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Abstract

In this paper we analyze a conforming finite element method for the numerical simu-
lation of non-isothermal incompressible fluid flows subject to a heat source modelled by a
generalized Boussinesq problem with temperature-dependent parameters. We consider the
standard velocity-pressure formulation for the fluid flow equations which is coupled with a
primal-mixed scheme for the convection-diffusion equation modelling the temperature. In
this way, the unknowns of the resulting formulation are given by the velocity, the pressure,
the temperature, and the normal derivative of the latter on the boundary. Hence, assuming
standard hypotheses on the discrete spaces, we prove existence and stability of solutions of
the associated Galerkin scheme, and derive the corresponding Cea’s estimate for small and
smooth solutions. In particular, any pair of stable Stokes elements, such as Hood-Taylor ele-
ments, for the fluid flow variables, continuous piecewise polynomials of degree ≤ k+1 for the
temperature, and piecewise polynomials of degree ≤ k for the boundary unknown become
feasible choices of finite element subspaces. Finally, we derive optimal a priori error esti-
mates, and provide several numerical results illustrating the performance of the conforming
method and confirming the theoretical rates of convergence.

Key words: generalized Boussinesq problem, conforming finite element method, Hood-Taylor,
temperature-dependent parameters, primal-mixed formulation
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1 Introduction

This paper is concerned with the numerical approximation of the stationary generalized Boussi-
nesq problem:

−div (ν(θ)∇u) + (u · ∇)u +∇p− gθ = 0 in Ω,
div u = 0 in Ω,

u = 0 on Γ,
−div (κ(θ)∇θ) + u · ∇θ = 0 in Ω,

θ = θD on Γ.

(1.1)
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where Ω ⊂ Rn, n ∈ {2, 3}, is a polyhedral domain, u is the fluid velocity, p is the fluid pressure,
θ is the fluid temperature, θD is a given non-vanishing boundary temperature and g is a given
external force per unit mass, usually acting in the opposite direction to gravity. The functions
ν(·) and κ(·) are the fluid viscosity and the thermal conductivity, respectively, which are assumed
to be Lipschitz continuous and bounded from above and from below: there exist constants
νlip, κlip > 0 and ν1, ν2, κ1, κ2 > 0, such that

|ν(θ1)− ν(θ2)| ≤ νlip|θ1 − θ2|, |κ(θ1)− κ(θ2)| ≤ κlip|θ1 − θ2|, (1.2)

for all values of θ1, θ2, and

0 < ν1 ≤ ν(θ) ≤ ν2, 0 < κ1 ≤ κ(θ) ≤ κ2, (1.3)

for all values of θ. In particular, we are interested in approximating the unknowns of the system
(1.1) by using conforming finite elements.

The study of numerical methods for approximating the solution of incompressible non-
isothermal fluid flows, modelled by the Bousinnesq equations and its generalizations, has signi-
ficantly increased in recent years (see e.g. [1, 2, 7, 9, 10, 14, 15, 23, 24, 26], and the references
therein). This fact has been motivated by the diverse applications of this model in industry
(fume cupboard ventilation, heat exchangers, cooling of electronic equipments, cooling of nu-
clear reactors, etc.) and in geophysics or oceanography (climate predictions, oceanic flows, etc.),
to name a few. In particular, the work [26] studies a finite element method for time-dependent
non-isothermal incompressible fluid flow problems. Here, the governing equations are discretized
by the backward Euler method in time and conforming finite elements in space. On each time
step, in [26] the convective and diffusive terms are linearized by considering the solution com-
puted in the previous step, and as a result, there is no need of analyzing the corresponding
steady state nonlinear problem. More recently, in [24] has been proposed and analyzed a new
mixed finite element method with exactly divergence-free velocities for the numerical simula-
tion of the generalized Boussinesq problem (1.1). The method proposed in [24] is based on
using divergence-conforming elements of order k for the velocities, discontinuous elements of
order k − 1 for the pressure, and standard continuous elements of order k for the temperature.
The H1-conformity of the velocities is enforced by a discontinuous Galerkin approach. Similarly
to [22], in [24] it is shown existence and stability of discrete solutions by assuming that there
exists a small enough (in the L3-norm) discrete lifting of the temperature boundary data into the
computational domain. The latter is a delicate issue since constructing such a lifting satisfying
the required smallness assumption may be difficult.

In this paper we propose and analyze conforming finite element discretizations for the nu-
merical approximation of the non-isothermal fluid flow problem (1.1). We employ the standard
velocity-pressure formulation for the Navier-Stokes equations, which is coupled with a primal-
mixed scheme for the convection-diffusion equation modelling the temperature, and introduce a
new primal-mixed variational formulation for the generalized Boussinesq equations (1.1), which
yields the velocity, the pressure, the temperature, and the normal derivative of the latter on the
boundary as the main unknowns of the resulting formulation. We point out that the utilization
of the primal-mixed scheme for the temperature equation, as has been recently applied in [9],
allows us to avoid the necessity of assuming a smallness assumption on the discrete lifting of the
temperature boundary data, as it is required in [24]. Then, similarly to [24], we introduce an
equivalent fixed-point setting and apply the classical Brower’s Theorem, combined with the gen-
eralized Lax-Milgram Theorem and the Babuška-Brezzi theory to prove solvability and stability
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of the corresponding discrete problem under a sufficiently small data assumption. In particular,
any pair of stable Stokes elements for the velocity and pressure, such as the Hood-Taylor ele-
ments, combined with continuous piecewise polynomials of degree ≤ k + 1 for the temperature,
and piecewise polynomials of degree ≤ k for the boundary unknown become feasible choices
of finite element subspaces, yielding optimal convergence. The rest of the paper is organized
as follows. In Section 2 we derive the primal-mixed variational formulation, and analyze exis-
tence and stability of solution under a smallness assumption on the data. Next, in Section 3 we
introduce the Galerkin scheme, and derive general hypotheses on the finite element subspaces
ensuring existence of discrete solutions and the corresponding Cea’s estimate. In addition, suit-
able choices of finite element subspaces satisfying these assumptions are introduced in Section
4. Finally, in Section 5 we provide several numerical results illustrating the performance of the
primal-mixed finite element method and confirming the theoretical rates of convergence.

Throughout the rest of the paper, we utilize the standard terminology for Sobolev spaces,
norms and seminorms, employ 0 to denote a generic null vector and use C and c, with or
without subscripts, bars, tildes or hats, to denote generic positive constants independent of the
discretization parameters, which may take different values at different places.

2 Continuous problem

2.1 Preliminaries

Let us first introduce some notations and previous results that we will serve for the forthcoming
analysis. Let O be a domain in Rn, n ∈ {2, 3} with Lipschitz boundary ∂O. For r ≥ 0 and
p ∈ [1,∞], we denote by Lp(O) and Wr,p(O) the usual Lebesgue and Sobolev spaces endowed
with the norms ‖ · ‖Lp(O) and ‖ · ‖Wr,p(O), respectively. Note that W0,p(O) = Lp(O). If p = 2, we
write Hr(O) instead of Wr,2(O), and denote the corresponding Lebesgue and Sobolev norms by
‖ · ‖0,O and ‖ · ‖r,O, respectively. For r ≥ 0, we write | · |r,O for the seminorm. H1

0(O) is the space
of functions in H1(O) with vanishing trace on ∂O, and Lp0(O) is the space of L2(O) functions
with vanishing mean value over O. Spaces of vector-valued functions are denoted in bold face.
For example, Hr(O) = [Hr(O)]n, for r ≥ 0. For simplicity, we also write ‖ · ‖0,O and | · |r,O for
the corresponding norms and seminorms on these spaces. In the subsequent analysis, we denote
by C∞ > 0 the embedding constant such that

‖u‖1,O ≤ C∞‖u‖W1,∞(O) and ‖θ‖1,O ≤ C∞‖θ‖W1,∞(O) (2.1)

for all u ∈W1,∞(O) and θ ∈W1,∞(O).
Now, let γ0 : H1(Ω) → L2(Γ) be the trace operator satisfying γ0(ϕ) := ϕ

∣∣
Γ
∀ϕ ∈ H1(Ω).

Then, we define the trace space as:

H1/2(Γ) := γ0(H1(Ω)),

endowed with the norm

‖ψ‖1/2,Γ := inf
{
‖w‖1,Ω : w ∈ H1(Ω) such that γ0(w) = ψ

}
.

It readily follows that
‖γ0(w)‖1/2,Γ ≤ ‖w‖1,Ω ∀w ∈ H1(Ω). (2.2)

3



As usual, the dual space of H1/2(Γ) is denoted by H−1/2(Γ). In addition, we use 〈·, ·〉Γ to denote
the duality pairing between H−1/2(Γ) and H1/2(Γ) with respect to the L2(Γ)-inner product. In
addition, it is easy to see that there holds:

H1(Ω) = H1
0(Ω)⊕ [H1

0(Ω)]⊥,

where H1
0(Ω) is the null space of γ0 (see, e.g. [17, Theorem 1.3-1]). Then, defining the linear

bounded bijection γ̃0 := γ0

∣∣
[H1

0(Ω)]⊥
, it follows that there exists Clift > 0, such that

‖γ̃0
−1(ψ)‖1,Ω ≤ Clift‖ψ‖1/2,Γ ∀ψ ∈ H1/2(Γ). (2.3)

2.2 The weak formulation

The unknowns in the weak formulation will be the velocity u, the pressure p and the temperature
θ. The corresponding spaces will be

u ∈ H1
0(Ω), p ∈ L2

0(Ω) and θ ∈ H1(Ω).

In addition, we will need to define the following unknown on the boundary:

λ := −κ(θ)∇θ · n ∈ H−1/2(Γ),

where n is the unit normal vector field on Γ which points outwards from Ω. We point out that
the introduction of this new unknown is due to the fact that we are not imposing the Dirichlet
boundary condition θ = θD on Γ in the space where the unknown θ is looked for (see, e.g., [16,
Chapter 2]).

Now, in order to obtain the weak formulation of (1.1) we test the first and fourth equations
of (1.1) with arbitrary test functions v ∈ H1

0(Ω) and ψ ∈ H1(Ω), respectively, integrate by parts
and utilize the Dirichlet boundary conditions u = 0 on Γ and the definition of the new unknown
λ, to obtain the variational equations

∫
Ω
ν(θ)∇u : ∇v +

∫
Ω

[(u · ∇)u] · v −
∫

Ω
p div v −

∫
Ω

gθ · v = 0 ∀v ∈ H1
0(Ω), (2.4)

∫
Ω
κ(θ)∇θ · ∇ψ +

∫
Ω

(u · ∇θ)ψ + 〈λ, ψ〉Γ = 0 ∀ψ ∈ H1(Ω). (2.5)

In addition, the incompressibility condition div u = 0 ∈ Ω, as well as the Dirichlet boundary
condition θ = θD on Γ, are imposed weakly as follows:∫

Ω
q div u = 0 ∀q ∈ L2

0(Ω) (2.6)

and

〈ξ, θ〉Γ = 〈ξ, θD〉Γ ∀ξ ∈ H−1/2(Γ). (2.7)
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According to the above, the weak formulation of (1.1) reduces to: Find ((u, p), (θ, λ)) ∈ (H1
0(Ω)×

L2
0(Ω))× (H1(Ω)×H−1/2(Γ)), such that∫

Ω
ν(θ)∇u : ∇v +

∫
Ω

[(u · ∇)u] · v −
∫

Ω
p div v −

∫
Ω
θg · v = 0∫

Ω
q div u = 0∫

Ω
κ(θ)∇θ · ∇ψ +

∫
Ω

(u · ∇θ)ψ + 〈λ, ψ〉Γ = 0

〈ξ, θ〉Γ = 〈ξ, θD〉Γ,

(2.8)

for all ((v, q), (ψ, ξ)) ∈ (H1
0(Ω)× L2

0(Ω))× (H1(Ω)×H−1/2(Γ)).

2.3 Analysis of the continuous problem

Now, we stablish the main aspects of the continuous problem, namely, existence, uniqueness
and stability. In what follows we basically adapt the results provided in [22] and [24] to our
primal-mixed variational problem. We start by identifying the forms appearing in the weak
formulation (2.8):

AF(φ; u,v) =

∫
Ω
ν(φ)∇u : ∇v, OF(w; u,v) =

∫
Ω

[(w · ∇)u] · v,

AT(ϕ; θ, ψ) =

∫
Ω
κ(ϕ)∇θ · ∇ψ, OT(v; θ, ψ) =

∫
Ω

(v · ∇θ)ψ,

BF(v, q) =

∫
Ω
q div v, DF(θ,v) =

∫
Ω
θg · v,

BT(θ, ξ) = 〈ξ, θ〉Γ.

(2.9)

In this way, the variational problem (2.8) can be rewritten as follows: find (u, p) ∈ H1
0(Ω)×L2

0(Ω)
and (θ, λ) ∈ H1(Ω)×H−1/2(Ω), such that

AF(θ; u,v) +OF(u; u,v)−BF(v, p)−DF(θ,v) = 0,
BF(u, q) = 0,

AT(θ; θ, ψ) +OT(u; θ, ψ) +BT(ψ, λ) = 0,

BT(θ, ξ) = 〈ξ, θD〉Γ,

(2.10)

for all (v, q) ∈ H1
0(Ω)× L2

0(Ω) and (ψ, ξ) ∈ ×H1(Ω)×H−1/2(Γ).

2.3.1 Stability properties

Let us now discuss the stability properties of the forms in (2.9). We begin by observing that,
according to hypothesis (1.3), the forms AF and AT are bounded in the last two components:

|AF(·; u,v)| ≤ ν2‖u‖1,Ω‖v‖1,Ω, and |AT(·; θ, ψ)| ≤ κ2‖θ‖1,Ω‖ψ‖1,Ω, (2.11)

for all u,v ∈ H1
0(Ω) and θ, ψ ∈ H1(Ω). Moreover, from the Lipschitz continuity of ν and κ (cf.

(1.2)), and the Hölder’s inequality, it readily follows that for all θ1, θ2 ∈ H1(Ω), u ∈ W1,∞(Ω)
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and θ ∈W1,∞(Ω), there hold

|AF(θ1; u,v)−AF(θ2; u,v)| ≤ νlip‖u‖W1,∞(Ω)‖θ1 − θ2‖1,Ω‖v‖1,Ω, v ∈ H1(Ω), (2.12)

|AT(θ1; θ, ψ)−AT(θ2; θ, ψ)| ≤ κlip‖θ‖W1,∞(Ω)‖θ1 − θ2‖1,Ω‖ψ‖1,Ω, ψ ∈ H1(Ω). (2.13)

Now, owing to standard Sobolev embeddings (cf. [27]) and the Hölder’s inequality, it is not
difficult to see that the convective terms OF and OT are bounded:

|OF(w; u,v)| ≤ COF
‖w‖1,Ω‖u‖1,Ω‖v‖1,Ω, and |OT(w; θ, ψ)| ≤ COT

‖w‖1,Ω‖θ‖1,Ω‖ψ‖1,Ω,
(2.14)

for all w,u,v ∈ H1(Ω) and θ, ψ ∈ H1(Ω). Similarly, we have

|DF(θ,v)| ≤ CD‖g‖0,Ω‖θ‖1,Ω‖v‖1,Ω, θ ∈ H1(Ω), v ∈ H1(Ω). (2.15)

In turn, owing to the Hölder’s inequality and to property (2.2), we easily obtain

|BF(v, q)| ≤ CBF
‖v‖1,Ω‖q‖0,Ω and |BT(ψ, ξ)| ≤ ‖ψ‖1,Ω‖ξ‖−1/2,Γ, (2.16)

for all (v, q) ∈ H1
0(Ω)× q ∈ L2

0(Ω) and (ψ, ξ) ∈ H1(Ω)×H−1/2(Γ).

Next, we observe that the form AF is elliptic on H1
0(Ω) in the last two components. In fact,

owing to the Poincaré inequality and to (1.3), it follows that there exists αF > 0, such that

AF(·; v,v) ≥ αF‖v‖
2
1,Ω, ∀v ∈ H1

0(Ω). (2.17)

Analogously, we can obtain that AT is elliptic on H1
0(Ω) in the last two components, that is,

there exists αT > 0, such that

AT(·;ψ,ψ) ≥ αT‖ψ‖
2
1,Ω, ∀ψ ∈ H1

0(Ω). (2.18)

On the other hand, by integrating by parts, it readily follows that

OF(w; v,v) = 0, w ∈ X, v ∈ H1(Ω),

OT(w;ψ,ψ) = 0, w ∈ X, ψ ∈ H1(Ω),
(2.19)

where X is the kernel of the bilinear form BF, that is

X :=
{
v ∈ H1

0(Ω) : BF(v, q) = 0 ∀ q ∈ L2
0(Ω)

}
=
{
v ∈ H1

0(Ω) : div v = 0 in Ω
}
.

We conclude this section by noting that the bilinear forms BF and BT satisfy the following
inf-sup conditions:

sup
v∈H1

0(Ω)
v 6=0

BF(v, q)

‖v‖1,Ω
≥ βF‖q‖0,Ω, ∀q ∈ L2

0(Ω), (2.20)

sup
ψ∈H1(Ω)
ψ 6=0

BT(ψ, ξ)

‖ψ‖1,Ω
≥ βT‖ξ‖−1/2,Γ, ∀ξ ∈ H−1/2(Γ), (2.21)

where βF and βT are positive constants depending on |Ω|. The proof of (2.20) and (2.21) can
be found in [17, Theorem 3.7] and [16, Section 2.4.4], respectively.
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2.3.2 Existence and uniqueness of solution

Now, we study the existence and uniqueness of solution of problem (2.10). To that end, it is
enough to study the reduced version of problem (2.10): Find u ∈ X and θ ∈ H1(Ω), such that
θ|Γ = θD and

AF(θ; u,v) +OF(u; u,v)−DF(θ,v) = 0,
AT(θ; θ, ψ) +OT(u; θ, ψ) = 0,

(2.22)

for all v ∈ X and ψ ∈ ×H1
0(Ω).

In fact, the next lemma establishes the equivalence between problems (2.10) and (2.22).

Lemma 2.1 If ((u, p), (θ, λ)) ∈ (H1
0(Ω)×L2

0(Ω))× (H1(Ω)×H−1/2(Γ)) is a solution of (2.10),
then u ∈ X and (u, θ) ∈ X × H1(Ω) is a solution of (2.22). Conversely, if (u, θ) ∈ X × H1(Ω)
is a solution of (2.22), then there exists p ∈ L2

0(Ω) and λ ∈ H−1/2(Γ) such that ((u, p), (θ, λ)) ∈
(H1

0(Ω)× L2
0(Ω))× (H1(Ω)×H−1/2(Γ)) is a solution of (2.10).

Proof. Let ((u, p), (θ, λ)) ∈ (H1
0(Ω)×L2

0(Ω))× (H1(Ω)×H−1/2(Γ)) be a solution of (2.10). Then
it readily follows that u ∈ X, θ|Γ = θD, and therefore (u, θ) ∈ X × H1(Ω) is also a solution of
(2.22).

Conversely, let (u, θ) ∈ X × H1(Ω) be a solution of (2.22). Then, owing to the inf-sup
condition (2.20), we easily obtain that there exists p ∈ L2

0(Ω), such that

BF(v, p) = AF(θ; u,v) +OF(u; u,v)−DF(θ,v) ∀v ∈ H1
0(Ω).

Similarly, since the bilinear form BT satisfies the inf-sup condition (2.21), we obtain that there
exists λ ∈ H−1/2(Γ), such that

BT(ψ, λ) = −AT(θ; θ, ψ)−OT(u; θ, ψ), ∀ψ ∈ H1(Ω).

Finally, since u ∈ X and θ|Γ = θD, then

BF(u, q) = 0 and BT(θ, ξ) = 〈ξ, θD〉Γ,

for all q ∈ L2
0(Ω) and ξ ∈ H−1/2(Γ), which concludes the proof. �

The next result provides the existence of solution of problem (2.22). Its proof can be found
in [22, Theorem 2.1]

Theorem 2.2 Given θD ∈ H1/2(Γ) and g ∈ L2(Ω), there exists (u, θ) ∈ X×H1(Ω) solution to
problem (2.22).

Next, we establish the corresponding uniqueness result of problem (2.22). Its proof can be
found in [24, Theorem 2.3] and is based on an additional smallness assumption on the solution.

Theorem 2.3 Let (u, θ) ∈ [X ∩W1,∞(Ω)] ×W1,∞(Ω) be a solution to problem (2.22), and
assume that there exists M > 0, such that

max{‖g‖0,Ω, ‖u‖W1,∞(Ω), ‖θ‖W1,∞(Ω)} ≤M < min

{
αF

COF
C∞ +K

,
αT

κlip +K

}
, (2.23)

with K = (CDF
+ νlip + COT

C∞)/2. Then, the solution of problem (2.22) is unique.

We end this section by observing that, owing to the equivalence of problems (2.10) and(2.22)
(Lemma 2.1), and the existence of solution of problem (2.22) (Theorem 2.2), we can conclude
that problem (2.10) admits a solution, which is unique if we assume further that (2.23) holds.
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2.3.3 Stability of solution

Now, we establish the corresponding stability result of problem (2.10). We begin by observing
that, analogously to the analysis presented in Section 2.3.2, and according to Lemma 2.1, it
suffices to analyze the stability of solution of problem (2.22).

Let us now point out that this result has been already established in [22, Section 3] for the
reduced problem (2.22), assuming that there exists a sufficiently small, in the L3-norm, lifting of
the temperature boundary datum θD into the computational domain. More precisely, we have
the following result.

Theorem 2.4 Given θD ∈ H1/2(Γ) and g ∈ L2(Ω), let (u, θ) ∈ X × H1(Ω) be a solution of
problem (2.22). Given ε > 0, assume that there exists θ1 ∈ H1(Ω), such that θ1|Γ = θD and
‖θ1‖L3(Ω) < ε. Then there exist positive constants c1 and c2, independent of the solution, such
that

‖u‖1,Ω ≤ c1‖θ1‖1,Ω and ‖θ‖1,Ω ≤ c2‖θ1‖1,Ω.

At this point, we observe that the assumption ‖θ1‖L3(Ω) < ε may be a delicate matter when
solving the equations (1.1) numerically. In fact, as it is done for the continuous case, to ensure
the stability of a finite element solution of problem (1.1), one needs to be able to find a small
enough, in the L3-norm, discrete lifting θ1,h of a suitable approximation of the datum θD on the
boundary Γ. One option (see [24, Section 4.2] for other options) is to approximate θD by using
the Lagrange interpolant (assuming more regularity for θD), and then define θ1,h as the resulting
approximation of θD on the boundary, and zero in all the internals nodes. Hence, in this case
‖θ1,h‖L3(Ω) is small enough as the discretization parameter h tends to zero. However, ‖θ1,h‖1,Ω
blows up as h tends to zero, making the numerical method unstable. This issue motivates the
utilization of the primal-mixed formulation for the heat equation since, in this case, the datum θD
appears on the right-hand side of the resulting scheme, avoiding the necessity of approximating
θD on the boundary. In this way, as we will see later, the stability result for the corresponding
finite element discretization can be obtained assuming now that the original datum θD is small
enough in the H1/2 norm.

According to the above, we now provide the following alternative proof for the stability of
solution of problem (2.22).

Lemma 2.5 Given θD ∈ H1/2(Γ) and g ∈ L2(Ω), let (u, θ) ∈ X × H1(Ω) be a solution of
problem (2.22). Assume that

Cstab‖g‖0,Ω‖θD‖1/2,Γ ≤
1

2
, (2.24)

with

Cstab :=
COT

CDF
Clift

αTαF

. (2.25)

Then, there exist constants Cu and Cθ depending only on ‖g‖0,Ω and the stability constants,
such that

‖u‖1,Ω ≤ Cu‖θD‖1/2,Γ and ‖θ‖1,Ω ≤ Cθ‖θD‖1/2,Γ. (2.26)

(Explicit expressions for Cu and Cθ can be found in (2.31) and (2.32), respectively.)

Proof. Let θ1 = γ̃0
−1(θD), with γ̃0 being the operator defined in Section 2.1, and let θ0 = θ− θ1.

It follows that θ0 ∈ H1
0(Ω) and θ1

∣∣
Γ

= θD. In addition, from (2.3), we have

‖θ1‖1,Ω ≤ Clift‖θD‖1/2,Γ. (2.27)
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Then, owing to (2.19), from (2.22) with (v, ψ) = (u, θ0) ∈ X × H1
0(Ω) we easily obtain the

identities

AF(θ; u,u) = DF(θ,u) and AT(θ; θ0, θ0) = −AT(θ; θ1, θ0)−OT(u; θ1, θ0),

which together with (2.11), (2.14), (2.15), (2.17) and (2.18), implies

‖u‖1,Ω ≤ α−1
F
CDF
‖g‖0,Ω‖θ‖1,Ω, (2.28)

and
‖θ0‖1,Ω ≤ α−1

T
κ2‖θ1‖1,Ω + α−1

T
COT
‖u‖1,Ω‖θ1‖1,Ω.

In particular, according to (2.27), the latter can be rewritten as

‖θ0‖1,Ω ≤ α−1
T
κ2Clift‖θD‖1/2,Γ + α−1

T
COT

Clift‖u‖1,Ω‖θD‖1/2,Γ,

which together with the identity θ = θ0 + θ1 and the triangle inequality yields

‖θ‖1,Ω ≤ ‖θ0‖1,Ω + ‖θ1‖1,Ω
≤ ‖θ0‖1,Ω + Clift‖θD‖1/2,Γ
≤ (κ2 + αT)α−1

T
Clift‖θD‖1/2,Γ + α−1

T
COT

Clift‖u‖1,Ω‖θD‖1/2,Γ.
(2.29)

Hence, replacing (2.29) into (2.28), we obtain(
1− α−1

T
α−1

F
COT

CDF
Clift‖θD‖1/2,Γ‖g‖0,Ω

)
‖u‖1,Ω

≤ (κ2 + αT)α−1
T
α−1

F
CDF

Clift‖θD‖1/2,Γ‖g‖0,Ω,

which combined with assumption (2.24), implies

‖u‖1,Ω ≤ Cu‖θD‖1/2,Γ, (2.30)

with
Cu = 2 (κ2 + αT)α−1

T
α−1

F
CDF

Clift‖g‖0,Ω. (2.31)

Similarly, replacing (2.30) into (2.29), we obtain

‖θ‖1,Ω ≤
(
1 + 2α−1

T
α−1

F
COT

CDF
Clift‖θD‖1/2,Γ‖g‖0,Ω

)
(κ2 + αT)α−1

T
Clift‖θD‖1/2,Γ,

which combined with assumption (2.24) yields

‖θ‖1,Ω ≤ Cθ‖θD‖1/2,Γ,

with
Cθ = 2 (κ2 + αT)α−1

T
Clift. (2.32)

�
As a consequence of Lemma 2.5 we can obtain the stability of solution of problem (2.10).
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Theorem 2.6 Given θD ∈ H1/2(Γ) and g ∈ L2(Ω), let ((u, p), (θ, λ)) ∈ (H1
0(Ω) × L2

0(Ω)) ×
(H1(Ω)×H−1/2(Γ)) be a solution of problem (2.10). Assume that θD and g satisfy (2.24), that
is

Cstab‖g‖0,Ω‖θD‖1/2,Γ ≤
1

2
,

with Cstab given by (2.25). Then,

‖u‖1,Ω ≤ Cu‖θD‖1/2,Γ and ‖θ‖1,Ω ≤ Cθ‖θD‖1/2,Γ.

with Cu and Cθ given by (2.31) and (2.32), respectively. In addition, there exist positive con-
stants Cp and Cλ, depending only on ‖g‖0,Ω and the stability constants, such that

‖p‖0,Ω ≤ Cp‖θD‖1/2,Γ and ‖λ‖−1/2,Γ ≤ Cλ‖θD‖1/2,Γ. (2.33)

(Explicit expressions for Cp and Cλ can be found in (2.34) and (2.35), respectively).

Proof. Since ((u, p), (θ, λ)) is a solution to (2.10) owing to Lemma 2.1 and Lemma 2.5, it readily
follows that u and θ satisfy the estimates (2.26). In this way, it suffices to verify the estimates
in (2.33) to conclude the proof.

First, from inf-sup condition (2.20), the first equation in (2.10) and the continuity properties
(2.11), (2.14) and (2.15), we obtain

βF‖p‖0,Ω ≤ sup
v∈H1

0(Ω)
v 6=0

BF(v, p)

‖v‖1,Ω

= sup
v∈H1(Ω)

v 6=0

{
AF(θ; u,v) +OF(u; u,v)−DF(θ,v)

‖v‖1,Ω

}
≤ ‖u‖1,Ω(ν2 + COF

‖u‖1,Ω) + CDF
‖g‖0,Ω‖θ‖1,Ω.

which together with (2.26) and (2.24), implies

‖p‖0,Ω ≤ Cp‖θD‖1/2,Γ,

with Cp is defined as

Cp = β−1
F

[
Cu

(
ν2 +

COF
CuαTαF

2COT
CDF

Clift

)
+ CDF

Cθ

]
‖g‖0,Ω. (2.34)

Similarly, from the inf-sup condition (2.21), the third equation of (2.10) , and the continuity of
AT and OT in (2.11) and (2.14), respectively, we have

βT‖λ‖−1/2,Γ ≤ sup
ψ∈H1(Ω)
ψ 6=0

BT(ψ, λ)

‖ψ‖1,Ω

= sup
ψ∈H1(Ω)
ψ 6=0

{
−AT(θ; θ, ψ)−OT(u; θ, ψ)

‖ψ‖1,Ω

}
≤ (κ2 + COT

‖u‖1,Ω) ‖θ‖1,Ω,
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which together with (2.24) and (2.26), yields

‖λ‖−1/2,Γ ≤ Cλ‖θD‖1/2,Γ,

with

Cλ = β−1
T
Cθ

(
κ2 +

COT
CuαTαF

2COT
CDF

Clift

)
. (2.35)

�

3 The Galerkin scheme

In this section we introduce the Galerkin scheme of the variational problem (2.10), analyze its
solvability and provide the corresponding Cea’s estimate.

3.1 Preliminaries

We begin by taking arbitrary finite dimensional subspaces

Hh ⊆ H1
0(Ω), Qh ⊆ L2

0(Ω), Ψh ⊆ H1(Ω) and Λh ⊆ H−1/2(Γ).

Hereafter, h stands for the size of a regular triangulation Th of Ω̄ made up of triangles K (when
n = 2) or tetrahedra K, (when n = 3) of diameter hK , that is h := {hK : K ∈ Th}.

As we will see in Section 4, the pair (Hh,Qh) will be chosen as a pair of stable finite element
subspaces for the Stokes problem which, as it is well known, may not produce divergence-free
velocities, and as a consequence, at the discrete level properties (2.19) may not be necessarily
satisfied. According to this, in what follows we will consider discrete versions of the convective
terms OF and OT, denoted respectively by OhF and OhT, both of them linear on each variable
and satisfying

|OhF(w; u,v)| ≤ ĈOF
‖w‖1,Ω‖u‖1,Ω‖v‖1,Ω, w,u,v ∈ H1(Ω), (3.1)

|OhT(w; θ, ψ)| ≤ ĈOT
‖w‖1,Ω‖θ‖1,Ω‖ψ‖1,Ω, w ∈ H1(Ω), θ, ψ ∈ H1(Ω), (3.2)

with ĈOF
, and ĈOT

being positive constants independent of the parameter of discretization h.
Concrete examples for these discrete convective terms will be provided in Section 4.

In this way, considering the forms AF, AT, BF ,BT and DF, introduced in Section 2.3 , the
Galerkin scheme associated to (2.10) reads: Find ((uh, ph), (θh, λh)) ∈ (Hh ×Qh)× (Ψh × Λh),
such that

AF(θh; uh,vh) +OhF(uh; uh,vh)−BF(vh, ph)−DF(θh,vh) = 0,

BF(uh, qh) = 0,

AT(θh; θh, ψh) +OhT(uh; θh, ψh) +BT(ψh, λh) = 0,

BT(θh, ξh) = 〈ξh, θD〉Γ,

(3.3)

for all ((vh, qh), (ψh, ξh)) ∈ (Hh ×Qh)× (Ψh × Λh).

In what follows we derive general hypotheses on the spaces Hh, Qh, Ψh and Λh that will allow
us to show in Section 3.2 below the solvability of (3.3). Our approach consists of adapting to the
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present discrete case the arguments employed in [24, Section 4]. We begin by introducing the
following two hypotheses providing sufficient conditions (Babuška-Brezzi conditions) to ensure
the well-posedness of Oseen-type problems (see [16, Section 2.5]):

(H.0) There exists α̂F > 0, independent of the discretization parameter h, such that for given
wh ∈ Xh and ϕh ∈ Ψh, there holds

sup
zh∈Xh
zh 6=0

AF(ϕh; vh, zh) +OhT(wh; vh, zh)

‖zh‖1,Ω
≥ α̂F‖vh‖1,Ω ∀vh ∈ Xh, (3.4)

where Xh is the Kernel of the bilinear form BF, that is

Xh := {vh ∈ Hh : BF(vh, qh) = 0, ∀qh ∈ Qh} .

(H.1) There exists β̂F > 0, independent of the discretization parameter h, such that

sup
vh∈Hh
vh 6=0

BF(vh, qh)

‖vh‖1,Ω
≥ β̂F ‖qh‖0,Ω ∀qh ∈ Qh. (3.5)

In fact, owing to hypotheses (H.0) and (H.1) we easily obtain the solvability of the problem:
Given wh ∈ Hh and ϕh ∈ Ψh, find (uh, ph) ∈ Hh ×Qh, such that

AF(ϕh; uh,vh) +OhF(wh; uh,vh)−BF(vh, ph) = DF(ϕh,vh)

BF(uh, qh) = 0,
(3.6)

for all (vh, qh) ∈ (Hh ×Qh).

Similarly, due to the mixed structure of the convection-diffusion equation modelling the
temperature, we will require the following hypotheses:

(H.2) There exists β̂T > 0, independent of the discretization parameter h, such that

sup
ψh∈Ψh
ψh 6=0

BT(ψh, ξh)

‖ψh‖1,Ω
≥ β̂T ‖ξh‖−1/2,Γ ∀ξh ∈ Λh. (3.7)

(H.3) There exists α̂T > 0, independent of the discretization parameter h, such that for given
ϕh ∈ Ψh and wh ∈ Xh, there holds

sup
φh∈Ψh,0
φh 6=0

AT(ϕh;ψh, φh) +OhT(wh;ψh, φh)

‖φh‖1,Ω
≥ α̂T‖ψh‖1,Ω ∀ψh ∈ Ψh,0, (3.8)

where Ψh,0 is the Kernel of the bilinear form BT, that is

Ψh,0 := {ψh ∈ Ψh : BT(ψh, ξh) = 0, ∀ ξh ∈ Λh}. (3.9)

Finally, in order to achieve the derivation of the Cea’s estimate, we will assume that the
discrete convective terms OhF and OhT are consistent with the continuous ones in the following
sense:
(H.4) Given w ∈ X, there hold

OhF(w; u,v) = OF(w; u,v) and OhT(w; θ, ψ) = OT(w; θ, ψ), (3.10)

for all u,v ∈ H1(Ω) and θ, ψ ∈ H1(Ω).
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3.2 Existence and stability of solution

In what follows we establish existence and stability of solution of problem (3.3). To do that,
we first observe that owing to hypothesis (H.1), it readily follows that (3.3) is equivalent to the
reduced problem: Find uh ∈ Xh and (θh, λh) ∈ Ψh × Λh, such that

AF(θh; uh,vh) +OhF(uh; uh,vh)−DF(θh,vh) = 0,

AT(θh; θh, ψh) +OhT(uh; θh, ψh) +BT(ψh, λh) = 0,

BT(θh, ξh) = 〈ξh, θD〉Γ,
(3.11)

for all vh ∈ Xh and (ψh, ξh) ∈ Ψh × Λh. In fact, we have the following result:

Lemma 3.1 If ((uh, ph), (θh, λh)) ∈ (Hh×Qh)×(Ψh×Λh) is a solution of (3.3), then uh ∈ Xh

and (uh, (θh, λh)) ∈ Xh × (Ψh,Λh) is also a solution of (3.11). Conversely, if (uh, (θh, λh)) ∈
Xh × (Ψh × Λh) is a solution of (3.11), then there exists a discrete pressure ph ∈ Qh such that
((uh, ph), (θh, λh)) ∈ (Hh ×Qh)×Ψh × Λh) is also a solution of (3.3).

According to the above, in the sequel we analyze problem (3.11).

3.2.1 Two technical results

Before proving the main results of this section, we first provide two technical results that will
serve for the forthcoming analysis.

Lemma 3.2 Let g ∈ L2(Ω), wh ∈ Xh and ϕh ∈ Ψh. Assume that (H.0) holds. Then there
exists a unique uh ∈ Xh, such that

AF(ϕh; uh,vh) +OhF (wh; uh,vh) = DF(ϕh,vh) ∀vh ∈ Xh. (3.12)

Moreover,
‖uh‖1,Ω ≤ α̂−1

F
CDF
‖g‖0,Ω‖ϕh‖1,Ω. (3.13)

Proof. Given wh ∈ Xh and ϕh ∈ Ψh, from (H.0) (cf. (3.4)), (2.11) and (3.2), we easily obtain
that AF(ϕh, ·, ·)+OhF (wh; ·, ·) induces a continuous and bijective linear operator from Xh to Xh,
which implies the existence and uniqueness of solution of (3.12). In addition, from (2.15), (3.4)
and (3.12), it readily follows that

α̂F‖uh‖1,Ω ≤ sup
zh∈Xh
zh 6=0

AF(ϕh; uh, zh) +OhT(wh; uh, zh)

‖zh‖1,Ω

= sup
zh∈Xh
zh 6=0

DF(ϕh, zh)

‖zh‖1,Ω

≤ CDF
‖g‖0,Ω‖ϕh‖1,Ω,

which implies (3.13) and concludes the proof. �

Lemma 3.3 Let θD ∈ H1/2(Γ), g ∈ L2(Ω), wh ∈ Xh and ϕh ∈ Ψh. Assume that (H.2) and
(H.3) hold. Then, there exists a unique (θh, λh) ∈ Ψh × Λh, such that

AT(ϕh; θh, ψh) +OhT(wh; θh, ψh) +BT(ψh, λh) = 0,

BT(θh, ξh) = 〈ξh, θD〉Γ,
(3.14)
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for all (ψh, ξh) ∈ Ψh × Λh. Moreover,

‖θh‖1,Ω ≤ α̂−1
T
β̂−1

T

(
κ2 + ĈOT

‖wh‖1,Ω + α̂T

)
‖θD‖1/2,Γ (3.15)

and

‖λh‖−1/2,Γ ≤ α̂−1
T
β̂−2

T
(κ2 + ĈOT

‖wh‖1,Ω)
(
κ2 + ĈOT

‖wh‖1,Ω + α̂T

)
‖θD‖1/2,Γ. (3.16)

Proof. Since hypotheses (H.2) and (H.3) hold, a straightforward application of the classical
Babuška-Brezzi theory implies that problem (3.14) is well posed. Now, let θh,0 ∈ Ψh,0 and
θh,1 ∈ Ψ⊥h,0, such that θh = θh,0 + θh,1, with Ψ⊥h,0 being the orthogonal complement of Ψh,0.
Then, owing the inf-sup condition (3.7) and the second equation of (3.14), a classical result in
functional analysis (see, e.g., [16, Section 2.2]) implies that

‖θh,1‖1,Ω ≤ β̂−1
T

sup
ξh∈Λh
ξh 6=0

BT(θh,1, ξh)

‖ξh‖−1/2,Γ
= β̂−1

T
sup
ξh∈Λh
ξh 6=0

〈ξh, θD〉Γ
‖ξh‖−1/2,Γ

≤ β̂−1
T
‖θD‖1/2,Γ. (3.17)

Then, from the inf-sup condition (3.8), the first equation of (3.14) and the continuity of AT and
OhT in (2.11) and (3.2), respectively, we obtain

α̂T ‖θh,0‖1,Ω ≤ sup
φh∈Ψh,0
φh 6=0

AT (ϕh; θh,0, φh) +OhT(wh; θh,0, φh)

‖φh‖1,Ω

= sup
φh∈Ψh,0
φh 6=0

−AT(ϕh; θh,1, φh)−OhT(wh; θh,1, φh)

‖φh‖1,Ω

≤ (κ2 + ĈOT
‖wh‖1,Ω)‖θh,1‖1,Ω,

which together with (3.17), implies

‖θh,0‖1,Ω ≤ α̂−1
T
β̂−1

T

(
κ2 + ĈOT

‖wh‖1,Ω
)
‖θD‖1/2,Γ.

Hence, owing the triangle inequality and (3.17), we easily obtain

‖θh‖1,Ω ≤ ‖θh,0‖1,Ω + ‖θh,1‖1,Ω
≤ ‖θh,0‖1,Ω + β̂−1

T
‖θD‖1/2,Γ

≤ α̂−1
T
β̂−1

T

(
κ2 + ĈOT

‖wh‖1,Ω + α̂T

)
‖θD‖1/2,Γ.

(3.18)

Finally, for (3.16) we utilize the inf-sup condition (3.7), the first equation in (3.14), and the
continuity of AT and OhT in (2.11) and (3.2), respectively, to obtain

β̂T‖λh‖−1/2,Γ ≤ sup
ψh∈Ψh
ψh 6=0

BT(ψh, λh)

‖ψh‖1,Ω

= sup
ψh∈Ψh
ψh 6=0

{
−AT(ϕh; θh, ψh)−OhT(wh; θh, ψh)

‖ψh‖1,Ω

}
≤ (κ2 + ĈOT

‖wh‖1,Ω)‖θh‖1,Ω,

which together with (3.18) concludes the proof. �
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3.2.2 Existence and stability of discrete solutions

In this section we establish the existence and stability of discrete solutions of problem (3.3).
To do that, we proceed as in [24, Section 4.3] and first analyze the existence and stability of
the reduced problem (3.11) by making use of the classical Brouwer’s fixed point theorem in the
following form (see e.g., [6]): Let K be a non-empty compact convex subset of a finite dimensional
normed space, and let L be a continuous mapping of K into itself. Then L has a fixed point in
K.

In order to fit our analysis into the framework of the Brouwer’s fixed point theorem, we first
let Ĉu, Ĉθ and Ĉλ be positive constants (to be specified later), independent of h, and introduce
the finite dimensional, convex and compact set:

K :=

 (vh, (ψh, ξh)) ∈ Xh × (Ψh × Λh) : ‖vh‖1,Ω ≤ Ĉu‖θD‖1/2,Γ,

‖ψh‖1,Ω ≤ Ĉθ‖θD‖1/2,Γ and ‖ξh‖−1/2,Γ ≤ Ĉλ‖θD‖1/2,Γ

 ,

In addition, we define the mapping

L : K → K, (wh, (ϕh, χh)) 7→ L(wh, (ϕh, χh)) = (uh, (θh, λh)), (3.19)

where uh ∈ Xh and (θh, λh) ∈ Ψh × Λh are the unique solutions of problems (3.12) and (3.14),
respectively. It is clear that (uh, (θh, λh)) is a solution to (3.11), if and only if,

L(uh, (θh, λh)) = (uh, (θh, λh)),

that is, (uh, (θh, λh)) is a fixed point to L. In turn, it is not difficult to see that, by assuming a
smallness assumption on the data, and for specific constants Ĉu, Ĉθ and Ĉλ, the mapping L is
well defined and maps K into itself. In fact, we have the following lemma.

Lemma 3.4 Let θD ∈ H1/2(Γ) and g ∈ L2(Ω). Assume that hypotheses (H.0), (H.2) and
(H.3) hold. Then, given (wh, (ϕh, χh)) ∈ Xh × (Ψh ×Λh), there exists a unique (uh, (θh, λh)) ∈
Xh × (Ψh × Λh), such that L(wh, (ϕh, χh)) = (uh, (θh, λh)). In addition, under the further
assumption on the data

Ĉstab‖g‖0,Ω‖θD‖1/2,Γ ≤
1

2
, (3.20)

with

Ĉstab :=
ĈOT

CDF

α̂Fα̂T β̂T

, (3.21)

and setting the constants Ĉu, Ĉθ and Ĉλ as

Ĉu =
2CDF

(κ2 + α̂T)‖g‖0,Ω
α̂Fα̂T β̂T

, Ĉθ =
2(κ2 + α̂T)

α̂T β̂T

and Ĉλ =
2(κ2 + α̂T)(2κ2 + α̂T)

α̂T β̂
2
T

,

(3.22)
the mapping L maps K into itself.

Proof. Let (wh, (ϕh, χh)) ∈ K. The existence and uniqueness of (uh, (θh, λh)) ∈ Xh× (Ψh×Λh)
such that L(wh, (ϕh, χh)) = (uh, (θh, λh)) is guaranteed by Lemmata 3.2 and 3.3. Therefore,
it remains to prove that, under hypothesis (3.20), (uh, (θh, λh)) belongs to K. To do that, we
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need to find suitable constants Ĉu, Ĉθ and Ĉλ for which the inequalities ‖uh‖1,Ω ≤ Ĉu‖θD‖1/2,Γ,

‖θh‖1,Ω ≤ Ĉθ‖θD‖1/2,Γ and ‖λh‖−1/2,Γ ≤ Ĉλ‖θD‖1/2,Γ hold.

First, we recall that, since (wh, ϕh, χh) ∈ K, then

‖wh‖1,Ω ≤ Ĉu‖θD‖1/2,Γ, ‖ϕh‖1,Ω ≤ Ĉθ‖θD‖1/2,Γ and ‖χh‖−1/2,Γ ≤ Ĉλ‖θD‖1/2,Γ. (3.23)

Now, since uh ∈ Xh and (θh, λh) ∈ Ψh ×Λh are the unique solutions of problems (3.12) and
(3.14), respectively, from (3.13) and (3.15) and (3.23), we obtain

‖uh‖1,Ω ≤ α̂−1
F
CDF

Ĉθ‖g‖0,Ω‖θD‖1/2,Γ,

and
‖θh‖1,Ω ≤ α̂−1

T
β̂−1

T

(
κ2 + ĈOT

Ĉu‖θD‖1/2,Γ + α̂T

)
‖θD‖1/2,Γ. (3.24)

Then, setting Ĉu = α−1
F
CDF

Ĉθ‖g‖0,Ω, from (3.24) and (3.20), we obtain

‖θh‖1,Ω ≤ ĈOT
ĈDF

Ĉθ

α̂Fα̂T β̂T

‖g‖0,Ω‖θD‖21/2,Γ +
κ2 + α̂T

α̂T β̂T

‖θD‖1/2,Γ

=

(
ĈθĈstab‖g‖0,Ω‖θD‖1/2,Γ +

κ2 + α̂T

α̂T β̂T

)
‖θD‖1/2,Γ

≤

(
Ĉθ
2

+
κ2 + α̂T

α̂T β̂T

)
‖θD‖1/2,Γ.

(3.25)

In this way, we set Ĉθ = Ĉθ
2 +

κ2+α̂
T

α̂
T
β̂
T

, and find that

Ĉθ =
2(κ2 + α̂T)

α̂T β̂T

, (3.26)

which according to the above, implies that

Ĉu = α̂−1
F
CDF

Ĉθ‖g‖0,Ω =
2CDF

(κ2 + α̂T)‖g‖0,Ω
α̂Fα̂T β̂T

. (3.27)

Finally, from (3.20) and (3.27), we easily obtain that

ĈOT
‖wh‖1,Ω ≤ ĈOT

Ĉu‖θD‖1/2,Γ =
2ĈOT

CDF
(κ2 + α̂T)

α̂Fα̂T β̂T

‖g‖0,Ω‖θD‖1/2,Γ ≤ κ2 + α̂T ,

which together to (3.16), implies

‖λh‖−1/2,Γ ≤
(κ2 + ĈOT

‖wh‖1,Ω)

α̂T β̂
2
T

(
κ2 + ĈOT

‖wh‖1,Ω + α̂T

)
‖θD‖1/2,Γ

≤ Ĉλ‖θD‖1/2,Γ,

with

Ĉλ =
2(κ2 + α̂T)(2κ2 + α̂T)

α̂T β̂
2
T

.
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In this way, if (wh, (ϕh, χh)) ∈ K, with K defined with the constants in (3.22), then (uh, (θh, λh))
∈ K, which concludes the proof. �

We are now in position of establishing the existence and stability of solutions of problem
(3.11).

Theorem 3.5 Let θD ∈ H1/2(Γ) and g ∈ L2(Ω). Assume that hypotheses (H.0), (H.2) and
(H.3) hold. Assume further that

Ĉstab‖g‖0,Ω‖θD‖1/2,Γ ≤
1

2
,

with Ĉstab being the constant in (3.21). Then, problem (3.11) admits a solution (uh, (θh, λh)) ∈
Xh × (Ψh × Λh), satisfying

‖uh‖1,Ω ≤ Ĉu‖θD‖1/2,Γ, ‖θh‖1,Ω ≤ Ĉθ‖θD‖1/2,Γ and ‖λh‖−1/2,Γ ≤ Ĉλ‖θD‖1/2,Γ, (3.28)

with Ĉu, Ĉθ and Ĉλ being the constants in (3.22).

Proof. As mentioned before, according to the definition of L and the Brouwer’s fixed point
theorem, it suffices to prove that L is continuous operator. To do that, we let (w, (ϕ, χ)) ∈ K
and a sequence {(wm, (ϕm, χm))}m∈N ⊂ K, satisfying

‖wm −w‖1,Ω
m→∞−→ 0, ‖ϕm − ϕ‖1,Ω

m→∞−→ 0, and ‖χm − χ‖−1/2,Γ
m→∞−→ 0. (3.29)

Then, setting (u, (θ, λ)) = L(w, (ϕ, χ)) and (um, (θm, λm)) = L(wm, (ϕm, χm)), we proceed
similarly to the proof of [24, Theorem 4.1] to prove that

‖um − u‖1,Ω
m→∞−→ 0, ‖θm − θ‖1,Ω

m→∞−→ 0, and ‖λm − λ‖−1/2,Γ
m→∞−→ 0. (3.30)

In fact, from the definition of L in (3.19), and from (3.12) and (3.14), we first observe that there
hold

AF(ϕm; um,v) +OhF(wm; um,v) = DF(ϕm,v)

AT(ϕm; θm, ψ) +OhT(wm; θm, ψ) +BT(ψ, λm) = 0

BT(θm, ξ) = 〈ξ, θD〉Γ,

for all (v, (ψ, ξ)) ∈ Xh × (Ψh × Λh), and

AF(ϕ; u,v) +OhF (w; u,v) = DF(ϕ,v)

AT(ϕ; θ, ψ) +OhT(w; θ, ψ) +BT(ψ, λ) = 0

BT(θ, ξ) = 〈ξ, θD〉Γ,

for all (v, (ψ, ξ)) ∈ Xh × (Ψh × Λh). Then, subtracting the two systems from each other we
easily obtain

[AF(ϕm; um,v)−AF(ϕ; u,v)] + [OhF(wm; um,v)−OhF(w; u,v)]−DF(ϕm − ϕ,v) = 0 (3.31)

[AT(ϕm; θm, ψ)−AT(ϕ; θ, ψ)] + [OhT(wm; θm, ψ)−OhT(w; θ, ψ)] +BT(ψ, λ− λm) = 0 (3.32)

BT(θ − θm, ξ) = 0, (3.33)

17



for all (v, (ψ, ξ)) ∈ Xh × (Ψh × Λh). In particular, from (3.31), we add and subtract suitable
terms, to obtain

AF(ϕm; u− um,v) +OhF(wm; u− um,v) = −[AF(ϕ; u,v)−AF(ϕm; u,v)]

−OhF(w −wm; u,v))−DF(ϕm − ϕ,v).

Then, owing to (H.0) (cf. (3.4)), (2.12), (2.15) and (3.1), from the previous identity, it follows
that

α̂F‖u− um‖1,Ω ≤ sup
v∈Xh
v 6=0

AF(ϕm; u− um,v) +OhF(wm; u− um,v)

‖v‖1,Ω

= sup
v∈Xh
v 6=0

−[AF(ϕ; u,v)−AF(ϕm; u,v)]−OhF(w −wm; u,v))−DF(ϕm − ϕ,v)

‖v‖1,Ω

≤ νlip‖ϕ− ϕm‖1,Ω‖u‖W1,∞(Ω) + ĈOF
‖w −wm‖1,Ω‖u‖1,Ω + CDF

‖g‖0,Ω‖ϕm − ϕ‖1,Ω,

which together with (3.29), yields

lim
m→∞

‖u− um‖1,Ω = 0. (3.34)

Similarly to the above, we now add and subtract suitable terms in (3.32), to obtain

AT(ϕm; θ − θm, ψ) +OhT(wm; θ − θm, ψ) = −[AT(ϕ; θ, ψ)−AT(ϕm; θ, ψ)]

−OhT(w −wm; θ, ψ) +BT(ψ, λ− λm),
(3.35)

for all ψ ∈ Ψh. Hence, noting that θ − θm ∈ Ψh,0 (cf. (3.9)), we apply the inf-sup condition
(3.8) to the left-hand side of (3.35) and utilize the estimates (2.13) and (3.2), to get

α̂T‖θ − θm‖1,Ω ≤ sup
ψ∈Ψh,0
ψ 6=0

AT (ϕm; θ − θm, ψ) +OhT(wm; θ − θm, ψ)

‖ψ‖1,Ω

= sup
ψ∈Ψh,0
ψ 6=0

−[AT(ϕ; θ, ψ)−AT(ϕm; θ, ψ)]−OhT(w −wm; θ, ψ)

‖ψ‖1,Ω

≤ κlip‖ϕ− ϕm‖1,Ω‖θ‖W1,∞(Ω) + ĈOT
‖w −wm‖1,Ω‖θ‖1,Ω,

which together with (3.29), yields

lim
m→∞

‖θ − θm‖1,Ω = 0. (3.36)

Finally, from the inf-sup condition of BT (cf. (3.7)), the identity (3.35), and the estimates (2.11),
(2.13) and (3.2), it follows that

β̂T‖λ− λm‖−1/2,Γ ≤ sup
ψ∈Ψh
ψ 6=0

BT(ψ, λ− λm)

‖ψ‖1,Ω
,

≤ κ2‖θ − θm‖1,Ω + ĈOT
‖wm‖1,Ω‖θ − θm‖1,Ω

+κlip‖θ‖W1,∞(Ω)‖ϕ− ϕm‖1,Ω + ĈOT
‖w −wm‖1,Ω‖θ‖1,Ω
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which together with (3.34), (3.36), and the fact that {wm}m∈N and {ϕm}m∈N are convergent
sequences, leads us to

lim
m→∞

‖λ− λm‖−1/2,Γ = 0, (3.37)

which concludes the proof. �

We end this section with the main result of this section, namely, existence and stability of
solutions of problem (3.3).

Theorem 3.6 Let θD ∈ H1/2(Γ) and g ∈ L2(Ω). Assume that hypotheses (H.0), (H.1), (H.2)
and (H.3) hold. Assume further that

Ĉstab‖g‖0,Ω‖θD‖1/2,Γ ≤
1

2
,

with Ĉstab being the constant in (3.21). Then, problem (3.3) admits a solution ((uh, ph), (θh, λh))
∈ (Hh×Qh)×(Ψh×Λh), with uh, θh and λh satisfying the stability estimates (3.28). In addition,
there exists a positive constant Ĉp, depending only on ‖g‖0,Ω and the stability constants, such
that

‖ph‖0,Ω ≤ Ĉp‖θD‖1/2,Γ. (3.38)

Proof. It is clear that the existence of solutions of problem (3.3) follows from Lemma 3.1 and
Theorem 3.5. In addition, owing to Theorem 3.5 the estimates (3.28) hold. Then, it suffices
to prove the estimate (3.38) to conclude the proof. To do that, we first observe that from the
inf-sup condition (3.5), and the first equation of (3.3), we have

β̂F‖ph‖0,Ω ≤ sup
vh∈Hh
vh 6=0

BF(vh, ph)

‖vh‖1,Ω

= sup
vh∈Hh
vh 6=0

{
AF(θh; uh,vh) +OhF(uh; uh,vh)−DF(θh,vh)

‖vh‖1,Ω

}
,

which together with the continuity of AF , O
h
F and DF in (2.11), (3.1) and (2.15), respectively,

implies

‖ph‖0,Ω ≤ β̂−1
F

(ν2 + ĈOF
‖uh‖1,Ω)‖uh‖1,Ω + β̂−1

F
CDF
‖g‖0,Ω‖θh‖1,Ω. (3.39)

Hence, using the estimates (3.28), from the previous inequality, we obtain

‖ph‖0,Ω ≤ β̂−1
F

(
Ĉu(ν2 + ĈOF

Ĉu‖θD‖1/2,Γ) + CDF
Ĉθ‖g‖0,Ω

)
‖θD‖1/2,Γ.

Hence, assumption (3.20) and the previous inequality yield the result. �

3.3 Céa’s estimate

Now, we derive the corresponding Céa’s estimate of our Galerkin scheme (3.3). To that end,
we first provide some previous results that will serve for the forthcoming analysis. We begin by
defining the set

Ψh,D := {ϕh ∈ Ψh : BT(φh, ξh) = 〈ξh, θD〉Γ ∀ξ ∈ Λh} , (3.40)
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which, according to hypothesis (H.3) is a non-empty space. In addition, it is not difficult to see
that the following inequality holds (see for instance [16, Theorem 2.6]):

inf
ζh∈Ψh,D

‖θ − ζh‖1,Ω ≤ ĉ1 inf
φh∈Ψh

‖θ − φh‖1,Ω, (3.41)

with ĉ1 > 0 independent of h. Similarly, owing to hypothesis (H.1), it is possible to prove that
there exists ĉ2 > 0 independent of h, such that

inf
wh∈Xh

‖u−wh‖1,Ω ≤ ĉ2 inf
vh∈Hh

‖u− vh‖1,Ω. (3.42)

In order to simplify the subsequent analysis, we write eu = u− uh, ep = p− ph, eθ = θ− θh
and eλ = λ − λh. As usual, for given v̂h ∈ Xh, q̂h ∈ Qh, ψ̂h ∈ Ψh,D and ξ̂h ∈ Λh, we shall
decompose these errors into

eu = ru +χχχu, ep = rp + χp, eθ = rθ + χθ and eλ = rλ + χλ,

with
ru := u− v̂h ∈ X, χχχu := v̂h − uh ∈ Xh,

rp := p− q̂h ∈ Q, χp := q̂h − ph ∈ Qh,

rθ := θ − ψ̂h ∈ H1(Ω), χθ := ψ̂h − θh ∈ Ψh,0,

rλ := λ− ξ̂h ∈ H−1/2(Γ), χλ := ξ̂h − λh ∈ Λh.

(3.43)

We first provide the estimates for u, θ and λ.

Theorem 3.7 Assume that (H.0), (H.2), (H.3) and (H.4) hold. Assume further that

max{Cstab, Ĉstab}‖g‖0,Ω‖θD‖1/2,Γ ≤
1

2
, (3.44)

with Cstab and Ĉstab given by (2.25) and (3.21), respectively. Let ((u, p), (θ, λ)) ∈ (H1
0(Ω) ×

L2
0(Ω))× (H1(Ω)×H−1/2(Γ)) and (uh, (θh, λh)) ∈ Xh× (Ψh×Λh) be solutions of the continuous

and discrete problems (2.10) and (3.11), respectively, and assume that

max{‖g‖0,Ω, ‖u‖W1,∞ , ‖θ‖W1,∞(Ω)} ≤ M̂ := min
{
M, M̃

}
, (3.45)

with M and M̃ sufficiently small as specified in (2.23) and (3.52) below, respectively. Then,
there exist positive constants Ccea1 and Ccea2 independent of the discretization parameter h, such
that

‖u− uh‖1,Ω + ‖θ − θh‖1,Ω ≤ Ccea1

{
inf

vh∈Hh

‖u− vh‖1,Ω + inf
ψ∈Ψh

‖θ − ψh‖1,Ω
}
, (3.46)

‖λ− λh‖−1/2,Γ ≤ Ccea2

{
inf

vh∈Hh

‖u− vh‖1,Ω + inf
ψ∈Ψh

‖θ − ψh‖1,Ω + inf
ξh∈Λh

‖λ− ξh‖−1/2,Γ

}
. (3.47)
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Proof. Let v̂h ∈ Xh, ψ̂h ∈ Ψh,D and ξ̂h ∈ Λh, and define ru, χχχu, rθ, χθ, rλ and χλ as in (3.43).
First, since ((u, p), (θ, λ)) ∈ (H1

0(Ω)×L2
0(Ω))× (H1(Ω)×H−1/2(Γ)) is the solution of (2.10),

for a given (vh, ψh, ξh) ∈ Xh ×Ψh × Λh, it readily follows that

AF(θ; u,vh) +OF(u; u,vh)−DF(θ,vh) = 0,

AT(θ; θ, ψh) +OT(u; θ, ψh) +BT(ψh, λ) = 0,

BT(θ, ξh) = 〈ξh, θD〉Γ,
(3.48)

Then, we subtract equations (3.48) and (3.11) and utilize hypothesis (H.4) (cf. (3.10)), to obtain

[AF(θ; u,vh)−AF(θh; uh,vh)] + [OhF(u; u,vh)−OhF(uh; uh,vh)]−DF(eθ,vh) = 0,

[AT(θ; θ, ψh)−AT(θh; θh, ψh)] + [OhT(u; θ, ψh)−OhT(uh; θh, ψh)] +BT(ψh, eλ) = 0,

BT(eθ, ξh) = 0,

(3.49)

for all (vh, ψh, ξh) ∈ Xh×Ψh×Λh. In particular, using the first equation of (3.49), we add and
subtract suitable terms, to obtain

AF(θh;χχχu,vh) +OhF(uh;χχχu,vh) = −[AF(θh; ru,vh) +OhF(uh; ru,vh)]

−[AF(θ; u,vh)−AF(θh; u,vh)]

−OhF(eu; u,vh)) +DF(eθ,vh),

for all vh ∈ Xh, which together with hypothesis (H.0), the fact that χχχu ∈ Xh, and the estimates
(2.11), (2.12), (2.15), (3.1), implies

α̂F‖χχχu‖1,Ω ≤ sup
vh∈Xh
vh 6=0

AF(θh;χχχu,vh) +OhT(uh;χχχu,vh)

‖vh‖1,Ω

≤ ν2‖ru‖1,Ω + ĈOF
‖uh‖1,Ω‖ru‖1,Ω + νlip‖u‖W1,∞(Ω)‖eθ‖1,Ω

+ ĈOF
‖eu‖1,Ω‖u‖1,Ω + CDF

‖g‖0,Ω‖eθ‖1,Ω.

(3.50)

Similarly, adding and subtracting suitable terms in the second equation of (3.49), we get

AT(θh;χθ, ψh) +OhT(uh;χθ, ψh) = −[AT(θh; rθ, ψh) +OhT(uh; rθ, ψh)]

−[AT(θ; θ, ψh)−AT(θh; θ, ψh)]

−OhT(eu; θ, ψh)−BT(ψh, eλ),

which together with hypothesis (H.3) (cf. (3.8)), the estimates (2.11), (2.13) and (3.2), and the
fact that χθ ∈ Ψh,0, yields

α̂T‖χθ‖1,Ω ≤ sup
ψh∈Ψh,0
vh 6=0

AT(θh;χθ, ψh) +OhT(uh;χθ, ψh)

‖ψh‖1,Ω

≤ κ2‖rθ‖1,Ω + ĈOT
‖uh‖1,Ω‖rθ‖1,Ω + κlip‖θ‖W1,∞(Ω)‖eθ‖1,Ω + ĈOT

‖eu‖1,Ω‖θ‖1,Ω.
(3.51)

21



Then, using the continuous dependence result ‖uh‖1,Ω ≤ Ĉu‖θD‖1/2,Γ, the triangle inequality for
‖eu‖1,Ω and ‖eθ‖1,Ω, hypothesis (3.45), and the fact that ‖u‖1,Ω ≤ C∞‖u‖W1(Ω) and ‖θ‖1,Ω ≤
C∞‖θ‖W 1(Ω), from (3.50) and (3.51), we obtain

α̂F‖χχχu‖1,Ω + α̂T‖χθ‖1,Ω ≤ C(‖ru‖1,Ω + ‖rθ‖1,Ω) + C∞(ĈOF
+ ĈOT

)M̃‖χχχu‖1,Ω

+ (νlip + κlip + CDF
)M̃‖χθ‖1,Ω,

with C > 0, depending on C∞, ‖θD‖1/2,Γ, and on the stability constants. Then, choosing M̃ ,
such that

M̃ ≤ 1

2
min

{
α̂F

C∞(ĈOF
+ ĈOT

)
,

α̂T

νlip + κlip + CDF

}
, (3.52)

it follows that
α̂F

2
‖χχχu‖1,Ω +

α̂T

2
‖χθ‖1,Ω ≤ C(‖ru‖1,Ω + ‖rθ‖1,Ω)

which together with the triangle inequality, yields

‖eu‖1,Ω + ‖eθ‖1,Ω ≤ ‖ru‖1,Ω + ‖χχχu‖1,Ω + ‖rθ‖1,Ω + ‖χθ‖1,Ω

≤ C̃ {‖ru‖1,Ω + ‖rθ‖1,Ω}

= C̃
{
‖u− v̂h‖1,Ω + ‖θ − ψ̂h‖1,Ω

}
,

for all v̂h ∈ Xh and ψ̂h ∈ Ψh,D, which implies

‖eu‖1,Ω + ‖eθ‖1,Ω ≤ C̃

{
inf

v̂h∈Xh

‖u− v̂h‖1,Ω + inf
ψ̂h∈Ψh,D

‖θ − ψ̂h‖1,Ω

}
, (3.53)

with C̃ > 0 depending on ‖θD‖1/2,Γ and the stability constants. In this way, the estimate (3.46)
follows from (3.53) and the properties (3.41) and (3.42).

Now, we prove estimate (3.47). To do that we first observe that, adding and subtracting
suitable terms in the second equation of (3.49), there holds

BT(ψh, χλ) = −[AT(θh; eθ, ψh) +OhT(uh; eθ, ψh)]− [AT(θ; θ, ψh)−AT(θh; θ, ψh)]

−OhT(eu; θ, ψh)−BT(ψh, rλ),

which together with (H.2) (cf. (3.7)), and the estimates (2.11), (2.13), (2.16) and (3.2), implies

‖χλ‖−1/2,Γ ≤ β̂−1
T

sup
ψh∈Ψh
ψh 6=0

{
|AT(θh; eθ, ψh) +OhT(uh; eθ, ψh) +OhT(eu; θ, ψh)|

‖ψh‖1,Ω

}

+ β̂−1
T

sup
ψh∈Ψh
ψh 6=0

{
|AT(θ; θ, ψh)−AT(θh; θ, ψh) +BT(ψh, rλ)|

‖ψh‖1,Ω

}
≤ β̂−1

T

(
κ2‖eθ‖1,Ω + ĈOT

‖uh‖1,Ω‖eθ‖1,Ω + ĈOT
‖eu‖1,Ω‖θ‖1,Ω

+κ2‖θ‖W1,∞(Ω)‖eθ‖1,Ω + ‖rλ‖−1/2,Γ

)
.
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Hence, recalling that ‖θ‖1,Ω ≤ C∞‖θ‖W1,∞(Ω) and ‖uh‖1,Ω ≤ Ĉu‖θD‖1/2,Γ, from (3.44), we
obtain that there exists c > 0, independent of h, such that

‖χλ‖−1/2,Γ ≤ c (‖eθ‖1,Ω + ‖eu‖1,Ω) + β̂−1
T
‖rλ‖−1/2,Γ (3.54)

Therefore, the triangle inequality and the previous estimate imply that

‖eλ‖−1/2,Γ ≤ ‖rλ‖−1/2,Γ + ‖χλ‖−1/2,Γ

≤ c (‖eθ‖1,Ω + ‖eu‖1,Ω) +
(

1 + β̂−1
T

)
‖rλ‖−1/2,Γ

which together with (3.46) yields (3.47) and completes the proof. �

We end this section by providing the corresponding estimate for the pressure.

Corollary 3.8 Assume that hypotheses of Theorem 3.7 hold. Assume further that (H.1) holds.
Let p ∈ L2

0(Ω) and ph ∈ Qh, such that ((u, p), (θ, λ)) and ((uh, ph), (θh, λh)) are solutions to
(2.10) and (3.3), respectively. Then, there exits a positive constant Ccea3 , independent the pa-
rameter discretization h, such that

‖p− ph‖0,Ω ≤ Ccea3

{
inf

vh∈Hh

‖u− vh‖1,Ω + inf
ψ∈Ψh

‖θ − ψh‖1,Ω + inf
qh∈Qh

‖p− qh‖0,Ω
}
. (3.55)

Proof. Let p̂h ∈ Qh and define rp ∈ L2
0(Ω) and χp ∈ Qh as in (3.43). Similarly to the proof of

Theorem 3.7 we subtract the first equations of (2.10) and (3.3) and add and subtract suitable
terms to obtain

BF(vh, χp) = AF(θh; eu,vh) +OhF(uh; eu,vh) + [AF(θ; u,vh)−AF(θh; u,vh)]

+OhF(eu; u,vh)−DF(eθ,vh)−BF(vh, rp),

for all vh ∈ Hh. Then, from (H.1) (cf. (3.5)), it readily follows that

β̂F ‖χp‖0,Ω ≤ sup
vh∈Hh
vh 6=0

{
|AF(θh; eu,vh) +OhF(uh; eu,vh) +AF(θ; u,vh)−AF(θh; u,vh)|

‖vh‖1,Ω

}

+ sup
vh∈Hh
vh 6=0

{
|OhF(eu; u,vh)−DF(eθ,vh) +BF(vh, rp)|

‖vh‖1,Ω

}
,

which together with (2.11), (2.12), (2.15), (2.16) and (3.1), yields

β̂F ‖χp‖0,Ω ≤ ν2‖eu‖1,Ω + ĈOF
‖uh‖1,Ω‖eu‖1,Ω + νlip‖u‖W1,∞(Ω)‖eθ‖1,Ω

+ĈOF
‖eu‖1,Ω‖u‖1,Ω + CDF

‖g‖0,Ω‖eθ‖1,Ω + CBF
‖rp‖0,Ω.

Then, using that ‖u‖1,Ω ≤ C∞‖u‖W1,∞(Ω) and ‖uh‖1,Ω ≤ Ĉu‖θD‖1/2,Γ, from (3.44), we obtain
that there exists c > 0, independent of h, such that

‖χp‖0,Ω ≤ c (‖eu‖1,Ω + ‖eθ‖1,Ω) + β̂−1
F CBF

‖rp‖0,Ω,

which together with the triangle inequality implies

‖ep‖0,Ω ≤ c (‖eu‖1,Ω + ‖eθ‖1,Ω) + (β̂−1
F CBF

+ 1)‖p− p̂h‖0,Ω,

for all p̂h ∈ Qh. Then the result readily follows from the previous estimate and (3.46). �
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4 Concrete finite element discretizations

In this section we provide concrete examples of finite elements subspaces and convective forms
satisfying hypotheses (H.0)–(H.4).

First, for the discretization of the convective forms we adopt the well known skew-symmetric
forms (see [27]), given by

OhF(wh; uh,vh) =

∫
Ω

[(wh · ∇)uh] · vh +
1

2

∫
Ω

(div wh)uh · vh wh, uh, vh ∈ Hh,

OhT(wh; θh, ψh) =

∫
Ω

(wh · ∇θh)ψh +
1

2

∫
Ω

(div wh)θhψh θh ψh ∈ Ψh,

(4.1)

which clearly satisfy (3.1), (3.2) and hypothesis (H.4) (for further choices of convective forms,
see, for instance, [21]). In addition, by using integration by parts, it readily follows that

OhF(wh; vh,vh) = 0, wh, vh ∈ Hh,

OhT(wh;ψh, ψh) = 0, wh ∈ Hh, ψh ∈ Ψh.
(4.2)

Next, among all the choices of finite element subspaces that can be utilized to approximate
the solution of (2.8), in what follows we introduce two particular examples. To do that, given
an integer k ≥ 0 and a set S of Rn, in the sequel we denote by Pk(S) the space of polynomial
functions on S of degree ≤ k.

4.1 Hood-Taylor + Lagrange + piecewise polynomials

Let k ≥ 0 an integer. Then, the well known Hood-Taylor element (see, e.g. [17]) consists of the
pair (Hh,Qh), where

Hh :=
{
vh ∈ [C(Ω)]n : vh

∣∣
K
∈ [Pk+2(K)]n ∀K ∈ Th, vh = 0 on Γ

}
and

Qh :=
{
qh ∈ C(Ω) : qh

∣∣
K
∈ Pk+1(K) ∀K ∈ Th

}
.

It is well known that this pair satisfy hypothesis (H.1) (see, for instance [3, 4, 17]). In turn,
given an integer l ≥ 0, to approximate the temperature θ we can simply choose the discrete
space

Ψh :=
{
ψh ∈ C(Ω) : ψh

∣∣
K
∈ Pl+1(K) ∀K ∈ Th

}
. (4.3)

Now, to approximate the Lagrange multiplier λ, for technical reasons that can be found in
[16, Section 4.3], we first let {Γ1,Γ2, . . . ,Γm} be an independent triangulation of Γ (made of
triangles in R3 or straight segments in R2), and define h̃ := max {|Γj | : j ∈ {1, . . . ,m}}. Then,
we define the finite element subspace to approximate the Lagrange multiplier λ as

Λh̃ :=
{
ξh̃ ∈ L2(Γ) : ξh̃

∣∣
Γj
∈ Pl(Γj) ∀j ∈ {1, . . . ,m}

}
.

The following lemma establishes that the pair (Ψh,Λh) satisfies hypotheses (H.2).

24



Lemma 4.1 There exist C0 > 0 and β̂T > 0, independent of h and h̃, such that for each
h ≤ C0h̃, there holds

sup
ψh∈Ψh
ψh 6=0

BT(ψh, ξh̃)

‖ψh‖1,Ω
≥ β̂T ‖ξh̃‖−1/2,Γ ∀ξ

h̃
∈ Λ

h̃
. (4.4)

Proof. It follows basically using the same arguments employed in [16, Lemma 4.7], where the
approximating spaces for θ and λ are defined as above but with l = 0. In fact, it suffices to
replace the orthogonal projector from H1(Ω) onto the continuous piecewise polynomials of degree
≤ 1 (employed there), by the one onto the continuous piecewise polynomials of degree ≤ l + 1
(required here). We omit Further details. �

Finally, in order to complete the analysis of this section, it remains to verify that the finite
elements spaces and the convective forms described above satisfy hypotheses (H.0) and (H.3).
This result is established in the following lemma.

Lemma 4.2 There exist positive constants α̂F and α̂T, independent of h and h̃, such that the
inf-sup conditions (3.4) and (3.8) hold.

Proof. We start by verifying the inf-sup condition (3.4). To do this, we first recall that the
discrete kernel of BF is given by

Xh := {vh ∈ Hh : BF(vh, qh) = 0, ∀qh ∈ Qh} .

Now, given wh, vh ∈ Xh and ϕh ∈ Ψh, from (2.17) and (4.2), it readily follows that

AF(ϕh; vh,vh) +OhT(wh; vh,vh) ≥ αF‖vh‖
2
1,Ω,

which clearly implies (3.4) with α̂F = αF .
Next, for (3.8) we recall that the discrete kernel of BT is given by

Ψh,0 := {ψh ∈ Ψh : BT(ψh, ξh̃) = 0, ∀ ξh̃ ∈ Λh̃}.

In particular, ξh̃ ≡ 1 belongs to Λh̃, and hence Ψh,0 is contained in the space

V :=
{
ψ ∈ H1(Ω) :

∫
Γ
ψ = 0

}
,

where, thanks to the generalized Poincaré inequality (cf. [19, Theorem 5.11.2]), ‖ · ‖1,Ω and
| · |1,Ω become equivalent on V , which in particular implies that there exists CP > 0, depending
only on Ω, such that |ψ|21,Ω ≥ CP ‖ψ‖21,Ω, for all ψ ∈ V . Then, given wh ∈ Xh and ϕh ∈ Ψh,
from (4.2) and (1.3), it follows that

AT(ϕh;ψh, ψh) +OhT(wh;ψh, ψh) ≥ κ1|ψh|21,Ω ≥ κ1CP ‖ψh‖21,Ω ∀ψh ∈ Ψh,0,

which clearly implies (3.8) and completes the proof. �

Let us now recall the approximation properties of the subspaces specified above.

(APu
h) There exits C > 0, independent of h, such that for all u ∈ Hk+3(Ω), there holds

inf
vh∈Hh

‖u− vh‖1,Ω ≤ Chk+2‖u‖k+3,Ω.
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(APp
h) There exits C > 0, independent of h, such that for all p ∈ Hk+2(Ω), there holds

inf
qh∈Qh

‖p− qh‖0,Ω ≤ Chk+2‖p‖k+2,Ω.

(APθ
h) There exits C > 0, independent of h, such that for all θ ∈ Hl+2(Ω), there holds

inf
ψh∈Ψh

‖θ − ψh‖1,Ω ≤ Chl+1‖θ‖l+2,Ω.

(APλ
h̃
) There exits C > 0, independent of h̃, such that for all λ ∈ Hl+ 1

2 (Γ), there holds

inf
ξh∈Λh̃

‖λ− ξh̃‖−1/2,Γ ≤ Ch̃l+1‖λ‖l+ 1
2
,Γ.

Owing to these approximation properties, we now can establish the theoretical rate of con-
vergence of our method.

Theorem 4.3 Assume that hypotheses of Theorem 3.7 and Corollary 3.8 hold. Given k, l ≥ 0,
assume further that u ∈ Hk+3(Ω), p ∈ Hk+2(Ω), θ ∈ Hl+1(Ω) and λ ∈ Hl+1/2(Γ). Then, there
exist C1, C2, C3, > 0, independent of h and h̃, such that for all h ≤ C0h̃, there holds

‖u− uh‖1,Ω + ‖p− ph‖0,Ω + ‖θ − θh‖1,Ω + ‖λ− λh‖−1/2,Γ ≤ C1h
k+2
{
‖u‖k+3,Ω + ‖p‖k+2,Ω

}
+C2h

l+1‖θ‖l+2,Ω + C3h̃
l+1‖λ‖l+ 1

2
,Γ.

(4.5)

Proof. It follows from the Céa estimates (3.46), (3.47) and (3.55), and the approximation
properties (APu

h), (APp
h) ,(APθ

h) and (APλ
h̃
).

�

4.2 MINI-element + Lagrange + piecewise polynomials

In what follows, for the sake of simplicity we restrict ourselves to the 2D case. Then, for each
T ∈ Th, we let P1,b(T ) be the space (see, e.g. [17])

P1,b(T ) := [P1(T )⊕ span{bT }]2,

where bT := ϕ1ϕ2ϕ3 is a P3 bubble function in T , and ϕ1, ϕ2 , ϕ3 are the barycentric coordinates
of T . Then, the MINI-element (see, e.g. [17]) is the pair (Hh,Qh), where

Hh :=
{
vh ∈ [C(Ω)]2 : vh

∣∣
K
∈ P1,b(T ) ∀K ∈ Th, vh = 0 on Γ

}
and

Qh :=
{
qh ∈ C(Ω) : qh

∣∣
K
∈ P1(K) ∀K ∈ Th

}
.

It is well known that this pair satisfy hypothesis (H.1) (see, for instance [13, 17]). Now, to
approximate θ and λ, we proceed as in Section 4.1 and simply choose the discrete spaces

Ψh :=
{
ψh ∈ C(Ω) : ψh

∣∣
K
∈ P1(K) ∀K ∈ Th

}
,
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and
Λh̃ :=

{
ξh̃ ∈ L2(Γ) : ξh̃

∣∣
Γj
∈ P0(Γj) ∀j ∈ {1, . . . ,m}

}
,

where {Γ1,Γ2, . . . ,Γm} and h̃ are defined as in Section 4.1. Let us observe that, by using the
same arguments employed in Section 4.1, it follows that hypotheses (H.0), (H.2) and (H.3)
hold.

We now state the approximation properties of these subspaces and the rate of convergence
of our method.

(ÂP
u

h) There exits C > 0, independent of h, such that for all u ∈ H2(Ω), there holds

inf
vh∈Hh

‖u− vh‖1,Ω ≤ Ch‖u‖2,Ω.

(ÂP
p

h) There exits C > 0, independent of h, such that for all p ∈ H1(Ω), there holds

inf
qh∈Qh

‖p− qh‖0,Ω ≤ Ch‖p‖1,Ω.

(ÂP
θ

h) There exits C > 0, independent of h, such that for all θ ∈ H2(Ω), there holds

inf
ψh∈Ψh

‖θ − ψh‖1,Ω ≤ Ch‖θ‖2,Ω.

(ÂP
λ

h̃) There exits C > 0, independent of h̃, such that for all λ ∈ H
1
2 (Γ), there holds

inf
ξh∈Λh̃

‖λ− ξh̃‖−1/2,Γ ≤ Ch̃‖λ‖1/2,Γ.

Theorem 4.4 Assume that hypotheses of Theorem 3.7 and Corollary 3.8 hold. Assume further
that u ∈ H2(Ω), p ∈ H1(Ω), θ ∈ H2(Ω) and λ ∈ H1/2(Γ). Then, there exist C1, C2, C3, > 0,
independent of h and h̃, such that for all h ≤ C0h̃, there holds

‖u− uh‖1,Ω + ‖p− ph‖0,Ω + ‖θ − θh‖1,Ω + ‖λ− λh‖−1/2,Γ ≤ C1h
{
‖u‖2,Ω + ‖p‖1,Ω

}
+C2h‖θ‖2,Ω + C3h̃‖λ‖ 1

2
,Γ.

(4.6)

Proof. It follows from the Céa’s estimates (3.46), (3.47) and (3.55), and the approximation

properties (ÂP
u

h), (ÂP
p

h) ,(ÂP
θ

h) and (ÂP
λ

h̃). �

5 Numerical results

In this section we present some numerical results illustrating the performance of our mixed
finite element scheme (3.3) on unstructured meshes under a set of uniform refinements of the
corresponding domain and considering the finite element spaces introduced in Section 4. Our
implementation is based on a FreeFem++ code (cf. [18]), in conjunction with the direct linear
solver UMFPACK (cf.[12]).

In order to solve the nonlinear problem, we use the fixed point strategy suggested by the
operator introduced in Section 3.2.2:
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Given (u0, p0, θ0, λ0) ∈ Hh ×Qh ×Ψh × Λh̃, for m ≥ 1, find (um, pm, θm, λm) ∈ Hh ×Qh ×
Ψh × Λh̃ such that

AF(θm−1; um,v) +OhF(um−1; um,v)−BF(v, pm) = DF(θm−1,v),

BF(um, q) = 0,

AT(θm−1; θm, ψ) +OhT(um−1; θm, ψ) +BT(ψ, λm) = 0,

BT(θm, ξ) = 〈ξ, θD〉Γ,

(5.1)

for all (v, q, ψ, ξ) ∈ Hh ×Qh ×Ψh × Λh.

The iterations are terminated once the relative error of the entire coefficient vectors between
two consecutive iterates is sufficiently small, that is,

‖Coeffm+1 −Coeffm‖l2
‖Coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of
freedom defining the finite element subspaces Hh, Qh, Ψh and Λh̃, and tol is a fixed tolerance
chosen as tol = 1e − 08. For each example shown below we simply take u0

h = 0 and θ0
h = 0 as

initials guess. In what follows, for practical purposes, the restriction on the meshsizes established
in Lemma 4.1 is verified in an heuristic sense only. More precisely, since the constant C0 is
actually unknown, we simply assume C0 = 1/2 and consider a partition of Γ with a meshsize h̃
given approximately by the double of h. The numerical results below confirm the suitability of
this choice.

We now introduce some additional notations. The individual errors are denoted by

e(u) := ‖u− uh‖1,Ω, e(p) := ‖p− ph‖0,Ω,

e(θ) := ‖θ − θh‖1,Ω, e(λ) := ‖λ− λh̃‖0,Γ.

Also, we let r(u), r(p), r(θ) and r(λ) be the experimental rates of convergence given by

r(u) :=
log(e(u)/e′(u))

log(h/h′)
, r(p) :=

log(e(p)/e′(p))

log(h/h′)

r(θ) :=
log(e(θ)/e′(θ))

log(h/h′)
, r(λ) :=

log(e(λ)/e′(λ))

log(h̃/h̃′)
,

where h and h′ (resp. h̃ and h̃′) denote two consecutive mesh sizes with their respective errors
e and e′.

For all the examples below, we consider the domain Ω := (0, 1)2 and choose the temperature–
dependent parameters as

ν(θ) := e−θ, κ(θ) := eθ.

In our first example, we take g = (0, 1)t and adequately manufacture the data so that the
exact solution is given by the smooth functions

u(x1, x2) :=

(
2x2

1x2(2x2 − 1)(x2 − 1)(x1 − 1)2

−2x1x
2
2(x2 − 1)2(2x1 − 1)(x1 − 1)

)
p(x1, x2) := ex2(x1 − 0.5)3

θ(x1, x2) := x2
1 + x4

2
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N h e(u) r(u) e(p) r(p) e(θ) r(θ)

1,116 0.1964 2.9619E-03 – 1.9480E-03 – 1.1890E-02 –
4,237 0.0997 7.1929E-04 2.0869 4.5509E-04 2.1440 2.4792E-03 2.3117
16,354 0.0487 1.9507E-04 1.8213 1.2350E-04 1.8204 5.3607E-04 2.1374
64,443 0.0250 4.9249E-05 2.0604 2.8953E-05 2.1713 1.2415E-04 2.1896
256,158 0.0136 1.2075E-05 2.3082 6.9087E-06 2.3527 2.9349E-05 2.3680

1,008,151 0.0072 2.7675E-06 2.3171 1.6736E-06 2.2301 6.9932E-06 2.2560

N h̃ e(λ) r(λ) iterations

1,116 0.2500 2.6590E-01 - 13
4,237 0.1250 7.3446E-02 1.8562 13
16,354 0.0625 1.8858E-02 1.9615 13
64,443 0.0312 4.7216E-03 1.9979 13
256,158 0.0156 1.1776E-03 2.0034 13

1,008,151 0.0078 2.9387E-04 2.0026 13

Table 5.1: Example 1: Degrees of freedom, meshsizes, errors, rates of convergence and iterations
for the [P2]2 − P1 − P2 − P1 approximation of the generalized Boussinesq problem.

In Table 5.1 and 5.2 we summarize the convergence history for a sequence of quasi-uniform
triangulations, considering the subspaces provided in Section 4.1 with k = 0 and l = 1 ([P2]2 −
P1 − P2 − P1) and the subspaces in Section 4.2 (P1,b − P1 − P1 − P0), respectively. In Table
5.1 we observe that the rate of convergence O(h2) predicted by Theorem 4.3 is attained by all
the unknowns. Similarly, in Table 5.2 we can observe a first order convergence for all fields,
confirming the expected results from Theorem 4.4. Next, in Figure 5.1 we display (to the
left) the approximate vector field, the approximate pressure, and the approximate temperature,
respectively, and we compare them with their corresponding exact counterparts (to the right).
All the figures were built using the [P2]2 − P1 − P2 − P1 approximation with N = 1, 008, 151
degrees of freedom. In all the cases we observe that the finite element subspaces employed
provide very accurate approximations to the unknowns.

In our second example we illustrate a more realistic situation in which the exact solution is
unknown. Here, we consider the external force g = (0, 1)t and the boundary data

θD(x1, x2) = ex1x2 on Γ.

Notice, that θD attains its maximum value at (x1, x2) = (1, 1), whereas θD = 1 on {0} ×
(0, 1) and (0, 1) × {0}. In Table 5.3 we summarize the convergence history for a sequence of
quasi-uniform triangulations, considering a P1,b − P1 − P1 − P0 approximation. There, the
errors and experimental rates of convergence are computed by considering the discrete solution
obtained with a finer mesh (N = 2, 508, 849) as the exact solution. We observe that the rate
of convergence O(h) predicted by Theorem 4.4 is attained by all the fields. Next, in Figure 5.2
we display the approximate velocity magnitude and velocity vector filed (top left and top right,
respectively) together with the approximate pressure and temperature (bottom left and bottom
right, respectively). All the figures were obtained with N = 620, 009 degrees of freedom. We
can observe that the discrete temperature preserve the prescribed boundary condition.
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N h e(u) r(u) e(p) r(p) e(θ) r(θ)

705 0.1964 1.6109E-02 – 6.0464E-03 – 1.8407E-01 –
2,585 0.0997 7.8785E-03 1.0547 2.4493E-03 1.3324 8.8390E-02 1.0817
10,017 0.0487 3.8720E-03 0.9915 9.6648E-04 1.2979 4.3696E-02 0.9833
39,561 0.0250 1.9484E-03 1.0280 4.2686E-04 1.2232 2.2112E-02 1.0196
157,441 0.0136 9.6101E-04 1.1605 1.8493E-04 1.3735 1.0996E-02 1.1470
620,009 0.0072 4.6761E-04 1.1330 8.2510E-05 1.2694 5.4859E-03 1.0937

N h̃ e(λ) r(λ) iterations

705 0.2500 2.1729E-00 - 13
2,585 0.1250 1.1262E-00 0.9482 13
10,017 0.0625 5.5209E-01 1.0284 13
39,561 0.0312 2.7302E-01 1.0159 13
157,441 0.0156 1.3455E-01 1.0209 13
620,009 0.0078 6.6790E-02 1.0104 13

Table 5.2: Example 1: Degrees of freedom, meshsizes, errors, rates of convergence and iterations
for the P1,b − P1 − P1 − P0 approximation of the generalized Boussinesq problem.

N h e(u) r(u) e(p) r(p) e(θ) r(θ)

705 0.1964 2.3553E-02 – 2.6231E-03 – 2.0396E-01 –
2,585 0.0997 1.1439E-02 1.0649 1.3508E-03 0.9786 9.0159E-02 1.2037
10,017 0.0487 6.0892E-03 0.8800 5.9926E-04 1.1344 4.1347E-02 1.0881
39,561 0.0250 3.0282E-03 1.0456 2.2325E-04 1.4780 2.0379E-02 1.0590
157,441 0.0136 1.4881E-03 1.1666 9.3239E-05 1.4336 1.0046E-02 1.1614
620,009 0.0072 7.8121E-04 1.0136 4.8769E-05 1.0193 5.1740E-03 1.0437

N h̃ e(λ) r(λ) iterations

705 0.2500 7.5565E-00 - 11
2,585 0.1250 4.8078E-00 0.6524 11
10,017 0.0625 2.7053E-00 0.8296 11
39,561 0.0312 1.4305E-00 0.9193 10
157,441 0.0156 7.2451E-01 0.9814 10
620,009 0.0078 3.4733E-01 1.0607 10

Table 5.3: Example 2: Degrees of freedom, meshsizes, errors, rates of convergence and iterations
for the P1,b − P1 − P1 − P0 approximation of the generalized Boussinesq problem.
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0 0.013 0 0.013

-0.337 0.337 -0.337 0.337

0 2 0 2

Figure 5.1: Example 1: Approximate velocity vector field (top left), exact velocity vector field
(top right) ph (center left), p (center right), θh (bottom left) and θ (bottom right) with N =
1, 008, 151.

31



4.79e-09 0.0161 4.79e-09 0.0161

-0.93 0.682 1 2.71

Figure 5.2: Example 2: Approximate velocity magnitude (top left), approximate velocity vector
field (top left), exact velocity vector field (top right) ph (bottom left), θh (bottom left) and θ
(bottom right) with N = 620, 009.
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[24] R. Oyarzúa, T. Qin and D. Schötzau, An exactly divergence-free finite element method
for a generalized Boussinesq problem. IMA Journal of Numerical Analysis, vol. 34, 3, pp.
1104–1135, (2014).

[25] P.A. Raviart and J-M. Thomas, Introduction á L’Analyse Numérique des Equations
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


