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Abstract

In this paper we introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for
numerically solving the coupling of fluid flow with porous media flow. Flows are governed by the
Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given
by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. We consider
a fully-mixed formulation in which the main unknowns in the fluid are given by the stress, the
vorticity, the velocity, and the trace of the velocity, whereas the velocity, the pressure, and the
trace of the pressure are the unknowns in the porous medium. In addition, a suitable enrichment
of the finite dimensional subspace for the stress yields optimally convergent approximations for
all unknowns, as well as a superconvergent approximation of the trace variables. To do that,
similarly as in previous papers dealing with development of the a priori error estimates, we use the
projection-based error analysis in order to simplify the corresponding study. Finally, we provide
several numerical results illustrating the good performance of the proposed scheme and confirming
the optimal order of convergence provided by the HDG approximation.

Key words: coupling, Stokes equations, Darcy equations, mixed finite element method, hybridized
discontinuous Galerkin method

1 Introduction

The derivation of suitable numerical methods for the coupling of fluid flow with porous media flow,
modelled by the Stokes and Darcy equations, has been increasing during recent years (see e.g., [2, 5,
9, 18, 19, 20, 21, 22, 25, 26, 28, 32, 33, 35, 36, 37, 38], and the references therein). The above list
includes different kind of problems. In particular, porous media with cracks, and the incorporation
of other linear and nonlinear equations in the coupled problem, such as Brinkman and Forchheimer.
This model has applications in different areas of interest, such as chemical and petroleum engineering,
hydrology, and environmental sciences, to name a few. That is the reason why it has gained relevance
through the last decades, and the cause of the numerical analysis community has been putting so
much effort in developing more accurate and efficient methods for solving this problem. Now, with
respect to the historical perspective, we recall here that the first fully-mixed finite element method
for the 2D Stokes-Darcy coupled problem has been introduced and analyzed recently in [27]. This
approach allows the introduction of further unknowns of physical interest as well as the utilization of
the same family of finite element subspaces in both media, without requiring any stabilization term.
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Moreover, the fact that dual-mixed formulations are considered in both domains yields as the main
unknowns the pseudostress and the velocity in the fluid, together with the velocity and the pressure in
the porous medium. The pressure and the gradient of the velocity in the fluid can then be computed
through a very simple post-process of the above unknowns, in which no numerical differentiation is
applied, and hence no further sources of error arise. In addition, due to the fully-mixed approach
utilized, the transmission conditions become essential, and hence they have to be imposed weakly,
which leads to the incorporation of two additional unknowns to the system, namely the traces of the
Darcy pressure and the Stokes velocity on the coupling interface Y. These new unknowns are also
variables of importance from a physical point of view. Then, in order to prove the unique solvability of
the resulting continuous formulation, that the well known Fredholm and Babuska-Brezzi theories are
applied, which also contribute to derive sufficient conditions on the finite element subspaces ensuring
that the associated Galerkin scheme becomes well-posed. Among the several different ways in which
the equations and unknowns can be ordered, the one yielding a doubly mixed structure is chosen, for
which the inf-sup conditions of the off-diagonal bilinear forms follow straightforwardly. Moreover, the
arguments of the continuous analysis can be easily adapted to the discrete case. In particular, a feasible
choice of subspaces is given by Raviart-Thomas elements of lowest order and piecewise constants for
the velocities and pressures, respectively, in both domains, together with continuous piecewise linear
elements for the additional unknowns on the interface.

On the other hand, the hybridizable discontinuous Galerkin (HDG) method, introduced in [11]
for diffusion problems, is one of the several high-order discretization schemes that benefit from the
hybridization technique originally applied in [17] to the local discontinuous Galerkin (LDG) method
for time dependent convection-diffusion problems. The main advantages of HDG methods include
a substantial reduction of the globally coupled degrees of freedom (which was a criticism for the
discontinuous Galerkin (DG) methods for elliptic problems during the last decade), and the fact that
convergence is obtained even for the polynomial degree k = 0. Additionally, the approximate flux
converges with order k41 for k£ > 0, and an element-by-element computation of a new approximation
of the scalar variable is possible, which converges with order k + 2 for k > 1 (see e.g. [10, 14, 12]).
Nevertheless, and up to our knowledge, there is still no contribution in the literature concerning HDG
for fully-mixed Stokes-Darcy systems.

According to the above discussion, we are interested in this paper in applying the HDG approach
to the coupled Stokes and Darcy flows problem studied in [27]. To this end, we plan to employ the
same techniques given in the context of HDG schemes for the Stokes and Darcy uncoupled equations.
More precisely, for Stokes problem, the hybridization for DG methods was initially introduced in [6]
and then analyzed in [34, 12]. Lately, an overview of the recent work by Cockburn and co-workers on
the devising of HDG methods for the Stokes equations of incompressible flow was provided in [16]. For
the Darcy law, we are particularly interested in [13], where it was introduced the new projection-based
technique for the study of the a priori error analysis of hybridizable discontinuous Galerkin methods.
In addition, we follow [15], to derive a way to deal with the weak stress symmetry, and then show
the optimal rate of convergence for all unknowns. The rest of this paper is organized as follows. In
Section 2 we present the main aspects of the continuous problem, which includes the geometry and the
coupled model. Then, in Section 3 we introduce the hybridizable discontinuous Galerkin formulation
for the coupled problem. More precisely, we present the finite dimensional discontinuous subspaces
and we show the unique solvability of HDG scheme. The corresponding a priori error estimates are
derived in Section 4. In particular, we use projections whose design are inspired by the form of the
numerical traces of the method, which is an innovative technique applied for the error analysis of
HDG approximations. Finally, several numerical experiments validating the good performance of the
method and confirming the rates of convergence derived are reported in Section 5.

We end the present section with further notations to be used below. Given a non-null space H, we



set H:= H" and H := H"*". Also, given T := (73;), ¢ := (¢;j) € R™*", we write as usual

n n
1
t . — d ._ . —
T = (Tji)7 tr(T) = Z’Tii, T = ’T—Etr(’T)I, and ’T.C = Z Tij(ij-

i=1 3,j=1
Also, in what follows we utilize the standard terminology for Sobolev spaces and norms, employ 0 to
denote a generic null vector, null tensor or null operator, and use C, with or without subscripts, bars,
tildes or hats, to denote generic constants independent of the discretization parameters, which may

take different values at different places.

2 The coupled problem

In order to describe the geometry of the problem, we let (2 and 2p be bounded and simply connected
polyhedral domains in R", n € {2,3}, such that Qs N INp = X # &. Then, we let ['s := 0Ns \ &,
I'p := 90p \ ¥, and denote by n the unit normal vector on the boundaries, which is chosen pointing
outward from Qg U X UQp (and hence inward to 2p when seen on ). On ¥ we also consider unit
tangent vectors, which are given by t = t; when n = 2 (see Figure 2.1 below) and by {t1,ts}, when
n = 3.

I'p ln

Figure 2.1: Sketch of the 2D geometry for the Stokes-Darcy coupling.

The model consists of two separate groups of equations and a set of coupling terms. In g, the
governing equations are those of the Stokes problem, which are written in the following stress-velocity-
pressure formulation:

os = ve(ug) — psI in Qg, div(es) + fs = 0 in Qg,

(2.1)
div(ug) = 0 in Qg, us =0 on Ig, / ps = 0,
Qg

where v > 0 is the viscosity of the fluid, og is the stress tensor, ug is the fluid velocity, pg is the
pressure, I is the n x n identity matrix, fg € L?(Qg) is a known source term, div is the usual divergence
operator div acting row-wise on each tensor, and

e(us) == ;5 (Vus + (Vug))

N



is the strain tensor (or symmetric part of the velocity gradient). Now, introducing the vorticity (or
skew-symmetric part of the velocity gradient) pg := 3 (Vug — (Vug)®) as a further unknown, and
using that tr (Vug) = div(ug) = 0 in Qg, and the relation Vug — pg = e(ug) in g, we observe that
the equations in (2.1) can be rewritten equivalently as

1
~0% =Vug — pg in Qg, div(eg) + fs =0 in Qg,
v

: 1 .
os =05 in Qs, ps= —-tr(os) i Qs, (2.2)
us =0 on Iy, / tr(og) = 0.
Qs

In turn, in Qp we consider the following Darcy model:

up = —KVpD in QD, diV(uD) = fD in QD,
(2.3)
up -n = 0 on FD,

where up and pp denote the velocity and pressure, respectively, and the source term fp € L?(Q2p) is
such that fQD fp = 0. The tensor valued function K, which describes the permeability of Qp divided

by the viscosity v, satisfies K* = K, and has L>°(£2p) components. Also, we assume that there exists
ak > 0 such that

w-Kx)w > aKHWH%n,

for almost all x € Q2p, and for all w € R™. Finally, the transmission conditions on ¥ are given by

us-n = up-n on X,
n-! (2.4)
osn + Z HZI(US “ty)ty = —ppn on X,
=1
where {k1,...,kp—1} is a set of positive frictional constants that can be determined experimentally.

The first equation in (2.4) is the conservation of mass, and the second one establishes the balance of
normal forces and the Beavers-Joseph-Saffman law.

3 The HDG method

3.1 Notation

We begin by introducing some preliminary notations. Let 7;{9 and 77LD be respective triangulations of
the domains Qg and p without the presence of hanging nodes, which are formed by shape-regular
n-simplex of diameter hr and assume that they match in 3 so that 725 U 771D is a triangulation of
Qs UX UQp. In addition, let & be the set of faces F' of 7,*, and 07, := U{0T : T €T} V=x¢
{S,D}. Next, let (-,-)y denote the usual L?, L? and L? inner product over the domain U C R",
and similarly let {-,-)g be the L? and L? inner product over the surface G C R"~!. Then, for each
x € {S, D} we introduce the inner products:

(7)7’;,* = Z('a')Ta ('a'>87’h* = Z<'a'>8T7 and <'7'>8T}f\2 = Z Z (- )F-

TETy TETy TET FEOT\S
Furthermore, given r > 0 and * € {S, D}, we define

H (T == {veL*Q) : v|[r e H'(T) VT T},



whence H"(7,*) and H"(7,) denote the vectorial and tensorial versions of H"(7,"), respectively.

On the other hand, let n* and n~ be the outward unit normal vectors on the boundaries of two
neighboring elements T+ and T, respectively. We use 7& to denote the traces of 7 on F := 0TTNOT~
from the interior of 7%, where T is a second-order tensorial function. Then, we define the jumps -]
of tensor variables on each interior face as follows
+nt

[r] =7 + 7 n .

3.2 Subspaces

Next, given £ > 1, and U a domain or either a closed or open Lipschitz curve if n = 2 (resp. surface if
n = 3), we let Pr(U) be the space of polynomials of total degree at most k defined on U. In addition,
given T € 7;LS U 7;LD , we let

A(T) = PR(T) NLiew(T),

skew

and (see [31, 15])
B(T) := curl(curl (A(T))br) ,

where L2 (T) := {n € L%(T) : n+ n® = 0} is the subspace of skew-symmetric tensors of L2(T),
and by is the scalar bubble function in P,,4;(T). Furthermore, in three space dimensions the ith row
of curl(7) is nothing but curl(-) applied to the ith row of 7. In the two-dimensional case, given vector

and tensor valued fields v := (v1,v2) and 7 := (7;5), respectively, we let

Qu v Omz _ Oty
0 0 [2) 0
curl(v) = ( 2 o ) and curl(T) = ( ! 2 )

Ovg  _ Ovg Orag _ 0121
8:82 8331 8331 8il'2

Then, the finite dimensional discontinuous subspaces are given by

S == {T€l¥Qs) : Tlr €P(T)+B(T) VT €T},

Ap = {nel?Qg) : nlreA(l) VTeT},

Vi = {vel?() : vir ePy(T) VT €T}  V=xe{S D},
M, = {pel’&)) : plrePy(F) VFe& and plrg = 0},
P, = {qeL*Qp) : qlr €eP(T) VTeTP},

N, = {peL*(EP) : Y|lpePy(F) YFe&l}.

The purpose of enriching here the space S;, with B(7") will become clear in the a priori error
analysis given below in Section 4. Note that if 75, € B, :== {T € L?(Qg) : 7|lr €B(T) VT €T7},
we have that

div(rgy) = 0 in Qg and 7Tgpn = 0 in 6’;?. (3.1)
Finally, for convenience of further analysis, we define the subspace
Sp o= {rel?(Qs) : TlrePp(T) VTeT5}

and notice that _
Sy, = S, + By,.



3.3 Formulation
Proceeding as in [13, 12, 15], we deduce that the HDG formulation of the coupled system (2.2)-(2.3)-

(2.4) reduces to: Find (05, Ws h, P AShs UD,hs POy ©D,8) € Sk x Vi x Ay x My, x Vi x Py x Ny,
such that

1 . ~
;(Ug,hv Tg,h)ThS + (US,m le(TS,h))ThS - <7'S,hna uS,h)aThS

+ (PS,haTS,h)ThS = 0, (3.2a)

(O 5,hs Vvs,h)Ths - <U/S,h\naVS,h>a7;§ = (fS,v&h)Ths , (3.2b)
(Msp,os5n)s = 0, (3.2¢)

(@snl, bsp)orsis = 0, (3.2d)

(K™ upn, voa)re — (o div(vpp)) e + (VDo 0, Ppn)oros

—(vpnr -n,Dpn)s = 0, (3.2¢)
—(uph, Vap ) 7o + <U-F,h\'nan,h>aThD\E —(upn n,qpn)s = (fp, 4Dn) 7D 5 (3.2f)
(uﬁn, Q;Z)D,h>a7’hD\Z =0 5 (32g)
(Ugp-m—upy mYpp)y = 0, (3.2h)
n—1

<U/s,h\n + > ki N(8sp - to)te + Ppan, us,h> = 0, (3.21)

=1 5
(tr(osn),1)os = 0, (3.2j)

for all (T57h, VS hy NS ks S hy VD,hs 4D hs wD,h) € Sh X Vg X Ah X Mh X VE X Ph X Nh, with the numerical
A~ —_— ~ — .
fluxes ugy, ogpn, pp,p and up p - N given by

ﬁS,h = AS,h in ES s 0'/5JL\II = ospn — S(ugyh — ﬁS,h) in 3TS,
~ D
R . D - upy -n+7(ppnr—>bpnr) on 07,  \ X,
Pphn = ¢pn in &, and Upp-n = N
upp-n—7(Ppr—Dpn) on X,

where S is an stabilization tensor to be defined below, and 7 > 0 is a constant function in 5}’? .

From (3.2) we observe that equations (3.2a)-(3.2b)-(3.2¢) and (3.2j) arise from the application of the
HDG approximation to the Stokes system (2.2), and similarly (3.2e) and (3.2f) arise from the Darcy
system (2.3). In addition, expressions (3.2d) and (3.2g) are the weak imposition of the continuity of
the normal component of the fluxes, as it is natural in HDG schemes. In particular, note that the
Neumann condition up -n = 0 on I'p is considered in (3.2g). Finally, equations (3.2h) and (3.2i)
constitute the HDG setting of the transmission conditions (2.4) on 3.

On the other hand, the definition of uﬁn is consistent with that given in [13], that is Upj :=
up p+7(pp,n — Dp,p)0 ON OT,P, for some non-negative penalty function 7 defined on 97,”, which we
assume to be constant on each face of the triangulation. To this respect, note first that problem (3.2)
can be reformulated as: Find (051, s, Ps py XSk, WD,k PD.Ry PDR) € Sh X V;? x Ay, x My, x VE X



P, x Nj, such that

1 .
;(a%,hv Tfls,h)ThS + (ugn, le(TS,h))ThS — (Tsnm, AS,h)aThS

+ (PspTsp)rs = 0, (3.3a)

—(vsn,div(osp))rs + (S(ash — Ash) vsp)ors = (fs,ven)ys, (3.3b)
(Msnosn)ps = 0, (3.3c)

(osmm, psp)ors\e = (S(ush — Asp), bsplors\s = 0, (3.3d)

(K™ "upn, vop) 7o = (00hs div(vop)) 1o + (VD 0, 0D1)oro\s

—(vph m9pp)y = 0, (3.3¢)
(qp,1 div(up,p))7o + (T(pDp — YD4) aDR) o0 = (fDraDR)7D, (3.3f)
(uph -1, ¥pn)aros + (T(PDh — YD4), YDR)oTo\e = 0, (3.3g)
(Ash -m,vYpnp)s — (upp-mYpp)s + (T(Pph — YDR):YDH)y = 0, (3.3h)
n—1
<O-S,hn7 “S,h>2 - <S(U-S,h - )‘S,h)a “S,h>2 + Z ﬁg_1<AS,h - ty, Ksp - to)s
=1
+ (s mepn)y = 0, (3.31)
(tr(osn),)as = 0, (3.3))

for all (75, Vshs Mg s, VD, AD s UD ) € Sk X Vi x Ap x My, x VI x P, x Nj,, where (3.2b)
and (3.2f) has been rewritten, respectively, using that

(@5, VVvsn)rs = —(Vsn div(oss))rs + (Tsam, Van)ars
and
—(upn, Vapp)rp = (qpn,div(upp))zo — (Wpp-1,qph)oro\s + (UDh -1, 4DR)S -

We complete the definition of the HDG method by describing the stabilization tensor S. We first
recall that general conditions for S were proposed in [12]. In particular, given F' € Ef , We assume
that S|p is a symmetric and positive definite constant tensor.

3.4 Solvability analysis

The following theorem establishes the unique solvability of the HDG scheme (3.3).

Theorem 3.1. There exists a unique solution for the linear problem (3.3).

Proof. We first note that the existence of the solution follows from its uniqueness. Thus, it suffices
to show that when the right-hand sides of (3.3) vanish, then ogp, ugp, PS.hs AS,hy UDhy PD,h, and
¢p,n also vanish. Indeed, assuming that fg = 0 and fp = 0, and taking 7g), = osp, Vsi = Ugh,



Nspn = Psp and pg, = Agp in (3.3a), (3.3b), (3.3¢), (3.3d) and (3.3i), we easily obtain

1
“lloSaltos + (S(ash = Ash), usn = Asp)azs
n—1
+ >k Asn - tellSs + Asp - epp)s = 0. (3.4)
/=1
Similarly, taking vpn = upn, ¢p,, = pp,p and ¥pp = @pp in (3.3e), (3.3f), (3.3g), and (3.3h), we
find that

(K tup s, uD,h)ThD + (t(pp.h — YD.1):PD.H — @D,h>afth —(Asp -mepp)y = 0. (3.5)

Next, adding (3.4) and (3.5), and using the properties of S, K and the fact that v, k1,...,kp—1,7 > 0,
it follows that

O'?q’h:O in Qg, uS,h:/\&h on 5;?, )\S7h'tg:0 in X VfE{l,...,n—l},

(3.6)
upp =0 in Qp, and ppp = ¢pn on 5,?.

Now, using that ugy = Agp on & and (3.1), we deduce from (3.3b) and (3.3d) that div(ogy) = 0
in 7713 and [ogn] =0 on 5;? \ (X UTg), which together with U%,h = 0 in Qg implies that ogj) = cI
in Qg, where ¢ € R. Thus, applying (3.3j) we arrive to g = 0 in 2g. In turn, according to the
foregoing analysis, and integrating by parts the second terms in (3.3a) and (3.3e), we see that (3.3)
reduces to the system:

—(Vugn, Tsn)rs + (Psp:Tsp)s = 0V T €Sn, (3.7)
(vaﬁ,VD’h)/ThD = 0 Vvpye VE, (3.8)
(Ash -mYpp)s = 0 Vipy €Ny, (3.9)
(Bsp n,0pp)s = 0 Vg, €My, (3.10)

It is clear from (3.9) that Agy - n = 0 on X, which together with the fact that Agp -ty = 0 on X
Ve e {1,...,n — 1} implies that Agp, = ugy = 0 on 0g. In addition, it follows from (3.7) that
pPsp = Vugp in g, which establishes that e(usy) = 0 in Qg, and hence ugy belongs to the space
of infinitesimal rigid motions (see [3, Exercise 11.x.2]). In this way, using that ug, = 0 on 0Qg, it
is easy to prove that ugp = 0 in (g, and then we conclude that pg;, = 0 in Qg and Agp = 0 on
Sf . Finally, from (3.8) we have that Vpp, = 0 in 7;LD , which using that pp is continuous in €2p
(pp,h = @D in E,?), yields ppp constant in Qp. But, recalling that ¢pj = 0 on X (cf. (3.10)), we
deduce that pp j, = 0 in Qg, which gives ¢p = ppp =0 in 5}? and completes the proof. O

4 A priori error analysis

We now aim to derive the a priori error estimates for the HDG scheme (3.3). To this end, we use the
projection-based error analysis developed in [13, 12, 15].

4.1 The projections

The projected functions are denoted by
Mg : HY(T) xH(T) — Sy xVj
(@5, ps) — Hs(®s,pg) = (P, Ipg),

8



and
My : HY(TP)x HY(TP) — VP xp,
((pD7 ¢D) — HD(SOD7 ng) = (HQODv HQSD) )
where, as usual, we denote I[I®g and Il g only for convenience, since it is clear that [I®g and Ilpg
depend both on ®g and ¢g. The same convention is applied to Il and Ilgp.

Next, given (@, ¢g) € H(T;7) x H(7,), the values of the projection Ilg(®g, ¢g) on any T € T;°
are fixed by requiring that the components satisfy the equations

(II®s, 7s)r = (Ps,7s)r V7s€Pp1(T), (4.1a)
(s, vs)r = (s, vs)r VvsePra(T), (4.1b)
(IIegn — Sllpg, pg)r = (Psn—Spg ug)r Vg €Pp(F), VFeIl. (4.1c)

Similarly, given (¢p,¢p) € HY(T,?) x H(T;P), the values of the projection IIp(¢p,¢p) on any
T € TP are determined by requiring that

(Iep,vp)r = ( )
(I¢p,gp)r = (ép,qp)r VY qp € Pr1(T), )
(Ilpp -n+7Hép,Yp)r = (pp -n+7¢p,¥p)r YV ¢p € Pp(F), VFedT\X, (4.2c)
(IIep -n—7llép,¥p)r = (pp -n—7ép,Yp)r Vi¢p €Py(F), VFedTNX. (4.2d)

As in [13, 12], both projections are defined in order to preserve the numerical traces (cf. equations
(3.3d), (3.3g), (3.3h) and (3.3i)). Also, as it is normal in this approach, the fact that IIg and IIp are
well-defined arises from the fact that (4.1) and (4.2) are square linear systems, so that the existence
of each projection follows from its uniqueness. In view of this, we develop next estimates for any
(1&g, pg) € Sy X V7 satisfying (4.1) without assuming uniqueness a priori. Then, we will use the
approximation estimates below to prove unisolvency (see Theorem 4.2). The same format is applied
to (Tl p, pp) € VP x Py, Since the main ideas are given in [13, 12] for general choices of S and 7,
in what follows we only give a summary of the proofs for the well-posedness and the approximation
properties of the projections. In particular, for the special choice S := a I, a € R, the ith row of [I®g
and the ith component of Il g are nothing but the two components of the projection for the diffusion
case given in [13].

Now, we set Py(T)* be the orthogonal of Pj_1(T) within Py (T), that is
Pk(T)l = {p € Pk(T) : (pa Q)T =0V qc Pk*l(T)} )

and, according to our notation from the Introduction, we set Pp(T)* := [Pr(T)*]". Thus, the
following lemma establishes a characterization of Il¢pg.

(pD,VD)T Vvp € Pk_l(T), (4.2a
(4.2b

Lemma 4.1. Let (1&g, Ipg) € Sy, x V7 satisfying (4.1). Then, for each T € T;°, Hpg|r is the only
element of Pr(T') such that

(g, vs)r = (s, vs)r Vvs€Pr1(T),
<SH(,DS,V5>3T = —(div(Qs),Vs)T + <S<,DS,V5>3T Vvg € Pk(T)J‘.
Proof. Tt follows by applying the same techniques from [12, Proposition 4.2]. ]

We now collect estimates for Ilppg — pg and [1®g — ®g. Note that the assumed local regularity of
the pair (®g, pg) is clear from the right-hand side of each estimate.



Theorem 4.1. Given (II®g,Ilpg) € gh X VE satisfying (4.1), there exists C' > 0, depending only on
S, such that for each T € ’7;15 there hold

z +1 ¢ .
IMes = eslor < C{R" Mslopg i + A lAiv(®@s)lrg, 1 }

and

€q>5+1 Lpg+1

le+1, ..
[I®s — @slor < C{ ®slen 117 + b5 |@slep 1 + hp® |d1V(‘Ps)|eq>5,T}»

forleg, Ly, €0, K]

Proof. Using Lemma 4.1, it follows from a slight modification of the proofs of [12, Lemma 4.5] and
[12, Propositions 4.6 and 4.7]. O

Now, we are ready to establish that the projection Ilg (<I>S, 4,05) = (H@S, Hcps) is well defined,
whereas the respective approximation estimates are already given in the foregoing theorem.

Theorem 4.2. The projection llg is well defined.

Proof. Let us first observe that the number of independent equations arising from (4.1) is given by

n? dimPy_1(T  for (4.1a),
n dimPy_1(T)  for (4.1b),
n(n+1) dimPg(F)  for (4.1c),

which yields a total of n (n + 1) dim Pg(T'). In turn, the corresponding number of unknowns is

n? dimP(T)  for II®g,
n dimPg(T)  for ey,

which gives n (n + 1) dim Py (7). It follows that (4.1) is a square linear system, and hence, setting
®¢5 = 0 and g = 0 in the approximation estimates (cf. Theorem 4.1), we find that the projection
must vanish, which establishes the unisolvency of (4.1). O

As previously announced, a similar approach is used to establish that the projection IIp (cp D@ D) =
(Hgo p, 1o D) (cf. (4.2)) is well defined, and that corresponding approximation properties hold.

Theorem 4.3. The projection Ilp is well defined. In addition, there exist C' > 0, independent of
T e 771D and T, such that

o+l lop+

6 = dpllor < C{n” M ople,, e + 7 P divep) e, )

and

E‘/’D+1 €¢D+l

IMen —eplor < C{n" lepley, iz + 70 lle, 11}
where Ly, Ly, € [0,K].

Proof. The proof can be carried out similarly as for Theorem 4.2. More precisely, it follows by
applying the same techniques employed in the proof of [13, Propositions A.1, A.2 and A.3]. O
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We end this section by introducing other projections. First, consider P4 : L?(Qg) — Ap the L2
orthogonal projector, for which it is well known (see, e.g. [8, 23]) that there holds

|Pa(s) —slor < Chislslr YseH*(T), YTeT, (4.3)

where (5 € [0,k + 1]. Also, we consider
Py - L2(&) — M, and Py : L*(&P) — Ny, (4.4)

the corresponding L? and L? orthogonal projections, respectively.

4.2 The a priori error estimates

Similary as in [13, 12, 15], our first goal in this section is to provide upper estimates for the approxima-
tion errors, namely, E78 := llog—o g, E" := ug—ugp, EPS := Pa(pg)—pgp, E"P = lup—upp,
EPP :=1lpp — pp ., EUs .= Pjp(us) — Ag, and EPD .= Pn(pp) — ¢p,n- In what follows we assume
that the exact solution (og,us,up,pp) of our problem (2.2)-(2.3)-(2.4) is regular enough to apply
IIg and IIp. That is, (os, us, up,pp) belongs to HY(7,%) x H2(T,°) x HY(T,P) x H*(T,”) and admits
the regularity estimate

> {llosha + sz + 3 {luplir + Ipoler} < Crf{lslogs + Ifploas |- (45)

S D
TeT; TeT,

The purpose of assuming that Vug € H'(7,°) and Vpp € HY(T,;P) will become clear in the proof of

Lemma 4.6 below.

Next, for the consistency of the HDG approximation, we note that the exact solution (0'5, ug,
ps = 3 (Vus — (Vug)®), Ag = uglgs, up, pp, Yp = pD|g}?), satisfies also (3.3). Hence, after
applying the definition of the projections (see (4.1) and (4.2)) g, IIp, P4, Py and Py, together
with the identities (3.1), and integrating by parts, we find from (3.3) that

1 .
;(G’%, 7’%7;1)7—,13 + (Hus, le(Tsyh))Ths — (nghn, PM(uS)>87'hS

+ (PSaTS,h)ThS = 0,

~(ven div(llos))rs + (S(Iug — Par(us)), vsn)ors = (fs,vsn)rs
(nS,hv O'S)Ths = 0,
(Mo sn, pgp)ors\e — (S(Mus — Py(us)), uspiors\s = 0,

(K™ ap s, vop)rr — (Upp, div(vps))ro + (voa -0, Py (pD))oros

— (vph-n,Pn(pp))s = 0,
(gpn, div(Ilup)) o + (1(Ilpp — Pn(pp)), 4o p)ore = (fDsdD.0)7D

(Mup -0, ¢pp)aro\s + (T(Hpp — Py(pp)): YD n)grrs = 0,

(Par(us) -n,¢pp)s — (Mup -n,¢pp)s + (1(Ilpp — Pn(pp)), ¥pa)s = 0,
n—1

(Mosn, pg ) — (Sug — Pyr(us)), msp)s + Yk (Par(us) - e, psy, - te)s

=1

+ (ngp -0, Pn(pp))s = 0,

(tr(Iles),1)os = O,
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for all (TS,ha VS h, nS,h’ “S,h’ VD,h>4D,h, wD,h) S Sh X Vg X Ah X Mh X VhD X Ph X Nh. NOW, subtracting
(3.3) from the above set of equations, and performing simple algebraic manipulations (see [13, 12, 15]
for details), we obtain the error equations:

(8790, ma) s+ (B, divirs))ps — (msan, E)yrs + (895, 75)) 7
= %(Has —0og, T%’h)ThS + (Palps) — pg, Ts,h)Ths , (4.6a)
~ (Vs diV(E?S))rs + (S(E" — E%),vsp)ors = 0, (4.6b)
(M5, E7) s = (mspllos —os)rs, (4.6¢)
n—1
(E7*n, g p)ors — (S(EY —E™), pgp)ors + Y ry {E™ - te, gy - te)s
=1
+ (psy -0, EPP)y = 0, (4.6d)

(KT'E"?,vpp)7o — (B2, div(vpa)) 7o + (Voo - 1, EPP)grny s — (vpu -0, EPP)s

= (K™ '(Tup — UD),VD,h)ThD , (4.6¢)

(4D, div(EY?)) 70 + (7(EP? — EPP),qp)prp = 0, (4.6)

(E% - n,¢p p)s + (EUP 0, 9D n)grovs — (B2 1, 4p s + (r(BPP — EﬁD)aT/’D,hMThD = 0, (4.6g)
(tr (B79),1)oy = 0, (4.6h)

D
for all (75, Vsh Ms.hs BS.hs VD A0, UDp) € Sk x Vi X Ap x My, x VI x Py x Ny,

4.2.1 Estimating Efs

We begin by determining an estimate for EPs. To do this, we follow [15] and consider the orthogonal
decomposition
EPs = EfS + Ef5,

where [ Ef|r = 0 and E£%|p € Py(T) for each T € 7,°. This means that for each T € 7;° and for
all i,j € {1,...,n} there exist unique (Ef*|7);; € L3(T) and (EZS|7);j := ‘%' J(EPS|7)i; € R such
that (EPs|7)i; = (Eg®|r)i + (BE%|1)is-

Next, in order to bound these two terms separately, we denote by A2 the subspace to which Egs
belongs, that is

A) = {ngp€hn : Mgy, T)r =0 VTeP(T), YTeT}.

The following two lemmas provide the upper bounds for [|Ef*||o. oy and ||EZ%]o.qq-

Lemma 4.2. There exists C > 0, independent of the meshsize, such that

IEGloas < C{lIE79)?

oas + Ios = asloas + [Palps) — pslloas | -

12



Proof. We follow similarly as in the proof of [15, Theorem 3.6] for the three-dimensional case, keeping
in mind that the proof for two dimensions should be even simpler. Indeed, we know from the discrete
surjectivity result provided by [31, Lemma 2.9] (see also [15, Lemma 3.7]) that, given n := Efs € AY,
there exists 7gj € By, such that

(TsmMsp)s = (EfS, Nsn)rs YV Nsn € An (4.7)

and

ITsplloes < CIEG[logs (4.8)

where C' > 0 is independent of i and the meshsize. Next, we take 7g; = T in the error equation
(4.6a), and then apply the identities (3.1) to obtain

1 - . - 1 -
—((E79)4, (TS,h)d)ThS + (Efs, Tsn)rs + (EZ3, Tsh)Ts = ;(HUS —0og, (Ts,h)d)frhs

+ (PA(pS) — p57?57h)7-hs . (4.9)

v

In turn, it follows from (4.7) that

(;S,mEgS)ThS = (ES’S,E(’;S)Ths = |ES®

2
O»QS

and
(;S,hvEgs)ES - (EgsuEgs)ES = 07

which implies together with (4.9), that

1 - 1 ~ ~
6550y = = (B7)% (Fsn))zs + —(Oos — a5, (Tsn)) s + (Palps) = ps: Tsp)7s -

In this way, applying the Cauchy-Schwarz inequality and estimate (4.8) we conclude the proof. O

Lemma 4.3. There exists C > 0, independent of the meshsize, such that

IB2 05 < C{IET)llo0s + ITos —aslons + [Palps) = pslloas -

Proof. Given ES € AS :={n € A, :n|r € Py(T) VT € T,°}, we know from [1, Section 11.7, Theo-
rem 11.9] (see also [24, Lemma 5.2]) that there exists 75, € {7 € H(div;Qg) : 7|r € P1(T) VT €
7713} such that div(Tg) = 0 in Qg, Tgpn = 0 on 0Qg,

(TsnMsp)s = (Efsans,h)ThS Vngy € AL, (4.10)

and
ITsnlldaivos < ClIE o, (4.11)

where C' > 0 is independent of the meshsize. Then, replacing 755 = T g, in the error equation (4.6a),
we obtain that
1

S((B75)%, (F50) )78 — (Fsam BY)pps + (B, Tsp)7s + (B, Fsn) s

1 - ~
= ;(HUS - 0577'ds,h)7-hs + (Palpg) — pS:TS,h)ThS .

Now, from (4.10) we have (Efs,?g,h)Ths = (EgS,EfS)Ths = HEQS”%,QS, and using that T7g,n = 0 on

0f)g, we see that
<?57hn, Eu5>a7-hs = <;S’hn,EuS>8QS = 0.
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Thus, from the foregoing identities we deduce that
Ps 12 L posyd (= Ps = 1 =  \d
1B lo0s = — (BT (Tsn))gs — (Eo®, Tsn)gs + —(os — o5, (Tsn))7;s
+ (Palps) = Ps: Tsn)zs »

from which, applying the Cauchy-Schwarz inequality, estimate (4.11) and Lemma 4.2, the proof is
completed. ]

As a consequence of Lemmas 4.2 and 4.3 we conclude the estimate for EfS given by

IB25 o0 < C{IET)lo0s + ITMos —oslons + IPalps) — pslons ). (412)

4.2.2 Estimating E?5 and E"P

The following two lemmas show how to use the previous results to obtain estimates for |E75 ||y o, and
|E"?||0,.0,- To do that, in what follows we denote

lulls = (Smp)yfs ¥ e L(ED).

Lemma 4.4. There exists C' > 0, independent of the meshsize, such that

IET)fo0s + IE —E%|s + [E"[og, < C{HHUS—USIO,QSHIPA(Ps)—Ps\lo,ﬂs

+ |[Tup — UDIIOQD} :

Proof. Taking 75, := E7%, vgj 1= E", ng) 1= —EPS, pug) = Eﬁs, vpy i=E", qpj :=EPP, and
Ypp = —EPP in the error equations (4.6), and summing all them, we arrive at
1 n—1
2 g (|2 —1pa 2
—NE7)l0s + IE™ —E[g + > orHER -l s
(=1

4 (KﬁlEuD;EuD)'ThD + (r(EPP — EﬁD)’EPD _ E§D>8ThD

1
= Jos - o5, (E7)) s + (Palps) — ps. (B75))1s
— (BP5,llos — o5)7s + (K~} (ITup — up), E"P) 7. (4.13)

In particular, according to the properties of K™', S and 7, and applying the Cauchy-Schwarz and
Young inequality, we deduce from (4.13) that

IET)CSas + IEY —E[§ + |E?|3q,
< C{HHUS — aslloas(E7*)lo.as + [P alps) — pslloqs(E7)?

0,05

+ [os = asllonsl B logs + [Tup — upllog, [E* oo, |

IN

1501 1
50151105 = o5l o, + BIE R o + 5 1Paps) = psliay + 2IE") R o,

2
O,QD ?

1 1
+ 5, s = asllias + GsIES G o + 5, Itup — uplfg o, + al[E"P
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for all 0; > 0, i € {1,2,3,4}. Next, utilizing (4.12) we find that the previous inequality becomes
IE7 ) 0s + IE™ —E™|E + [E*[5q,

~ 1 1 1
< Ol —+=+03) Hos —osllga, + | — + 03 ) [[Palps) — ps]
01 03 P

2
0,0

1
+ EHHUD —upllga, + (01 + 62+ 83) (BTS2 o + 64l E*P H%,QD} :
which yields

{1=C1+ 0+ 8) 1B By + B —E™ |3 + (1-Con)|E™ | g,

~ (/1 1 1
< C { (61 + % —|—53> ||H0’S — 0'5”(%795 + <52 + 53) H’PA(pS) - pSH(Q),QS

1
+ 5HHuD_uD||%,QD} V6 >0, i€{1,2,3,4}.
4

Finally, suitable choices of §; > 0, i € {1,2, 3,4}, complete the proof. O
Lemma 4.5. There exists C' > 0, independent of the meshsize, such that

[E7[lo,0s < C{HHGS —oslloos + Palps) — pslloos + [TTup —up \O,QD} :
Proof. From the identity HE"SH?}’QS = H(E”S)dHags + Lltr (E75) Hg,ﬂs and Lemma 4.4, it is clear

that we only need to bound ||tr (E9%) ||g.qg4, for which we proceed in what follows as in [12, Proposition
3.4]. In fact, we first recall here a well-known result (see, e.g. [30, Corollary 2.4 in Chapter I]), which
establishes that there exists 5 > 0 such that

(¢, div(w))7s
Bllalloos < sup  ———"

wcH}(Qs) w104
w#0

Then, applying this inequality to ¢ := tr (E7$) € L3(Qs) (cf. (4.6h)), we readily have

1 (tI‘ (EGS) ) le(W))TS
—  sup h
g weH} (Qg) [[w
w#0
Next, let P : H'(7,%) — V7 be any projection such that, given w € H'(7,%), there holds (P(w) —
w,v)r =0 Vv e€P, (T), VT €T7°. In particular, it suffices to take P : H'(7,%) — V7 as the
orthogonal projector with respect to the L?(2g) inner product, which verifies (P(w) — w,v)r = 0
Vv ePp(T),VT € 7;13. It follows, integrating by parts on each T € ’7;L5, and at the end incorporating
the projectors Py (cf. (4.4)) and P, that for each w € H{(Qg) there holds

Vqe L%(QS) .

[tr (E75) Jlo.as

(4.14)

1,05

—(tr (B7%), div(w))rs = ——(Vtr (B7%), w)rs + —(w - n, tr (E7%)) 75
1 1
= <div <—tr (EUS) I> ,W> -+ *<W - n, tr (EUS)>8TS
n 7—hS n h

= (div ((E?)?) ’W)Ths — (div(E”S),w)Ths + %<W ‘n, tr (E"S)>a7—hs
= —((E95)¢, VW)ThS + <(E"S)dn,w>67-hs - (div(E"S),w)Ths + <<:Ltr (E79) I> n,w>

— —((Eas)d7 VW)/T}LS — (diV(EaS), W)fThS + <EUSn, W>87’hS

= —((B7%)%, Vw)7s — (div(E7®), P(w))rs + (E7n, Py (w))yrs YV we H}(Qs).

oTs
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Now, employing the error equation (4.6b) and (4.6d) with vg; := P(w) and pg, := Py (W), respec-
tively, we deduce together with the foregoing equation that

Lo (B79), div(w)) s = —((B75)%, Vw)s — (S(E" — E"), P(w)) s

E h
n—1
(SIS — B%9), Pas(w))grs = Y sig (B0 -t Par(w) - te)s = (Par(w) -0, PP
=1

= (B, W)y — (S(EE — B9, P(w) — Pag(w)}prs
n—1
— HZ_1<EGS ~tg,W-tg>z — <W-n,EﬁD>E
/=1
= (B, Tw)ys — (S(ES — B9, P(w) — Pag(w)}prs,

where the terms on ¥ vanish because w = 0 on 0€2g. In this way, we find that
(tr (B79)  div(w))zs < n{I(B7) o0 Wiy + IE™ — E™s|[P(w) — Par(w)lls }

[P(w) — Pa(w)lls

Iwllas

< n{IE) s + I8~ B biwha, ¥ w e Hi@s).
which, replaced back into (4.14), yields

ltr (B5) foos < % (S) {I(E")3 005 + B —Es}, (4.15)

|3

where

U(S) := maxq1, sup 1P (W) — Par(w)]ls

wcH) (Qs) Iwll1,00
w#0

The above expression is bounded by a constant depending on S (see [12, Proposition 3.9] for details),
and hence Lemma 4.4 and (4.15) complete the proof. O

4.2.3 Estimating E"S and EPP

In order to estimate ||E"S| o4 and ||[EPP|pq,, we now proceed as in [13, 12, 15] and incorporate
a suitable auxiliary problem. More precisely, in what follows we consider the continuous problem
(2.2)-(2.3)-(2.4) with sources given by fg := —E"S € L?(Qg) and fp := EPP € L?(Qp), that is:

1
;@% — Vg + v¢ = 0 in Qg, (4.16a)
div(®s) = E" in Qg, (4.16Db)
ds — dy = 0 in Qg, (4.16¢)
pg = 0 on g, (4.16d)
Ky, + Vép = 0  inQp, (4.16¢)
div(¢»p) = EPP inQp, (4.16f)
Yp-n = 0 onTp, (4.16g)
ps'n — Yp-n = 0 on X, (4.16h)
n—1
P -1 _ .
sn 4+ Y k' (ps-tte + ¢pn = 0 on X, (4.161)
(=1
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where vg := 5 (Vg — (Vpg)*¥). According to (4.5), we know that there holds

> 2} + 3 {eplir+loplar} < Cre{IE™ loas + 1B llogy } (417)

S D
TEeT), TeT,

1
2

and certainly div(®g) € L?(Q2g) and div(vp) € L*(Qp).

Lemma 4.6. There holds

[ loos + B loay < Ch{IE7) Ioos + [B#5loa, +

+ |Tlos — asllons + IPalps) — pslloos + [[TTup — UDlloﬂp} :

Proof. First, note from (4.17) that we can apply IIg and IIp to the solution of (4.16), and hence we
can set IIg(Pg, pg) := (IIPg,pg) and Ip(¢Pp, ¢p) = (Hpp,Mep). Then, from (4.16a), (4.16b),
(4.16e) and (4.16f) we have

IE" 505 + IEPP IS0, = (BE", E%) s + (EPP, EPP)rp = (B, div(®yg)) s
1 . a _
+ (E77, ;‘I’% — Vg + ’YS)ThS + (EPP, le('(pD))ThD — (E"2, K " + V¢D)7—hD
= (E%,div(Ii®s))rs + (H(PSv div(E7%)) s + (Pa(vs), E7%)rs + (EPP, div(IlYp)) 7o

+ (Igp, div(E"?) 70 + — ((EUS) ,®s)7s — (E75)%, Palvs) —vs)rs — (KE"P 9pp) 7o
— ((II®s — ®5)n, E" >aThS — (B0, ¢5)y7s — (Ip —¢pp) -0, EPP)yrp\ 5
+ (pp —tp) -0, EPP)s — (E" - n, ép)yros + (E" -1, ép)s

Now, using the error equations (4.6a), (4.6b), (4.6¢), (4.6e) and (4.6f) in the first five terms of the
above identity, and employing that ®g is a symmetric tensor (cf. (4.16¢)), we deduce that

B |55 + B30, = Si+ S2+ 83— (B" n,¢p)yro\y + (B2 -n,¢p)s,  (4.18)

where the intermediate terms S;, i € {1, 2,3}, are given by

S1 =~ (B7)4 IBs — B)rs — (B75), Palys) — vs)ys — (B75, 11 — Bg)7s

1
v
1
+ (Palps) - ps: T8 — Bg)ps + - (o — o, (18s) )75 + (Pa(vs), s — o) ps
+ (KB Ty — Yp)rp — (K~ !(Tup — up), pp) 7o,
SQ = <H¢Sﬂ,EuS>a7~hS — <(H¢S — @S)n, Eu5>87’h5 + <S(EuS — Eus)7H(,DS>6fThS - <:EUSI17 (PS>87'hS 5
and
53 = <H’lpD -1, EﬁD>a7;lD\E — <H¢D -1, EﬁD>Z — <(H¢D — ¢D) -1, EpD>87—hD\E
+ (I — tpp) - 0, EPP ), — (7(BPP — EPP), g ) -
Next, performing some simple algebraic manipulations, we find that
Sy = —(E" —E%, (II®s — ®5)n - S(llps — @g))ars + (Bsn, E™)yrs
— (E7%n — S(E"s — E"9), ‘Ps>a’rhs (4.19)

17



and

S3 = —(EPP —EPP (I, — pp) -1+ 7(gp — ¢D))oTr\8
+ (B> — P2, (Ipp —9pp) -n — 7(Hpp — ép))s
+ <¢D : n,EpD>37-hD\Z - <¢D . n,EpD>E - <T(EpD - EPD)7¢D>3T}LD . (4.20)

Then, from (4.1c) with pg := E" — E"S | we note that (4.19) reduces to

Sy = (®sn,E%),rs — (E75n — S(E™ — E™), Par(s))ors

from which, applying (4.6d) with pg ), := Py (gg), the continuity of ®gn, the fact that E% =0 on
I's, and (4.161), we deduce that

n—1

Sy = (2gn,E%)y + > kN (EY by, Py(ps) - to)s + (Pulps) -n,EPP)y
(=1
n—1 R R
= <‘I>Sn + Y wy (ps - bt Eus> + (ps n,EPP)s
/=1 )
= —(¢pn,E")s + (pg-n EP)s
= —(E% n,¢p)s + (pg 0 EP)y. (4.21)

On the other hand, from (4.2c), (4.2d), and (4.6g) with ¢p}, := Pn(¢p), we have
S3 = (Yp-n, EﬁD)aThD\z — (¥p -0, EPP)5 + (E™ -n,¢p)s + (E™ - n, ¢p)orr\x — (E"P -n,ép)s,
which, using the continuity of ¥ - n and (4.16g), becomes
S5 = —(p-n,EP)s + (E" n,¢p)s + (E" -0, ¢p)sro\s — (E"2 -n,ép)s.
In this way, from (4.21) and (4.16h), we find that

Sy + S5 = (pg-m—tpp-n,EP)y+ (E" n, ¢p)orr\x — (E"P -1, ép)s
(E"P-n,ép)yro\s — (E*”-m,¢p)s,

and replacing the above expression back into (4.18), we obtain

IE2S1B 0g + [E72]B0, = S
1
= (B e — B)ys — (B75)%, Palys) — 1)y

(EPs, TI®s — @5)7s — (Palps) — ps, [1Ps — ®g)7s + %(HUS — o5, (%5 — B5)%)7s
+ (llos — o5, Palys) = ¥s)7s + (K™'E">, epp — Yp)ro

— (K™ '(Tlup — up), gy, — Yp)ro + (los — o, %‘i'% +7s)7s — (Hup —up, K_1¢D)’ThD
= () B — B)s — (B75)%, Palys) — 1s)ys

— (EPs, I®g — <I>5)Ths — (Palpg) — pg, 1P g — <I>5)Ths + %(Has —og,(I®g — <I>g)d)frhs

(
+ (Ilosg — o5, Palvs) — ’YS)ThS + (K'E"?, Iy, — 1/’D)ThD
— (K™Y (ITup — up),Mypp, — ¢D)7~hD + (los — o3, VSOS)ThS + (ITup —up, V¢D)ThD ,
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where in the last identity we have applied (4.16a) and (4.16e). Now, from (4.1a) and (4.2a) we note
that

(Hos — 05, Veg)rs = (llos — 05, Veg — Po(Ves))rs
and
(HuD — up, V¢D)ThD = (HuD — up, V¢D — PQ(VQZ)D))ThD

where Py|r and Py|x are the L2(T) and L%(K) projections onto Po(T) and Py(K), respectively, for
each T € 7;{5‘ and K € ﬁlD . Hence, applying the Cauchy-Schwarz inequality, we obtain

[E% (3 0g + IE? |G 0, < C{lI(ES)?

0,05 T IE?S[loas + IE" ooy + [[Hos — oslloas
+ [Palps) = psllos + ITup — uploa, H IM@s — @slogs + 1Palvs) = slloos

+ Y p = ¥plloqy, + [[Po(Ves) = Veslloas + [1P0(Ven) — W)DHO,QD} )

from which, using the approximation properties of Ilg and IIp (cf. Theorems 4.1 and 4.3), and those
of P4 (cf. (4.3)), Po and Py (see, e.g. [8]), we deduce that

0,925

IEYS ][ 05 +IIEPP 50, < Ch {II(E"S)dHo,Qs + [1EPSlo.0s + IE* llo.ap + [Hos — o5

+ [Palps) — pslloas + [[Hup — uDllo,ﬂp}{ > (!‘I’Sh,T + leslios + [[div(®s) o

TeT?

+ \’75\1,T+\V<Ps\1,T) + ) <¢D\1,T+\¢D\1,T+\V¢D!1,T>}-

TeTP

Finally, the regularity estimate (4.17) and (4.16b) finish the proof. O

4.2.4 Estimating E% and EPP

Our next goal is to derive estimates for the trace variables. To this end, as in [12, 13], we measure the
errors of quantities defined on 6’7;;9 and 877LD with the seminorms:

1/2 1/2

”ﬂs,hHh = Z hT”HS,h||(2),aT and  [[¢pnlln = Z hT’W)D,hH%,BT )
TeT? TeT,P

respectively. In this way, the following lemma uses ideas from [12, Lemma 3.7] and [13, Theorem 4.1]
to obtain estimates for |[E"S ||, and ||EPP||.

Lemma 4.7. There hold

IE%s |, < C {h(II(E”S)deQs + [[EPSJlo,0s + [Mos — aslloos + [Palps) — PsHsz) + HE“SHO,QS}

and
1E72 1 < € {n(IE*oa, + ITup — upllogy, ) + IEllogy | -

Proof. The proof follows from a straightforward adaptation of the proofs in [12, Lemma 3.7] and [13,
Theorem 4.1]. The main tools employed are the error equations (4.6a) and (4.6e), a standard scaling
argument (see [4]), the Cauchy-Schwarz inequality, and an inverse inequality. O
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4.2.5 The main result

As a consequence of the lemmas provided in the previous sections, now we are able to establish the a
priori error estimates for the HDG scheme (3.3).

Theorem 4.4. There exists C > 0, independent of h and the polynomial approximation degree k,
such that

los —asnlloos + llps —psplloos + [lup —uprlloap

< c{llos - asloas + IPalps) - ps

\HuD — up

0795 +

O,QD} )

< C{HHUS —0o5lloas + [Mus —uslloos + [[Palps) — pslloos + [[Mup — uDHo,QD} ;

|us — us nlloos
lpp — o plloop
< ¢{llos - asllons + [P alps) = psllogs + [Tup — upllog, + 1Mpo —polloss |
and
IE® |l + JEP ]l
< Ch{llos - asloas + 1P alps) = pslogs + ITup —uplog, | -

Moreover, the following theorem provides the corresponding theoretical rates of convergence.

Theorem 4.5. There exists C > 0, independent of h and the polynomial approximation degree k,
such that

los —osnllons + llus —usnlloos + llps —Psnllons + llup —upillop

< Cpmintlesthlastllost N {las\eaSH,TJr [usle,g+1.70 + |Psle, . + |diV(Us)\£aS,T}

TeT?
1 O pmin{tup+Lb,+1} Z {|UD|éuD+1,T+ IpplngH,T},
TeT,P
lpp — poplloop
< O pmintlostLlug+llog} Z {’US\EUSH,T + [usleag+1,10 + Psle, . m + |diV(US)\£aS,T}
TeT?
+ Chmin{fup+1,&7p+1} Z {|uD’€uD+1,T + ’pD‘ng+17T -+ |diV(UD)|euD’T} s
TeT,P
and
[Parr(us) = Asnulln + [[Pn(pp) — ¢D.nlln
S Chl+min{fcs+1,€us+lyéps} Z {|US|£O_S+1,T + |uS|£uS+17T + ‘ps|sz,T + |diV(US)|€o-S,T}
TeT,?
+ Chl-&-min{EuD-‘rllpD-i-l} Z {’uD‘guDJrLT + \pD!zpDH,T} >
TeTP

for log, bug, bup s bpp, € [0,k] and £y, € [0,k + 1].

20



Proof. It follows from Theorem 4.4 and the approximation properties of IIg and IIp (cf. Theorems

4.1 and 4.3), and those of P4 (cf. (4.3)). O
In addition, we know from (2.2) that pg = —%tr (os), which suggests to define the following
postprocessed approximation of the pressure:
PSh = —%tr (osp) in Qg, (4.22)
and therefore
Ips ~psallons = —llir(es —osi)loos < llos — osalons (123

which, thanks to Theorem 4.5, gives the a priori error estimate for the pressure in the fluid as well.

5 Numerical results

In this section we present three numerical experiments illustrating the performance of the HDG method
(3.3) introduced and analyzed in Section 3. We let Niota be the total number of degrees of freedom,
and Neomp be the number of degrees of freedom effectively employed in the computations (involved
in the resolution of the corresponding linear system). In other words, Niota is the total number of
unknowns defining o5, Usn; Pspy AShs UD,hs PD,R and @p p, Whereas Neomp is the total number of
unknowns defining Agj, and ¢p ; plus one constant for each 1" € 7;13 , which take care of the condition
st tr (og) = 0 (see [29, Section 5] for details). Also, the individual errors are defined by

e(os) = |los—osullons, e(us) := [lus—usulloos, elps) = llps —pPsnlloos
e(As) = [[Pu(us) — Asnulln, e(ps) = |ps —psnullooss e(up) := |lup —uppulloop
e(pp) = llpp —pprllogy,, and e(pp) = [|Pn(pp) — ¢Dnlln,

where pg, is computed by the postprocessing formulae (4.22). Then, we define the experimental rates
of convergence as
R ICONELO)
log(h/h')

where e and e’ denote the corresponding errors for two consecutive triangulations with mesh sizes h
and A/, respectively.

The examples to be considered in this section are described next. In all of them we choose v = 1,
Kl =...=kp1 =1 S|p=1foral F € 5;?, and 7|p = 1 in each F € 5hD. Example 1 (n = 2)
and 2 (n = 3) are used to illustrate the performance of the HDG scheme (3.3) and to corroborate
the rates of convergence given in Theorem 4.5, when the solution is regular enough and the domains
are convex. Example 3 (n = 2) is utilized to illustrate the behaviour of the same estimate for non
convex domains and solutions with low regularity. We use k € {1,2,3} and k € {1,2} for the 2D and
3D numerical experiments, respectively. The numerical results presented below were obtained using
a Ct+ code, which was developed following the same techniques from [7] (see also [29]).

In Example 1 we consider the regions Qg := (0,1) x (0,1) and Qp := (0,1) x (—=1,0), K =1, and
the data fg and fp are chosen so that the exact solution is given by

ug(x) = curl(;rl:ng(xl — 1)(xe — 1) sin(mzy) sin(wxﬁ) ,

ps(x) = cos(mxy)cos(mxs),
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for all x := (z1,22) € Qg, and

pp(x) = cos(mzy)cos(mxe) VYV x:= (r1,22) € Qp,
t
where curl(v) := ((%’2, —887:1) . Concerning the triangulations employed in our computations, we

first consider seven meshes that are Cartesian refinements of a domain defined in terms of squares,
and then we split each square into four congruent triangles.

2-1 0
In Example 2 we consider Qg := (0,1)2 x (3,1) and Qp := (0,1)2 x (0,3), K = (*(1) %*%), and

choose the data fg and fp so that the exact solution is given by

22(1 — 21)%23(1 — 22)%(1 — 23)%(1 — 23)3 sin(mxy)
us(x) = curl | 22(1 —21)%23(1 — 22)%(1 — 23)%(1 — 2x3)3sin(wxa) |,
2 2
1 2

)
)
22(1 — 21)%22(1 — 22)%(1 — 23)%(1 — 223)3 sin(7a3)
)

ps(x) = cos(mxzg)cos(mrs)exp(z),
for all x := (x1,x2,x3) € Qg, and
pp(x) = zizox3(l—x1)(1 — x2)(1 — 223)? sin(2mzy ) sin(2wzy) sin(rz3)

for all x := (x1,x2,x3) € Qp.

Finally, in Example 3 we consider K =51, Qp := (—1,1) x (—=2,—1), and let Qg be the L-shaped
domain given by (—1,1)?\ [0,1]2. Then we choose fs and fp so that the exact solution is given by

ug(x) = curl (3(m% + 22)5/6 (25 + 1)3) ,

1
ps(x) = g(fﬂ? — 3a1) cos(mxa) ,
for all x := (z1,22) € Qg, and

pp(x) = g(:v:{’ — 3xy1) cos(mxe) VYV x:= (r1,22) € Qp.

Note that ug is divergence free, fQS ps = 0, and Vug has a singularity at the origin. In addition,
it is easy to check that this solution satisfies ug-n = up - n on X, and the boundary condition
up -n =0 on I'p. However, the Dirichlet condition for the Stokes velocity on I'g is non-homogeneous
(us =g # 0onI'g). For that reason, we have modified our implementation to allow non-zero Dirichlet
conditions. It is important to remark here that all the analysis in the previous sections can be extended
straightforwardly to this case by eliminating the condition p|rg = 0 in the definition of the subspace
M}, and then considering in (3.3) the new equation (Ugs , tgp)rs = (8 s p)Ts ¥ Mg € My,

In Tables 5.1—5.4 we summarize the convergence history of the HDG method (3.3) as applied to
Examples 1 and 2. We observe there, looking at the experimental rates of convergence, that the orders
predicted for each k by Theorem 4.5, are attained in all the unknowns for these smooth examples. In
particular, |[Pys(us) — Agulln and [|Py(pp) — @p.alln present a superconvergence with an additional
powers of h, also as predicted in Theorem 4.5.

On the other hand, in Tables 5.5—5.6 we summarize the convergence history of the HDG method
(3.3) as applied to Example 3 for the polynomial degrees k € {1,2,3}. In this case, and because
of the singularity at the origin of the exact solution, the theoretical orders of convergence are far to
be attained. In fact, it is easy to show that ug belong to H4/3(Qg), whence og € ]HIQ/S(QS), which
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F1 7 | New | Newws || o(0s) T(os) | e(us) r(us) | e(ps) t(ps) | e(rs) T(As) | e(ps) r(ps)
0.2000 8290 2091 2.00e-2 —— 4.15e-3 —— 1.70e-2 —— 1.42e-3 —— 8.56e-3 ——
0.1000 32980 8181 5.42e-3 1.89 1.06e-3 1.97 4.83e-3 1.82 2.0le-4 2.81 2.39¢-3 1.84
0.0667 74070 18271 2.47e-3 1.94 4.74e-4  1.99 2.23e-3 1.90 6.23e-5  2.90 1.10e-3 1.91
1 | 0.0500 131560 32361 1.41e-3 1.96 2.67e-4 1.99 1.28e-3 1.93 2.68e-5 2.93 6.30e-4 1.94
0.0400 205450 50451 9.06e-4 1.97 1.71e-4 2.00 8.28e-4 1.95 1.39e-5 2.94 4.07e-4 1.95
0.0333 295740 72541 6.32e-4 1.97 1.19e-4 2.00 5.79e-4 1.96 8.11e-6  2.96 2.85e-4 1.96
0.0286 402430 98631 4.66e-4 1.98 8.74e-5 2.00 4.28e-4 1.97 5.14e-6  2.96 2.10e-4 1.97
0.2000 15435 3036 1.65e-3 —— 3.1le-4 —— 1.55e-3 —— 8.22e-5 —— 6.99¢-4 ——
0.1000 61470 11871 2.05e-4 3.01 3.99e-5 2.96 1.92e-4 3.01 5.00e-6 4.04 8.58¢e-5 3.03
0.0667 138105 26506 6.04e-5 3.01 1.19e-5 2.98 5.66e-5 3.01 9.80e-7 4.02 2.53e-5 3.01
2 | 0.0500 245340 46941 2.55e-5 3.00 5.04e-6 2.99 2.39e-5 3.00 3.09e-7 4.01 1.06e-5 3.01
0.0400 383175 73176 1.30e-5 3.00 2.58e-6 2.99 1.22e-5 3.00 1.27e-7 4.00 5.43e-6 3.01
0.0333 551610 105211 7.54e-6  3.00 1.50e-6 2.99 7.07e-6 3.00 6.10e-8 4.00 3.14e-6  3.00
0.0286 750645 143046 4.75e-6  3.00 9.43e-7 3.00 4.45e-6  3.00 3.29e-8 4.00 1.98e-6 3.00
0.2000 24580 3981 1.08e-4 —— 2.10e-5 —— 9.98e-5 —— 4.05e-6 —— 4.27e-5 ——
0.1000 97960 15561 7.14e-6 3.93 1.34e-6 3.97 6.63e-6 3.91 1.31e-7 4.95 2.79¢-6 3.93
0.0667 220140 34741 1.43e-6 3.96 2.66e-7 3.99 1.33e-6 3.95 1.75e-8  4.97 5.59e-7 3.97
3 | 0.0500 391120 61521 4.58e-7 3.96 8.45e-8 3.99 4.27e-7 3.96 4.20e-9 4.97 1.78e-7 3.97
0.0400 610900 95901 1.89e-7 3.96 3.47e-8 3.98 1.76e-7 3.96 1.39¢-9 4.97 7.37e-8 3.96
0.0333 879480 137881 9.18e-8 3.97 1.68e-8 3.98 8.56e-8 3.96 5.61le-10 4.96 3.58e-8 3.96
0.0286 | 1196860 | 187461 4.99e-8 3.96 9.10e-9 3.98 4.65e-8 3.96 2.69e-10 4.77 1.94e-8 3.96

Table 5.1: History of convergence for Example 1 (Stokes variables).

implies that we can expect |Tlos — o5llo.as = O(h?/3). We use here that ITg can also be defined for
os € H(T;°) with § > 1/2. Thus, thanks to Theorem 4.5 and (4.23), we can explain the a priori
estimates in Tables 5.5—5.6 for o5, ug, pg, ps, and also for || Py(ug) — Asn|ln and || Py (pp) —¢D.nlln,
which must converge with O(h'*?/3). In addition, the convergence of up and pp is a bit faster than
expected, which could correspond to a special feature of this example.

Finally, some components of the approximate solutions for the three examples are displayed in
Figures 5.2, 5.3 and 5.4. They all correspond to those obtained with the fourth mesh and for the poly-
nomial degree k = 2. Here we use the notations as, = ([0 s54lij )ij=1,...ns Psp = ([Psplij )ij=1,..n>
and w, p, = ([Wepli )i=1,..n for x € {S, D},
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k h Niotal | Neomp || e(up) r(up) | e(pp) r(pp) | e(¢p) r(¢p)
0.2000 8290 2091 2.50e-2 —— 8.45e-3 —— 1.40e-3 ——
0.1000 32980 8181 6.33e-3 1.98 2.12e-3 1.99 1.82e-4 2.94
0.0667 74070 18271 2.82e-3 1.99 9.45e-4 2.00 5.46e-5 2.97

1| 0.0500 | 131560 32361 1.59e-3 1.99 5.32e-4 2.00 2.32e-5 2.98
0.0400 | 205450 50451 1.02e-3 2.00 3.40e-4 2.00 1.19e-5 2.99
0.0333 | 295740 72541 7.08e-4 2.00 2.36e-4 2.00 6.90e-6 2.99
0.0286 | 402430 98631 5.21e-4 2.00 1.74e-4 2.00 4.34e-6 3.00
0.2000 15435 3036 1.08e-3 —— 3.51e-4 —— 4.18e-5 ——
0.1000 61470 11871 1.36e-4 2.99 4.42e-5 2.99 2.62e-6 4.00
0.0667 | 138105 26506 4.04e-5 3.00 1.31e-5 3.00 5.19e-7 4.00

2 | 0.0500 | 245340 46941 1.70e-5 3.00 5.53e-6 3.00 1.65e-7 3.98
0.0400 | 383175 73176 8.73e-6 3.00 2.83e-6 3.00 6.79e-8 3.98
0.0333 | 551610 | 105211 || 5.05e-6 3.00 1.64e-6 3.00 3.29e-8 3.98
0.0286 | 750645 | 143046 || 3.19e-6 2.99 1.03e-6 3.00 1.78e-8 3.98
0.2000 24580 3981 3.83e-5 —— 1.17e-5 —— 1.24e-6 ——
0.1000 97960 15561 2.39e-6 4.00 7.34e-7 3.99 3.98e-8 4.96
0.0667 | 220140 34741 4.75e-7 3.99 1.46e-7 3.99 5.43e-9 4.91

3 | 0.0500 | 391120 61521 1.50e-7 3.99 4.64e-8 3.98 1.32e-9 4.92
0.0400 | 610900 95901 6.22e-8 3.96 1.91e-8 3.98 | 4.53e-10 4.79
0.0333 | 879480 | 137881 || 3.02e-8 3.97 9.23e-9 3.98 1.93e-10 4.68
0.0286 | 1196860 | 187461 1.65e-8 3.92 5.01e-9 3.96 9.53e-11 4.58

Table 5.2: History of convergence for Example 1 (Darcy variables).

h Niotal | Neomp || e(os) r(os) | e(us) r(us) | e(ps) r(pg) | e(As) r(As) | e(ps) r(ps)
0.4330 21696 5569 5.69e-2 —— 6.43e-3 —— 3.30e-2 —— 6.79e-3 —— 2.32e-2 ——
0.2887 72360 17929 3.16e-2 1.45 2.88e-3 1.98 1.81e-2 1.49 | 2.41e-3 2.56 1.01e-2 2.05
0.2165 170496 41473 1.82e-2 1.92 1.62e-3 1.99 1.13e-2 1.63 1.12e-3 2.67 | 5.66e-3 2.02
0.1732 331800 79801 1.18e-2 1.94 1.04e-3 1.99 7.70e-3 1.71 6.06e-4 2.74 3.60e-3 2.02
0.1443 | 571968 | 136513 || 8.30e-3 1.94 7.25e-4 1.99 | 5.58e-3 1.76 | 3.65e-4 2.78 | 2.47e-3 2.08
0.1237 | 906696 | 215209 || 6.13e-3 1.96 | 5.33e-4 1.99 | 4.23e-3 1.80 | 2.37e-4 2.81 1.81e-3 2.00
0.1083 | 1351680 | 319489 || 4.71e-3 1.98 4.09e¢-4 1.99 3.32e-3 1.83 1.62e-4 2.83 1.40e-3 1.94
0.4330 50688 10945 5.19e-3 —— 6.20e-4 —— 3.45e-3 —— 5.04e-4 —— 2.16e-3 ——
0.2887 169344 35209 1.89e-3 2.49 1.86e-4 2.97 1.17e-3  2.67 1.27e-4 3.40 6.49e-4 2.97
0.2165 | 399360 81409 8.81e-4 2.66 7.99e-5 2.93 | 5.3le-4 2.74 | 4.33e-5 3.75 | 2.86e-4 2.85
0.1732 777600 156601 || 4.71e-4 2.81 4.12e-5 2.97 | 2.86e-4 2.78 1.87e-5 3.76 1.48e-4 2.94
0.1443 | 1340928 | 267841 2.77e-4 291 2.40e-5 2.97 1.72e-4 2.80 | 9.35e-6 3.80 8.65e-5 2.96
0.1237 | 2126208 | 422185 1.76e-4 2.94 1.52e-5 2.97 1.12e-4 2.78 | 5.14e-6 3.89 5.46e-5 2.99
0.1083 | 3170304 | 626689 || 1.18e-4 2.98 1.02e-5 2.99 | 7.79e-5 2.72 | 3.06e-6 3.89 | 3.68e-5 2.95

Table 5.3: History of convergence for Example 2 (Stokes variables).
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k h Niotal | Neomp || e(up) r(up) | e(pp) z(pp) | elpp) r(¢p)
0.4330 21696 5569 3.47e-3 —— 8.44e-4 —— 3.80e-4 ——
0.2887 72360 17929 1.72e-3 1.73 4.27e-4 1.68 1.46e-4 2.36
0.2165 170496 41473 1.01e-3 1.84 2.53e-4 1.82 7.35e-5 2.39

1| 0.1732 331800 79801 6.62e-4 1.90 1.65e-4 1.89 4.13e-5 2.58
0.1443 571968 136513 4.66e-4 1.93 1.16e-4 1.93 2.53e-5 2.70
0.1237 906696 215209 3.45e-4 1.95 8.61e-5 1.95 1.60e-5 2.97
0.1083 | 1351680 | 319489 2.66e-4 1.96 6.63e-5 1.96 1.07e-5 2.99
0.4330 50688 10945 1.21e-3 —— 2.86e-4 —— 6.78e-5 ——
0.2887 169344 35209 4.09e-4 2.68 9.57e-5 2.70 1.45e-5 3.81
0.2165 399360 81409 1.82e-4 2.81 4.25e-5 2.82 4.78¢e-6 3.85

2 | 0.1732 777600 156601 9.57e-5 2.88 2.23e-5 2.89 2.01e-6 3.89
0.1443 | 1340928 | 267841 5.62e-5 2.92 1.31e-5 2.92 9.76e-7 3.95
0.1237 | 2126208 | 422185 3.56e-5 2.95 8.30e-6 2.95 5.31e-7 3.95
0.1083 | 3170304 | 626689 2.40e-5 2.96 5.59e-6 2.96 3.14e-7 3.94

Table 5.4: History of convergence for Example 2 (Darcy variables).

h Niotal | Neomp || e(os) z(os) | e(us) r(us) | e(ps) r(ps) | e(As) r(As) | elps) z(ps)
0.0500 | 178040 43641 1.19e-1 —— 5.00e-2 —— 1.48e-1 —— | 3.80e-3 —— | 4.0le-2 ——
0.0400 | 278050 68051 1.02e-1 0.68 | 4.27e-2 0.71 | 1.27e-1 0.69 | 2.79e-3 1.39 | 3.44e-2 0.69
0.0333 | 400260 97861 9.0le-2 0.67 | 3.76e-2 0.69 | 1.12e-1 0.68 | 2.18e-3 1.36 | 3.04e-2 0.68
0.0286 | 544670 | 133071 || 8.13e-2 0.67 | 3.39e-2 0.68 | 1.0le-1 0.67 | 1.77e-3 1.34 | 2.74e-2 0.67
0.0250 | 711280 | 173681 || 7.44e-2 0.67 | 3.09e-2 0.68 | 9.22e-2 0.67 | 1.48e-3 1.33 | 2.51le-2 0.67
0.0222 | 900090 | 219691 || 6.88e-2 0.67 | 2.86e-2 0.68 | 8.52e-2 0.67 | 1.27e-3 1.32 | 2.32e-2 0.67
0.0200 | 1111100 | 271101 || 6.41e-2 0.66 | 2.66e-2 0.67 | 7.94e-2 0.67 | 1.10e-3 1.31 | 2.16e-2 0.67
0.0500 | 331860 63061 6.94e-2 —— 3.22e-2 —— | 8822 —— | 9.79%-4 —— 1.83e-2 ——
0.0400 | 518325 98326 5.99e-2 0.66 | 2.78e-2 0.67 | 7.60e-2 0.67 | 7.00e-4 1.50 | 1.58e-2 0.66
0.0333 | 746190 | 141391 || 5.31e-2 0.66 | 2.46e-2 0.67 | 6.73e-2 0.67 | 5.33e-4 1.49 | 1.40e-2 0.66
0.0286 | 1015455 | 192256 || 4.80e-2 0.66 | 2.22e-2 0.67 | 6.07e-2 0.67 | 4.25e-4 1.47 | 1.27e-2 0.66
0.0250 | 1326120 | 250921 || 4.39e-2 0.66 | 2.03e-2 0.67 | 5.56e-2 0.67 | 3.50e-4 1.46 | 1.16e-2 0.66
0.0222 | 1678185 | 317386 || 4.06e-2 0.66 | 1.88e-2 0.67 | 5.14e-2 0.67 | 2.95e-4 1.45 | 1.07e-2 0.66
0.0200 | 2071650 | 391651 || 3.79e-2 0.66 | 1.75e-2 0.67 | 4.79e-2 0.67 | 2.53e-4 1.44 | 9.99e-3 0.66
0.0500 | 528880 82481 5.0le-2 —— 2.31le-2 —— | 5.99e-2 —— | 427e-4 —— 1.26e-2 ——
0.0400 | 826100 | 128601 || 4.32e-2 0.66 | 1.99e-2 0.66 | 5.16e-2 0.67 | 2.95e-4 1.65 | 1.08e-2 0.66
0.0333 | 1189320 | 184921 || 3.83e-2 0.66 | 1.77e-2 0.66 | 4.57e-2 0.67 | 2.18e-4 1.65 | 9.59e-3 0.67
0.0286 | 1618540 | 251441 || 3.46e-2 0.66 | 1.59e-2 0.67 | 4.13e-2 0.67 | 1.69e-4 1.65 | 8.66e-3 0.67
0.0250 | 2113760 | 328161 || 3.16e-2 0.66 | 1.46e-2 0.67 | 3.78e-2 0.67 | 1.36e-4 1.65 | 7.92e-3 0.67
0.0222 | 2674980 | 415081 || 2.93e-2 0.66 | 1.35e-2 0.67 | 3.49e-2 0.67 | 1.12e-4 1.65 | 7.33e-3 0.67
0.0200 | 3302200 | 512201 || 2.73e-2 0.66 | 1.26e-2 0.67 | 3.25e-2 0.67 | 9.40e-5 1.65 | 6.83e-3 0.67

Table 5.5: History of convergence for Example 3 (Stokes variables).
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Figure 5.2: Example 1, some components of the approximate solutions.
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Figure 5.3: Example 2, iso-surfaces of some components of the approximate solutions.
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Figure 5.4: Example 3, some components of the approximate solutions.
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[6]

[7]

[12]

[13]

[14]

[15]

k h Niotal | Neomp || e(up) r(up) | e(pp) z(pp) | elpn) r(¢p)
0.0500 178040 43641 2.84e-3 —— 2.98e-3 —— 8.30e-3 ——
0.0400 278050 68051 1.82e-3 1.99 2.21e-3 1.32 6.37e-3 1.19
0.0333 400260 97861 1.27e-3 1.98 1.75e-3 1.29 5.13e-3 1.19
1 | 0.0286 544670 133071 9.36e-4 1.98 1.44e-3 1.27 4.27e-3 1.19
0.0250 711280 173681 7.19e-4 1.97 1.22e-3 1.26 3.64e-3 1.19
0.0222 900090 219691 5.70e-4 1.97 1.05e-3 1.25 3.16e-3 1.19
0.0200 | 1111100 | 271101 4.64e-4 1.96 9.22e-4 1.24 2.79¢-3 1.19
0.0500 331860 63061 6.38e-5 —— 4.82e-4 —— 1.50e-3 ——
0.0400 518325 98326 4.65e-5 1.42 3.72e-4 1.16 1.16e-3 1.15
0.0333 746190 141391 3.68e-5 1.28 3.01e-4 1.17 9.36e-4 1.16
2 | 0.0286 | 1015455 | 192256 3.05e-5 1.22 2.51e-4 1.17 7.81e-4 1.17
0.0250 | 1326120 | 250921 2.60e-5 1.18 2.15e-4 1.18 6.67e-4 1.18
0.0222 | 1678185 | 317386 2.27e-5 1.16 1.87e-4 1.18 5.81e-4 1.18
0.0200 | 2071650 | 391651 2.01e-5 1.15 1.65e-4 1.18 5.13e-4 1.18
0.0500 528880 82481 5.12e-6 —— 3.83e-5 —— 1.19e-4 ——
0.0400 826100 128601 4.32e-6 0.76 3.08¢e-5 0.98 9.56e-5 0.98
0.0333 | 1189320 | 184921 3.76e-6 0.77 2.55e-5 1.03 7.92e-5 1.03
3 | 0.0286 | 1618540 | 251441 3.34e-6 0.76 2.16e-5 1.06 6.73e-5 1.06
0.0250 | 2113760 | 328161 3.03e-6 0.74 1.87e-5 1.08 5.82e-5 1.08
0.0222 | 2674980 | 415081 2.78e-6 0.72 1.65e-5 1.10 5.11e-5 1.10
0.0200 | 3302200 | 512201 2.58e-6 0.69 1.46e-5 1.11 4.55e-5 1.11

Table 5.6: History of convergence for Example 3 (Darcy variables).
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