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H(div) conforming and DG methods for incompressible Euler’s

equations

Johnny Guzmán∗ Filánder A. Sequeira† Chi-Wang Shu‡

Abstract

H(div) conforming and discontinuous Galerkin (DG) methods are designed for incompressible Eu-
ler’s equation in two and three dimension. Error estimates are proved for both the semi-discrete
method and fully-discrete method using backward Euler time stepping. Numerical examples ex-
hibiting the performance of the methods are given.

Key words: Euler equation, discontinuous Galerkin method

1 Introduction

In this paper we study H(div) conforming and DG finite element methods for the incompressible
Euler equations in both two and three dimensions. Our methods are based on the velocity-pressure
formulation. Let Ω be a bounded and simply connected polygonal domain in Rd, d ∈ {2, 3}, with
boundary Γ. The velocity u ∈ H1

0(Ω) := [H1
0 (Ω)]

d, and the pressure p ∈ L2
0(Ω) satisfy

ut + u · ∇u + ∇p = 0 in (0, T )× Ω, (1.1a)

div(u) = 0 in (0, T )× Ω, (1.1b)

u · n = 0 on (0, T )× Γ, (1.1c)

u(0,x) = u0(x) in Ω, (1.1d)

where ut = ∂tu is the time derivative, ∇u is the tensor gradient of u, and T > 0.

The goal of this paper is to define methods that are L2 stable, and, for DG methods, are also locally
conservative. The methods are inspired by the work [7] where they developed locally conservative DG
methods for the steady state Navier-Stokes equations. There they take Newton iterations to solve
numerically the equations and in each step they postprocess the DG approximation to get a new
approximation that belongs to H(div) and is divergence free. Here we apply this idea to DG methods
in each time step for Euler’s equations. However, we first consider H(div) conforming elements as
they seem natural for incompressible Euler’s equations and are easier to analyze. In order to make the
H(div) elements L2 stable, one has to add numerical fluxes of the nonlinear term on the interfaces of
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the triangulation. We start with the semi-discrete method, using both central and upwind fluxes, and
then analyze a backward Euler time stepping method. Once we have developed H(div) conforming
methods, it guides us in developing DG methods using the post-processing idea used in [7]. In [7]
upwind fluxes are used, but it is important to note that central numerical fluxes can also guarantee
L2 stability for Euler’s equations.

The development and study of finite element methods for incompressible flows have a long history;
see for example the books of Temam [14] and Girault and Raviart [10]. More recently there has been an
interest in using H(div) conforming methods for these problems [8] since they produce divergence free
approximations. However, to the best of our knowledge, an analysis of these methods for the inviscid
problem (i.e. Euler’s equation) has not been considered. On the other hand, there has been recent
work on proving convergence rates for other finite element methods for problems with arbitrarily low
viscosity [3].

We give an error analysis for both the semi-discrete methods and the backward Euler time stepping
methods. The error estimate for the velocity in the L2 norm converges with rate O(hk) if the velocity
space contains the polynomials of degree k. Notice that this is sub-optimal by one order. However,
numerical experiments suggest that these results are not sharp for some polynomial orders and using a
central numerical flux. In particular, the error estimate will not give an error estimate for the lowest-
order Raviart-Thomas element. However, on structured grids our numerical experiments show that
the lowest-order Raviart-Thomas elements seem to be converging. Moreover, when using the upwind
numerical flux numerical experiments suggest that the method is optimal. However, at the present
time we are not able to prove this result. Our estimates assume that the velocity belongs to W 1,∞. Of
course, these a-priori estimates are not known (and might not hold) in three dimensions for general
smooth initial data. However, in two dimensions the a-priori estimates were proved by Kato [11] for
smooth initial data.

In addition to providing numerical experiments to check the order of convergence of our methods,
we give numerical experiments to show how the methods behave in high gradient flows. We see that
using upwind flux the method seems to do very well and comparable to DG methods that use the
vorticity-potential formulation [12].

The paper is organized as follows. In the next section we present the semi-discrete methods and
prove error estimates. In section 3 we present the backward Euler methods. Finally, in section 4 we
provide some numerical examples.

2 Semi-discrete methods

We begin by introducing some preliminary notations. Let Th be a shape-regular and quasi-uniform
triangulation of Ω without the presence of hanging nodes, and let Eh be the set of edges/faces F of
Th. In addition, we denote by E i

h and E∂
h the set of interior and boundary faces, respectively, of Eh,

and we set ∂Th := ∪{∂T : T ∈ Th}.
Next, let (·, ·)U denote the usual L2 and L2 := [L2]d inner product over the domain U ⊂ Rd, and

similarly let 〈·, ·〉G be the L2 and L2 inner product over the surface G ⊂ Rd−1. Then, we introduce
the inner products:

(·, ·)Th :=
∑

T∈Th

(·, ·)T and 〈·, ·〉∂Th :=
∑

T∈Th

〈·, ·〉∂T .

On the other hand, let n+ and n− be the outward unit normal vectors on the boundaries of two
neighboring elements T+ and T−, respectively. We use (τ±,v±, q±) to denote the traces of (τ ,v, q)

on F := T
+ ∩ T

−
from the interior of T±, where τ , v and q are second-order tensorial, vectorial and

2



scalar functions, respectively. Then, we define the means {{·}} and jumps [[·]] for F ∈ E i
h, as follows

{{τ }} :=
1

2

(
τ
+ + τ

−
)
, {{v}} :=

1

2

(
v+ + v−

)
, {{q}} :=

1

2

(
q+ + q−

)
,

[[τn]] := τ
+
n
+ + τ

−
n
−, [[v · n]] := v+ · n+ + v− · n−, [[qn]] := q+n+ + q−n−.

The method is derived using the conservative or divergence form of the equation. To this end,
denoting ⊗ as the usual dyadic or tensor product, that is, (u⊗v)ij = (utv)ij = uivj , we consider the
formula

div(u⊗ v) = v · ∇u + div(v)u, (2.1)

together with the divergence-free condition, to write the problem (1.1) in the form

ut + div(u⊗ u) + ∇p = 0 in (0, T ) × Ω, div(u) = 0 in (0, T )× Ω ,

u · n = 0 on (0, T ) × Γ , u(0,x) = u0(x) in Ω ,
(2.2)

where div denotes the usual divergence operator div acting along each row of the corresponding tensor.

Finally, given an integer ℓ ≥ 0 and a subset U of Rd, we denote by Pℓ(U) the space of polynomials
defined in U of total degree at most ℓ, with Pℓ(U) := [Pℓ(U)]d. Furthermore, for each T ∈ Th, we
define the local Raviart-Thomas space of order ℓ (see, e.g. [2, 13])

RTℓ(T ) := Pℓ(T ) + Pℓ(T )x

where x =

( x1
...
xd

)
is a generic vector of Rd. In addition, we set

NDℓ(T ) := Pℓ(T ) + Pℓ(T )× x

be the local Nédélec space of order ℓ on T ∈ Th.

2.1 H(div) conforming methods

In this section, we define H(div) conforming finite element schemes associated with the model problem
(2.2). We start by introducing the method using the central flux, but in a later section we present
the method using the upwind flux. For simplicity we only consider the Raviart-Thomas finite element
spaces, but we note that one can use instead the BDM finite elements (see, e.g. [2, 13]). The globally
defined Raviart-Thomas spaces are given by Vh for the velocity and Qh for the pressure, given by

Vh := {v ∈ H(div; Ω) : v|T ∈ RTk(T ) ∀ T ∈ Th and v · n = 0 on Γ} ,

Qh :=
{
q ∈ L2

0(Ω) : q|T ∈ Pk(T ) ∀ T ∈ Th
}
.

Now, the finite element method is defined by: Find (uh, ph) ∈ Vh ×Qh, such that

(∂tuh,vh)Th − (uh ⊗ uh,∇hvh)Th − (ph,div(vh))Th + 〈σ̂(uh, ph)n,vh〉∂Th = 0,

(qh,div(uh))Th = 0, (2.3)

uh(0,x) = uh,0(x) in Ω,

for all (vh, qh) ∈ Vh × Qh, where ∇h is the broken gradient, uh,0 is some projection of u0 on Vh,
and σ̂(uh, ph) represents the numerical flux of u⊗ u+ p I on Eh. In particular, we take σ̂(uh, ph) :=
uh ⊗ uh + phI on E∂

h and for E i
h we define

σ̂(uh, ph) := {{uh}} ⊗ {{uh}} + {{ph}}I . (2.4)
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This is the method using the central flux. In a later section we introduce the method using the upwind
flux which seems to do better numerically.

Next, using the above definition for σ̂, together with the formula (2.1), the fact that uh is divergence
free (from the second equation in (2.3)), and integration by parts, we can rewrite (2.3) as: Find
(uh, ph) ∈ Vh ×Qh, such that

(∂tuh,vh)Th + (uh · ∇huh,vh)Th −
∑

F∈Ei
h

〈[[(uh ⊗ uh)n]], {{vh}}〉F − (ph,div(vh))Th = 0,

(qh,div(uh))Th = 0, (2.5)

uh(0,x) = uh,0(x) in Ω,

for all (vh, qh) ∈ Vh ×Qh.

It will be useful to rewrite the [[(uh ⊗ uh)n ]]|F . Let F = T
+ ∩ T

−
. Then,

[[(uh ⊗ uh)n ]] = [[(uh · n)uh ]] = (u+
h · n+)u+

h + (u−
h · n−)u−

h .

In addition, from the fact that u+
h · n+ = u−

h · n+, since uh ∈ H(div; Ω), it follows that

[[(uh ⊗ uh)n]] = (u+
h · n+)u+

h − (u−
h · n+)u−

h = (u+
h · n+)(u+

h − u−
h ).

From now on we will use the notation (without loss of generality) [[[v ]]] := v+ − v−. Also, we use the
notation (uh · n)|F = (u+

h · n+)|F . Hence, we write

[[(uh ⊗ uh)n ]] = (uh · n)[[[uh ]]].

Now from this we see that the third term in the right-hand side of first equation in (2.5) is consistent,
since [[[u]]] = 0 on E i

h when u is smooth.

Lemma 2.1 (Conservation of energy). Given uh ∈ Vh the solution of (2.5), we have

d

dt
‖uh‖2L2(Ω) = 0.

Proof. Taking vh := uh in the first equation of (2.5) and using that uh is divergence free, it follows

1

2

d

dt
‖uh‖2L2(Ω) + (uh · ∇huh,uh)Th −

∑

F∈Ei
h

〈(uh · n)[[[uh ]]], {{uh}}〉F = 0. (2.6)

Thus, note that

(uh · ∇huh,uh)Th =
1

2

∑

T∈Th

∫

T
uh · ∇(|uh|2) =

1

2

∑

T∈Th

{
−
∫

T
div(uh)|uh|2 +

∫

∂T
(uh · n)|uh|2

}

=
1

2

∑

T∈Th

∫

∂T
(uh · n)|uh|2 =

1

2

∑

F∈Ei
h

∫

F
{{uh}} · [[|uh|2n]]

=
∑

F∈Ei
h

∫

F
(uh · n)[[[uh ]]] · {{uh}}, (2.7)

which, together with (2.6) complete the proof.

We remark here that, from the previous lemma, integrating in time over (0, t), we can deduce that
‖uh(t, · )‖L2(Ω) = ‖uh,0‖L2(Ω) for each t ∈ (0, T ). That is, we proved that the scheme (2.5) is stable.
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2.1.1 Error estimates

Our next goal is to obtain error estimates for the scheme (2.5). In order to do that, we now introduce
the Raviart-Thomas interpolation operator (see [2, 13])Πk

h : H1(Ω) → Vh, which satisfies the following
approximation properties: for each v ∈ Hm(Ω), with 1 ≤ m ≤ k + 1, there holds

‖v−Πk
h(v)‖L2(T ) + hT ‖∇(v−Πk

h(v))‖L2(T ) ≤ C hmT |v|m,T ∀ T ∈ Th. (2.8)

Moreover, we also have the following bounds

‖v−Πk
h(v)‖L∞(T ) + hT ‖∇(v−Πk

h(v))‖L∞(T ) ≤ C hT ‖∇v‖L∞(T ) ∀ T ∈ Th. (2.9)

In addition, let Pk
h : L2(Ω) → Qh be the L2-orthogonal projector. Hence, for each q ∈ Hm(Ω),

with 0 ≤ m ≤ k + 1, there holds (see, e.g. [5])

‖q − Pk
h(q)‖L2(T ) ≤ C hmT |q|Hm(T ) ∀ T ∈ Th. (2.10)

We now aim to derive the a priori error estimates for the scheme (2.5). To this end, thanks
to the triangle inequality, we only need to provide estimates for the approximation errors, namely,
Eu := Πk

h(u)− uh and Ep := Pk
h(p)− ph. To do this, we use the fact that the exact solution satisfies

the approximation method (2.5), in order to obtain the error equations:

(∂t(u− uh),vh)Th + (u · ∇hu− uh · ∇huh,vh)Th

−
∑

F∈Ei
h

〈(uh · n)[[[u− uh ]]], {{vh}}〉F − (p − ph,div(vh))Th = 0,

(qh,div(u− uh))Th = 0,

for all (vh, qh) ∈ Vh × Qh. In addition, from the property div(Πk
h(u)) = Pk

h(div(u)) = 0, we can
rewrite the error equations in the form

(∂tE
u,vh)Th + (u · ∇hu− uh · ∇huh,vh)Th −

∑

F∈Ei
h

〈(uh · n)[[[Eu ]]], {{vh}}〉F − (Ep,div(vh))Th

= (∂t(Π
k
h(u)− u),vh)Th −

∑

F∈Ei
h

〈(uh · n)[[[Πk
h(u)− u]]], {{vh}}〉F − (Pk

h(p)− p,div(vh))Th , (2.11)

(qh,div(E
u))Th = 0,

for all (vh, qh) ∈ Vh ×Qh, where it is important to remark here that Eu is divergence free.

Theorem 2.1. Assume that u ∈ W 1,∞([0, T ] × Ω)d is uniformly bounded. Also, suppose that Th is
quasi-uniform. Then, there exists C > 0, independent of h, such that

‖(u− uh)(T, ·)‖L2(Ω) ≤ C(u)hk B(u),

where

C(u) := (1 + C(1 + Cu)) exp(C(1 +Cu)T ),

with Cu := ‖u‖W 1,∞([0,T ]×Ω). Also,

B(u) := h‖u0‖Hk+1(Ω) + ‖u‖L2(0,T ;Hk+1(Ω)) + h‖ut‖L2(0,T ;Hk+1(Ω)) .
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Proof. We begin by choosing vh := Eu in (2.11). Thus, we have

1

2

d

dt
‖Eu‖2L2(Ω) = −(u · ∇hu− uh · ∇huh,E

u)Th︸ ︷︷ ︸
I1

+
∑

F∈Ei
h

〈(uh · n)[[[Eu ]]], {{Eu

h}}〉F

︸ ︷︷ ︸
I2

+ (Πk
h(ut)− ut,E

u)Th −
∑

F∈Ei
h

〈(uh · n)[[[Πk
h(u)− u ]]], {{Eu}}〉F

︸ ︷︷ ︸
I3

, (2.12)

where we have used the fact that ∂tΠ
k
h(u) = Πk

h(ut). Next, note that

I1 = −(u · ∇h{u−Πk
h(u)},Eu)Th − ((u− uh) · ∇hΠ

k
h(u),E

u)Th − (uh · ∇hE
u,Eu)Th ,

= −(u · ∇h{u−Πk
h(u)},Eu)Th − ((u− uh) · ∇hΠ

k
h(u),E

u)Th − I2,

where in the last term, we apply the same arguments of (2.7) by using Eu instead of uh in the last
two functions. Furthermore, using (2.9) we deduce that

I1 + I2 ≤ Cu‖∇h{Πk
h(u)− u}‖L2(Ω)‖Eu‖L2(Ω) + CCu‖u− uh‖L2(Ω)‖Eu‖L2(Ω)

≤ Cu‖∇h{Πk
h(u)− u}‖L2(Ω)‖Eu‖L2(Ω) + CCu

{
‖Πk

h(u)− u‖L2(Ω) + ‖Eu‖L2(Ω)

}
‖Eu‖L2(Ω)

≤ C Cu‖Eu‖2L2(Ω) + C Cu

{
‖Πk

h(u)− u‖2L2(Ω) + ‖∇h{Πk
h(u)− u}‖2L2(Ω)

}
. (2.13)

On the other hand, for I3 it follows

I3 = −
∑

F∈Ei
h

〈(Eu · n)[[[Πk
h(u)− u]]], {{Eu}}〉F +

∑

F∈Ei
h

〈(Πk
h(u) · n)[[[Πk

h(u)− u ]]], {{Eu}}〉F

≤ Ch−1‖Πk
h(u)− u‖L∞(Ω)

∑

F∈Ei
h

hF ‖{{Eu}}‖2L2(F )

+ C‖Πk
h(u)‖L∞(Ω)




∑

F∈Ei
h

h−1
F ‖[[[Πk

h(u)− u]]]‖2L2(F )




1/2 


∑

F∈Ei
h

hF ‖{{Eu}}‖2L2(F )




1/2

. (2.14)

In addition, given v ∈ H1(Th) and applying a discrete trace inequality, we observe that

∑

F∈Ei
h

h−1
F ‖[[[v ]]]‖2L2(F ) ≤ 2

∑

F∈Ei
h

h−1
F

(
‖v+‖2L2(F ) + ‖v−‖2L2(F )

)
≤ 2

∑

T∈Th

∑

F∈∂T

h−1
F ‖v‖2L2(F )

≤ 2Ctr

∑

T∈Th

∑

F∈∂T

h−1
F

{
h−1
T ‖v‖2L2(T ) + hT ‖∇v‖2L2(T )

}

≤ Ĉ
{
h−2‖v‖2L2(Ω) + ‖∇hv‖2L2(Ω)

}
, (2.15)

and, in the same way together with an inverse inequality we obtain

∑

F∈Ei
h

hF ‖{{Eu}}‖2L2(F ) ≤ Ĉ ‖Eu‖2L2(Ω). (2.16)

Hence, replacing (2.15) and (2.16) in (2.14) and using (2.9) we deduce that

I3 ≤ C Cu‖Eu‖2L2(Ω) + C Cu

{
h−2‖Πk

h(u)− u‖2L2(Ω) + ‖∇h{Πk
h(u)− u}‖2L2(Ω)

}
. (2.17)
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Now, we return to (2.12), which satisfies that

1

2

d

dt
‖Eu‖2L2(Ω) ≤ 1

2
‖Eu‖2L2(Ω) +

1

2
‖Πk

h(ut)− ut‖2L2(Ω) + (I1 + I2) + I3,

where, replacing (2.13) and (2.17), we obtain that

d

dt
‖Eu‖2L2(Ω) ≤ C(1 + Cu)‖Eu‖2L2(Ω) + C‖Πk

h(ut)− ut‖2L2(Ω)

+CCu

{
h−2‖Πk

h(u)− u‖2L2(Ω) + ‖∇h{Πk
h(u)− u}‖2L2(Ω)

}
. (2.18)

Hence, applying (2.8) we get

d

dt
‖Eu‖2L2(Ω) ≤ C(1 + Cu)‖Eu‖2L2(Ω) + C(1 +Cu)h

2k
(
h2‖ut‖2Hk+1(Ω) + ‖u‖2Hk+1(Ω)

)
.

which, applying the Gronwall’s inequality (see, e.g. [9]), yields

‖Eu(T, ·)‖2L2(Ω) ≤ exp(C(1 + Cu)T )
{
‖Eu(0, ·)‖2L2(Ω)

+ C(1 + Cu)
(
h2‖ut‖2L2(0,T ;Hk+1(Ω)) + ‖u‖2L2(0,T ;Hk+1(Ω))

)}
.

Finally, we use that ‖Eu(0, ·)‖2L2(Ω) ≤ C h2(k+1)‖u0‖2Hk+1(Ω)
to complete the proof.

The next goal is to establish error estimates for the pressure variable. To do this, we first obtain
an estimate for ∂t(u− uh), which is the subject of the next result.

Lemma 2.2. Assume the same hypotheses of Theorem 2.1. Then, there exists C > 0, independent of
h, such that

‖∂tEu(T, ·)‖L2(Ω) ≤ (C(u)hk−d/2B(u) +Cu)h
k−1

{
C(u)B(u) + ‖u(T, ·)‖Hk+1(Ω)

}

+ Chk+1‖ut(T, ·)‖Hk+1(Ω) .

Proof. First, we take vh := ∂tE
u in (2.11) and using that div(∂tE

u) = ∂tdiv(E
u) = 0, we obtain

‖∂tEu‖2L2(Ω) = −(u · ∇hu− uh · ∇huh, ∂tE
u)Th +

∑

F∈Ei
h

〈(uh · n)[[[Eu ]]], {{∂tEu}}〉F

+ (Πk
h(ut)− ut, ∂tE

u)Th −
∑

F∈Ei
h

〈(uh · n)[[[Πk
h(u)− u]]], {{∂tEu}}〉F

≤ ‖u · ∇hu− uh · ∇huh‖L2(Ω)‖∂tEu‖L2(Ω) + ‖Πk
h(ut)− ut‖L2(Ω)‖∂tEu‖L2(Ω)

+ C‖uh‖L∞(Ω)


 ∑

F∈Ei
h

h−1
F ‖[[[Eu ]]]‖2L2(F )




1/2 
 ∑

F∈Ei
h

hF ‖{{∂tEu}}‖2L2(F )




1/2

+ C‖uh‖L∞(Ω)


 ∑

F∈Ei
h

h−1
F ‖[[[Πk

h(u)− u]]]‖2L2(F )




1/2 
 ∑

F∈Ei
h

hF ‖{{∂tEu}}‖2L2(F )




1/2

.

Next, using (2.15) and (2.16), we deduce after some algebraic manipulation that

‖∂tEu‖L2(Ω) ≤ C
{
h−1‖uh‖L∞(Ω)‖Eu‖L2(Ω) + ‖u · ∇hu− uh · ∇huh‖L2(Ω)

+ ‖Πk
h(ut)− ut‖L2(Ω) + ‖uh‖L∞(Ω)(h

−1‖Πk
h(u)− u‖L2(Ω) + ‖∇h(Π

k
h(u)− u)‖L2(Ω))

}
. (2.19)
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To bound the nonlinear term we add and subtract terms to get

‖u · ∇hu− uh · ∇huh‖L2(Ω) = ‖(u − uh) · ∇hu+ uh · ∇h(u− uh)‖L2(Ω)

≤ Cu‖u− uh‖L2(Ω) + ‖uh‖L∞(Ω)‖∇h(u− uh)‖L2(Ω)

≤ Cu‖u− uh‖L2(Ω) + ‖uh‖L∞(Ω)(‖∇h(u−Πk
hu)‖L2(Ω) + Ch−1‖Eu‖L2(Ω))

≤ Cu‖Eu‖L2(Ω) + Cu‖Πk
h(u)− u‖L2(Ω)

+ ‖uh‖L∞(Ω)(‖∇h(u−Πk
hu)‖L2(Ω) + Ch−1‖Eu‖L2(Ω)),

where we have used an inverse estimate. Therefore,

‖∂tEu‖L2(Ω) ≤ C
{
(h−1‖uh‖L∞(Ω) + Cu)‖Eu‖L2(Ω) + ‖Πk

h(ut)− ut‖L2(Ω)

+ ‖uh‖L∞(Ω) ‖∇h(Π
k
h(u)− u)‖L2(Ω) + (h−1‖uh‖L∞(Ω) + Cu)‖Πk

h(u)− u‖L2(Ω)

}
.

We can bound ‖uh‖L∞(Ω) using an inverse estimate

‖uh‖L∞(Ω) ≤ ‖Eu‖L∞(Ω) + ‖Πk
h(u)‖L∞(Ω) ≤ C h−d/2‖Eu‖L2(Ω) + C Cu. (2.20)

Hence,

‖∂tEu(t)‖L2(Ω) ≤ C
{
h−1(h−d/2‖Eu‖L2(Ω) + Cu)‖Eu‖L2(Ω) + ‖Πk

h(ut)− ut‖L2(Ω)

+ (h−d/2‖Eu‖L2(Ω) + Cu)
(
‖∇h(Π

k
h(u)− u)‖L2(Ω) + h−1‖Πk

h(u)− u‖L2(Ω)

)}
.

Finally, using Theorem 2.1 and (2.8) establishes the result.

Note that in the above proof we have also proved

‖(u · ∇hu− uh · ∇huh)(T, ·)‖L2(Ω) ≤ (C(u)hk−d/2B(u) + Cu)h
k−1

{
C(u)B(u) + ‖u(T, ·)‖Hk+1(Ω)

}

+ Chk+1‖∂tu(T, ·)‖Hk+1(Ω) . (2.21)

We end this section with the a-priori error estimate for the pressure, which is established next.

Theorem 2.2. Assume the hypothesis of Theorem 2.1. Then, there exists C > 0, independent of h,
such that

‖(p− ph)(T, ·)‖L2(Ω) ≤ (C(u)hk−d/2B(u) + Cu + C h)hk−1
{
C(u)B(u) + ‖u(T, ·)‖Hk+1(Ω)

}

+ Chk+1
{
‖ut(T, ·)‖Hk+1(Ω) + ‖p(T, ·)‖Hk+1(Ω)

}
.

Proof. We begin by recalling here the discrete inf-sup given by

β ‖qh‖L2(Ω) ≤ sup
vh∈Vh

vh 6=0

(qh,div(vh))Th
‖vh‖H(div;Ω)

∀ qh ∈ Qh, (2.22)

which, in particular for qh := Ep, it follows

‖Ep‖L2(Ω) ≤ 1

β
sup

vh∈Vh

vh 6=0

(Ep,div(vh))Th
‖vh‖H(div;Ω)

. (2.23)
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Now, from the error equation (2.11) and proceeding as in the proof of Lemma 2.2, we have

(Ep,div(vh))Th = (∂tE
u,vh)Th + (u · ∇hu− uh · ∇huh,vh)Th −

∑

F∈Ei
h

〈(uh · n)[[[Eu ]]], {{vh}}〉F

− (Πk
h(ut)− ut,vh)Th +

∑

F∈Ei
h

〈(uh · n)[[[Πk
h(u)− u]]], {{vh}}〉F + (Pk

h(p)− p,div(vh))Th

≤ ‖∂tEu‖L2(Ω)‖vh‖L2(Ω) + ‖u · ∇hu− uh · ∇huh‖L2(Ω)‖vh‖L2(Ω) + Ch−1‖Eu‖L2(Ω)‖vh‖L2(Ω)

+ C
{
h−1‖Πk

h(u)− u‖L2(Ω) + ‖∇h(Π
k
h(u)− u)|L2(Ω)

}
‖vh‖L2(Ω)

+ ‖Πk
h(ut)− ut‖L2(Ω)‖vh‖L2(Ω) + ‖Pk

h(p)− p‖L2(Ω)‖div(vh)‖L2(Ω).

The above result together with (2.23) establishes

‖Ep‖L2(Ω) ≤ C
{
‖∂tEu‖L2(Ω) + ‖u · ∇hu− uh · ∇huh‖L2(Ω) + h−1‖Eu‖L2(Ω)

+ h−1‖Πk
h(u)− u‖L2(Ω) + ‖∇h(Π

k
h(u)− u)‖L2(Ω) + ‖Πk

h(ut)− ut‖L2(Ω) + ‖Pk
h(p)− p‖L2(Ω)

}
.

Therefore, thanks to ‖p − ph‖L2(Ω) ≤ ‖Ep‖L2(Ω) + ‖Pk
h(p) − p‖L2(Ω), (2.21), Lemma 2.2 and the

approximation properties (2.8) and (2.10), we can easily complete the proof.

Notice the the error estimate for the pressure predicts O(hk−1) (for k ≥ 2) in two and three
dimensions.

2.1.2 Using an upwind flux

Here, we introduce an alternative version of the conforming method (2.5), analyzed in previous sections.
In order to do that, we begin by redefining the numerical flux σ̂ (cf. (2.4)) in a new general form,
given by:

σ̂(uh, ph) := ûw

h ⊗ {{uh}} + {{ph}} I ,
where ûw

h is a new numerical trace for uh related with the convective term. In particular, taking
û
w

h := {{uh}} = 1
2

(
uint
h + uext

h

)
we arrive exactly to the scheme (2.5). That is, the method (2.5)

correspond to a central scheme.

On the other hand, for some problems with high gradients, it is more natural to use an upwind
scheme, in order to get better accuracy and order of convergence. In Section 4 we will present some
examples of this. In fact, we see numerically that using upwind flux gives optimal convergence rates
for both the velocity and pressure variables.

According to above, we consider the following upwind flux

û
w

h :=

{
uint
h if uh · n ≥ 0,

uext
h if uh · n < 0.

This definition is given in the same way of that presented in [12] for the vorticity, and it is not difficult
to check that we can obtain again the method (2.5), with an extra term given by a weighted full jumps
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onto E i
h. That is, we seek uh ∈ Vh and ph ∈ Qh, such that

(∂tuh,vh)Th + (uh · ∇huh,vh)Th −
∑

F∈Ei
h

〈 (uh · n) [[[uh ]]], {{vh}}〉F

+
∑

F∈Ei
h

〈 |uh · n| [[[uh ]]], [[[vh ]]]〉F − (ph,div(vh))Th = 0 ∀ vh ∈ Vh, (2.24)

(qh,div(uh))Th = 0 ∀ qh ∈ Qh,

uh(0,x) = uh,0(x) in Ω.

It is important to remark here, that the introduction of this new term does not pose any difficulty
in order to prove stability and convergence. In fact, both follow the same arguments, using that
when vh = uh this term is positive. In particular, the error estimates are basically the same and the
stability, see remark after the proof of Lemma 2.1, now is given by ‖uh(t, · )‖L2(Ω) ≤ ‖uh,0‖L2(Ω) for
each t ∈ (0, T ).

2.2 DG schemes

In this section, we introduce a discontinuous Galerkin method for the model problem (2.2). The
velocity space will consist of polynomials of degree k + 1 for the fully discontinuous subspace

V
dg
h :=

{
v ∈ L2(Ω) : v|T ∈ Pk+1(T ) ∀ T ∈ Th and v · n = 0 on Γ

}
,

whereas, the pressure space remains unchanged. That is,

Qh :=
{
q ∈ L2

0(Ω) : q|T ∈ Pk(T ) ∀ T ∈ Th
}
.

In the previous section we only defined the jumps and averages on the interior faces/edges. Here
we also define them on boundary faces. That is, for F ∈ E∂

h , as is usual, we set

{{v}} := v, [[v · n]] := v · n and {{q}} := q.

Thus, in order to define the approximation scheme, we first introduce a postprocessed flux. For
each v ∈ H1(Th), we find v⋆ ∈ Pk+1(Th) such that

∫

F
(v⋆ · n)q =

∫

F
({{v}} · n)q ∀ q ∈ Pk+1(F ), ∀ F ∈ ∂T, (2.25)

∫

T
v⋆ · p =

∫

T
v · p ∀ p ∈ NDk−1(T ), (2.26)

for each T ∈ Th. Note that if vh ∈ V
dg
h then v⋆ ∈ BDM0

k+1(Ω) where,

BDMk+1(Ω) := {v ∈ H(div; Ω) : v|T ∈ Pk+1(T ) ∀ T ∈ Th}
BDM0

k+1(Ω) := {v ∈ BDMk+1(Ω) : v · n = 0 on Γ}.

For this postprocessed flux, we have the following result.

Lemma 2.3. Given T ∈ Th and vh ∈ Pk+1(T ), there is exists a constants C⋆ > 0, independent of T ,
such that

‖v⋆
h − vh‖L2(T ) ≤ C⋆ h

1/2
T

∑

F∈∂T

‖[[vh · n]]‖L2(F ) .

10



Proof. We proceed as in [6, Lemma 4.2]. Indeed, if we set δ := v⋆
h − vh ∈ Pk+1(T ) we have that δ

satisfying the equations
∫

F
(δ · n)q =

∫

F
({{vh}} − vh) · nq ∀ q ∈ Pk+1(F ), ∀ F ∈ ∂T,

∫

T
δ · p = 0 ∀ p ∈ NDk−1(T ).

The result together with a scaling argument (see [2]), imply that

‖δ‖L2(T ) ≤ C h
1/2
T ‖({{vh}} − vh) · n‖0,∂T ,

which, using the fact that ({{vh}} − vh) · n = ±[[vh · n]], we complete the proof.

Now, similar as in (2.3), we consider the Galerkin scheme: Find (uh, ph) ∈ V
dg
h ×Qh, such that

(∂tuh,vh)Th − (uh ⊗ u⋆
h,∇hvh)Th − (ph,divh(vh))Th + 〈σ̂(uh, ph)n,vh〉∂Th = 0,

−(∇hqh,uh)Th + 〈ûh · n, qh〉∂Th = 0, (2.27)

uh(0,x) = uh,0(x) in Ω,

for all (vh, qh) ∈ V
dg
h ×Qh, where

σ̂(uh, ph) := {{uh}} ⊗ {{u⋆
h}} + {{ph}} I + αh−1

F [[uh · n]] I, (2.28)

and α > 0 is stabilization parameter. In addition, we define the numerical flux ûh as

ûh := {{uh}} on Eh.

Thus, from the second equation of (2.27) and the definition of u⋆
h (cf. (2.25) and (2.26)), we note

that

0 = −(∇hqh,uh)Th + 〈ûh · n, qh〉∂Th = −(∇hqh,u
⋆
h)Th + 〈u⋆

h · n, qh〉∂Th = (qh,div(u
⋆
h))Th

for all qh ∈ Qh. The above identity and the fact that div(u⋆
h)|T ∈ Pk(T ) for each T ∈ Th, imply that

u⋆
h is divergence-free. This conclusion and the fact that u⋆

h has a continuous normal component are
the main reasons that while we consider u⋆

h instead of uh in the method (2.27).

Then, using integration by parts, the fact that div(uh ⊗ u⋆
h) = u⋆

h · ∇uh (cf. (2.1)), and the
definition of the numerical fluxes, it is not difficult to check that the above DG scheme is as follows:
Find uh ∈ V

dg
h and ph ∈ Qh such that

(∂tuh,vh)Th + (u⋆
h · ∇huh,vh)Th + α

∑

F∈Ei
h

h−1
F 〈[[uh · n]], [[vh · n]]〉F

−
∑

F∈Ei
h

〈(u⋆
h · n)[[[uh ]]], {{vh}}〉F − (ph,divh(vh))Th +

∑

F∈Ei
h

〈[[vh · n]], {{ph}}〉F = 0, (2.29)

(qh,divh(uh))Th −
∑

F∈Ei
h

〈[[uh · n]], {{qh}}〉F = 0,

uh(0,x) = uh,0(x) in Ω,

for all (vh, qh) ∈ V
dg
h ×Qh. It is important to note here, that uh is not necessarily divergence-free as

in the method of Section 2.1. In addition, unlike the methods in the previous section, the DG method
(2.29) is locally conservative.
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Lemma 2.4 (Stability). Given uh ∈ V
dg
h the solution of (2.29). Then, we have

d

dt
‖uh‖2L2(Ω) ≤ 0.

Proof. We take vh := uh and qh := ph in (2.29), and then we deduce

1

2

d

dt
‖uh‖2L2(Ω) + (u⋆

h · ∇huh,uh)Th + α
∑

F∈Ei
h

h−1
F ‖[[uh · n]]‖2L2(F ) −

∑

F∈Ei
h

〈(u⋆
h · n)[[[uh ]]], {{uh}}〉F = 0.

Next, with that same arguments of (2.7), we have

(u⋆
h · ∇huh,uh)Th −

∑

F∈Ei
h

〈(u⋆
h · n)[[[uh ]]], {{uh}}〉F = 0,

which establish that

1

2

d

dt
‖uh‖2L2(Ω) + α

∑

F∈Ei
h

h−1
F ‖[[uh · n]]‖2L2(F ) = 0.

Finally, from the fact that α > 0, we complete the proof.

2.2.1 Error estimates for DG method

Now we are ready to provide error estimates for the DG scheme (2.29). We will need to define the
BDM/Nédélec projection.

∫

F
((ΠBDM

h v− v) · n)q = 0 ∀ q ∈ Pk+1(F ), ∀ F ∈ ∂T, (2.30)

∫

T
(ΠBDM

h (v)− v) · p = 0 ∀ p ∈ NDk−1(T ) . (2.31)

We have the following approximation results for 1 ≤ m ≤ k + 2.

‖v−ΠBDM
h (v)‖L2(T ) + hT ‖∇(v−ΠBDM

h (v))‖L2(T ) ≤ C hmT |v|m,T ∀ T ∈ Th. (2.32)

Moreover, we also have the following bounds

‖v−ΠBDM
h (v)‖L∞(T ) + hT ‖∇(v−ΠBDM

h (v))‖L∞(T ) ≤ C hT ‖∇v‖L∞(T ) ∀ T ∈ Th. (2.33)

Let now Eu = ΠBDM
h (u)− uh and Ep = Pk

h(p)− ph. Then, we follow (2.11) and consider the error
equations:

(∂tE
u,vh)Th + (u · ∇hu− u⋆

h · ∇huh,vh)Th + α
∑

F∈Ei
h

h−1
F 〈[[Eu · n]], [[vh · n]]〉F

−
∑

F∈Ei
h

〈(u⋆
h · n)[[[Eu ]]], {{vh}}〉F − (Ep,divh(vh))Th +

∑

F∈Ei
h

〈[[vh · n]], {{Ep}}〉F

= (∂t(Π
BDM
h (u)− u),vh)Th + α

∑

F∈Ei
h

h−1
F 〈[[(ΠBDM

h (u)− u) · n]], [[vh · n]]〉F

−
∑

F∈Ei
h

〈(u⋆
h · n)[[[ΠBDM

h (u)− u]]], {{vh}}〉F − (Pk
h(p)− p,divh(vh))Th

+
∑

F∈Ei
h

〈[[vh · n]], {{Pk
h (p)− p}}〉F , (2.34)

(qh,divh(E
u))Th −

∑

F∈Ei
h

〈[[Eu · n]], {{qh}}〉F = 0,
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for all (vh, qh) ∈ V
dg
h ×Qh.

Theorem 2.3. Assume that u ∈ W 1,∞([0, T ] × Ω)d. Also, suppose that Th is quasi-uniform. Then,
there exists C > 0, independent of h, such that

‖(u− uh)(T, ·)‖L2(Ω) ≤ C(u)hk+1B(u)

where
C(u) := (1 + C(1 + Cu)) exp(C(1 + Cu)T ),

with Cu := ‖u‖W 1,∞([0,T ]×Ω). Also,

B(u) := h‖u0‖Hk+2(Ω) + ‖u‖L2(0,T ;Hk+2(Ω)) + h‖ut‖L2(0,T ;Hk+2(Ω)) + ‖p‖L2(0,T ;Hk+1(Ω)) .

Proof. We begin by choosing vh := Eu and qh := Ep in the error equations (2.34). Then, we have
that

1

2

d

dt
‖Eu‖2L2(Ω) + α

∑

F∈Ei
h

h−1
F ‖[[Eu · n]]‖2L2(F ) = −(u · ∇hu− u⋆

h · ∇huh,E
u)Th︸ ︷︷ ︸

I1

+
∑

F∈Ei
h

〈(u⋆
h · n)[[[Eu ]]], {{Eu}}〉F

︸ ︷︷ ︸
I2

+ (ΠBDM
h (ut)− ut,E

u)Th

+ α
∑

F∈Ei
h

h−1
F 〈[[(ΠBDM

h (u)− u) · n]], [[Eu · n]]〉F

︸ ︷︷ ︸
I3

−
∑

F∈Ei
h

〈(u⋆
h · n)[[[ΠBDM

h (u)− u]]], {{Eu}}〉F

︸ ︷︷ ︸
I4

− (Pk
h(p)− p,divh(E

u))Th︸ ︷︷ ︸
I5

+
∑

F∈Ei
h

〈[[Eu · n]], {{Pk
h (p)− p}}〉F

︸ ︷︷ ︸
I6

. (2.35)

Next, we want to find bounds for Ii, i = 1, . . . , 6. First since divh(E
u) is a piecewise polynomial of

degree k we have I5 = 0. Also, note that by (2.30) I3 = 0. Before we bound the rest of the terms. We
note that by Lemma 2.3 and [[ΠBDM

h (u) · n]] = 0, we know

‖uh − u⋆
h‖2L2(Ω) ≤ C

∑

F∈Eh

hF ‖[[uh · n]]‖2L2(F ) = C
∑

F∈Eh

hF ‖[[Eu · n]]‖2L2(F ) ≤ C‖Eu‖2L2(Ω). (2.36)

Now we bound I1, using that

I1 = −(u · ∇h

{
u−ΠBDM

h (u)
}
,Eu)Th − ((u− u⋆

h) · ∇hΠ
BDM
h (u),Eu)Th − (u⋆

h · ∇hE
u,Eu)Th ,

= −(u · ∇h

{
u−ΠBDM

h (u)
}
,Eu)Th − ((u− u⋆

h) · ∇hΠ
BDM
h (u),Eu)Th − I2,

where in last term, we apply the same argument of (2.7) as in the proof of Theorem 2.1. Furthermore,
using that ‖u‖L∞(Ω) ≤ Cu and ‖∇hΠ

BDM
h (u)‖L∞(Ω) ≤ C Cu (see (2.33)), we deduce that

I1 + I2 ≤ Cu‖∇h{ΠBDM
h (u)− u}‖L2(Ω)‖Eu‖L2(Ω) + C Cu‖u− u⋆

h‖L2(Ω)‖Eu‖L2(Ω)

≤ CCu

{
‖∇h{ΠBDM

h (u)− u}‖L2(Ω) + ‖ΠBDM
h (u)− u‖L2(Ω) + ‖Eu‖L2(Ω)

}
‖Eu‖L2(Ω)

+ C Cu‖uh − u⋆
h‖L2(Ω)‖Eu‖L2(Ω)

≤ C Cu ‖Eu‖2L2(Ω) + C Cu‖ΠBDM
h (u)− u‖2L2(Ω) + C Cu‖∇h{ΠBDM

h (u)− u}‖2L2(Ω), (2.37)

where we also used (2.36).
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In the case of I4, from ‖ΠBDM
h (u)‖L∞(Ω) ≤ Cu, note that

I4 =
∑

F∈Ei
h

〈({{u⋆
h}} · n)[[[ΠBDM

h (u)− u]]], {{Eu}}〉F

=
∑

F∈Ei
h

〈({{u⋆
h − uh}} · n)[[[ΠBDM

h (u)− u]]], {{Eu}}〉F −
∑

F∈Ei
h

〈({{Eu}} · n)[[[ΠBDM
h (u)− u]]], {{Eu}}〉F

+
∑

F∈Ei
h

〈({{ΠBDM
h (u)}} · n)[[[ΠBDM

h (u)− u ]]], {{Eu}}〉F

≤ ‖ΠBDM
h (u)− u‖L∞(Ω)


 ∑

F∈Ei
h

h−1
F ‖{{u⋆

h − uh}}‖2L2(F )




1/2 
 ∑

F∈Ei
h

hF ‖{{Eu}}‖2L2(F )




1/2

+ ‖ΠBDM
h (u)− u‖L∞(Ω)

∑

F∈Ei
h

‖{{Eu}}‖2L2(F )

+ Cu


 ∑

F∈Ei
h

h−1
F ‖[[[ΠBDM

h (u)− u]]]‖2L2(F )




1/2 
 ∑

F∈Ei
h

hF ‖{{Eu}}‖2L2(F )




1/2

,

and from (2.15), (2.16), and (2.36) with an inverse inequality, we deduce that

I4 ≤ ‖uh − u⋆
h‖L2(Ω)

(
Ch−1‖ΠBDM

h (u)− u‖L∞(Ω)

)
‖Eu‖L2(Ω)

+
(
Ch−1‖ΠBDM

h (u)− u‖L∞(Ω)

)
‖Eu‖2L2(Ω) + C Cu

{
h−2‖ΠBDM

h (u)− u‖2L2(Ω)

+ ‖∇h{ΠBDM
h (u)− u}‖2L2(Ω)

}
+ C Cu‖Eu‖2L2(Ω)

≤ C
(
1 + h−1‖ΠBDM

h (u)− u‖L∞(Ω)

)
‖Eu‖2L2(Ω)

+ Ch−2‖ΠBDM
h (u)− u‖2L2(Ω) + C‖∇h{ΠBDM

h (u)− u}‖2L2(Ω).

In addition, applying (2.33), we conclude that

I4 ≤ C Cu ‖Eu‖2L2(Ω) + C Cu

{
h−2‖ΠBDM

h (u)− u‖2L2(Ω) + ‖∇h{ΠBDM
h (u)− u}‖2L2(Ω)

}
. (2.38)

Now, in similar way to (2.15), given q ∈ H1(Th) we have that

∑

F∈Ei
h

hF ‖{{q}}‖2L2(F ) ≤ Ĉ
{
‖q‖2L2(Ω) + h2‖∇hq‖2L2(Ω)

}
,

which allows us to deduce

I6 =
∑

F∈Eh

〈h−1/2
F [[Eu · n]], h

1/2
F {{Pk

h (p)− p}}〉F ≤ α

2

∑

F∈Eh

h−1
F ‖[[Eu · n]]‖2L2(F )

+ C
∑

F∈Ei
h

hF ‖{{Pk
h (p)− p}}‖2L2(F )

≤ α

2

∑

F∈Eh

h−1
F ‖[[Eu · n]]‖2L2(F ) + C ‖Pk

h(p)− p‖2L2(Ω) + C h2‖∇h{Pk
h(p)− p}‖2L2(Ω). (2.39)
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On the other hand, replacing (2.37)−(2.39) in (2.35), we obtain that

1

2

d

dt
‖Eu‖2L2(Ω) +

α

2

∑

F∈Ei
h

h−1
F ‖[[Eu · n]]‖2L2(F ) ≤ C Cu‖Eu‖2L2(Ω) +

1

2
‖ΠBDM

h (ut)− ut‖2L2(Ω)

+ C Cu

{
h−2‖ΠBDM

h (u)− u‖2L2(Ω) + ‖∇h{ΠBDM
h u− u}‖2L2(Ω)

}
+ C ‖Pk

h(p)− p‖2L2(Ω)

+ Ch2‖∇h{Pk
h(p)− p}‖2L2(Ω).

Hence, using (2.32) we have

d

dt
‖Eu‖2L2(Ω) ≤ C(1 +Cu)‖Eu‖2L2(Ω)

+ C(1 + Cu)h
2(k+1)

{
h2‖ut‖2Hk+2(Ω) + ‖u‖2Hk+2(Ω) + ‖p‖Hk+1(Ω)

}
.

Finally, applying Gronwall’s inequality gives the result.

Theorem 2.4. Assuming the hypothesis of the previous theorem we have the existence of a C > 0,
independent of h, such that

‖(p − ph)(T, ·)‖L2(Ω) ≤ (C(u)hk+1−d/2B(u) + Cu + C )hk
{
C(u)B(u) + ‖u(T, ·)‖Hk+2(Ω)

}

+ Chk+1
{
h‖ut(T, ·)‖Hk+2(Ω) + ‖p(T, ·)‖Hk+1(Ω)

}
.

Proof. Similar to the proof of Theorem 2.2.

2.2.2 Upwind flux for DG method

Similarly as Section 2.1.2, we now introduce a DG method using an upwind flux. Indeed, as before,
we redefine the numerical flux σ̂ (see (2.28)) in the form

σ̂(uh, ph) := û
w

h ⊗ {{u⋆
h}} + {{ph}} I + αh−1

F [[uh · n]] I,

where we take û
w

h as

û
w

h :=

{
uint
h if u⋆

h · n ≥ 0,

uext
h if u⋆

h · n < 0.

Once again, with this definition we can obtain again the method (2.29), with an extra consistent
term given by ∑

F∈Ei
h

〈 |u⋆
h · n| [[[uh ]]], [[[vh ]]]〉F ,

which, allow us to prove stability and convergence in the same way of before, using the fact that when
vh = uh the above term is positive. Summarizing, we find uh ∈ V

dg
h and ph ∈ Qh such that

(∂tuh,vh)Th + (u⋆
h · ∇huh,vh)Th + α

∑

F∈Ei
h

h−1
F 〈[[uh · n]], [[vh · n]]〉F

−
∑

F∈Ei
h

〈 (u⋆
h · n) [[[uh ]]], {{vh}}〉F +

∑

F∈Ei
h

〈 |u⋆
h · n| [[[uh ]]], [[[vh ]]]〉F

− (ph,divh(vh))Th +
∑

F∈Ei
h

〈[[vh · n]], {{ph}}〉F = 0, (2.40)

(qh,divh(uh))Th −
∑

F∈Ei
h

〈[[uh · n]], {{qh}}〉F = 0,

uh(0,x) = uh,0(x) in Ω,

15



for all (vh, qh) ∈ V
dg
h ×Qh.

3 Fully-discrete methods

In this section we define fully-discrete versions of both approaches introduced in Section 2. In order
to do that, for the time discretization we consider the backward Euler method, that is, we write

ut(tn+1, · ) =
1

∆t

{
u(tn+1, · ) − u(tn, · )

}
+ E0(tn+1), (3.1)

where ∆t > 0 is the time step, tn := n∆t, 0 ≤ n ≤ N , and E0(tn+1) is the truncation error. We know
that

‖E0(tn+1)‖L2(Ω) ≤ C

∫ tn+1

tn

‖utt(s, ·)‖L2(Ω) ds. (3.2)

For simplicity of the following analysis we denote un := u(tn, · ) for the exact value and un
h :=

uh(tn, · ) for the approximation. Also, given Πk
h the corresponding projection used before in each

case, respectively, we define enu := Πk
h(u

n) − un
h as the discrete error. Similar convention is used for

the pressure variable.

On the other hand, using (3.1) we have that the exact solution of (1.1) satisfies that

(un+1,vh)Th + ∆t(un+1 · ∇un+1,vh)Th − ∆t(pn+1,div(vh))Th = (un,vh)Th − ∆t(E0(tn+1),vh)Th ,

(qh,div(u
n+1))Th = 0,

or equivalently,

(un+1,vh)Th + ∆t(un · ∇un+1,vh)Th − ∆t(pn+1,div(vh))Th = (un,vh)Th

+ ∆t((un − un+1) · ∇un+1,vh)Th − ∆t(E0(tn+1),vh)Th , (3.3)

(qh,div(u
n+1))Th = 0,

for all (vh, qh) ∈ V
dg
h ×Qh. We recall here that Vh ⊂ V

dg
h .

3.1 H(div) conforming methods

Next, using (3.1) in the semi-discrete method (2.5), we introduce the fully-discrete approximation as:
Find (un+1

h , pn+1
h ) ∈ Vh ×Qh such that

(un+1
h ,vh)Th + ∆t(un

h · ∇hu
n+1
h ,vh)Th − ∆t

∑

F∈Ei
h

〈(un
h · n)[[[un+1

h ]]], {{vh}}〉F

− ∆t(pn+1
h ,div(vh))Th = (un

h,vh)Th , (3.4)

(qh,div(u
n+1
h ))Th = 0,

for all (vh, qh) ∈ Vh×Qh. Note that we eliminated the nonlinearity of the problem using the previous
approximation. Also, it follows from the proof of Lemma 2.1 that when we take vh := un+1

h in (3.4),
we have

‖un+1
h ‖2L2(Ω) = (un

h,u
n+1
h )Th ,

which establish that ‖un+1
h ‖L2(Ω) ≤ ‖un

h‖L2(Ω), that is, the method (3.4) is stable.

Our next goal is establish an error estimate for the velocity.
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Theorem 3.1. Assume that u ∈ W 1,∞([0, T ] × Ω)d is uniformly bounded. Also, suppose that Th is
quasi-uniform. Then, there exists C > 0, independent of h, such that

‖un − un
h‖L2(Ω) ≤ C exp(C Cu T ) (h

k +∆t)A(u), for all 0 ≤ n ≤ N ,

with Cu := ‖u‖W 1,∞([0,T ]×Ω). Also, where

A(u) := (h
√
T + CuT

3/2)‖ut‖L2(0,T ;Hk+1(Ω)) + Cu

√
T‖ut‖L2(0,T ;L2(Ω)) +

√
T‖utt‖L2(0,T ;L2(Ω))

+ (CuT + h)‖u0‖Hk+1(Ω) .

Proof. We begin by subtracting equation (3.3) from equation (3.4) together with the fact that
[[[un+1 ]]] = 0 on E i

h, in order to obtain the error equation

(en+1
u ,vh)Th + ∆t(un · ∇hu

n+1 − un
h · ∇hu

n+1
h ,vh)Th − ∆t

∑

F∈Ei
h

〈(un
h · n)[[[en+1

u ]]], {{vh}}〉F

− ∆t(pn+1 − pn+1
h ,div(vh))Th = (un − un

h,vh)Th + (Πk
h(u

n+1)− un+1,vh)Th

+ ∆t((un − un+1) · ∇un+1,vh)Th −∆t
∑

F∈Ei
h

〈(un
h · n)[[[Πk

h(u
n+1)− un+1 ]]], {{vh}}〉F

− ∆t(E0(tn+1),vh)Th . (3.5)

Now, we take vh := en+1
u and using that div(en+1

u ) = 0 in Ω, it follows that

‖en+1
u ‖2L2(Ω) = −∆t(un · ∇hu

n+1 − un
h · ∇hu

n+1
h , en+1

u )Th︸ ︷︷ ︸
I1

+ ∆t
∑

F∈Ei
h

〈(un
h · n)[[[en+1

u ]]], {{en+1
u }}〉F

︸ ︷︷ ︸
I2

+ (un − un
h, e

n+1
u )Th + (Πk

h(u
n+1)− un+1, en+1

u )Th + ∆t((un − un+1) · ∇un+1, en+1
u )Th

− ∆t
∑

F∈Ei
h

〈(un
h · n)[[[Πk

h(u
n+1)− un+1 ]]], {{en+1

u }}〉F

︸ ︷︷ ︸
I3

− ∆t(E0(tn+1), e
n+1
u )Th , (3.6)

which, in similar way to (2.13), we note that

I1 + I2 = −∆t(un · ∇h{un+1 −Πk
h(u

n+1)}, en+1
u )Th − ∆t((un − un

h) · ∇hΠ
k
h(u

n+1), en+1
u )Th

≤ ∆t
{
Cu‖∇h{Πk

h(u
n+1)− un+1}‖L2(Ω) + C Cu‖Πk

h(u
n)− un‖L2(Ω)

+ C Cu‖enu‖L2(Ω)

}
‖en+1

u ‖L2(Ω), (3.7)

where, we used that ‖un‖L∞(Ω) ≤ Cu and ‖∇hΠ
k
h(u

n+1)‖L∞(Ω) ≤ C Cu. Also, follows (2.14) and using
(2.15), (2.16) and (2.9), we have

I3 ≤ C∆t




h−1‖Πk

h(u
n+1)− un+1‖L∞(Ω)


 ∑

F∈Ei
h

hF ‖{{enu}}‖2L2(F )




1

2

+ ‖Πk
h(u

n)‖L∞(Ω)




∑

F∈Ei
h

h−1
F ‖[[[Πk

h(u
n+1)− un+1 ]]]‖2L2(F )




1

2








∑

F∈Ei
h

hF ‖{{en+1
u }}‖2L2(F )




1

2

≤ C Cu∆t
{
‖enu‖L2(Ω) + h−1‖Πk

h(u
n+1)− un+1‖L2(Ω)

+ ‖∇h{Πk
h(u

n+1)− un+1}‖L2(Ω)

}
‖en+1

u ‖L2(Ω). (3.8)
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On the other hand, we return to (3.6), and observe

‖en+1
u ‖2L2(Ω) ≤

{
‖enu‖L2(Ω) + ‖Πk

h(u
n+1 − un)− (un+1 − un)‖L2(Ω) + Cu∆t‖un+1 − un‖L2(Ω)

+ ∆t‖E0(tn+1)‖L2(Ω)

}
‖en+1

u ‖L2(Ω) + (I1 + I2) + I3,

which, replacing (3.7) and (3.8), we deduce that

‖en+1
u ‖L2(Ω) ≤ (1 + CCu∆t) ‖enu‖L2(Ω) + ‖Πk

h(u
n+1 − un)− (un+1 − un)‖L2(Ω)

+ C Cu∆t
{
‖Πk

h(u
n)− un‖L2(Ω) + h−1‖Πk

h(u
n+1)− un+1‖L2(Ω).

+ ‖∇h{Πk
h(u

n+1)− un+1}‖L2(Ω)

}
+ ∆t

{
Cu ‖un+1 − un‖L2(Ω) + ‖E0(tn+1)‖L2(Ω)

}
.

Next, using that

(un+1 − un)(x) =

∫ tn+1

tn

ut(s,x) ds , (3.9)

together with (2.8), it follows that

‖Πk
h(u

n+1 − un)− (un+1 − un)‖L2(Ω) ≤ Chk+1

∫ tn+1

tn

‖ut(s, ·)‖Hk+1(Ω) ds .

Similarly, we can show

∆t Cu ‖un+1 − un‖L2(Ω) ≤ ∆t C Cu

∫ tn+1

tn

‖ut(s, ·)‖L2(Ω) ds

and, from (3.2),

∆t ‖E0(tn+1)‖L2(Ω) ≤ C∆t

∫ tn+1

tn

‖utt(s, ·)‖L2(Ω) ds .

In addition, using that

un+1(x) = u0(x) +

∫ tn+1

0
ut(s,x) ds , (3.10)

and (2.8), we have

h−1‖Πk
h(u

n+1)− un+1‖L2(Ω) ≤ Chk
{
‖u0‖Hk+1(Ω) +

∫ tn+1

0
‖ut(s, ·)‖Hk+1(Ω) ds

}
.

Analogously, we can show

C Cu∆t
{
‖Πk

h(u
n)− un‖L2(Ω) + h−1‖Πk

h(u
n+1)− un+1‖L2(Ω) + ‖∇h{Πk

h(u
n+1)− un+1}‖L2(Ω)

}

≤ C Cu∆t hk
{
‖u0‖Hk+1(Ω) +

∫ tn+1

0
‖ut(s, ·)‖Hk+1(Ω) ds

}
.

Therefore, gathering together all the above equations, we deduce that

‖en+1
u ‖L2(Ω) ≤ (1 + CCu∆t) ‖enu‖L2(Ω) + C(∆t+ hk)B(u, n) , (3.11)
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where

B(u, n) := h

∫ tn+1

tn

‖ut(s, ·)‖Hk+1(Ω) ds + Cu

∫ tn+1

tn

‖ut(s, ·)‖L2(Ω) ds +

∫ tn+1

tn

‖utt(s, ·)‖L2(Ω) ds

+ ∆t Cu

{
‖u0‖Hk+1(Ω) +

∫ tn+1

0
‖ut(s, ·)‖Hk+1(Ω) ds

}
.

Now, from the recurrence relation (3.11), we obtain that

‖enu‖L2(Ω) ≤ (1 + C Cu∆t)n ‖e0u‖L2(Ω) + C

{
n−1∑

i=0

(1 + Cu∆t)iB(u, n− 1− i)

}
(hk +∆t)

≤ C (1 +C Cu∆t)n (hk +∆t)

{
h‖u0‖Hk+1(Ω) +

n−1∑

i=0

B(u, n− 1− i)

}

= C

(
1 + C

Cu T

n

)n

(hk +∆t)

{
h‖u0‖Hk+1(Ω) +

n−1∑

i=0

B(u, n− 1− i)

}
.

Finally, noting that

n−1∑

i=0

B(u, n− 1− i) ≤ h

∫ tn

0
‖ut(s, ·)‖Hk+1(Ω) ds + Cu

∫ tn

0
‖ut(s, ·)‖L2(Ω) ds

+

∫ tn

0
‖utt(s, ·)‖L2(Ω) ds + Cutn

{
‖u0‖Hk+1(Ω) +

∫ tn

0
‖ut(s, ·)‖Hk+1(Ω) ds

}
,

the result now follows by using Cauchy-Schwarz inequality.

Now, we establish the a-priori error estimate for the pressure, and for that we first consider the
next result.

Lemma 3.1. Assuming the hypothesis of the previous theorem we have the existence of a C > 0,
independent of h, such that for all 0 ≤ n ≤ N

∥∥∥∥∥
un+1 − un+1

h

∆t
− un − un

h

∆t

∥∥∥∥∥
L2(Ω)

≤ C Ch,∆t(u) exp(C Cu T )

(
hk−1 +

∆t

h

)
A(u)

+ C
{
1 +Ch,∆t(u)

}
(hk +∆t)Dn(u) ,

where
Ch,∆t(u) := exp(C Cu T )h

−d/2 (hk +∆t)A(u) + Cu

and

Dn(u) := h ‖ut‖L∞(tn,tn+1;Hk+1(Ω)) + ‖ut‖L∞(tn,tn+1;L2(Ω)) + ‖utt‖L∞(tn,tn+1;L2(Ω))

+ ‖u‖L∞(tn,tn+1;Hk+1(Ω)) .

Proof. From the error equation (3.5) we have

(δh,vh)Th = −(un · ∇hu
n+1 − un

h · ∇hu
n+1
h ,vh)Th +

∑

F∈Ei
h

〈(un
h · n)[[[un+1 − un+1

h ]]], {{vh}}〉F

+ (pn+1 − pn+1
h ,div(vh))Th +

1

∆t
(Πk

h(u
n+1 − un)− (un+1 − un),vh)Th

+ ((un − un+1) · ∇un+1,vh)Th − (E0(tn+1),vh)Th ∀ vh ∈ Vh ,
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where δh := 1
∆t(e

n+1
u − enu). Then, taking vh := δh and using that div(δh) = 0, we deduce that

‖δh‖2L2(Ω) ≤ ‖un · ∇hu
n+1 − un

h · ∇hu
n+1
h ‖L2(Ω)‖δh‖L2(Ω)

+ C‖un
h‖L∞(Ω)


 ∑

F∈Ei
h

h−1
F ‖[[[un+1 − un+1

h ]]]‖2L2(F )




1/2 
 ∑

F∈Ei
h

hF ‖{{δh}}‖2L2(F )




1/2

+

∥∥∥∥Π
k
h

(
un+1 − un

∆t

)
−

(
un+1 − un

∆t

)∥∥∥∥
L2(Ω)

‖δh‖L2(Ω)

+ Cu‖un+1 − un‖L2(Ω)‖δh‖L2(Ω) + ‖E0(tn+1)‖L2(Ω)‖δh‖L2(Ω) .

Now, we follow the proof of Lemma 2.2, to obtain that

‖un · ∇hu
n+1 − un

h · ∇hu
n+1
h ‖L2(Ω) ≤ Cu‖un − un

h‖L2(Ω)

+ C (h−d/2‖enu‖L2(Ω) + Cu)
{
h−1‖en+1

u ‖L2(Ω) + ‖∇h{Πk
h(u

n+1)− un+1}‖L2(Ω)

}
, (3.12)

and from (2.15) and (2.20) we have

‖un
h‖L∞(Ω)




∑

F∈Ei
h

h−1
F ‖[[[un+1 − un+1

h ]]]‖2L2(F )




1

2

≤ C (h−d/2‖enu‖L2(Ω) + Cu)
{
h−1‖un+1 − un+1

h ‖L2(Ω)

+ h−1‖Πk
h(u

n+1)− un+1‖L2(Ω) + ‖∇h{Πk
h(u

n+1)− un+1}‖L2(Ω)

}
. (3.13)

Next, applying (3.12) and (3.13), together with (2.16), it follows that

‖δh‖L2(Ω) ≤ Cu‖un − un
h‖L2(Ω) + Ch−1(h−d/2‖enu‖L2(Ω) + Cu)‖un+1 − un+1

h ‖L2(Ω)

+ C(h−d/2‖enu‖L2(Ω) + Cu)
{
h−1‖Πk

h(u
n+1)− un+1‖L2(Ω)

+ ‖∇h{Πk
h(u

n+1)− un+1}‖L2(Ω)

}
+

∥∥∥∥Π
k
h

(
un+1 − un

∆t

)
−

(
un+1 − un

∆t

)∥∥∥∥
L2(Ω)

+ Cu‖un+1 − un‖L2(Ω) + ‖E0(tn+1)‖L2(Ω) .

On the other hand, using the fact that

∥∥∥∥∥
un+1 − un+1

h

∆t
− un − un

h

∆t

∥∥∥∥∥
L2(Ω)

≤
∥∥∥∥Π

k
h

(
un+1 − un

∆t

)
−

(
un+1 − un

∆t

)∥∥∥∥
L2(Ω)

+ ‖δh‖L2(Ω) ,

we have
∥∥∥∥∥
un+1 − un+1

h

∆t
− un − un

h

∆t

∥∥∥∥∥
L2(Ω)

≤ Cu‖un − un
h‖L2(Ω)

+ Ch−1(h−d/2‖enu‖L2(Ω) + Cu)‖un+1 − un+1
h ‖L2(Ω)

+ C(h−d/2‖enu‖L2(Ω) + Cu)
{
h−1‖Πk

h(u
n+1)− un+1‖L2(Ω)

+ ‖∇h{Πk
h(u

n+1)− un+1}‖L2(Ω)

}
+ 2

∥∥∥∥Π
k
h

(
un+1 − un

∆t

)
−

(
un+1 − un

∆t

)∥∥∥∥
L2(Ω)

+ Cu‖un+1 − un‖L2(Ω) + ‖E0(tn+1)‖L2(Ω) . (3.14)
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Next, we proceed as in the last part of the proof of Theorem 3.1. Indeed, from (2.8), we obtain
that

h−1‖Πk
h(u

n+1)− un+1‖L2(Ω) + ‖∇h{Πk
h(u

n+1)− un+1}‖L2(Ω)

≤ Chk ‖un+1‖Hk+1(Ω) ≤ Chk ‖u‖L∞(tn,tn+1;Hk+1(Ω))

Similarly, from (3.9) and (2.8), we have

∥∥∥∥Π
k
h

(
un+1 − un

∆t

)
−

(
un+1 − un

∆t

)∥∥∥∥
L2(Ω)

≤ Chk+1

{
1

∆t

∫ tn+1

tn

‖ut(s, ·)‖Hk+1(Ω) ds

}

≤ Chk+1‖ut‖L∞(tn,tn+1;Hk+1(Ω)) .

In addition, using again (3.9) and (3.2), we deduce, respectively, that

‖un+1 − un‖L2(Ω) ≤
∫ tn+1

tn

‖ut(s, ·)‖L2(Ω) ds ≤ ∆t ‖ut‖L∞(tn,tn+1;L2(Ω)) ,

and

‖E0(tn+1)‖L2(Ω) ≤ C

∫ tn+1

tn

‖utt(s, ·)‖L2(Ω) ds ≤ C∆t ‖utt‖L∞(tn,tn+1;L2(Ω)) .

The result now follows after applying the previous theorem and the last four estimates into (3.14).

Theorem 3.2. Assume the hypothesis of Theorem 3.1. Then, there exists C > 0, independent of h,
such that for all 0 ≤ n ≤ N the following estimate holds

‖pn − pnh‖L2(Ω) ≤ C Ch,∆t(u) exp(C Cu T )

(
hk−1 +

∆t

h

)
A(u)

+ C
{
1 + Ch,∆t(u)

}
(hk +∆t)Dn(u) ,

+ Chk+1‖p(tn, ·)‖Hk+1(Ω).

Proof. We proceed as in the proof of Theorem 2.2. Indeed, from error equation (3.5), we deduce that

(en+1
p ,div(vh))Th = ∆t−1((un+1 − un+1

h )− (un − un
h),vh)Th + (un · ∇hu

n+1 − un
h · ∇hu

n+1
h ,vh)Th

− ((un − un+1) · ∇un+1,vh)Th −
∑

F∈Ei
h

〈(un
h · n)[[[un+1 − un+1

h ]]], {{vh}}〉F

+ (Pk
h(p

n+1)− pn+1,div(vh))Th + (E0(tn+1),vh)Th

≤
∥∥∥∥∥
un+1 − un+1

h

∆t
− un − un

h

∆t

∥∥∥∥∥
L2(Ω)

‖vh‖L2(Ω) + ‖un · ∇hu
n+1 − un

h · ∇hu
n+1
h ‖L2(Ω)‖vh‖L2(Ω)

+ C‖un
h‖L∞(Ω)




∑

F∈Ei
h

h−1
F ‖[[[un+1 − un+1

h ]]]‖2L2(F )




1/2 


∑

F∈Ei
h

hF ‖{{vh}}‖2L2(F )




1/2

+ Cu‖un+1 − un‖L2(Ω)‖vh‖L2(Ω) + ‖Pk
h(p

n+1)− pn+1‖L2(Ω)‖div(vh)‖L2(Ω)

+ ‖E0(tn+1)‖L2(Ω)‖vh‖L2(Ω) .
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Thus, using (3.12), (3.13) and (2.16), we obtain that

(en+1
p ,div(vh))Th ≤ C

{∥∥∥∥∥
un+1 − un+1

h

∆t
− un − un

h

∆t

∥∥∥∥∥
L2(Ω)

+ Cu‖un − un
h‖L2(Ω)

+ Ch−1(h−d/2‖enu‖L2(Ω) + Cu)‖un+1 − un+1
h ‖L2(Ω)

+ C(h−d/2‖enu‖L2(Ω) + Cu)
{
h−1‖Πk

h(u
n+1)− un+1‖L2(Ω)

+ ‖∇h{Πk
h(u

n+1)− un+1}‖L2(Ω)

}

+ Cu‖∇h{Πk
h(u

n+1)− un+1}‖L2(Ω) + Cu‖un+1 − un‖L2(Ω)

+ ‖Pk
h(p

n+1)− pn+1‖L2(Ω) + ‖E0(tn+1)‖L2(Ω)

}
‖vh‖H(div;Ω) ,

which, together with the inf-sup condition (2.22), Lemma 3.1, Theorem 3.1, (2.10), and the last
estimates obtained in the proof of Lemma 3.1, we can complete the proof.

We end this section by remarking that we can extend the previous analysis for the upwind version
of the method (cf. (2.24)) given by: Find (un+1

h , pn+1
h ) ∈ Vh ×Qh such that

(un+1
h ,vh)Th + ∆t(un

h · ∇hu
n+1
h ,vh)Th − ∆t

∑

F∈Ei
h

〈 (un
h · n) [[[un+1

h ]]], {{vh}}〉F

+ ∆t
∑

F∈Ei
h

〈 |un
h · n| [[[un+1

h ]]], [[[vh ]]]〉F − ∆t(pn+1
h ,div(vh))Th = (un

h,vh)Th , (3.15)

(qh,div(u
n+1
h ))Th = 0,

for all (vh, qh) ∈ Vh ×Qh.

3.2 DG schemes

Here we only mention that when we combine the techniques used in sections 2.2 and 3.1 we can also
obtain the same error estimates for DG schemes (2.29) and (2.40). The fully-discrete versions of both

methods, using (3.1), are given by: Find uh ∈ V
dg
h and ph ∈ Qh such that

(un+1
h ,vh)Th + ∆t((u⋆

h)
n · ∇hu

n+1
h ,vh)Th + α∆t

∑

F∈Ei
h

h−1
F 〈[[un+1

h · n]], [[vh · n]]〉F

−∆t
∑

F∈Ei
h

〈 ((u⋆
h)

n · n) [[[un+1
h ]]], {{vh}}〉F − ∆t(pn+1

h ,divh(vh))Th

+ ∆t
∑

F∈Ei
h

〈[[vh · n]], {{pn+1
h }}〉F = (un

h,vh)Th ,

(qh,divh(u
n+1
h ))Th −

∑

F∈Ei
h

〈[[un+1
h · n]], {{qh}}〉F = 0,

uh(0,x) = uh,0(x) in Ω, (3.16)
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for all (vh, qh) ∈ V
dg
h ×Qh for the central flux, and: Find uh ∈ V

dg
h and ph ∈ Qh such that

(un+1
h ,vh)Th + ∆t((u⋆

h)
n · ∇hu

n+1
h ,vh)Th + α∆t

∑

F∈Ei
h

h−1
F 〈[[un+1

h · n]], [[vh · n]]〉F

− ∆t
∑

F∈Ei
h

〈 ((u⋆
h)

n · n) [[[un+1
h ]]], {{vh}}〉F + ∆t

∑

F∈Ei
h

〈 |(u⋆
h)

n · n| [[[un+1
h ]]], [[[vh ]]]〉F

− ∆t(pn+1
h ,divh(vh))Th + ∆t

∑

F∈Ei
h

〈[[vh · n]], {{pn+1
h }}〉F = (un

h,vh)Th ,

(qh,divh(u
n+1
h ))Th −

∑

F∈Ei
h

〈[[un+1
h · n]], {{qh}}〉F = 0,

uh(0,x) = uh,0(x) in Ω, (3.17)

for all (vh, qh) ∈ V
dg
h ×Qh for the upwind flux.

Theorem 3.3. Assume that u ∈ W 1,∞([0, T ] × Ω)d and p ∈ L∞([0, T ] × Ω) are uniformly bounded.
Also, suppose that Th is quasi-uniform. Then, there exists C > 0, independent of h, such that

‖un − un
h‖L2(Ω) ≤ C exp(C Cu T ) (h

k+1 +∆t)A(u, p), for all 0 ≤ n ≤ N ,

where Cu := ‖u‖W 1,∞([0,T ]×Ω) and

A(u, p) := (h
√
T + CuT

3/2)‖ut‖L2(0,T ;Hk+2(Ω)) + Cu

√
T‖ut‖L2(0,T ;L2(Ω)) +

√
T‖utt‖L2(0,T ;L2(Ω))

+ (CuT + h)‖u0‖Hk+2(Ω) +
√
T‖p‖L∞(0,T ;Hk+1(Ω)) .

Proof. It follows straightforwardly from the proof of Theorems 2.3 and 3.1.

Theorem 3.4. Assume the hypothesis of Theorem 3.3. In addition, assume that the parameter α lies
in (0, α0∆t), for some α0 > 0 independent of h. Then, there exists C > 0, independent of h, such that
for all 0 ≤ n ≤ N the following estimate holds

‖pn − pnh‖L2(Ω) ≤ C Ch,∆t(u, p) exp(C Cu T )

(
hk +

∆t

h

)
A(u, p)

+ C
{
1 + Ch,∆t(u, p)

}
(hk +∆t)Dn(u, p) ,

+ Chk+1‖p(tn, ·)‖Hk+1(Ω)

where
Ch,∆t(u, p) := exp(C Cu T )h

−d/2 (hk+1 +∆t)A(u, p) + Cu

and

Dn(u, p) := h2 ‖ut‖L∞(tn,tn+1;Hk+2(Ω)) + ‖ut‖L∞(tn,tn+1;L2(Ω)) + ‖utt‖L∞(tn,tn+1;L2(Ω))

+ ‖u‖L∞(tn,tn+1;Hk+2(Ω)) + ‖p‖L∞(tn,tn+1;Hk+1(Ω)) .

Proof. Similar as the proof of Theorem 3.2.
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4 Numerical results

In this section, we present some numerical results for two dimensional problem (i.e. d = 2), illustrating
the performance of the fully discrete schemes analyzed in Sections 3.1 and 3.2. In all the computations
we consider four uniform meshes that are Cartesian refinements of a domain defined in terms of
squares, and then we split each square into two congruent triangles. Also, we consider polynomial
degree k ∈ {0, 1, 2} and for the DG schemes, we use only α = 1. In addition, the numerical results
presented below were obtained using a MATLAB code, where the zero integral mean condition for the
pressure is imposed via a real Lagrange multiplier.

In Example 1 we follow [12] and consider the Taylor-Green vortex (see [4]). That is, we set
Ω := [0, 2π]2, and the exact solution is given by

u(t,x) =
(
sin(x1) cos(x2)e

−2t/Re, − cos(x1) sin(x2)e
−2t/Re

)
t

,

p(t,x) =
1

4

(
cos(2x1) + cos(2x2)

)
e−4t/Re ,

for all x := (x1, x2)
t ∈ Ω and t ∈ (0, 1), where Re = 100 is the Reynolds number. It is easy to check

that u is divergence free and
∫
Ω p = 0. Here, we compute the approximation of u at t = 1, where

we consider ∆t = 1/160 = 0.00625. In Table 4.1 we present the results obtained for Raviart-Thomas
schemes (3.4) and (3.15), whereas in Table 4.2 we use DG schemes (3.16) and (3.17).

We see that the estimates we obtained using the Raviart-Thomas spaces and the central flux are
sharp for the velocity when k = 1. However, for k = 0, k = 2 the convergence rates are higher than
predicted theoretically. In particular, we could not prove convergence for k = 0, however numerically
the method seems to be converging with order 1. Similarly, for DG method using the central flux the
estimate we gave seem to be sharp for the velocity for k = 0 and k = 2 (notice that the velocity space
contains polynomials of degree k + 1 for the DG space), but numerically the case k = 1 does better
than the theory predicts. Finally, using the upwind flux for both the Raviart-Thomas method or the
DG method one observes numerically optimal convergence rates for both the velocity and pressure
variables. Unfortunately, we cannot prove these optimal error estimates.

k h d.o.f
Central flux Upwind flux

‖u− uh‖L2(Ω) ‖p − ph‖L2(Ω) ‖u− uh‖L2(Ω) ‖p − ph‖L2(Ω)

error order error order error order error order

0

0.7405 745 1.14e-0 −− 4.69e-1 −− 1.50e-0 −− 8.69e-1 −−
0.3702 2929 5.70e-1 1.00 2.08e-1 1.17 8.82e-1 0.76 5.17e-1 0.75
0.2468 6553 3.80e-1 1.00 1.35e-1 1.07 6.29e-1 0.83 3.68e-1 0.84
0.1851 11617 2.85e-1 1.00 1.00e-1 1.04 4.90e-1 0.87 2.86e-1 0.88

1

0.7405 2353 5.84e-1 −− 1.48e-1 −− 1.75e-1 −− 9.86e-2 −−
0.3702 9313 2.97e-1 0.98 6.65e-2 1.15 4.40e-2 2.00 2.68e-2 1.88
0.2468 20881 1.98e-1 1.00 4.32e-2 1.07 1.94e-2 2.01 1.22e-2 1.94
0.1851 37057 1.49e-1 1.00 3.22e-2 1.02 1.09e-2 2.01 6.91e-3 1.96

2

0.7405 4825 2.15e-2 −− 6.53e-3 −− 1.28e-2 −− 5.19e-3 −−
0.3702 19153 3.31e-3 2.70 9.53e-4 2.78 1.53e-3 3.06 6.80e-4 2.93
0.2468 42985 8.61e-4 3.32 3.09e-4 2.78 4.36e-4 3.09 2.13e-4 2.87
0.1851 76321 3.52e-4 3.11 1.39e-4 2.78 1.79e-4 3.08 9.49e-5 2.81

Table 4.1: History of convergence for Example 1, Raviart-Thomas scheme with t = 1.

For Example 2 we consider the double shear layer problem taken from [1] (see also [12]). We solve
the Euler equation (1.1) in the domain Ω := [0, 2π]2 with a periodic boundary condition and an initial
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k h d.o.f
Central flux Upwind flux

‖u− uh‖L2(Ω) ‖p − ph‖L2(Ω) ‖u− uh‖L2(Ω) ‖p− ph‖L2(Ω)

error order error order error order error order

0

0.7405 2017 5.13e-1 −− 3.83e-1 −− 2.85e-1 −− 3.81e-1 −−
0.3702 8065 2.39e-1 1.10 1.89e-1 1.02 8.17e-2 1.80 1.88e-1 1.02
0.2468 18145 1.57e-1 1.03 1.25e-1 1.01 3.85e-2 1.85 1.25e-1 1.01
0.1851 32257 1.18e-1 1.01 9.39e-2 1.01 2.24e-2 1.89 9.34e-2 1.01

1

0.7405 4321 4.48e-2 −− 4.83e-2 −− 3.41e-2 −− 4.80e-2 −−
0.3702 17281 6.48e-3 2.79 1.20e-2 2.01 4.60e-3 2.89 1.20e-2 2.00
0.2468 38881 2.01e-3 2.89 5.32e-3 2.00 1.37e-3 2.99 5.32e-3 2.00
0.1851 69121 8.72e-4 2.90 3.00e-3 2.00 5.75e-4 3.01 2.99e-3 2.00

2

0.7405 7489 4.83e-3 −− 4.14e-3 −− 2.23e-3 −− 4.12e-3 −−
0.3702 29953 5.89e-4 3.03 5.52e-4 2.91 1.49e-4 3.90 5.50e-4 2.91
0.2468 67393 1.74e-4 3.00 1.76e-4 2.82 3.10e-5 3.88 1.71e-4 2.89
0.1851 119809 7.36e-5 3.00 8.31e-5 2.61 1.03e-5 3.83 7.82e-5 2.71

Table 4.2: History of convergence for Example 1, DG scheme with t = 1.

data given by u0(x) = (u01(x), u
0
2(x))

t, with

u01(x) =

{
tanh((x2 − π/2)/ρ) x2 ≤ π

tanh((3π/2 − x2)/ρ) x2 > π
, and u02(x) = δ sin(x1),

for all x := (x1, x2)
t ∈ Ω, where we take ρ = π/15 and δ = 0.05.

In Figures 4.1−4.6, we present some contours of the vorticity ωh := curl(uh) = ∂x1
u2 − ∂x2

u1 at
t = 6 and t = 8 to show the resolution. We use 99 contours between −4.9 and 4.9, using the previous
four meshes, where h ∈ {0.7405, 0.3702, 0.2468, 0.1851}. For this Figures, we use the DG scheme with
the central flux (cf. (3.16)). Analogously, in Figures 4.7−4.12 we use the DG scheme with the upwind
flux (cf. (3.17)). In all this figures, we take ∆t = 8/200 = 0.04.

We see that the method using the upwind flux seems to do much better than the method using
the central flux. In particular, when using k = 2 and using the upwind flux the method seems to do
quite well. In fact, the method seems to be comparable to DG methods using the vorticity-potential
formulation and high-order time integrators developed by Liu and Shu in [12].

5 Conclusions and future directions

In this paper we have developed finite element methods for incompressible Euler equations. We prove
error estimates, however, numerical experiments suggest that our analysis is not sharp, at least for
the upwind methods. It would be interesting to see if a new analysis can prove the optimal estimates
for the upwind schemes.

Our fully discrete methods are implicit. In the future we would like to consider numerical methods
that treat the nonlinear part explicitly in order to make the method more efficient.

Acknowledgements. The first two authors would like to thank Gabriel N. Gatica for facilitat-
ing their collaboration, and Antonio Márquez for providing valuable recomendations concerning the
computational implementation.
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Figure 4.1: Example 2 (DG + central flux), contours for the vorticity with k = 0 and t = 6.

Figure 4.2: Example 2 (DG + central flux), contours for the vorticity with k = 1 and t = 6.
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Figure 4.3: Example 2 (DG + central flux), contours for the vorticity with k = 2 and t = 6.

Figure 4.4: Example 2 (DG + central flux), contours for the vorticity with k = 0 and t = 8.
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Figure 4.5: Example 2 (DG + central flux), contours for the vorticity with k = 1 and t = 8.

Figure 4.6: Example 2 (DG + central flux), contours for the vorticity with k = 2 and t = 8.

28



Figure 4.7: Example 2 (DG + upwind flux), contours for the vorticity with k = 0 and t = 6.

Figure 4.8: Example 2 (DG + upwind flux), contours for the vorticity with k = 1 and t = 6.
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Figure 4.9: Example 2 (DG + upwind flux), contours for the vorticity with k = 2 and t = 6.

Figure 4.10: Example 2 (DG + upwind flux), contours for the vorticity with k = 0 and t = 8.
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Figure 4.11: Example 2 (DG + upwind flux), contours for the vorticity with k = 1 and t = 8.

Figure 4.12: Example 2 (DG + upwind flux), contours for the vorticity with k = 2 and t = 8.
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