ(φh)

∥∥∥∥2

0,Ω

}1/2

, qeff(η) =
m

η
.

According to the coupling structure of the scheme (2.12), the linearization of the coupled problem can
follow a Newton method solving the nonlinear transport problem, nested within a Picard iteration
to establish the coupling with the Stokes problem. This procedure requires the computation of the
Gâteaux derivative (3.19). When the residuals from Newton-Raphson and Picard iterations reach
the tolerances εN = 1e-8 and εP = 1e-7, respectively, the algorithms are terminated. The unsym-
metric multi-frontal direct solver for sparse matrices (UMFPACK) is used to solve the linear systems
appearing at each linearization step.

In a first example, the following exact solutions to system (2.1) are considered

φ(x1, x2) = b− b exp(−x1(x1 − 1)x2(x2 − 1)), u(x1, x2) =

(
sin(2πx1) cos(2πx2)
− cos(2πx1) sin(2πx2)

)
,
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Figure 5.1: Test 2: approximate solutions obtained with the lowest order method, after six steps of
adaptive mesh refinement following the second indicator θ̃. Concentration, velocity components, and
stress components are depicted.

σ(x1, x2) = µ(φ)∇u− µ(φ)
∂u1

∂x1
I,

defined on the unit square Ω = (0, 1)2 and satisfying the first and third conditions of (2.2) on the whole
boundary ΓD = ∂Ω. The data uD,f , g are constructed with these manufactured exact solutions, and
the involved coefficients in the equations (and in the solutions) are k = (0,−1)T , µ(φ) = (1− cφ)−2,
γ(φ) = cφ(1− cφ)2, ϑ(|∇φ|) = m1 +m2(1 + |∇φ|2)m3/2−1, with b = 15, c = m1 = m2 = 1/2,m3 = 3/2.
These values imply µ1 = 0.99, µ2 = 3.35, and consequently the stabilization parameters adopt the
values κ1 = µ2

1/µ2 = 0.2976, κ2 = 1/µ2 = 0.2985, and κ3 = κ1/2 = 0.1488.

The manufactured solutions on the considered (convex) domain are smooth, and the a posteriori
error indicators show effectivity (and quasi-effectivity) indexes close to one in all studied cases. This
behavior can be observed in Table 1, where errors in different norms indicate optimal convergence
rates for the two lowest order methods (k = 0, 1). We also show the average number of Newton
steps to achieve the tolerance εN and the total Picard iteration count at each refinement level. The
subsequent examples will be restricted to the lowest order method k = 0.

Our second test focuses on the case where, under uniform mesh refinement, the convergence rates are
affected by the loss of regularity of the exact solutions. The problem setting is as follows: the domain
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N e(σ) r(σ) e(u) r(u) e(φ) r(φ) iP eff(θ) qeff(θ) eff(θ̃) qeff(θ̃)

Augmented RT0 − P1 − P1 scheme with quasi-uniform refinement

135 497.2285 – 172.3239 – 1.6796 – 25 1.0930 1.0855 1.0736 1.0662
403 501.6796 -0.0174 189.3379 -0.1835 1.5883 0.1090 29 0.9688 0.9610 0.9654 0.9576

1191 325.2386 0.8264 136.1004 0.6295 0.7731 1.3728 28 1.0512 1.0490 1.0413 1.0391
4090 150.5401 1.2842 35.1355 2.2575 0.4022 1.0896 29 1.0112 1.0078 1.0096 1.0062

15074 81.0276 0.9336 12.4395 1.5649 0.1990 1.0606 28 1.0022 0.9988 1.0031 0.9997
58289 41.1328 1.0175 3.0515 2.1089 0.1012 1.0146 31 1.0004 0.9968 1.0031 0.9996

238705 20.5693 1.0063 0.8447 1.8650 0.0510 0.9956 29 0.9997 0.9962 1.0032 0.9997

Augmented RT0 − P1 − P1 scheme with adaptive refinement according to θ

409 482.0538 – 229.0604 – 1.1557 – 21 1.1461 1.1431 – –
1215 325.3517 0.7222 151.3681 0.7610 0.5798 1.2670 20 1.0059 1.0040 – –
3108 160.3139 1.5071 47.6470 2.4614 0.4017 0.7817 19 1.0032 1.0007 – –
6346 82.9351 1.8466 13.4484 3.5441 0.3298 0.5527 18 1.0060 1.0030 – –

13629 44.6689 1.6201 4.6110 2.8026 0.2538 0.6851 21 0.9984 0.9949 – –
31278 25.1967 1.3780 1.8416 2.2089 0.1908 0.6873 20 0.9941 0.9893 – –
79064 15.0459 1.1118 0.8192 1.7468 0.1332 0.7739 19 0.9903 0.9849 – –

Augmented RT0 − P1 − P1 scheme with adaptive refinement according to θ̃

409 482.0538 – 229.0604 – 1.1557 – 21 – – 1.1219 1.1190
1206 318.9239 0.7641 148.2081 0.8052 0.5510 1.3700 19 – – 0.9979 0.9962
3247 160.2352 1.3899 49.7563 2.2041 0.3399 0.9758 20 – – 0.9986 0.9965
6703 79.3292 1.9399 12.8689 3.7315 0.3024 0.3221 21 – – 1.0038 1.0011

15393 41.1173 1.5928 3.7409 2.9945 0.2553 0.4104 20 – – 1.0073 1.0039
36869 22.9177 1.3296 1.2198 2.5490 0.1777 0.8247 20 – – 1.0055 1.0008
94817 13.4813 1.1231 0.5302 1.7635 0.1289 0.6790 19 – – 1.0058 1.0006

Table 2: Test 2: convergence history, Picard iteration count, effectivity and quasi-effectivity indexes for
the mixed–primal approximation of the coupled problem under quasi-uniform, and adaptive refinement
according to the indicators introduced in Sections 3,4.

is taken as the non-convex pacman-shaped domain Ω = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1} \ (0, 1)2, where
an exact solution to (2.1) is given by the same velocity as in the previous test, while concentration
and Cauchy stress now read

φ(x1, x2) = b− b exp(x2
1(x2

1 + x2
2 − 1)) ,

σ(x1, x2) = µ(φ)∇u−
[
µ(φ)

∂u2

∂x2
+

x2

((x1 − a1)2 + (x2 − a2)2)2

]
I .

(5.1)

Now the boundary is indeed split into ΓN = (0, 1) × {0} (the horizontal segment of ∂Ω) and ΓD =
∂Ω \ ΓN (the arch and vertical borders of the domain), and the only difference with respect to (2.1)
is that a non-homogeneous concentration flux σ̃ · ν = j is imposed on ΓN, where j is manufactured
according to (5.1). In this case, the relevant term in the a posteriori error estimators will be evidently
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Figure 5.2: Test 2: log-log plot of the total errors vs. degrees of freedom associated to uniform and
adaptive mesh refinements using the two proposed indicators.

replaced by ∑
e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν − j‖20,e,

whose estimation from below and above follows in a straightforward manner. For this example, the
individual and total convergence rates are determined by the expression

r(·) := −2 log(e(·)/ê(·))[log(N/N̂)]−1,

where N and N̂ denote the total number of degrees of freedom associated to each triangulation.
Alternatively to the first test, here the Picard tolerance is set to εP = 1e-6, and no inner Newton
linearization will be employed for the transport problem.

The viscosity, hindered settling and diffusivity functions µ, γ, ϑ are taken as in the first example
with the parameters a1 = 0.1, a2 = 0.5, b = 3, c = 4/3. Notice that the isotropic part of the stress
in (5.1) exhibits a singularity just outside the domain, at (a1, a2). With the chosen parameters, the
concentration has a high gradient near ΓD, and the viscosity vanishes whenever the concentration
attains its maximum value. Therefore, and according to (5.1), high gradients are also expected in
the stress approximation; and optimal convergence, especially in that field, is no longer evidenced
under uniform mesh refinement (see first rows of Table 2). On the other hand, if an adaptive mesh
refinement step (guided by the proposed residual error indicators) is applied, optimal convergence can
be restored, as shown in the last two blocks of Table 2. This feature is also seen in Figure 5.2, where
we plot the total errors e, m versus the degrees of freedom associated to each triangulation. Total errors
under adaptive refinement exhibit a superconvergence whereas uniform refinement yields suboptimal
rates. From the figure we also observe that the curves for e and m coincide for each algorithm.

Once the local and global error indicators are computed, the adaptation procedure uses the auto-
matic adaptmesh tool (see particulars in e.g. [26]) to construct the next triangulation. The algorithm
is based on an equi-distribution of the discrete a posteriori error indicators, where the diameter of
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Figure 5.3: Test 2: from left to right, four snapshots of successively refined meshes according to the
indicators θ and θ̃ (top and bottom panels, respectively).

each triangle in Thi+1
, which is contained in a generic element T ∈ Thi in the new step of the algorithm,

is proportional to hT times the ratio ζ̂T /ζT , where ζ̂ denotes the mean value of an estimator over Th.
Approximate solutions obtained after six adaptation steps are depicted in Figure 5.1, whereas a few
adaptive meshes generated using the two proposed indicators are collected in Figure 5.3. At least for
this particular configuration, the second a posteriori error estimator produces smaller errors but the
convergence rates coincide with the ones obtained with the first indicator.

In our last example the assumptions on the diffusivity ϑ will not hold anymore: we allow ϑ to be
constant and very small for any concentration below a so-called gel point φ ∈ [0, φc]. This extension
(whose limit case translates into a loss of ellipticity in the concentration equation) implies that for
low volume fractions, one may expect shock-like fronts to develop (see e.g. the monograph [8] and the
recent review [5]). Adaptive mesh refinement would then be highly appreciated in this particular case;
not only to restitute optimal convergence orders, but also to resolve concentration profiles accurately
without the need of refining the grid everywhere (even more important if higher-order schemes are
used, or transient models are studied). The problem configuration corresponds to the so-called Boycott
effect (cf. [6]), where the sedimentation-consolidation of small particles within an enclosure is enhanced
by tilting the vessel (from the gravity direction), thus allowing the formation of recirculation zones
carrying low concentration fluid along the underside of the inclined wall (see also [7]). The diffusivity
function will be set to

ϑ(φ) =


ε for φ ≤ φc,

ϑ0
α

φc

(
φ

φc

)α−1

otherwise,

with α = 5, ϑ0 = 0.055, ε =1e-6. As computational domain we consider an inclined rectangle of height
1.5 m and width of 6 m forming an angle of 2π/3 with the positive x1−axis, which we initially discretize
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Figure 5.4: Test 3: approximate solutions obtained with the lowest order method, after six steps of
adaptive mesh refinement following the second indicator θ̃. Concentration, velocity components, and
stress components are depicted.

into a coarse mesh of 102 triangular elements. Viscosity is set as in the previous examples and the
remaining coefficients are f = ∆ρk, g = 0, uD = 0, φD = {0.8 on the bottom and overside inclined
wall; 0.0001 elsewhere in ∂Ω}, γ(φ) = {γ0φ(1 − φ)2 if φ ≥ φc; 0 otherwise}, φc = 0.07, c = 2/3,
γ0 = 4.4e-3, ∆ρ = 700, The stabilization constants will depend on µ1 = 1 and µ2 = 4.75.

The numerical solutions are collected in Figure 5.4, where velocity shows a main circulation zone
at the center of the domain, directing the flow towards the bottom along the lower inclined side and
moving upwards on the opposite side. In addition, high concentration zones are located at the bottom
of the vessel, while clear fluid forms at the top. These flow patterns are in accordance with the
observations in [7, 31]. Four intermediate steps of mesh adaptation guided by the second a posteriori
error estimator θ̃ are displayed in Figure 5.5. We can see the capturing of the high concentration
gradient and velocity boundary layer near the upper inclined side of the domain.
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Figure 5.5: Test 3: from left to right, four snapshots of successively refined meshes according to the
indicator θ̃.
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