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Abstract

For a graph G, let C be the set of conjunctive networks with interaction graph G,
and let H be the set of graphs obtained from G by contracting some edges. Let fix(f)
be the number of fixed points in a network f ∈ C, and let mis(H) be the number of
maximal independent sets in H ∈ H. Our main result is

mis(G) ≤ max
H∈H

mis(H) ≤ max
f∈C

fix(f) ≤
(

3

2

)m(G)

mis(G)

where m(G) is the maximum size of a matching M of G such that every edge of M is
contained in an induced copy of C4 that contains no other edge of M . Thus if G has no
induced C4 then maxH∈H mis(H) = maxf∈C fix(f) = mis(G), and this contrasts with
following complexity result: It is coNP-hard to decide if maxf∈C fix(G) = mis(G) or if
maxH∈H mis(H) = mis(G), even if G has a unique induced copy of C4.
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1 Introduction

This paper is at the frontier between Graph Theory and Boolean Network Theory. A
Boolean network with n components is a discrete dynamical system usually defined to be
a map

f : {0, 1}n → {0, 1}n, x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x)).

The interaction graph of f is the digraph G on [n] = {1, . . . , n} that contains an arc from j
to i if fi depends on xj . Given a family F of Boolean networks and a family G of digraphs,
we denote by fix(G,F) the maximum number of fixed points among all the networks in F
with an interaction graph in G. Here, we are mainly interested in conjunctive networks, that
is, networks f such that each component fi is a conjunction of positive or negative literals.
The set of all Boolean networks is denoted F, and the set of all conjunctive networks is
denoted C. The number of maximal independent set in G is denoted mis(G), and if G is a
set of digraphs, then mis(G) = maxG∈G mis(G).

Boolean networks have many applications. They are classical model for the dynamics
of gene networks [14, 18, 19, 13], neural networks [15, 11, 6, 7], social interactions [16, 9]
and more [20, 8]. From a theoretical point of view, the quantity fix(G,F) has deserved a lot
of attention in different contexts, mostly in computational biology [3, 2, 1] and Information
Theory [17, 5]. In computational biology, the motivation comes from the fact that fixed
points have often a biological meaning and that the first reliable information on gene
networks are often represented under the form of interaction graphs. Furthermore, gene
networks controlling differentiation process are known to produce multiple stable states, so
that upper bound on fix(G,F) are particularly relevant. In information theory, the study
of fix(G,F) is strongly related to the network coding solvability problem [17, 5], and here
again upper-bound are of special interest. It is then not so surprising that the following
fundamental bound has been established independently in both contexts [3, 2, 17]:

fix(G,F) ≤ 2τ(G).

Here τ(G) is the cycle transversal number of G, that is, the minimum number of vertices
whose deletion leaves the graph acyclic. To go further, different tools have been used. For
instance, Riis and Gadouleau proved the following approximation [5]: If G is a digraph
with n vertices and G is the set of subgraphs of G then

2n∑n−δ(G)
k=0

(
n
k

) ≤ A(n, n− δ(G) + 1) ≤ fix(G,F) ≤ A(n, g(G)) ≤ 2n∑b g(G)−1
2
c

k=0

(
n
k

)
where δ(G) is the minimal in-degree of G, g(G) is the directed girth of G (minimal length of
a directed cycle), and A(n, d) is the maximum cardinality of a binary code of length n with
minimal Hamming distance d. This quantity A(n, d) has been extensively studied, and the
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first and last inequalities are classic results in Information Theory, known as the Gilbert
and sphere-packing bound. Beside, using graph transformation techniques, we recently
prove in [1] the following equality, where the right hand side is a well known quantity in
graph theory [4, 10]: If G is the set of all loop-less connected digraphs with n vertices then

fix(G,C) = mis(G). (1)

In this paper, we study the quantity fix(G,C), pushing further the connexion with
maximal independent sets. Our main results, the following, concerns (undirected) graphs,
which are seen as loop-less symmetric digraphs. We denote by Ck the (undirected) cycle
of length k.

Theorem 1. For every graph G,

mis(G) ≤ fix(G,C) ≤
(

3

2

)m(G)

mis(G)

where m(G) is the maximum size of a matching M of G such that every edge of M is
contained in an induced copy of C4 that contains no other edge of M .

Before discuss briefly this theorem, let us note that it can be restated in purely graph
theoretical terms. Let H(G) the set of graphs obtained from G by contracting some edges.
For every connected subgraph C of G, let G/C be the graph obtained by contracting C into
a single vertex c and by adding an edge between c and a new vertex c′. Let H′(G) be the
set of graphs that can be obtained from G by repeating such an operation (by convention
G is a member of H(G) and H′(G)). We will prove the following equality.

Theorem 2. For every graph G, mis(H′(G)) = fix(G,C).

Furthermore, since every graph H in H(G) can be obtained from a graph H ′ in H′(G)
by removing some pending vertices, and since H is then an induced subgraph of H ′, we
have mis(H) ≤ mis(H ′), and as a consequence mis(H(G)) ≤ mis(H′(G)). Putting things
together, we then obtain the following graph theoretical version of our main result:

mis(G) ≤ mis(H(G)) ≤ mis(H′(G)) ≤
(

3

2

)m(G)

mis(G).

The upper bound on mis(H′(G)), which is the non trivial part, is reached for the disjoint
union of C4. Suppose indeed that G is the disjoint union of k copies of C4. Then m(G) = k
and mis(G) = mis(C4)k = 2k thus the upper bound is 3k. Now, let H be the disjoint union
of k copies of C3. Then H ∈ H(G) and mis(H) = mis(C3)k = 3k. Thus mis(H(G)) reaches
the bound, and this forces mis(H′(G)) to reach the bound.

Obviously, if G has no induced C4 then m(G) = 0 and we obtain the following corollary
(which trivializes (1) for the class of graphs without induced copy of C4).
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Corollary 1. For every graph G without induced copy of C4,

mis(H(G)) = fix(G,C) = mis(G).

This contrasts with the following complexity result.

Theorem 3. Given an graph G, it is coNP-hard to decide if fix(G,C) = mis(G) or if
mis(H(G)) = mis(G), even if G has a unique induced copy of C4.

The paper is organized as follows. In Section 2 we define with more precision the notions
involved in the mentioned results. Then we prove Theorems 1, 2 and 3 in Sections 3, 4 and
5, respectively.

2 Preliminaries

The vertex set of a digraph G is denoted V = V (G) and its arc set is denoted E = E(G).
An arc from a vertex u to v is denoted uv. An arc vv is a loop. The in-neighbor of a vertex
v is denoted NG(v), and if U is a set of vertices then NG(U) =

⋃
v∈U NG(v). We say that

G is symmetric if uv ∈ E for every vu ∈ E. The strongly connected components of G are
seen as set of vertices, and a component C is trivial if it contains an unique vertex. We
see (undirected) graphs as loop-less symmetric digraphs. The set of maximal independent
sets of G is denoted Mis(G) and mis(G) = |Mis(G)|. The subgraph of G induced by a set
of vertices U is denoted G[U ], and G− U denotes the subgraph induced by V − U .

A signed digraph Gσ is a digraph G together with an arc-labeling function σ that gives
a positive or negative sign to each arc of G. Such a labeling is called a repartition of signs
in G. We denote by G+

σ (resp. G−σ ) the spanning subgraph of G containing all the positive
(resp. negative) arcs of Gσ. We denote by Gσ=+ (resp. Gσ=−) the signed digraph Gσ where
σ = cst = + (resp. σ = cst = −). This constant labeling is referred as the full positive
(resp. negative) repartition. If U ⊆ V , then Gσ[U ] = G[U ]σ|U and Gσ − U = Gσ[V − U ].
We say that Gσ is a simple signed graph if G is a graph and σ is symmetrical, that is,
σ(uv) = σ(vu) for all uv ∈ E. Equivalently, Gσ is a simple signed graph if G, G+ and
G− are graphs (see an illustration in Figure 1). In a simple signed graph, directions do
not matter, and we thus speak about positive and negative edges, instead of positive and
negative arcs.

A Boolean network on a finite set V is a function

f : {0, 1}V → {0, 1}V , x = (xv)v∈V 7→ f(x) = (fv(x))v∈V

Thus each component fv is a Boolean function from {0, 1}V to {0, 1} (often called local
update function). The interaction graph of f is the digraph G on V such that for all
u, v ∈ V there is an uv if and only if fv depends on xu, that is, there is x, y ∈ {0, 1}V that
only differs in xu 6= yu such that fv(x) 6= fv(y). We say that f is a conjunctive network
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A signed graph G The corresponding
graph G+

The corresponding
graph G−

A simple signed
graph G′ ∼ G

The corresponding
graph G′+

The corresponding
graph G′−

Another representa-
tion of G′

Another representa-
tion of G′+

Another representa-
tion of G′−

Figure 1: Example of signed graph and simple signed graph. Dashed arcs are positive and
solid arcs are negative.
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if, for all v ∈ V , fv is a conjunction of positive and negative literals. If f is a conjunctive
network, then the signed interaction graph of f is the signed digraph Gσ where G is the
interaction graph of f , and where for all arc uv we have σ(uv) = + if xu is a positive literal
of fv and σ(uv) = − if xu is a negative literal of fv. Conversely, given any signed digraph
Gσ, there is clearly a unique conjunctive network whose signed interaction graph is Gσ,
namely the conjunctive network fGσ defined by

∀v ∈ V, ∀x ∈ {0, 1}V , fGσv (x) =
∏

u∈N
G+
σ

(v)

xu
∏

u∈N
G−σ

(v)

1− xu.

We denote by Fix(Gσ) the set of fixed points of fGσ and by fix(Gσ) the number of fixed
points in fGσ . Now, recall that the quantity we want to study is fix(G,C), defined in
the introduction to be the maximum number of fixed points among all the conjunctive
networks with interaction graph G. Since Gσ 7→ fGσ is a bijection between the signed
versions of G and the conjunctive networks with interaction graph G, we have

fix(G,C) = max
σ:E→{+,−}

fix(Gσ).

We will often see a fixed point as the characteristic function of a subset of V . For that
we set 1(x) = {v ∈ V |xv = 1}, and we say that a subset S ⊆ V is a fixed set of Gσ if
S = 1(x) for some fixed point x ∈ Fix(Gσ). By abuse of notation, the set of fixed sets of
Gσ is also denoted Fix(Gσ). Thus, for all S ⊆ V , we have S ∈ Fix(Gσ) if and only if for
all v ∈ V we have

v ∈ S ⇐⇒ NG−σ
(v) ∩ S = ∅ and NG+

σ
(v) ⊆ S. (2)

For the full-negative repartition σ = cst = − we have G−σ=− = G and G+
σ=− = ∅ thus the

equivalence becomes: v ∈ S if and only if NG(v) ∩ S = ∅. If G is a graph, this is precisely
the definition of a maximal independent set. Thus we have the following basic relation
between fixed sets and maximal independent sets, already exhibited in [1].

Proposition 1. For every graph G we have Fix(Gσ=−) = Mis(G).

We immediately obtain
mis(G) ≤ fix(G,C) (3)

and thus only the upper bound in Theorem 1 has to be prove.
Another important observation is that for every signed digraph Gσ, if C is a strongly

connected component of G+
σ , then for all S ∈ Fix(Gσ) we have either C ∩ S = ∅ or C ⊆ S.

As a consequence, if G+
σ is strongly connected and S ∈ Fix(Gσ) then either S = ∅ or

S = V . Thus Gσ has at most two fixed sets: ∅ and V . Clearly, V is a fixed set if and only
if Gσ has no negative arcs, and ∅ is a fixed set in any case. We have thus the following
proposition.

6



Proposition 2. For every signed digraph Gσ such that G+
σ is strongly connected, we have

Fix(Gσ) = {∅, V } if σ = cst = + is the full positive labeling, and Fix(Gσ) = {∅} otherwise.

Remark about notations. In the following, we mainly consider signed digraphs. In order
to simplify notations, given a signed digraph G = Hσ, we set G+ = H+

σ and G− = H−σ .
Hence, if we consider a signed digraph G, the underlying repartition of sign is given by the
two spanning subgraphs G+ and G−. Furthermore, all concepts that do not involve sign
are applied on G or its underlying unsigned digraph H indifferently. For instance, we write
mis(G) or mis(H) indifferently.

3 Proof of Theorem 1

As said above, we only have to prove the upper-bound. For a graph G, let m′(G) be
the maximum size of a matching M of G such that every edge uv of M is contained in
an induced copy of C4 in which u and v are the only vertices adjacent to an edge of M .
Clearly, we have m′(G) ≤ m(G), and the upper bound that we will prove, the following, is
thus slightly stronger than that of Theorem 1.

Theorem 4. For every signed graph G,

fix(G) ≤
(

3

2

)m′(G)

mis(G).

The proof is based on the following three lemmas, which are proved in Sections 3.1, 3.2
and 3.3 respectively.

Lemma 1. For every signed graph G there exists a simple signed graph G′ obtained from
G by changing the repartition of signs such that fix(G) ≤ fix(G′).

Lemma 2. For every simple signed graph G there exists a simple signed graph G′ obtained
from G by changing the repartition of sign such that fix(G) ≤ fix(G′) and such that the set
of positive edges of G′ is a matching.

Lemma 3. Let G be a simple signed graph whose set of positive edges is a matching. Let
G′ be the simple signed graph obtained from G by making negative a positive edge ab. If G
has an induced copy of C4 containing a and b and no other vertices adjacent to a positive
edge, then fix(G) ≤ (3/2) fix(G′) and otherwise fix(G) ≤ fix(G′).

Proof of Theorem 4, assuming Lemmas 1, 2 and 3. Let G be a signed graph. The follow-
ing three previous lemmas show that we can change the repartition of sign in G in order to
obtain a simple signed graph G0 with the following properties: fix(G) ≤ fix(G0); the set of
positive edges of G0 forms a matching, say {e1, . . . , em}; and each positive edge ek belongs
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to an induced copy of C4 in which the only vertices adjacent to a positive edge are the two
vertices of ek. Thus, by the definition of m′(G), we have

m ≤ m′(G). (4)

Now, for 0 ≤ k < m, let Gk+1 be the simple signed graph obtained from Gk by making
negative the positive edge ek+1. By Lemma 3, we have fix(Gk) ≤ (3/2) fix(Gk+1). Thus

fix(G) ≤ fix(G0) ≤ (3/2)m fix(Gm). (5)

Furthermore, since Gm has only negative edges, by Proposition 1, we have fix(Gm) =
mis(Gm) = mis(G), and with (4) and (5) we obtain the theorem.

3.1 Proof of Lemma 1 (symmetrization of signs)

Lemma 4. Let G be a signed symmetric digraph, and let v be a vertex of G. Let A(v) be
the set of arcs uv such that uv and vu have different signs, and suppose that A(v) contains
at least one positive arc. Let G′ be the signed graph obtained from G by changing the sign
of each arc in A(v). Then fix(G′) ≥ fix(G).

G

v

oo

o o

A(v)

G′

v

oo

o o

Figure 2: Example of transformation of the graph G as described in Lemma 4.

Proof. Let f and f ′ be the conjunctive networks associated with G and G′ respectively
(see example of transformation in Lemma 4). For each x ∈ Fix(G), let x′ be defined by

x′v = f ′v(x) and x′u = xu for all u 6= v.

We will prove that x 7→ x′ is an injection from Fix(G) to Fix(G′). To prove that x 7→ x′ is
an injection, it is sufficient to prove that

∀x ∈ Fix(G), xv = 0.
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Let x ∈ Fix(G) and let uv be a positive arc of A(v). If xv = 1 = fv(x) then xu = 1 and
since vu is negative, we have fu(x) = 0 6= xu, a contradiction.

Now, let us prove that x′ ∈ Fix(G′). Suppose, by contradiction, that f ′(x′) 6= x′. Since
G′ has no loop on v we have x′v = f ′v(x) = f ′v(x

′) thus there exists u 6= v such that

fu(x′) = f ′u(x′) 6= x′u = xu = fu(x).

Thus x 6= x′. It means that xv = 0 and x′v = 1 = f ′v(x), and that vu is an arc of G.
Suppose first that vu is positive. Since xv = 0 we have fu(x) = 0 thus xu = 0, and since
f ′v(x) = 1 we deduce that uv is a negative arc of G′. So uv and vu have different signs in
G′, a contradiction. Suppose now that vu is negative. Since x′v = 1 we have fu(x′) = 0
thus xu = 1, and since f ′v(x) = 1 we deduce that uv is a positive arc of G′. Thus uv and
vu have different signs in G′, a contradiction. So x′ ∈ Fix(G′).

Proof of Lemma 1. Suppose that G is a signed graph which is not simple. Then it contains
at least one asymmetry of signs, that is, an arc uv such that uv and vu have not the
same sign. If uv is positive then, by changing the sign of the arcs in A(v), we obtained
a signed graph G′ with strictly less asymmetries of signs and, by the previous lemma,
fix(G) ≤ fix(G′). Otherwise, vu is positive and thus, by changing the sign of the arcs
in A(u), we also strictly decrease the number of asymmetries of signs without decreasing
the number of fixed points. Obviously, we can apply this transformation until to have no
asymmetry of signs. This proves Lemma 1.

3.2 Proof of Lemma 2 (reduction of positive components)

Let G be a simple signed graph with vertex set V . In this section, we prove that we can
change the repartition of signs, without decreasing the number of fixed sets, until to obtain
a simple signed graph G′ in which positive edges forms a matching.

For that we will introduced decomposition properties, also used to prove Lemma 3.
Actually, if U ⊆ V is such that G has no positive edge between U and V − U , then a lot
of things on Fix(G) can be understand from fix(G[U ]) and the fixed set of the induced
subgraphs of G − U . In particular, under the condition that there is no positive edge
between U and V − U , we will prove that if S ∈ Fix(G[U ]) and S′ ∈ Fix(G[U ′]), where
U ′ is some subset of V − U that only depends on U and S, then S ∪ S′ ∈ Fix(G). This
very useful decomposition properties, essential for the rest of the proof, is based on the
following definitions.

For all U ⊆ V , we denote by NG(U) the union of NG(U) and the connected components
C of G+ such that NG(U)∩C 6= ∅. In other words, NG(U) is the union of NG(U) and the
set of vertices reachable from NG(U) with a path that contains only positive edges. Note
that for all U ⊆ V , G has no positive edges between NG(U) and V −NG(U). We can see
an illustration of NG(U) and NG(U) in Figure 3.
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G

NG(U)

NG(U)

U

Figure 3: Example of the sets NG(U) and NG(U).

We are now in position to introduce our decomposition tool. For all U ⊆ V we set

Fix(G,U) = {S ∪ S′ |S ∈ Fix(G[U ]), S′ ∈ Fix(G− U −NG(S))}

and fix(G,U) = |Fix(G,U)|.

Example 1. Here is an example where G[U ] contains 2 fixed sets, S1 and S2:

U

G

Fix(G[U ]) = Fix
( )

=
{
S1

,

S2

}

The induced subgraph G− U −NG(S1) has two fixed sets, S11 and S12:

NG(S1)

S1

G− U −NG(S1)

U

Fix(G− U −NG(S1)) = Fix
( )

=
{
S11

,

S12

}
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The induced subgraph G− U −NG(S2) has also two fixed sets, S21 and S22:

NG(S2)

S2

G− U −NG(S2)

U
Fix(G− U −NG(S2)) = Fix

( )
=
{
S21

,

S22

}

Thus Fix(G,U) contains the following 4 sets:

, , ,Fix(G,U) =

S1∪S11 S1∪S12 S2∪S21 S2∪S22

These 4 sets are all fixed sets, since

, , , ,Fix(G) =

Lemma 5. If U ⊆ V and G has no positive edge between U and V − U then

Fix(G,U) ⊆ Fix(G).

Proof. Let S ∈ Fix(G[U ]). Let U ′ = V (G)−U −NG(S) and let S′ ∈ Fix(G[U ′]). We want
to prove that S ∪ S′ ∈ Fix(G). Let f , fU and fU

′
be the conjunctive networks of G, G[U ]

and G[U ′], respectively. Let x ∈ {0, 1}V be such that 1(x) = S ∪ S′ and let us prove that
x is a fixed point of f . Note that x|U is a fixed point of fU and x|U ′ is a fixed point of fU

′
.

Suppose first that xv = 0. There are three possibilities. First, if v ∈ U then fv(x) ≤
fUv (x|U ) = xv = 0 thus fv(x) = 0. Second, if v ∈ U ′ then fv(x) ≤ fU

′
v (x|U ′) = xv = 0 thus

fv(x) = 0. Finally, suppose that v ∈ NG(S) − U . If there is an edge uv with u ∈ S then
xu = 1 and since there is no positive edge between U and V −U , this edge is negative thus
fv(x) = 0. Otherwise, by definition of NG(S), v belongs to a non-trivial component C of
G+ such that C ⊆ NG(S). Since G has no positive edge between U and V − U we have
C ∩ U = ∅, thus C ⊆ NG(S) − U . Thus G has positive edge uv with u ∈ NG(S) − U . So
xu = 0 and we deduce that fv(x) = 0. Hence, in every case, fv(x) = 0 = xv.

Suppose now that xv = 1 and v ∈ S. If fv(x) = 0 then G has a positive edge uv
with xu = 0 or a negative edge uv with xu = 1. If u ∈ U then fUv (x|U ) = 0 6= xv, a
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contradiction. Thus u 6∈ U and we deduce from the condition of the statement that uv is
a negative edge with xu = 1. Thus u ∈ S′ ⊆ U ′ and we have a contradiction with the fact
that u ∈ NG(v) ⊆ NG(S). Therefore fv(x) = 1 = xv.

Suppose finally that xv = 1 and v ∈ S′. If fv(x) = 0 then G has a positive edge uv
with xu = 0 or a negative edge uv with xu = 1. If u ∈ U ′ then fU

′
v (x|U ′) = 0 6= xv, a

contradiction. Thus u 6∈ U ′. Since there is no positive edge between U and V − U , and
no positive edge between NG(S) and V −NG(S), we deduce that there is no positive edge
between U ′ and V − U ′. Thus uv is a negative edge with xu = 1. Hence, u ∈ S ⊆ U and
we deduce that v ∈ NG(u) ⊆ NG(S), a contradiction. Thus fv(x) = 1 = xv.

The following is an immediate consequence.

Lemma 6. If U ⊆ V and G has no positive edge between U and V − U then

fix(G[U ]) ≤ fix(G,U) ≤ fix(G)

Remark 1. We deduce that fix(G) ≥ 1 for every simple signed graph G. Indeed, if G has
no positive edge then fix(G) = mis(G) ≥ 1. Otherwise, G+ has a connected component C,
and by Lemma 6 and Proposition 2 we have fix(G) ≥ fix(G[U ]) ≥ 1.

We now prove a lemma with that gives a stronger conclusion under stronger conditions.

Lemma 7. If U ⊆ V , if G has no positive edge between U and V −U , and if every vertex
in U is adjacent to a positive edge, then

Fix(G,U) = Fix(G).

Proof. By Lemma 5, it is sufficient to prove that Fix(G) ⊆ Fix(G,U). Let f be the
conjunctive network of G, and let x be a fixed point of f . Let

S = 1(x) ∩ U, U ′ = V − U −NG(S), S′ = 1(x) ∩ U ′.

Let fU and fU
′

be the conjunctive networks of G[U ] and G[U ′].
Let v ∈ U . Since v is adjacent to a positive edge and since G has no positive edge

between U and V − U , we deduce that G[U ] has a positive edge uv. If xv = 0 then
xu = 0 and we deduce that fUv (x|U ) = 0 = xv. If xv = 1 then fv(x) = 1 ≤ fUv (x|U ) thus

fUv (x|U ) = 1 = xv. Hence, we have proved that x|U is a fixed point of fU , that is,

S ∈ Fix(G[U ]). (6)

Let v ∈ NG(S) − U and let us proved that xv = 0. By the definition of NG(S), v
belongs to a component C of G+ such that C ∩ NG(S) 6= ∅ and C ⊆ NG(S). Actually,
C ⊆ NG(S) − U since otherwise G has a positive edge between U and V − U . Thus
there exists a path u,w1, w2, . . . , wk, v with u ∈ S and w1, w2, . . . , wk, v ∈ C. Since uw1 is
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negative and xu = 1 we have fw1(x) = 0 thus xw1 = 0 and we deduce from Proposition 2
that xv = 0. Thus we have 1(x) ∩ (NG(S)− U) = ∅. In other words,

1(x) = S ∪ S′. (7)

Let v ∈ U ′. Suppose that xv = 0 = fv(x), and suppose, for a contradiction that
fU
′

v (x|U ′) = 1. Since there is no positive edge between U and V − U , and no positive edge
between NG(S) and V −NG(S), we deduce that there is no positive edge between U ′ and
V −U ′. Thus there exists a negative edge uv with u ∈ V −U ′ and x1 = 1. But then u ∈ S,
thus v ∈ NG(S), a contradiction. Consequently, fU

′
v (x|U ′) = 0 = xv. Now, if xv = 1 then

fv(x) = 1 ≤ fU ′v (x|U ′) thus fU
′

v (x|U ′) = 1 = xu. Hence, we have proved that x|U ′ is a fixed

point of fU
′
, that is,

S′ ∈ Fix(G− U −NG(S)). (8)

According to (6), (7) and (8)), we have 1(x) ∈ Fix(G,U).

In the following, if S is a subset of V and S is a subset of the power set of V , then

S t S = {S ∪ S′ |S′ ∈ S}.

Lemma 8. Let C be is a non-trivial connected component of G+. If G[C] has no negative
edge then

Fix(G) = Fix(G− C) ∪
(
C t Fix(G−NG(C))

)
and otherwise

Fix(G) = Fix(G− C).

Proof. If G[C] has no negative edge then by Proposition 2 we have Fix(G[C]) = {∅, C}
and from Lemma 7 we deduce that

Fix(G) = Fix(G,C)

= {S ∪ S′ |S ∈ {∅, C}, S′ ∈ Fix(G− C −NG(S))}
= {∅ ∪ S′ |S′ ∈ Fix(G− C)} ∪ {C ∪ S′ |S′ ∈ Fix(G−NG(C))}
= Fix(G− C) ∪

(
C t Fix(G−NG(C))

)
.

If G[C] has a negative edge then by Proposition 2 we have Fix(G[C]) = {∅} and proceeding
as above we get Fix(G) = Fix(G− C).

The proof of Lemma 2 is a straightforward application of the above decomposition tools.

Proof of Lemma 2. Suppose that G+ has a non-trivial component C such that G[C] has
only positive edges. Let ab be one of these edges, and let G′ be the signed graph obtained
from G by making negative each edge of G[C] excepted ab. To prove that lemma, it is
clearly sufficient to prove that fix(G′) ≥ fix(G) (because then, the process of reduction of
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positive components into a single positive edges can be repeated until that each positive
component G+ reduces to a single sportive edge). According to Lemma 8 we have

fix(G) ≤ fix(G− C) + fix(G−NG(C)) (9)

and
fix(G′) = fix(G′ − {a, b}) + fix(G′ −NG′({a, b})). (10)

Since G− C = G′ − C and {a, b} ⊆ C, G− C is an induced subgraph of G′ − {a, b}, thus
according to Lemma 6 we have

fix(G− C) ≤ fix(G′ − {a, b}). (11)

Since {a, b} ⊆ C and since each positive edge of G′ is a positive edge of G, we have
NG′({a, b}) ⊆ NG(C). Since G − C = G′ − C we deduce that G − NG(C) is an induced
subgraph of G′ −NG′({a, b}). Thus according to Lemma 6 we have

fix(G−NG(C) ≤ fix(G′ −NG′({a, b})). (12)

The lemma follows from (9), (10), (11) and (12).

3.3 Proof of Lemma 3 (suppression of positive edges)

In all this section, G is a simple signed graph with vertex set V in which the set of positive
edges is a matching. Let G′ be any simple signed graph obtained from G by making negative
a positive edge e. In this section, we study the variation of the number of fixed sets under
this transformation. We will prove that if G has no induced copy of C4 that contains e and
no other positive edge, then fix(G) ≤ fix(G′), and in any case fix(G) ≤ (3/4) fix(G′). The
control of the variation of fixed sets is a little bit technical. This is why we decompose the
proof in several steps. We first assume that (i) there is a unique positive edge in G and
that (ii) this positive edge is in the neighborhood of each vertex (cf. Lemma 9). Then,
thanks to an additional decomposition property (cf. Lemma 10), we suppress condition
(ii). We finally suppress condition (i) to get the general statement (cf. Lemma 11).

Lemma 9. Suppose that G has a unique positive edge, say ab, and V = NG(a) ∪ NG(b).
Let G′ be the simple signed graph obtained from G by making ab negative. Then

fix(G) ≤ fix(G′) + 1,

and if G has no induced copy of C4 containing ab, then

fix(G) ≤ fix(G′).
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G
a b

G′

a b

Figure 4: Example of transformation in Lemma 9.

Proof. According to Lemma 8 we have

Fix(G) = Fix(G− {a, b}) ∪
(
{a, b} t Fix(G−NG({a, b})

)
Since V = NG({a, b}) ⊆ NG({a, b}), G−NG({a, b}) is empty, and since G−{a, b} has only
negative edges we deduce that

fix(G) = mis(G− {a, b}) + 1. (13)

Also, since G′ has only negative edges (see Figure 4) we have,

fix(G′) = mis(G). (14)

Let A = NG(a)−NG(b), B = NG(b)−NG(a) and C = NG(a)∩NG(b) (see Figure 5). Note
that G has an induced copy of C4 containing ab if and only if there is an edge between A
and B. We consider four cases.

G
a b

A

C

B

Figure 5: Example of sets A, B and C described in proof of Lemma 9.

1. Suppose that A 6= ∅ and B 6= ∅. Let S be a maximal independent set of G−{a, b}. If
S intersects C, or S intersects both A and B, then a and b have at least one neighbor
in S, thus S is a maximal independent set of G. Otherwise it is easy to check that
either S intersects A and S ∪ {b} is a maximal independent set of G, or S intersects
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B and S ∪ {a} is a maximal independent set of G. Consequently, the following map
is an injection from Mis(G− {a, b}) to Mis(G):

S 7→


S if S ∩ C 6= ∅ or (S ∩A 6= ∅ and S ∩B 6= ∅) (i)
S ∪ {b} if S ∩ C = ∅ and (S ∩A 6= ∅ and S ∩B = ∅) (ii)
S ∪ {a} if S ∩ C = ∅ and (S ∩A = ∅ and S ∩B 6= ∅) (iii)

Thus mis(G − {a, b}) ≤ mis(G) and we deduce from (13) and (14) that fix(G) ≤
fix(G′) + 1. Furthermore, if G has no induced copy of C4 containing ab, then
there is no edge between A and B, and thus cases (ii) and (iii) are not possi-
ble. Thus Mis(G − {a, b}) ⊆ Mis(G) and since G has at least one maximal in-
dependent set containing a and one maximal independent set containing b, we de-
duce that mis(G− {a, b}) ≤ mis(G)− 2 (see Figure 6). Using (13) and (14) we get
fix(G) ≤ fix(G′) (see Figure 6).

G
a b

A

C

B

Fix(G) = Mis(G− {a, b}) ∪ {a, b}

G′

a b

A

C

B

Mis(G− {a, b}) ⊆ Fix(G′)
{{a} ∪ S|S ∈ Mis(G[B]} ⊆ Fix(G′)
{{b} ∪ S|S ∈ Mis(G[A]} ⊆ Fix(G′)

Figure 6: Relationships between the set of fixed points and maximal independent sets as
described in proof of Lemma 9.

2. Suppose that A 6= ∅ and B = ∅. Let S be a maximal independent set of G− {a, b}.
If S intersects C then S is clearly a maximal independent set of G. Otherwise, S
intersects A and S∪{b} is then a maximal independent set of G. Thus, the following
map is an injection from Mis(G− {a, b}) to Mis(G):

S 7→
{
S if S ∩ C 6= ∅
S ∪ {b} otherwise

Since G has at least one maximal independent set containing a, we deduce that
mis(G − {a, b}) ≤ mis(G) − 1. Using (13) and (14) we get fix(G) ≤ fix(G′) (see
Figure 7).

3. Suppose that A = ∅ and B 6= ∅. We prove as in case 2 that fix(G) ≤ fix(G′).
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G
a b

A

C

Fix(G) = Mis(G− {a, b}) ∪ {a, b}

G′

a b

A

C

Fix(G′) =
{
{a}
}
∪ {S|S ∈ mis(G− {a, b}), S ∩W 6= ∅}

∪{S ∪ {b}|S ∈ mis(G− {a, b}), S ∩ C = ∅}

Figure 7: Set of fixed points as described in Lemma 9 when A = ∅ or B = ∅.

4. Suppose that A = ∅ and B = ∅. If C = ∅ then G reduces to a single positive edge and
G′ reduced to a single negative edge and thus fix(G) = fix(G′) = 2 (see Figure 8).

G
a b

Fix(G) =
{
{a, b}, ∅

}
G′

a b

Fix(G′) =
{
{a}, {b}

}
Figure 8: Set of fixed points as described in Lemma 9 when A = ∅, B = ∅ and C = ∅.

So suppose that C 6= ∅. Then G − {a, b} = G[C] and it is clear that Mis(G −
{a, b}) ⊆ Mis(G). As in the first case, since G has at least one maximal independent
set containing a and one maximal independent set containing b, we deduce that
mis(G − {a, b}) ≤ mis(G) − 2. Using (13) and (14) we get fix(G) ≤ fix(G′) (see
Figure 9).

G
a b

C

Fix(G) = Mis(G− {a, b}) ∪
{
{a, b}

}

G′

a b

C

Fix(G′) = Mis(G− {a, b}) ∪
{
{a}
}
∪
{
{b}
}

Figure 9: Set of fixed points as described in Lemma 9 when A = ∅, B = ∅ and C 6= ∅.
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The next decomposition property is a rather technical step which will allows us to
suppress the condition V = NG(a) ∪NG(b) from the previous proposition.

Lemma 10. Suppose that G has a positive edge ab such that a and b are not adjacent to
other positive edges. Let X be the set of vertices containing a, b and all the vertices of
NG(a)∪NG(b) adjacent to only negative edges. Let G′ be the simple signed graph obtained
from G by making ab negative. If U = V −X then

fix(G)− fix(G,U) ≤ fix(G′)− fix(G′, U).

Proof. Let x ∈ Fix(G) − Fix(G,U). Let S = 1(x) ∩ U and U ′ = V − U − NG(S). Since
1(x) and NG(S)− S are disjointed, we have 1(x) = S ∪ S′ with S′ = 1(x) ∩U ′. Let f , fU

and fU
′

be the conjunctive networks of G, G[U ] and G[U ′] respectively.

Claim 1. S 6∈ Fix(G[U ]).

Proof of Claim. Since S ∪ S′ 6∈ Fix(G,U), it is sufficient to prove that S′ ∈ Fix(G[U ′]),
which is equivalent to prove that x|U ′ is a fixed point of fU

′
. Let v ∈ U ′. Since fv(x) ≤

fU
′

v (x|U ′) if xv = 1 then fU
′

v (x) = 1. So suppose that xv = 0. Then G has a negative edge
uv with xu = 1 or a positive edge uv with xu = 0. Suppose first that G has a negative
edge uv with xu = 1. If u ∈ S then v ∈ NG(S) and this is not possible since v ∈ U ′. Thus
u ∈ S′ ⊆ U ′ and we deduce that fU

′
v (x|U ′) = 0. Suppose now that G has a positive edge

uv with xu = 0. Since there is no positive edge between U and V − U and no positive
edge between NG(S) and V − NG(S), there is no positive edges between U ′ and V − U ′.
Therefore u ∈ U ′ and we deduce that fU

′
v (x|U ′) = 0. Thus in every case fU

′
v (x|U ′) = xv

and this proves the claim. �

Claim 2. If S′ = {a, b} then S ∈ Fix(G[U ]).

Proof of Claim. Suppose that S′ = {a, b}. Let v ∈ U . Since fv(x) ≤ fUv (x|U ), if xv = 1

then fUv (x) = 1. So suppose that xv = 0. We consider two cases. Suppose first that v is
adjacent to a positive edge, say uv. Since xv = 0 we have fu(x) = 0 = xu, and since G has
no positive edge between U and V − U , we have u ∈ U and we deduce that fUv (x|U ) = 0.
Now, suppose that v is not adjacent to a positive edge. Then G has a negative edge uv
with xu = 1. If u ∈ S′ = {a, b} then v ∈ X since v is adjacent to no positive edge, a
contradiction. Therefore u ∈ S ⊆ U and we deduce that fUv (x|U ) = 0. Thus fUv (x|U ) = xv
in every case, and this proves the claim. �

Claim 3. S ∪ S′ ∈ Fix(G− {a, b}).

Proof of Claim. Since every vertex in U ′ − {a, b} is adjacent to a or b by a negative edge,
if {a, b} ⊆ S′ then S′ = {a, b}, which is not possible by Claims 1 and 2. We deduce that S
and {a, b} are disjoint. By Lemma 8 we have

S ∪ S′ ∈ Fix(G) = Fix(G− {a, b}) ∪
(
{a, b} t Fix(G−NG({a, b}))

)
.
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and the claim follows. �

We are now in position to prove the lemma. We have already proved that

Fix(G)− Fix(G,U) ⊆ Fix(G− {a, b}). (15)

Since G′ − {a, b} = G− {a, b} we have

Fix(G′, V − {a, b}) = {S ∪ S′ |S ∈ Fix(G− {a, b}), S′ ∈ Fix(G′[{a, b}]−NG′(S))}. (16)

By Lemma 5 we have Fix(G′, V − {a, b}) ⊆ Fix(G′), and we deduce from (15) and (16)
that there exists a maps x 7→ x′ from Fix(G)− Fix(G,U) to Fix(G′) such that

1(x) ⊆ 1(x′) ⊆ 1(x) ∪ {a, b}.

Thus x 7→ x′ is an injection and by Claim 1, we have

1(x′) ∩ U = 1(x) ∩ U 6∈ Fix(G[U ]) = Fix(G′[U ]).

So x′ 6∈ Fix(G′, U) and we deduce that x 7→ x′ is an injection from Fix(G)− Fix(G,U) to
Fix(G′) − Fix(G′, U). Thus |Fix(G) − Fix(G,U)| ≤ |Fix(G′) − Fix(G′, U)|. By Lemma 5
we have Fix(G,U) ⊆ Fix(G) and Fix(G′, U) ⊆ Fix(G′) and the lemma follows.

Figure 10 is an example illustrating the previous lemma.

u v C

NG(C)− C

U

G

Fix(G,U) = , , ,

Fix(G)− Fix(G,U) = , ,

u v C

NG(C)− C

U

G′

Fix(G′, U) = , , ,

Fix(G′)− Fix(G′, U) = , ,

Figure 10: Illustrative example of Lemma 10.

We are now in position to conclude the proof with the following quantitative version of
Lemma 3.
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Lemma 11 (Quantitative version of Lemma 3). Suppose that G has a positive edge ab such
that a and b are adjacent to no other positive edge. Let X be the set of vertices containing
a, b and all the vertices of NG(a)∪NG(b) adjacent to only negative edges. Let Ω be the set
of S ∈ Fix(G−X) such that G[X]−NG(S) has an induced copy of C4 containing ab. Let
G′ be the simple signed graph obtained from G by making ab negative. Then

fix(G) ≤ fix(G′) + |Ω| ≤ 3

2
fix(G′).

Remark 2. If fix(G) > fix(G′) then Ω is not empty and we deduce that G[X] has an
induced copy C of C4 containing ab. By the definition of X, a and b are the only vertices
of C adjacent to a positive edge. This is why this lemma implies Lemma 3.

Proof of Lemma 11. Let U = V −X and for every S ∈ Fix(G[U ]), let GS = G[X]−NG(S)
and G′S = G′[X]−NG′(S). Since G[U ] = G′[U ] we have

Fix(G,U) = {S ∪ S′ |S ∈ Fix(G[U ]), S′ ∈ Fix(GS)}
Fix(G′, U) = {S ∪ S′ |S ∈ Fix(G[U ]), S′ ∈ Fix(G′S)}.

Thus
fix(G,U)− fix(G′, U) =

∑
S∈Fix(G[U ])

fix(GS)− fix(G′S).

For every S ∈ Fix(G[U ]) we have X ∩NG(S) = X ∩NG′(S) thus G′S is obtained from GS
by making ab negative. Thus according to Lemma 9, we have

∀S ∈ Ω, fix(GS)− fix(G′S) ≤ 1

∀S /∈ Ω, fix(GS)− fix(G′S) ≤ 0.

Thus
fix(G,U)− fix(G′, U) ≤ |Ω|,

and using Lemma 10 we obtain

fix(G)− fix(G′) ≤ fix(G,U)− fix(G′, U) ≤ |Ω|.

Furthermore, for every S ∈ Ω, G′S has only negative edges, and contains ab. Thus it has a
maximal independent set containing a, say Sa, and a maximal independent set containing
b, say Sb. Then S ∪ Sa and S ∪ Sb are distinct elements of Fix(G′, U). We deduce that
2|Ω| ≤ fix(G′, U) ≤ fix(G′), and the proposition follows.
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4 Proof of Theorem 2

Let G be a simple signed graph with vertex V and edge set E. Let C be a set of vertices
such that G[C] is connected and |C| ≥ 2. We denote by G/C the simple signed graph
obtained from G by contracting C into a single vertex c, and by adding a negative edge cc′.
Formally: the vertex set of G/C is V = (V − C) ∪ {c, c′} where c and c′ are new vertices;
the edge set is ({ν(v)ν(u) |uv ∈ E}−{cc})∪{cc′}, where ν is the function that maps every
vertex in V −C to itself, and every vertex in C to the new vertex c; an edge uv of G/C is
negative if u = c or v = c and it has the same sign as in G otherwise.

Lemma 12. If C is a non-trivial connected component of G+ then

fix(G) ≤ fix(G/C),

and the upper bound is reached if G[C] has no negative edge.

Proof. Let
Sc = {S ∈ Fix(G/C) | c ∈ S}
Sc̄ = {S ∈ Fix(G/C) | c 6∈ S}.

Since c is adjacent to only negative edges, we have

Sc = {c} t Fix
(
(G/C)− c−NG/C(c)

)
.

and since there are only negative edges between C and V − C we have

(G/C)− c−NG/C(c) = G−NG(C).

Thus
|Sc| = fix(G−NG(C)).

Now, since c′ has c as unique neighbor, and since cc′ is negative, we have

Sc̄ = {S ∈ Fix(G/C) | c′ ∈ S} = {c′} t Fix(G/C − {c, c′}).

Since G/C − {c, c′} = G− C we deduce that

|Sc̄| = fix(G− C).

Thus
fix(G− C) + fix(G−NG(G)) = |Sc̄|+ |Sc| = fix(G/C)

and the lemma is then an obvious application of Lemma 8.
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Proof of Theorem 2. Let G be an unsigned graph, and let σ be a repartition of signs in G
such that fix(Gσ) = fix(G,C) and such that the number of positive edges in Gσ is minimal
for this property. According to Lemmas 1 and 2, Gσ is a simple signed graph in which the
positive edges form a matching, say u1v1, . . . , ukvk. Let H0 = Gσ and for 1 ≤ ` ≤ k, let
H` = H`−1/{uk, vk}. By Lemma 12 we have

fix(G,C) = fix(Gσ) = fix(H0) = fix(H1) = · · · = fix(Hk)

and since Hk has no positive edges, fix(Hk) = mis(Hk). Since the underlying unsigned
graph of Hk is a member of H′(G) this proves that

fix(G,C) = mis(Hk) ≤ mis(H′(G)).

Now, let H ∈ H′(G) such that mis(H) = mis(H′(G)). Then there exists disjoint subsets
of vertices C1, . . . , Ck and a sequence of graphs H0, . . . ,Hk with H0 = G and Hk = H such
that H`−1[C`] is connected and H` = H`−1/C` for all 1 ≤ ` ≤ k. For 1 ≤ ` ≤ k, let σ` be
the repartition of signs in H` such that σ`(uv) is positive if and only if u, v ∈ Cp for some
` < p ≤ k. In this way we have H`

σ`
= H`−1

σ`−1
/C` for 1 ≤ ` ≤ k, and by Lemma 12 we have

fix(Gσ0) = fix(H0
σ0) = fix(H1

σ1) = · · · = fix(Hk
σk

).

Since Hk
σk

has only negative edges, we deduce that

fix(G,C) ≥ fix(Gσ0) = mis(Hk) = mis(H) = mis(H′(G)).

5 Proof of Theorem 3

Let us begin with an easy complexity result, proved with a straightforward reduction to
SAT similar to the one introduced in [12].

Proposition 3. Given a graph G and a subset U of its vertices, it is NP-hard to decide if
G has a maximal independent set disjoint from U .

Proof. Let φ be a CNF-formula with variables x1, . . . , xn and clauses C1, . . . , Ck. Let G
be the graph defined as follows. The vertices of G are the positive literals x1, . . . , xn, the
negative literals x1, . . . , xn, and the clause C1, . . . , Ck. The edges are defined as follows:
there is an edge connecting any two contradict literal xi and xi, and each clause Ci is
adjacent to all literals it contains. It is then clear that φ is satisfiable if and only if G has
a maximal independent set disjoint from the set of clauses.

According to this proposition, the following lemma is a good step for proving Theorem 3.
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Lemma 13. Let G be a graph and let U a non-empty subset of vertices. Let G̃ be the graph
obtained from G by adding four additional vertices a, b, c, d, the edges ab, bc, cd, da, and
an edge av for every vertex v ∈ U . Suppose that G̃ has a unique induced copy of C4, the
one induced by {a, b, c, d}. Then the following are equivalent:

1. fix(G̃,C) = mis(G̃),

2. mis(H(G̃)) = mis(G̃),

3. G has no maximal independent set disjoint from U .

Proof. We first need the following claim.

Claim 1. We have
mis(G̃) ≤ 2mis(G) + mis(G− U)

and the bound is reached if and only if G has a maximal independent set disjoint from U .

Proof of Claim. Let
Mc̄ = {S ∈ Mis(G̃) | c 6∈ S}
Mca = {S ∈ Mis(G̃) | c ∈ S, a ∈ S}
Mcā = {S ∈ Mis(G̃) | c ∈ S, a 6∈ S}

Clearly, these three sets form a partition of Mis(G), and it is easy to see that

Mc̄ = {b, d} tMis(G)
Mca = {c, a} tMis(G− U)
Mcā = {c} t {S ∈ Mis(G) |S ∩ U 6= ∅}

So |Mc̄| = mis(G) and |Mca| = mis(G − U) and |Mcā| ≤ mis(G). Since |Mcā| = mis(G) if
and only if G has no maximal independent set disjoint from U , the claim is proved. �

Now, let G̃ab be the simple signed graph obtained from G̃ by labeling ab with a positive
sign and all the other edges by a negative sign. Let G̃bc, G̃cd and G̃da be defined similarly.

Claim 2. We have

fix(G̃ab) = fix(G̃bc) = fix(G̃cd) = fix(G̃da) = 2mis(G) + mis(G− U).

Proof of Claim. Since G̃ab as ab has unique positive edge, we deduce from Lemma 8 that

fix(G̃ab) = mis(G1) + mis(G2) with

{
G1 = G̃− {a, b}
G2 = G̃−NG̃({a, b}).

Since G1 is the disjoint union of the edge cd and G, we have mis(G1) = 2mis(G). Fur-
thermore, since NG̃({a, b}) = {a, b, c, d} ∪ U , we have G2 = G − U . So mis(G̃ab) =

2mis(G) + mis(G− U), and by symmetry mis(G̃da) = mis(G̃ab).
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Similarly, since G̃bc has bc as unique positive edge, we deduce from Lemma 8 that

fix(G̃bc) = mis(G1) + mis(G2) with

{
G1 = G̃− {b, c}
G2 = G̃−NG̃({b, c}).

In G1, d has a as unique neighbor. Thus, the number of maximal independent sets of G1

containing d is mis(G1 − {a, d}) = mis(G); and the number of maximal independent sets
of G1 not containing d is equal to the number of maximal independent sets containing
a, which is mis(G1 − a − U − d) = mis(G − U). Since NG̃({b, c}) = {a, b, c, d}, we have

G2 = G−U thus mis(G̃bc) = 2mis(G)+mis(G−U). By symmetry mis(G̃cd) = mis(G̃bc). �

Let σ be a repartition of sign in G̃ such that fix(G̃σ) = fix(G̃,C), and such that the
number of positive edges in G̃σ is minimal for this property. If fix(G̃σ) = mis(G̃) then
fix(G̃ab) ≤ mis(G̃) and we deduce from Claims 1 and 2 that G has no maximal independent
set disjoint from U . Otherwise, fix(G̃σ) > mis(G̃) and since G̃ has a unique induced copy of
C4 and we deduce from Lemmas 3 that G̃σ has a unique positive edge e ∈ {ab, bc, cd, da}.
Thus by Claim 2 we have

mis(G̃) < fix(G̃σ) = 2mis(G) + mis(G− U)

and we deduce from Claim 1 that G has a maximal independent set disjoint from U . This
shows the equivalence between the point 1 and 3 in the statement.

To conclude the proof, it is sufficient to show that mis(H(G̃)) = fix(G̃σ). By Theorem 2,
we have

mis(H(G̃)) ≤ mis(H′(G̃)) = fix(G̃σ)

so we only need to prove that

mis(H(G̃)) ≥ fix(G̃σ).

If fix(G̃σ) = mis(G̃) then fix(G̃σ) ≤ mis(H(G̃)) since G̃ ∈ H(G̃). Otherwise, fix(G̃σ) >
mis(G̃) and as above we deduce that G̃σ has a unique positive edge e ∈ {ab, bc, cd, da}. Let
He be the graph obtained from G̃ by contracting e, and let H ′e = G/e be obtain from G
by contracting e into a single vertex c, and by adding an edge cc′. It is easy to check that
in every case we have mis(He) = mis(H ′e), and by Lemma 12 we have mis(H ′e) = fix(G̃σ).
Since He ∈ H(G̃) we deduce that mis(H(G̃)) ≥ fix(G̃σ).

According to Lemma 13, to prove Theorem 3, it is sufficient to prove the following
strengthening of Proposition 3.

Lemma 14. Let G be a graph and let U be a non-empty subset of its vertices. Let G̃
be obtained from G and U as in Lemma 13. It is NP-hard to decide if G has a maximal
independent set disjoint from U , even if G̃ has an unique induced copy of C4.
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Proof. We follow the proof of Proposition 3, using however a slightly more involved ar-
guments. Let φ be a CNF-formula with variables x1, . . . , xn and clauses C1, . . . , Ck. Let
G(φ) be the graph defined as follows: the vertex set is the union of the following sets

X = {x1, . . . , xn}
X = {x1, . . . , xn}
Y = {y1, . . . , yn}
Y = {y1, . . . , yn}
L = {L1, . . . , Ln}
L = {L1, . . . , Ln}
C = {C1, . . . , Ck}.

The edge set is defined by: for all 1 ≤ i ≤ n, xiyi, xi yi, xiLi, xiLi, yiLi, and yiLi are
edges; for all 1 ≤ i < j ≤ k, CiCj is an edge; for all 1 ≤ i ≤ n and 1 ≤ j ≤ k, LiCj is an
edge; for all 1 ≤ i ≤ n and 1 ≤ j ≤ k, xiCj is an edge if xi is a positive literal of the clause
Cj ; and finally, for all 1 ≤ i ≤ n and 1 ≤ j ≤ k, xiCj is an edge if xi is a negative literal
of the clause Cj (see an illustration of G(φ) in Figure 11). We set

U = C ∪ L ∪ L.

C clique
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G(φ)

L1

x1

y1

x1

y1

L1

L2

x2

y2

x2

y2

L2

Ln xn

yn
xn

yn Ln

. . .

C

C1

L1

Ln l11
l12
l13

. .
.

C2

L1

Ln

l21

l22
l23

. . .

C3

L1Ln
l31

l32

l33

. . .
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L1

Ln
l41l42

l43

. .
.

Ck

L1

Ln
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lk2
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. . .

. .
.

Figure 11: Illustration of G(φ).

Claim 1. φ is satisfiable if and only if there exists S ∈ Mis(G) such that S ∩ U = ∅.

Proof of Claim. Suppose that S ∈ Mis(G) and S∩U = ∅. Consider the assignment defined
by xi = 1 is xi ∈ S and xi = 0 otherwise. Let Cj be any clause of φ. Since S ∩ U = ∅,
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there exists 1 ≤ i ≤ n such that xiCj is an edge with xi ∈ S, or such that xiCj is an edge
with xi ∈ S. If xiCj is an edge with xi ∈ S then xi is a positive literal of the clause Cj and
xi = 1 thus the clause Cj is made true by the assignment. Suppose now that xiCj is an
edge with xi ∈ S. Then yi 6∈ S and since Li has a neighbor in S, we deduce that yi ∈ S,
and consequently, xi 6∈ S. Thus xi = 0, and since xiCj is an edge, xi is a negative literal of
Cj , and thus Cj is made true by the assignment. Hence, every clauses is made true, thus
φ is satisfiable.

Suppose now that there exists a assignment that makes φ true, and let

S = {xi, yi |xi = 1, 1 ≤ i ≤ n} ∪ {xi, yi |xi = 0, 1 ≤ i ≤ n}

Then S is an independent set disjoint from U , and it is maximal if every vertex in U has
a neighbor in S. For 1 ≤ i ≤ n, since either xi or xi is in S, the vertex Li has a neighbor
in S, and since either yi or yi is in S, the vertex Li has also a neighbor in S. Now let Cj
be any clause of φ. Since Cj is made true by the assignment, it contains a positive literal
xi with xi = 1 or a negative literal xi with xi = 0. In the first case, xi ∈ S and xiCj is an
edge, and in the second case, xi ∈ S and xiCj is an edge. Thus S ∈ Mis(G). �

Claim 2. G has no induced copy of C4.

Proof of Claim. Suppose, for a contradiction, that G has an induced copy of C4 with
vertices W = {v1, v2, v3, v4} given in the order. If v1 = Li for some 1 ≤ i ≤ n, then
{v2, v4} = {yi, yi} and since Li is the unique common neighbor of yi and yi, there is a
contradiction. We deduce that W ∩ L = ∅. Since {xi, Li} is the neighborhood of yi we
deduce that W ∩ Y = ∅, and similarly, W ∩ Y = ∅. Hence,

W ∩ (Y ∪ Y ∪ L) = ∅.

Suppose now that v1 = Li for some 1 ≤ i ≤ n. If v2 = Cj for some 1 ≤ j ≤ k then
v3 ∈ X ∪ X ∪ C ∪ L and we deduce that v3 ∈ X ∪ X since otherwise v1v3 is an edge.
So v4 ∈ C ∪ L and we deduce that v2v4 is an edge, a contradiction. Thus v2 ∈ {xi, xi}.
Suppose that v2 = xi, the other case being similar. Then v3 ∈ C ∪ {yi}, and thus v3 ∈ C,
so v1v3 is an edge, a contradiction. We deduce that v1 6∈ L, and thus U ∩ L = ∅. Thus
W ⊆ X ∪X ∪ C. Since X ∪ Y is an independent set, and since G[C] is complete, we easily
obtain a contradiction. �

Let G̃ be obtained from G and U as in Lemma 13.

Claim 3. G̃ has a unique induced copy of C4, the one induced by {a, b, c, d}.

Proof of Claim. Suppose for a contradiction that G̃ has an induced copy of C4 with vertices
W = {v1, v2, v3, v4} given in the order, and suppose that W 6= {a, b, c, d}. Since G has no
induced copy of C4, we deduce that W ∩ {a, b, c, d} = {a}. Suppose, without loss of
generality, that a = v1. Then v2, v4 ∈ U , and since two distinct vertices in L ∪ L have
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no common neighbor in G, we deduce that v2, v4 ∈ C. But then v2v4 is an edge of G̃, a
contradiction. �
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