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H(div) conforming and DG methods for incompressible Euler’s
equations

JOHNNY GUZMAN* FILANDER A. SEQUEIRAT CHI-WaANG SHUY

Abstract

H(div) conforming and discontinuous Galerkin (DG) methods are designed for incompressible Eu-
ler’s equation in two and three dimension. Error estimates are proved for both the semi-discrete
method and fully-discrete method using backward Euler time stepping. Numerical examples ex-
hibiting the performance of the methods are given.
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1 Introduction

In this paper we study H(div) conforming and DG finite element methods for the incompressible
Euler equations in both two and three dimensions. Our methods are based on the velocity-pressure
formulation. Let © be a bounded and simply connected polygonal domain in R%, d € {2,3}, with
boundary I'. The velocity u € H(Q) := [H(2)]9, and the pressure p € L3(Q) satisfy

w +u-Vu+ Vp=0 in (0,7) x €, (1.1a)
div(u) =0 in (0,7) x €, (1.1b)

un=20 on (0,7)xT, (1.1c)

u(0,x) =up(x) in €Q (1.1d)

where u; = J;u is the time derivative, Vu is the tensor gradient of u, and 7" > 0.

The goal of this paper is to define methods that are L? stable, and, for DG methods, are also locally
conservative. The methods are inspired by the work [7] where they developed locally conservative DG
methods for the steady state Navier-Stokes equations. There they take Newton iterations to solve
numerically the equations and in each step they postprocess the DG approximation to get a new
approximation that belongs to H(div) and is divergence free. Here we apply this idea to DG methods
in each time step for Euler’s equations. However, we first consider H(div) conforming elements as
they seem natural for incompressible Euler’s equations and are easier to analyze. In order to make the
H(div) elements L? stable, one has to add numerical fluxes of the nonlinear term on the interfaces of
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the triangulation. We start with the semi-discrete method, using both central and upwind fluxes, and
then analyze a backward Euler time stepping method. Once we have developed H(div) conforming
methods, it guides us in developing DG methods using the post-processing idea used in [7]. In [7]
upwind fluxes are used, but it is important to note that central numerical fluxes can also guarantee
L? stability for Euler’s equations.

The development and study of finite element methods for incompressible flows have a long history;
see for example the books of Temam [14] and Girault and Raviart [10]. More recently there has been an
interest in using H(div) conforming methods for these problems [8] since they produce divergence free
approximations. However, to the best of our knowledge, an analysis of these methods for the inviscid
problem (i.e. Euler’s equation) has not been considered. On the other hand, there has been recent
work on proving convergence rates for other finite element methods for problems with arbitrarily low
viscosity [3].

We give an error analysis for both the semi-discrete methods and the backward Euler time stepping
methods. The error estimate for the velocity in the L? norm converges with rate O(h*) if the velocity
space contains the polynomials of degree k. Notice that this is sub-optimal by one order. However,
numerical experiments suggest that these results are not sharp for some polynomial orders and using a
central numerical flux. In particular, the error estimate will not give an error estimate for the lowest-
order Raviart-Thomas element. However, on structured grids our numerical experiments show that
the lowest-order Raviart-Thomas elements seem to be converging. Moreover, when using the upwind
numerical flux numerical experiments suggest that the method is optimal. However, at the present
time we are not able to prove this result. Our estimates assume that the velocity belongs to W1, Of
course, these a-priori estimates are not known (and might not hold) in three dimensions for general
smooth initial data. However, in two dimensions the a-priori estimates were proved by Kato [11] for
smooth initial data.

In addition to providing numerical experiments to check the order of convergence of our methods,
we give numerical experiments to show how the methods behave in high gradient flows. We see that
using upwind flux the method seems to do very well and comparable to DG methods that use the
vorticity-potential formulation [12].

The paper is organized as follows. In the next section we present the semi-discrete methods and
prove error estimates. In section 3 we present the backward Euler methods. Finally, in section 4 we
provide some numerical examples.

2 Semi-discrete methods

We begin by introducing some preliminary notations. Let 7; be a shape-regular and quasi-uniform
triangulation of 2 without the presence of hanging nodes, and let &, be the set of edges/faces F of
Tn. In addition, we denote by 52 and 5,? the set of interior and boundary faces, respectively, of &,
and we set 97y, :=U{0T : T € Tp}.

Next, let (-, )y denote the usual L? and L? := [L?]¢ inner product over the domain U C R? and
similarly let (-,-)g be the L? and L? inner product over the surface G C R?!. Then, we introduce
the inner products:

('7')771 = Z ('7')T and <'7'>8T;L = Z ('7'>6T'
TeTh TeT,

On the other hand, let n™ and n~ be the outward unit normal vectors on the boundaries of two
neighboring elements 77 and T~ respectively. We use (7%, v™, ¢%) to denote the traces of (7,v,q)
on F:=T NT  from the interior of T+, where 7, v and ¢ are second-order tensorial, vectorial and



scalar functions, respectively. Then, we define the means {-} and jumps [-] for F' € &, as follows

1 _ 1 _ 1 _
) = §(T+—|—T), {v} = §(V++V), {q} = §(q+—|—q),
[tTn] = 7nT+77n", [v-n] == vi-nt+v -n, [gn] = ¢"'nT +q¢ n".
The method is derived using the conservative or divergence form of the equation. To this end,

denoting ® as the usual dyadic or tensor product, that is, (u® v);; = (u*v);; = u;v;j, we consider the
formula

divlu®v) = v-Vu + div(v)u, (2.1)
together with the divergence-free condition, to write the problem (1.1) in the form

u + divlu®u)+Vp =0 in (0,7) x Q, diviu) = 0 in  (0,7) x Q,
(2.2)
u-n =0 on (0,7)xTI, u(0,x) = up(x) in Q,

where div denotes the usual divergence operator div acting along each row of the corresponding tensor.

Finally, given an integer £ > 0 and a subset U of R we denote by P;(U) the space of polynomials
defined in U of total degree at most ¢, with Py(U) := [P,(U)]?. Furthermore, for each T' € Ty, we
define the local Raviart-Thomas space of order ¢ (see, e.g. [2, 13])

RT[(T) = PE(T) + Pg(T)X

where x = < :

> is a generic vector of R?. In addition, we set
Zq

NDE(T) = Pg(T) + PE(T) X X

be the local Nédélec space of order £ on T' € Tj,.

2.1 H(div) conforming methods

In this section, we define H(div) conforming finite element schemes associated with the model problem
(2.2). We start by introducing the method using the central flux, but in a later section we present
the method using the upwind flux. For simplicity we only consider the Raviart-Thomas finite element
spaces, but we note that one can use instead the BDM finite elements (see, e.g. [2, 13]). The globally
defined Raviart-Thomas spaces are given by Vj for the velocity and @)y, for the pressure, given by

Vy, = {veH[iv;Q) : vlr e RT\(T) VT €T, and v-n =0 on I'},
Qn = {qeLj(Q) : glr € P(T) YT €T},

Now, the finite element method is defined by: Find (up,pp) € Vi, x Qp, such that
(Opup,vp)7, — (up @ up, Vivy) 7, — (ph,div(vy))7 + (6(un, pn)n, vi)or, = O,

(gn,div(wp))y, = 0, (2.3)
uy(0,x) = upo(x) inQ,

for all (vp,qn) € Vi, X Qp, where V), is the broken gradient, uy o is some projection of ug on Vy,
and & (uy, py) represents the numerical flux of u®@ u+ pl on &,. In particular, we take & (up,pp) :=
u;, ® uy + ppl on 5,‘? and for & we define

o(up,pr) = {un} @ fun} + {pa}l. (2.4)



This is the method using the central flux. In a later section we introduce the method using the upwind
flux which seems to do better numerically.

Next, using the above definition for &, together with the formula (2.1), the fact that uy, is divergence
free (from the second equation in (2.3)), and integration by parts, we can rewrite (2.3) as: Find
(up,pn) € Vi, X Qp, such that

(Oran, Vi) 7, + (wn - Viun, va)7, — Y ([(wn @ w)n], {va})r — (pn, div(va)) = 0,
Fegl
(gn,div(up)), = 0, (2.5)

u,(0,x) = upe(x) in €,
for all (vp,qpn) € Vi, X Qp.
It will be useful to rewrite the [(up @ up)n]|p. Let F = T AT . Then,

[(up @up)n] = [(up-n)uy] = (u; . n+)u; + (u, -n7)u, .

In addition, from the fact that u) - n* =u; - n', since u, € H(div; ), it follows that

+ +

Py, = (uf -n®)(uf —uy).

[(up, @ up)n] = (uz -n+)uz - (u, -n

From now on we will use the notation (without loss of generality) [v] := v — v~. Also, we use the

notation (u - m)|p = (u) - n')|p. Hence, we write

[(wp@up)n] = (up-n)[un].

Now from this we see that the third term in the right-hand side of first equation in (2.5) is consistent,
since [u]] = 0 on & when u is smooth.

Lemma 2.1 (Conservation of energy). Given uy, € Vy, the solution of (2.5), we have

d
E”uh”zﬁ(ﬂ) = 0.

Proof. Taking vj := uy in the first equation of (2.5) and using that wuy, is divergence free, it follows
1d

S ) + (e Vi w)g = 3 (G- m)[w ] fw e = 0. (2.6)

Feg)

Thus, note that

1 1
(up - Vaup, )7, = 5 > /Tuh'V(\uh\z) =35 >

{= [avtu? + [ nemhu?}

TeT T€Th
1 2 1 2
= 52 [ em = 5 Y [ fwd Dol
TET, Feel
= 3 [ Ll g, (27)
Fegl r
which, together with (2.6) complete the proof. O

We remark here that, from the previous lemma, integrating in time over (0,t), we can deduce that
[un(t, )ll2(@) = [[anollz2(q) for each ¢ € (0,T). That is, we proved that the scheme (2.5) is stable.
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2.1.1 Error estimates

Our next goal is to obtain error estimates for the scheme (2.5). In order to do that, we now introduce
the Raviart-Thomas interpolation operator (see [2, 13]) IT§ : HY(Q) — V},, which satisfies the following
approximation properties: for each v.€ H™ (), with 1 <m < k + 1, there holds

IV =T 20y + b [V(V =TV l2ry < ChEN|mr VT € T (2.8)
Moreover, we also have the following bounds

v = TG (V)| ey + el V(v =T pery < Chrl|[VVlipery VT € T (2.9)

In addition, let P}If : L?(Q) — @y, be the L%orthogonal projector. Hence, for each ¢ € H™ (),
with 0 < m < k+ 1, there holds (see, e.g. [5])

llg — P}l:(Q)HH(T) < Chrlglgmey VT €T (2.10)

We now aim to derive the a priori error estimates for the scheme (2.5). To this end, thanks
to the triangle inequality, we only need to provide estimates for the approximation errors, namely,
E" := I} (u) — uy, and E? := PF(p) — pj. To do this, we use the fact that the exact solution satisfies
the approximation method (2.5), in order to obtain the error equations:

(O(u—p),vp)7 + (u-Viyu—uy - Viug, vi) 7,
— > Awn)[u—w] {vah)r — (p—pn div(va))s, = 0,
Fegl
(qn,div(u —w))7;, = 0,

for all (vi,qn) € Vi, x Q. In addition, from the property div(II}(u)) = PF(div(u)) = 0, we can
rewrite the error equations in the form

(OB vi)7, + (w-Viu—wy- Vi, vi)s, — > ((wn-n)[EVL {val)r — (E7,div(va))7,
Fegf

= (@@ (w) = w),va)y, — D ((w - n)[I(w) —ull, {vi)r — (Pip) = podiv(va))z,  (211)
Fegf

(qn, div(E"))7, = 0,
for all (vp,qp) € Vi, X Qp, where it is important to remark here that E" is divergence free.

Theorem 2.1. Assume that u € WH([0,T] x Q)% is uniformly bounded. Also, suppose that Ty, is
quasi-uniform. Then, there exists C' > 0, independent of h, such that

I(w = wn)(T, )2 @) < C(u) h* Blu),

where
C(u) = (1+C(1+Cy))exp(C(1+Cy,)T),
with Cy, = [[ulyy1.00 (jo,1)x02)- Also,
B(u) = hlaollgr+1q) + [ullpzo.rme+19) + bl L2 0,7 m0+10) -



Proof. We begin by choosing vy := E" in (2.11). Thus, we have
1d

S B gy = (0 Vau—w Vi By o+ S () [EUD B D r
I Fegl
1P
+ (T (w) —w, By — > ((wy - n) [T} (w) —u], {E"})r,  (2.12)
Fegl
I3

where we have used the fact that 6,IT}(u) = I} (u;). Next, note that

L = —(u-Vifu-I;(W}hEY 7 — (w—w) VI (), EY)7 — (uy- VAEYEY)7,
= —(u-Vp{u - (W} EY)7 — ((u—up) - VI (w), EY) 7, — b,

where in the last term, we apply the same arguments of (2.7) by using E" instead of uj, in the last
two functions. Furthermore, using (2.9) we deduce that

L+ L < G Va{ITi(w) — ulll2@lE% | 2(0) + CCullu — unllL2 (1B 220
Cull Vi {TI; () — u}l| 20 1B 22() + CCu{HHﬁ(u) —ullp2 o) + HEUHLZ(Q)}HEUHLZ(Q)

A

< COE ) + CCu { T (w) = g + VAT (W) — g } - (2.13)

On the other hand, for I3 it follows

I o= = (B[ — o, {E* e + D (I (w) - n)[IT; () — ul, {E*})r
Fe&l Fe&l
< Ch7YI(w) — ullpeqe) Y heI{E }I T2
Fegj
1/2 1/2
+ T () e o (Z h IS (w) um%z<p>) (Z hF{E“}}i2<F)) . (2.14)
Feg) Feg}

In addition, given v € H'(7},) and applying a discrete trace inequality, we observe that

S A VI < 2 X0 b (IV gy + IV Iary) < 230 Y At VI

Feg;’L FES}L TeT, FedT
<20 Y Y h;l{h;1\|v||%2m+hT||VvH%z(T>}
TeT, FedT
< Ol viBag + 19vIBao) b (2.15)

and, in the same way together with an inverse inequality we obtain

Y hElE ey < ClEYF2 ). (2.16)
Fegf

Hence, replacing (2.15) and (2.16) in (2.14) and using (2.9) we deduce that

I; < CCERaq) + CCu {h 2 ) — ulfaq) + [VA{IIf(0) — u}Fag) b (217)
(©) Q) ()
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Now, we return to (2.12), which satisfies that
1d
2dt

where, replacing (2.13) and (2.17), we obtain that

1 1
IE* 720y < §HE“H%2(Q) + §|’Hﬁ(ut) — Wiz + (I + 1) + I,

d u u
prl F2@) < COA+CIEf2) + CITL (W) — uel72
+CC {2 (W) — wlfaq) + VAT W) —u}ee . (218)
Hence, applying (2.8) we get
d u u
7 B2 < CO+CIEYF2) + C(1+Cy)h* (thutH%kH(Q) + HqukH(Q)) :
which, applying the Gronwall’s inequality (see, e.g. [9]), yields
BT ) ey < exp(C(1+ ) [E(0, ) Fa(ey
+ C(l + Cu) (h2HutH%2(0,T;Hlﬂ+1(Q)) + ”u”%2(O7T;Hk+1(Q))> }

Finally, we use that [|[E"(0, ‘)H%z(g) < C p2k+D) HUOH?qu(Q) to complete the proof. O

The next goal is to establish error estimates for the pressure variable. To do this, we first obtain
an estimate for d;(u — uy), which is the subject of the next result.

Lemma 2.2. Assume the same hypotheses of Theorem 2.1. Then, there exists C' > 0, independent of
h, such that

IOENT, 2@ < (Cwh*2B(u) + Cu)hk_l{C(U)B(U) + [lu(T, ')||Hk+1(9)}
+ CHFY (T, ) || e () -

Proof. First, we take vj, := 0;E" in (2.11) and using that div(9;E") = 9,div(E") = 0, we obtain

0B 72y = —(u-Vau—uy- Vaup, GEY) 7 + D ((w,-n)[EV], {0:E" ) r
Fegf
k u k u
+ (T} (w) = wg, ™7, — D ((wy - ) [T (w) — u], {AE"})
Feg)
< lu- Viu =, Vw2 10E | z2) + 1T (wr) — wellz2(0) |0:E%| 120
1/2 1/2
+ Cllupllp= (o) (Z he 1T T2y > hel{OE T2
Fegf Fegf
1/2 1/2
+ Cllunll Lo (o) (Z hp 1T (u) — u]]]%z(F)) (Z hF{atEu}}%Q(F)) :
Feg; Feg)

Next, using (2.15) and (2.16), we deduce after some algebraic manipulation that
10 20y < C{ b [nllioe @) 1B |r2() + Il Vau = wn - Vaunllzzo)

+ I (we) = well 2 () + l[unllzes o) (AT (w) — | 2() + ||V} (w) —u)llm(m)}- (2.19)
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To bound the nonlinear term we add and subtract terms to get

[u-Viu—up - Viaupll2) = [[(u—un) - Vau+up - Vi(u — w2
< Cullu — a2y + lunll L@ I Va(a —un) |l 220
< Cullu—apllr2@) + nll L @) (I Va(u = TIF0)| 120y + Ch ™Y [EY| 12(0))
< CullEYr2(0) + CullTT; (1) — ul|z2(q)
+ [lunll oo @) (I Va(a = TR | 20) + ChTHIEY| L2(0),

where we have used an inverse estimate. Therefore,
[0:E |2y < C{ (™ apll o) + ClIE® | 2() + T (wy) — uellz2(q)

+ [l 2o o) I VA (T (0) = )l 2(0) + (h_llluhllLoo(Q)+Cu)HHfL(u)—uHL2(Q>}-

We can bound |[up, ||z (q) using an inverse estimate
[unllze@) < NEY o) + ITEW||re@ < C A Y2EY|12(0) + C Cu. (2.20)
Hence,
1B 20y < C{BT BB 120 + CIE® |20y + [T () = w2y
+ (B 200 + Cu) (IVAETE (@) = W) r20) + T (@) = wl2(0)) -
Finally, using Theorem 2.1 and (2.8) establishes the result. U

Note that in the above proof we have also proved
J(a- Viu =, Viwn) (T, )2y < (C)RF2B(w) + COR ™ Cw) Bw) + (T, )| |
+ CRFM0(T, ) || g ) - (2.21)
We end this section with the a-priori error estimate for the pressure, which is established next.

Theorem 2.2. Assume the hypothesis of Theorem 2.1. Then, there exists C > 0, independent of h,
such that

I~ @lz@) < (COIE2B(u) + Oy + C W= Ow) Blu) + (T ) ey
+ Cth{Hut(T, a1 + ”p(Tv’)HHkH(Q)}'
Proof. We begin by recalling here the discrete inf-sup given by

(qn, div(va)) 7,

Bllanllz < sup Y qn € Qn, (2.22)
vhEV), thHH(div;Q)
vi#0
which, in particular for ¢; := EP, it follows
1 EP, div(vy)) T
[EP[L2) < & sup —( (i) h (2.23)
ﬁ VREV, thHH(div;Q)
Vh 0



Now, from the error equation (2.11) and proceeding as in the proof of Lemma 2.2, we have

(EP.div(vy)), = (OEY,vp)7, + (u-Viyu—uy - Vyup, vy, — Z ((up, - n)[E], v} r
Fegl

— (I (w) — g, vi) 7 + Y (- ) [T} () — ul, {vi})r + (PE(p) — p,div(va))7,
Feg}
< NOE M2 @lIvallrz@) + lu- Viau —uy - Viug|l 2 Ivallzz) + CRHE 2@ IVall 2@
+ C{n T (W) — ullpz) + VAT W) = W2 | VAl o)

+ T () — well 2o IVallzz) + 1PE (D) = Pl 1div(vi)llz2)-

The above result together with (2.23) establishes

1E 2 < C{HatEuHB(Q) + Ju- Viu—uy, - Vw2 + 2 HEY 220
+ BT (u) — ull 2y + VAT (w) = a)lr2q) + [T (w) — wellr2q) + 1P (p) —PHLZ(Q)}-

Therefore, thanks to [[p — pallr2@) < IEP|r2@) + PE(P) — pllr2@), (2:21), Lemma 2.2 and the
approximation properties (2.8) and (2.10), we can easily complete the proof. O

Notice the the error estimate for the pressure predicts O(hR*~1) (for k > 2) in two and three
dimensions.

2.1.2 Using an upwind flux

Here, we introduce an alternative version of the conforming method (2.5), analyzed in previous sections.
In order to do that, we begin by redefining the numerical flux & (cf. (2.4)) in a new general form,
given by:

o(up,pn) = uy @ fur} + {pu}l,

where U} is a new numerical trace for uy related with the convective term. In particular, taking
) = {uw,} = % (0" + uf*) we arrive exactly to the scheme (2.5). That is, the method (2.5)
correspond to a central scheme.

On the other hand, for some problems with high gradients, it is more natural to use an upwind
scheme, in order to get better accuracy and order of convergence. In Section 4 we will present some
examples of this. In fact, we see numerically that using upwind flux gives optimal convergence rates
for both the velocity and pressure variables.

According to above, we consider the following upwind flux

AW
u =
h ext

u™ if u,-n>0,
u® if uy-m <O0.

This definition is given in the same way of that presented in [12] for the vorticity, and it is not difficult
to check that we can obtain again the method (2.5), with an extra term given by a weighted full jumps



onto 52. That is, we seek uy, € Vy, and py, € @y, such that

@un, vi) 7, + (W Vs, vi)7, — > ((us-n) [un], fva})r
Feg)

+ Z <‘11h . ’I’l‘ |]Iuh]]], |]Ivh]]]>p — (ph,diV(Vh))Th = 0 Vv,eVy, (2.24)
Fegl

(qn,div(up))7, = 0 Vgu € Qp,

uy(0,x) = wupe(x) in Q.

It is important to remark here, that the introduction of this new term does not pose any difficulty
in order to prove stability and convergence. In fact, both follow the same arguments, using that
when v, = uy, this term is positive. In particular, the error estimates are basically the same and the
stability, see remark after the proof of Lemma 2.1, now is given by [[uy(t, - )||lz2() < [[unollr2(q) for
each t € (0,7).

2.2 DG schemes

In this section, we introduce a discontinuous Galerkin method for the model problem (2.2). The
velocity space will consist of polynomials of degree k 4 1 for the fully discontinuous subspace

V(;Lg = {V€L2(Q) : Vlp €Ppa(T) VT €T, and v-n =0 on I'},
whereas, the pressure space remains unchanged. That is,
Qn = {q€Ly(Q) : qlr € P(T) VT ETh}.

In the previous section we only defined the jumps and averages on the interior faces/edges. Here
we also define them on boundary faces. That is, for F' € 5}? , as is usual, we set

{vl} = v, [v-n] =v-n and {4} = ¢

Thus, in order to define the approximation scheme, we first introduce a postprocessed flux. For
each v € HY(Ty,), we find v* € Py, 1(7,) such that

/(V* ‘n)qg = / ({v} -n)g Vqge P (F), VFedl, (2.25)
F F

/v*-p = /v-p V peND,_(T), (2.26)
T T

for each T' € T;,. Note that if v, € Vig then v* € BDM%H(Q) where,
BDM; () = {veH(div;Q) : vlr ePr1(T) VT €T}
BDM)_ () := {veBDM;;1(Q?) : v-n=0 on T}.

For this postprocessed flux, we have the following result.

Lemma 2.3. Given T € Tj, and vy, € Ppy1(T), there is exists a constants C* > 0, independent of T,
such that

Vi = Valley < C RS v nlllege -
FeoT
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Proof. We proceed as in [6, Lemma 4.2|. Indeed, if we set § := v} — v;, € Pp1(T) we have that §
satisfying the equations

J

(6-n)g = /({vh} —vp)-ng Vg€ P (F), VFedl,
F
/5-p — 0 VpeND (7).
T
The result together with a scaling argument (see [2]), imply that

18] 2y < CRLPIEvaY = va) - mlloor,

which, using the fact that ({v,} — vi) - n = £[vy - n], we complete the proof. O

Now, similar as in (2.3), we consider the Galerkin scheme: Find (up,pp) € V;ilg X Qp, such that

(Opap, V), — (up @up, Vivy)7 — (Pn.divi(vp))7, + ((ap, pr)n, vi)orn, = 0,

—(Vnan,up)7, + (Up-n,qn)or, = 0, (2.27)
up(0,x) = wupe(x) in Q,

for all (vp,qp) € V(;llg X @}, where
Gunpn) = fund{ui} + oI + ahp'[uy - nlL (2.28)
and a > 0 is stabilization parameter. In addition, we define the numerical flux Uy as
up, = {u,} on &,

Thus, from the second equation of (2.27) and the definition of uj, (cf. (2.25) and (2.26)), we note
that

0 = —(Vrgn,up)7, + (Un-n,qn)or, = —(Vaan,up)7 + (W n,an)or, = (g, div(ug))7,

for all g, € Qp. The above identity and the fact that div(uj)|7 € Py (T') for each T' € Ty, imply that
uy is divergence-free. This conclusion and the fact that uj has a continuous normal component are
the main reasons that while we consider uj instead of uj in the method (2.27).

Then, using integration by parts, the fact that div(u, ® uj) = uj - Vuy, (cf. (2.1)), and the
definition of the numerical fluxes, it is not difficult to check that the above DG scheme is as follows:
Find uy, € Vgg and pp, € @), such that

(O, Vi), + (- Vs, vi) 7 + a Y b (lws - n], [vi - n])r

Fegl
= > - [wl {va) e — o diva(vi))s, + Y ([ve-nl {pah)r = 0, (2.29)
Fegl Fegl
(qn, divi(up))7, — > ([wn-n] {anh)r = 0,
Feg)
uy(0,x) = upo(x) inQ,

for all (vp,qp) € V(;llg X @Qp. It is important to note here, that uy is not necessarily divergence-free as
in the method of Section 2.1. In addition, unlike the methods in the previous section, the DG method
(2.29) is locally conservative.
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Lemma 2.4 (Stability). Given uy € V;ilg the solution of (2.29). Then, we have

d

E”uh”zﬁ(ﬂ) <0

Proof. We take v, := uy, and g, := pp, in (2.29), and then we deduce

1d N _ X

3d [unll72q) + (Wh - Vaun,un)g, + o Y hptllus - nll7am — Y (uf-n)[ul, funh)r = 0,
Feg} Feg}

Next, with that same arguments of (2.7), we have

(wf, - Vg, wp)7, — Y (- n)[wp], fw e = 0,

Fegl
which establish that
1d _
sl + o X hptilun - nllag = o
Fegf
Finally, from the fact that e > 0, we complete the proof. O

2.2.1 Error estimates for DG method

Now we are ready to provide error estimates for the DG scheme (2.29). We will need to define the
BDM /Nédélec projection.

/ (MMPPMv —v).n)g = 0 Vg€ P (F), VFeaT, (2.30)
F

/(HEDM(V) —v)-p = 0 VpeND,_(T). (2.31)
T
We have the following approximation results for 1 < m < k + 2.

Iv = TN () gy + V(v = TN ey € CHEMmr YT e (232)
Moreover, we also have the followmg bounds

v = IPM )| ooy + b V(v = TEPY ) pe () < Chrl|VV|pery VT € Tpe (2.33)

Let now E" = IIPPM(u) — uy, and E? = PF(p) — pj,. Then, we follow (2.11) and consider the error
equations:

(OE", vi)7, + (0 Viu—u) - Viyw,vi)y + a Y hp'([EY n] [vy - n])r

Fegi
_ Z uj - I.{ve ) r — (EP.divy(va))7;, + Z (Ivi -], {EP})F
Fe€i Fegi
= (Q@FPY () =), vi)7, + a > hp ([APY (w) —u) - n], vy, - n])r
Fegl
— > (- )[OPM () —ull, fvi})r — (PE(p) — p, diva(va))7,
Fegl
+ > (lvi-n] {PE () — p})r, (2.34)
Fegl
(an, divi(EM)7;, — > ([E*-n] fand)r =

Fegl

12



for all (vp,qp) € V(;llg X Q.

Theorem 2.3. Assume that u € WH([0,T] x Q). Also, suppose that T is quasi-uniform. Then,
there exists C > 0, independent of h, such that

1w = wp)(T, )l 12) < C(u)h* 1 B(u)

where
Cu) == (14+C(A+Cy))exp(C(1+C,)T),
with Cu = HuHWLoo([QT}XQ). AZSO,
B(u) = hlluollgrr2) + 1l L2, m+20)) + Pl p20 7 m5+2()) + 1Pl 220,050 1 (02)) -

Proof. We begin by choosing vy := E" and ¢, := E? in the error equations (2.34). Then, we have

that
1d u 1 u * u
o7 B 72+ Y BEIE® nllfem = —(u- Viu—uj - Viuy, EY)7,
FEgL I
+ > (- n)[E] AE ) r + (TFPY () — wy, BY),
FeEl
1P
+a Y pHIEPY () — ) - n] [E*-n])r = Y (uf - n)[TEPM () — uf, {E"})r
Fegl Fegl
13 14
— (Pr(p) = p,diva(E") 7, + > ([E* - n], {Pi () —p})r. (2.35)
I Fegl
Is
Next, we want to find bounds for I;, i = 1,...,6. First since divy(E") is a piecewise polynomial of

degree k we have 5 = 0. Also, note that by (2.30) I3 = 0. Before we bound the rest of the terms. We
note that by Lemma 2.3 and [TIZPM(u) - n] = 0, we know

o =iy < € hellwn-nllfaey = € 3 AellE* - nllfae < CIE*[ag). (2:30)
Fe&y, Fe&y,

Now we bound [, using that
L = —(u-Vp{u-IEPYw)} EYy — ((u—uj) VRIEPY (), EY) 7 — (uj - VAES, EY)g,
= —(u- Vi {u-IEPY (W)} EYy — ((u—wp) - VAILPY (0), EY g, — I,

where in last term, we apply the same argument of (2.7) as in the proof of Theorem 2.1. Furthermore,
using that |[ul|ze ) < Cy and HVhHEDM(u)HLOO(Q) < CC, (see (2.33)), we deduce that

I+ I < Cul Va{TEM (W) = u} 2oy [ E% |2y + C Cull = i 2oy I |12 (o)
< CO{IVMIIEPM (w) = w2 + TP () = wll gy + 1B 2oy FIEY 22y

+ CCullun — uhllz20) IE" | 2 )
< CO|[EYT21q) + CClTEPM () —ullZ2(g) + C Cul[Va{IIPM (0) — w72y (2:37)

where we also used (2.36).
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In the case of I, from ||HEDM(H)||LOO(Q) < Cy, note that

Ir = Y ((fup} n)[IFPM(u) —u, {E"})r

Feg}

= D ((fu —w} - )Y () —u] {E D r — > ((E"} - n) [T () — u], {E“})p

Fegi Feg,
£ (P )} ) [P () — ], BV ¢
Fecl
1/2 1/2
S G GRS PN D DR A T 1 (Z hFﬁE“Hw)
Feg} Feg,
+ ITEPM () = ul e @) Y IHE Mz ()
Feg)
1/2 1/2
(Z het [T PN )u]]]2L2(F)) (Z hF{E“}}2L2(F)) :
Fegi FGE;L

and from (2.15), (2.16), and (2.36) with an inverse inequality, we deduce that

L < wp—ujllz2g) (ChTHIEPY () — ull oo o)) [EY]|2(0)

+ (Ch™HIEPY (u) — ul o)) [EY[[F2(q) + CCu{h_QHHEDM(u) —ulf2 g

VAT () - w} a0 } + C CullE¥ |32
O (1+ WM TIEPM () = u e ) B340,
+ CR TR () — w2 ) + O VAT () — w2 o),

IN

In addition, applying (2.33), we conclude that

L < CCu|E%F2q) + Ccu{h_2||HEDM(U) —ull2g) + [Va{II;"M () —U}H%z(g)}- (2.38)

Now, in similar way to (2.15), given ¢ € H'(T) we have that

S nelfabBa < Gl + PEIVial3a |
Fegl

which allows us to deduce

Iy = 3 (hpP[E ] i {PE) — e < 5 D0 b IIEY - n]lfa
Fe&y, FeEh
+ C Z hF||{Pilf(p)—p}H%2(F)
Fegf
< 5 2 R IE" - nllEage + CIPE®) = bl + CRIVAPE®D) - P2y

FEgh

14
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On the other hand, replacing (2.37)—(2.39) in (2.35), we obtain that
1d o _ 1
T IE¥(|72(0) + 5 Y he'ITEY - nllfzge) < CCullEY(IZ2) + §HHEDM(W) — w720
Feg}
F OO R ) — )+ VAT - w2 )+ CIPED) - e,
+ CR2(IVi{Ph (p) = p}[72(0)-
Hence, using (2.32) we have

d u u
7 IE [2) < CO+C)IEY72q

+ C(l + Cu) h2(k+1) {h2HutH§{k+2(Q) + Hu|’§{k+2(g) + Hp”Hk+1(Q)} .
Finally, applying Gronwall’s inequality gives the result. O

Theorem 2.4. Assuming the hypothesis of the previous theorem we have the existence of a C' > 0,
independent of h, such that

I = )T )o@ < (C@2B() + Cy + O Cw) Blw) + (T, ) gyrsaqey

+ ORI b, s+ (T, asorca )

Proof. Similar to the proof of Theorem 2.2. U

2.2.2 Upwind flux for DG method

Similarly as Section 2.1.2, we now introduce a DG method using an upwind flux. Indeed, as before,
we redefine the numerical flux & (see (2.28)) in the form
(up,pr) =y @ {up} + {p}1 + ahp'[u,-n]l,

where we take U} as

int *

w { w if up-n >0,

uh -
ext *

u if uy-mn <O0.

Once again, with this definition we can obtain again the method (2.29), with an extra consistent
term given by

> (i -nl [usl, Ivale,

Fegl
which, allow us to prove stability and convergence in the same way of before, using the fact that when
vy, = uy, the above term is positive. Summarizing, we find uy, € Vzg and pp € @y such that

(Z?tuh,vh)frh + (112 . thh,vh)Th + o Z h;1<[[uh . TL]], [[Vh . n]]}F

Feg;
— > () [w] fvihr + > (- nl[wl, [val)r
Fegl Feg}
— (P diva(va)) 7 + Y ([vi-nl g p)r = 0, (2.40)
Feg}
(qn, diva(up))7, — > ([un-n], {anh)r = 0,
Feg)

uy(0,x) = upp(x) in €,
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for all (vp,qp) € V(;llg X Q.

3 Fully-discrete methods

In this section we define fully-discrete versions of both approaches introduced in Section 2. In order
to do that, for the time discretization we consider the backward Euler method, that is, we write

1

E{u(tfwla ) = ualt, )} + Eo(tn+1), (3.1)
where At > 0 is the time step, t,, := nAt, 0 <n < N, and Eq(t,1) is the truncation error. We know
that

ut(tn—l-l) : )

tn+1
Botnt)lize < € [ s,z ds (32)
tn
For simplicity of the following analysis we denote u” := u(t,, -) for the exact value and uj :=

uy,(tp, -) for the approximation. Also, given Hfl the corresponding projection used before in each
case, respectively, we define e} := Hi(u“) — uj as the discrete error. Similar convention is used for
the pressure variable.

On the other hand, using (3.1) we have that the exact solution of (1.1) satisfies that
(W v+ At vt vy s — At(p" T div(ve))n, = (0, V)7 — AHEo(tas1), VAT,
(qn, div(u" )7, = 0,
or equivalently,
("t vy + At Vu' vy — At div(ve))n, = (W )T
+ At((u" —a"t)  vut vy — AHEo(ts), VE) T (3.3)
(an, div(u™))7, = 0,

for all (vp,qp) € Vzg X @Qp. We recall here that Vj, C Vig.

3.1 H(div) conforming methods

Next, using (3.1) in the semi-discrete method (2.5), we introduce the fully-discrete approximation as:
Find (uZ“,pZH) € V5, x @y, such that

(™ vi) 7, + At(uf - Vauptt vy — A (g ) [up L {va e

Fegf
— At(ppth div(va)), = (u,va)7,  (34)
(qn, div(uy ™)y, = 0,

for all (vp,qp) € Vi, x Qp. Note that we eliminated the nonlinearity of the problem using the previous
approximation. Also, it follows from the proof of Lemma 2.1 that when we take vy, := uZ"'l in (3.4),

we have

I 2y = (),

which establish that ||uZ+1||L2(Q) < [[u}llz2(q), that is, the method (3.4) is stable.

Our next goal is establish an error estimate for the velocity.
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Theorem 3.1. Assume that u € WH([0,T] x Q)% is uniformly bounded. Also, suppose that Ty, is
quasi-uniform. Then, there exists C' > 0, independent of h, such that

[u" —upllp2@) < Cexp(CC,T) (W* + At) A(u), forall 0 < n < N,
with Cy, := [[ul|y1.00(j0,71x0)- Also, where

A(w) = (WT+ CT¥?) ]l 2011041y + CuVT el r2o 2200y + VT Iaeellz20,7,02(0))

Proof. We begin by subtracting equation (3.3) from equation (3.4) together with the fact that
[u™1] =0 on &, in order to obtain the error equation

(ept,vi)7, + At(u" - Viu" T —uf - Vpuptt vy — At Z ((up - n)[en™ D, {vr})r
Fegf

= At(p"T = pp T div(va))y, = (W —uf, v+ (I - w7

+ At —u" ) Vutt vz Ay () [T (") — o v e

Feg}
— At(Eo(tnt1), Vi), (3.5)
Now, we take v, := €' and using that div(e?™) = 0 in Q, it follows that
e 72 = —At" - Viu" T —up - Vgt e ™ + A D ((u - n)[el T L fen hr
I Feg}
Ip)
+ (u _ uh’ Z-i—l) T. + (Hz(un-l-l) _ un-‘rl n-i-l)771 + At(( _ un-i—l) . Vun-H,eﬁ—H)Th
— At Y ((up ) [T ™) —u" ] fey ™ e — At(Eo(tar)s )7, (3.6)
Feg)
I3
which, in similar way to (2.13), we note that
L+ I = —At(u" - Vi{u"™ I} ef )7, — At((u" —up) - VAITE ("), el
< At{CuHVh{Hﬁ(U"H) w1l 2 () + C Cu| I} (") — u|| 20
+ CCOlleilla flles Iz ). (3.7)

where, we used that ||u"||pe ) < C, and | VAIL} (u ") o) < C Cu. Also, follows (2.14) and using
(2.15), (2.16) and (2.9), we have

Iy < CAtS A I (u™™) — ™™ (g Z hFH{eﬁ}}HZH(F)
Fegl

[NIES
N

+ IR ) ooy | D IR @) — w172 > helfel™ e
(F) (F)

Feg} Feg;,
< CC’uN{HeﬁHm(Q) +hTH I () — a2 )

+ || Va{IT} (") —u"“}HLz(Q)}||eﬁ+1||L2(m- (3-8)
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On the other hand, we return to (3.6), and observe
e 12y < {lebllne + T =) — (@ =)o) + Cutu™ = u”] oo
+ AUE(tas)llz2(o) et iz + (B +B) + I,
which, replacing (3.7) and (3.8), we deduce that

leg ™ llzz) < (1+CCAY [lefllr2) + T (™ —u™) — (™ —u")]2(q)

+ CCy At{\\ﬂlfz(u") — a2 + AT I — " Lo ),
VAT ™) = w™ oy b+ A Cu u™! = w2y + [Boltr) 2o }-
Next, using that
t7L4*1
("t —u")(x) = / u(s,x)ds, (3.9)
tn
together with (2.8), it follows that
k k 1
T (™ —u") — (" — )2 < Ch +1/ (s, ) i) ds-
tn

Similarly, we can show

tn+1
At Cy [u™t — w2 < AtCGC, [ue(s, )l r2(q) ds

tn

and, from (3.2),

tn+1
At|Eo(tar) 2@ < CAt / luse(s, )l 2 ds.

tn

In addition, using that
tn+1
u"t(x) = uy(x) + / u(s,x)ds, (3.10)
0
and (2.8), we have
R | 11 k fott
P — o ) < OF { ol + [ s ds-
Analogously, we can show
CCy At{HH]Z(u") —u"[lr2) + AT IR — | o) + (| VA{IE; (u" ) — un+1}HL2(Q)}
tn+1
< ottt { ol + [ oo,y ds}.
0

Therefore, gathering together all the above equations, we deduce that

len 2@ < (14 CCLAL) |lebllr2@) + C(At+h*)B(u,n), (3.11)
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where

tn1 tn1 tn1
<Ww):hl mwmmwmw+@[ wmmm@@+[ use (5, )l 2 ey ds

tn+1
+ AtC, {HU(]HHkJrl(Q) + / Hut(s, )HHkJrl(Q) dS} .
0

Now, from the recurrence relation (3.11), we obtain that

n—1

leallzz@) < (1+CCAY" He?lHLZ(Q) + C {Z(l + Cu AY)'B(u,n — 1 — z)} (* + At)
i=0

n—1
< C(1+CC,AY)™(RF + At) {hHuQHHkH(Q) + 3" Bluyn - 1—1)}
i=0

n

n n—1
C,T .

Finally, noting that

n—1 tn tn

> Blun-1=0) < b [l ds + Cu [ luils, ) ds
i=0 0 0

tn

tn
+Au%mmmw+meMWQ+Amwmmwm%

the result now follows by using Cauchy-Schwarz inequality. O

Now, we establish the a-priori error estimate for the pressure, and for that we first consider the
next result.

Lemma 3.1. Assuming the hypothesis of the previous theorem we have the existence of a C > 0,
independent of h, such that for all0 <n < N

n+l _ .n+l n __ .mn
uh _ u uh

At At

u

A
< CCpat(u)exp(CC,T) (hk_l + %) A(u)
L2(Q)

+ C {1+ Cpar(u)} (A" + At) Dy (u),

where
Choat(u) = exp(C C, T) ™2 (hF + At) A(u) + Cy

and

Dn(u) = hllagll e, i@ + l0ellzoe e tngrz@) + el Lo 002 @)
ol oot yoanr () -

Proof. From the error equation (3.5) we have

(On,vi)7, = —(u" - Vuu"™ —ufl - Vultt vy Z (uff - n)[u™™ — ] {ve ) e
Feg}

. 1
i (pn+1 . pz—i-l7 le(Vh))T;L + Kt(l—I;fL(un—l—l —u") — (un+1 — u"),Vh)Th
+ (0" —a") - vu vy — (Bo(tng1), va)7 Y vi € Vi,
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where §j, := AL( ntl _en). Then, taking vy, := 83 and using that div(dy,) = 0, we deduce that

16nll72() < U™ Viu"™t —up - Vaup ™ o) 165 2
1/2 1/2
+ Clluplze | Y hp'IIn"™ = i 2 m (Z hell0n} 172
Feé‘i FegfiL
un+1 —_u” un+1 —u”
o () - ()L
m (" | B s

+ Cyla™ — a2 16l 220) + [1Bo(tns) L2 10n]l22(0)
Now, we follow the proof of Lemma 2.2, to obtain that
[u™ - Vpu —uf - Vaup ) < Cullu™ = ufllz2 )

+ el 2y + Co){ A el iz + VAT @) — ™ Y20y}, (3.12)

and from (2.15) and (2.20) we have

2
a7 [ Lo (@) (Z hpt |fu™ ™ — uZ+1]]]2L2(F)) < C(hedllL2 (@) + Cu ){h_lHunJrl — w2

Fegl
+ BT () — a2 o) + [V T (0" ) — 11"+1}||L2(Q)} : (3.13)
Next, applying (3.12) and (3.13), together with (2.16), it follows that
I8nllz20) < Culla™ —uhllzzi) + Ch™ (A2 |lel]l () + Co)llu"™ = it 12
+ C(h™ el 2(0) + Cu ){ THIL () = a2
IV ) —w s} + ot () - (M)

+ Cyla™ —u"||12(0) + [Eo(tnr1)llz2(0)

L2(Q)

On the other hand, using the fact that

n+1 n n+1 n
< (U —u _ u —u
< e () - (=

n+l n+1 n_ .n
u h u uh

At

+ [10nllr2(0)
L2(Q)

L2(Q)
we have
n+l n+1 n__ .n
u h u uh
At

< Culu™ —upllr2(g)
()
+ Ch7'(h d/zueu”L2(Q + Cy)Ju™ T — UZHHLZ(Q)

+ C(h™"?|lel]l 120y + Cu ){ I () = a2
n+l _ ;n n+l _ yn
+ ||V Hk n+ly _ .. n+l + 2 H]:[k <u> _ <u>
H h{ h(u ) u }HLZ(Q)} h At At L2(Q)

+ Cullu™ —u"l120) + [ Eo(tas1)llz2 () - (3.14)
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Next, we proceed as in the last part of the proof of Theorem 3.1. Indeed, from (2.8), we obtain
that

AT (™) — a2 o) + ([ VA (TS (") — 0" p2 0

< Chk||u"+1“Hk+1(Q) < Chk||uHL°°(tn,tn+1;H’“+1(Q))

Similarly, from (3.9) and (2.8), we have

n+l _ ;n n+l _ .n 1 tns

e (W ety (et o < o[ L / | ]

H h< At > < At @ C At J, [lag (s, )”Hk+1(Q) S
= Chk+1Hut|’Loo(tn7tn+1§Hk+1(Q)) .

In addition, using again (3.9) and (3.2), we deduce, respectively, that

tn+1
||un+1_unHL2(Q) < /t lue(s, M2y ds < At uellpoo(t, 4y 1:02(0) 5
and
tn+1
[Eo(tnt1)llz2) < C/t e (s, Iz ds < CAt[[wl poo(4,,0015220)) -

The result now follows after applying the previous theorem and the last four estimates into (3.14). O

Theorem 3.2. Assume the hypothesis of Theorem 3.1. Then, there exists C > 0, independent of h,
such that for all 0 <n < N the following estimate holds

S At
I = shllze < COnatwennCe,t) (14 51) At
+ C {1+ Char(w)} (B* + At) Dy (u),
+ CHF M Ip(t, )| g @) -

Proof. We proceed as in the proof of Theorem 2.2. Indeed, from error equation (3.5), we deduce that

(epth,div(vp))7, = A" —upth) — (ut —up),vi)g, + (W Vet — g Vet v
— (" —u"™) vurt vy = Y (g ) [u =t L fva e
Fegf
+ (P ™) — " div(va)) 7, + (Boltnt), va)7,
un+1 _ un+1 u” — u?
< A7 b — L Vall2@) + 0" Vau™ —uft - Va2 o) 1vall 2 o)
L2(Q)
1/2 1/2
+ Clluplize | Y hp II0"™ =i 2 > hel{val e e
Fe&j Fegj

+ Cullu™™ = || 20) Vallz2) + IPEE™) = " 2o lldiv(va) | 2

+ 1Eo(tnt )l 2 Ivallz2 @) -
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Thus, using (3.12), (3.13) and (2.16), we obtain that

n+1 n+1 n n
uh _ u — uh

At

u

+ Cyllu”™ — upllr2(o)
12(0)

+ Ch™ (P |lelll 2 + C)llu™ = i 2

(ept div(vi))y, < 0{

+ C(h™"?||efl| 20) + Cu ){h_lllﬂi(un“) — "2

+ (| Va{ILf (a1 - 11"+1}||L2(Q)}

+ Cul | Vi {IT (") = u" Y p20) + Culu™™ =" 2(q)
+ PR ") = " 2 ) + HEo(tn+1)HL2(Q>}IIVhIIH(div;m,

which, together with the inf-sup condition (2.22), Lemma 3.1, Theorem 3.1, (2.10), and the last
estimates obtained in the proof of Lemma 3.1, we can complete the proof. O

We end this section by remarking that we can extend the previous analysis for the upwind version
of the method (cf. (2.24)) given by: Find (u}™,p}™) € V), x Q, such that

(Wt vi) 7, + At(ug - Vit ova) 7 — A Y ((uf-n) [up ™ L fva ) e
Fegj

+ Aty (g - [up T L Ival) e — At div(va))r = (uhva)7, (3.15)
Fegl
(an, div(uy™))7, = 0,

for all (vp,qpn) € Vi, X Qp.

3.2 DG schemes

Here we only mention that when we combine the techniques used in sections 2.2 and 3.1 we can also
obtain the same error estimates for DG schemes (2.29) and (2.40). The fully-discrete versions of both
methods, using (3.1), are given by: Find uy, € Vzg and pp € @y, such that

(W i)y + At((up)" Vgt vz, + et > b ([uptt e n] vy n])r
Feé‘Z

AL ()" n) [up D fva ) e — Atpp ' divi(vi)) 7,

Fegf

ALY ([vin) g Br = (afvidm

Feei
(qn, divi(u ™)) = > ([upt - nl {an)r = 0,
Fegj
uy(0,x) = wye(x) in Q, (3.16)
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for all (vp,qp) € Vig x @y, for the central flux, and: Find uy, € V?Lg and pp € @y, such that

(Wt vi) g+ At((u)" - Vi va) 7, + adt Y b ([upt - n] [vi - n]) e

Fe&l
=AY (@) n) [y L Aval) e + At Y (Iaf)™ ol [up ™ I [Ival) e
Fegi Feg,
= At(ppt diva(va))z, + A DY (v nl fp T HEe = (R v,
Fegl
(qn, divy, (uj ™)) 7, — Z (lup™ - n], {a})r = O,
Feg)
up(0,x) = wupe(x) in Q, (3.17)

for all (vp,qp) € Vig x @y, for the upwind flux.

Theorem 3.3. Assume that u € WH([0,7] x Q)% and p € L>([0,T] x Q) are uniformly bounded.
Also, suppose that Ty, is quasi-uniform. Then, there exists C > 0, independent of h, such that

[u" —uplr2@) < Cexp(CC,T) (K" 4 At) A(u,p), forall 0 < n < N,
where Cy, := [[u|y1,00(0,71x0) and

A(u,p) = (WT + CT*?) |l 20 7.mev2(0)) + CuVT el 20,7020 + VT I0ull 120702092
+ (CuT + B)|[uol sy + VTP poo (o, me+1(q)) -

Proof. It follows straightforwardly from the proof of Theorems 2.3 and 3.1. U

Theorem 3.4. Assume the hypothesis of Theorem 3.3. In addition, assume that the parameter « lies
in (0, 0At), for some ag > 0 independent of h. Then, there exists C > 0, independent of h, such that
for all 0 < n < N the following estimate holds
n n k At
IP" = Phllz) < CChai(u,p)exp(CCLT) (A7 + T A(u, p)
+C {1 + Oh,At(u7p)} (hk + At) Dn(u7p) ’
+ CHE Y |p(t, )| e (g

where
Choat(u,p) == exp(C C, T)h™¥2 (WF+ 4 At) A(u,p) + C,
and
Dp(u,p) = B gl oo (it rimerz)) + 10l poo (e tniniz2@)) + el zoo i iair2@))
+ [[all oot s r2(Q)) T Pl Loo (b s HE 1)) -
Proof. Similar as the proof of Theorem 3.2. O
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4 Numerical results

In this section, we present some numerical results for two dimensional problem (i.e. d = 2), illustrating
the performance of the fully discrete schemes analyzed in Sections 3.1 and 3.2. In all the computations
we consider four uniform meshes that are Cartesian refinements of a domain defined in terms of
squares, and then we split each square into two congruent triangles. Also, we consider polynomial
degree k € {0,1,2} and for the DG schemes, we use only @ = 1. In addition, the numerical results
presented below were obtained using a MATLAB code, where the zero integral mean condition for the
pressure is imposed via a real Lagrange multiplier.

In Example 1 we follow [12] and consider the Taylor-Green vortex (see [4]).
Q) := [0,27]2, and the exact solution is given by

That is, we set

t
u(t,x) = <Sin(x1)cos(1'2)€_2t/Re7 —COS(wl)sin(x2)e—2t/Re> 7

p(t,x) = 3(008(2361) + COS(2(£2))6_4t/R67

for all x := (z1,22)* € Q and ¢ € (0,1), where Re = 100 is the Reynolds number. It is easy to check
that u is divergence free and fQ p = 0. Here, we compute the approximation of u at ¢ = 1, where
we consider At = 1/160 = 0.00625. In Table 4.1 we present the results obtained for Raviart-Thomas
schemes (3.4) and (3.15), whereas in Table 4.2 we use DG schemes (3.16) and (3.17).

We see that the estimates we obtained using the Raviart-Thomas spaces and the central flux are
sharp for the velocity when k = 1. However, for k = 0, kK = 2 the convergence rates are higher than
predicted theoretically. In particular, we could not prove convergence for k = 0, however numerically
the method seems to be converging with order 1. Similarly, for DG method using the central flux the
estimate we gave seem to be sharp for the velocity for £ = 0 and k& = 2 (notice that the velocity space
contains polynomials of degree k + 1 for the DG space), but numerically the case kK = 1 does better
than the theory predicts. Finally, using the upwind flux for both the Raviart-Thomas method or the
DG method one observes numerically optimal convergence rates for both the velocity and pressure
variables. Unfortunately, we cannot prove these optimal error estimates.

Central flux Upwind flux

ki h dof || [[u—wllrzq) | P —prllrz@) || o= wllrz@) | P —prllrze)
error  order | error  order error  order | error  order

0.7405 | 745 1.14e-0 —— | 4.69e-1 —— 1.50e-0 —— | 8.69e-1 ——

0 0.3702 | 2929 | 5.70e-1 1.00 | 2.08e-1 1.17 || 8.82¢e-1 0.76 | 5.17e-1  0.75
0.2468 | 6553 | 3.80e-1  1.00 | 1.35e-1  1.07 || 6.29e-1 0.83 | 3.68e-1 0.84
0.1851 | 11617 || 2.85e-1  1.00 | 1.00e-1  1.04 || 4.90e-1 0.87 | 2.86e-1 0.88
0.7405 | 2353 || 5.84e-1 —— | 1.48e-1 —— || 1.75e-1 —— | 9.86e-2 ——

1 0.3702 | 9313 | 2.97e-1 0.98 | 6.65e-2 1.15 || 4.40e-2 2.00 | 2.68e-2 1.88
0.2468 | 20881 || 1.98¢-1  1.00 | 4.32e-2  1.07 || 1.94e-2 2.01 | 1.22e-2 1.94
0.1851 | 37057 || 1.49e-1  1.00 | 3.22e-2  1.02 || 1.09e-2 2.01 | 6.91e-3 1.96
0.7405 | 4825 | 2.15e-2 —— | 6.53e-3 —— 1.28¢-2 —— | 5.19%-3 ——

9 0.3702 | 19153 || 3.31e-3  2.70 | 9.53e-4 2.78 || 1.53e-3 3.06 | 6.80e-4 2.93
0.2468 | 42985 || 8.61e-4  3.32 | 3.09e-4 2.78 || 4.36e-4 3.09 | 2.13e-4  2.87
0.1851 | 76321 || 3.52e-4  3.11 | 1.39e-4 2.78 || 1.79e-4 3.08 | 9.49¢-5 2.81

Table 4.1: History of convergence for Example 1, Raviart-Thomas scheme with ¢t = 1.

For Example 2 we consider the double shear layer problem taken from [1] (see also [12]). We solve
the Euler equation (1.1) in the domain Q := [0, 27]? with a periodic boundary condition and an initial
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Central flux Upwind flux
k| h do.f || [lu—wlrz@) | Ip—pullz@ || la—wllrz@) | P —pollrz@)
error  order | error order || error order | error  order
0.7405 | 2017 | 5.13e-1 —— | 3.83e-1 —— | 2.85e-1 —— | 3.8le-l1 ——
0 0.3702 | 8065 | 2.39e-1 1.10 | 1.89¢-1 1.02 || 8.17e-2 1.80 | 1.88e-1  1.02
0.2468 | 18145 || 1.57e-1  1.03 | 1.25e-1  1.01 || 3.85e-2 1.85 | 1.25e-1  1.01
0.1851 | 32257 || 1.18e-1 1.01 | 9.39e-2 1.01 || 2.24e-2 1.89 | 9.34e-2 1.01
0.7405 4321 4.48e-2 —— | 4.83e-2 —— 3.41e-2  —— | 4.80e-2 ——
1 0.3702 | 17281 || 6.48e-3 2.79 | 1.20e-2  2.01 || 4.60e-3 2.89 | 1.20e-2  2.00
0.2468 | 38881 || 2.01le-3 2.89 | 5.32¢-3 2.00 || 1.37e-3 2.99 | 5.32¢-3  2.00
0.1851 | 69121 || 8.72e-4 2.90 | 3.00e-3  2.00 || 5.75e-4 3.01 | 2.99¢-3  2.00
0.7405 | 7489 | 4.83e-3 —— | 4.14e-3 —— | 2.23e-3 —— | 4.12e-3 ——
5 0.3702 | 29953 || 5.89e-4 3.03 | 5.52e-4 291 || 1.49e-4 3.90 | 5.50e-4 291
0.2468 | 67393 || 1.74e-4 3.00 | 1.76e-4 2.82 | 3.10e-5 3.88 | 1.71le-4  2.89
0.1851 | 119809 || 7.36e-5 3.00 | 8.31le-5 2.61 | 1.03e-5 3.83 | 7.82¢-5 2.71

Table 4.2: History of convergence for Example 1, DG scheme with ¢ = 1.
data given by ug(x) = (ud(x),ud(x))*, with
ud(x) = { tanh((zz = /2)/p) w2 < . and  ud(x) = dsin(z),
tanh((37/2 —x2)/p) z2>7

for all x := (z1,22)* € Q, where we take p = 7/15 and § = 0.05.

In Figures 4.1—4.6, we present some contours of the vorticity wy, := curl(uy) = Oy us — Oz, u1 at
t =6 and t = 8 to show the resolution. We use 99 contours between —4.9 and 4.9, using the previous
four meshes, where h € {0.7405,0.3702,0.2468,0.1851}. For this Figures, we use the DG scheme with
the central flux (cf. (3.16)). Analogously, in Figures 4.7—4.12 we use the DG scheme with the upwind
flux (cf. (3.17)). In all this figures, we take At = 8/200 = 0.04.

We see that the method using the upwind flux seems to do much better than the method using
the central flux. In particular, when using k£ = 2 and using the upwind flux the method seems to do
quite well. In fact, the method seems to be comparable to DG methods using the vorticity-potential
formulation and high-order time integrators developed by Liu and Shu in [12].

5 Conclusions and future directions

In this paper we have developed finite element methods for incompressible Euler equations. We prove
error estimates, however, numerical experiments suggest that our analysis is not sharp, at least for
the upwind methods. It would be interesting to see if a new analysis can prove the optimal estimates
for the upwind schemes.

Our fully discrete methods are implicit. In the future we would like to consider numerical methods
that treat the nonlinear part explicitly in order to make the method more efficient.

Acknowledgements. The first two authors would like to thank Gabriel N. Gatica for facilitat-
ing their collaboration, and Antonio Marquez for providing valuable recomendations concerning the
computational implementation.
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Figure 4.2: Example 2 (DG + central flux), contours for the vorticity with £ =1 and ¢ = 6.
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Figure 4.3: Example 2 (DG + central flux) and t = 6.
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