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Centro de Investigación en
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Abstract

Boolean networks (BNs) were introduced by Stuart Kauffman in 1969 to
model gene regulatory networks (GRNs). In the original model, the updat-
ing scheme was considered to be synchronous due to the difficulty of really
knowing the order (if any) in which the nodes of a network update their state
values. Since the dynamical behavior is very sensitive, in particular the at-
tractors of the network, to changes in the updating scheme, it is increasingly
common to use different updating rules in the modeling of GRNs to better
capture an observed biological phenomenon and thus to obtain more realistic
models.

In [4] equivalence classes of deterministic update schedules in BNs that
yield exactly the same dynamical behavior of the network were defined ac-
cording to the interaction digraph associated to the network. In this way, an
upper bound of the number of different dynamical behaviors is the number
of non-equivalent update schedules, which is usually much less than the total
number of deterministic update schedules.

We present an efficient algorithm that allows to enumerate all non-
equivalent deterministic update schedules for a given interaction digraph.
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Also, this algorithm works in the case where there is a partial knowledge
about the relative order of the updating of the node states.

An executable file of the Label algorithm made in Java is available at:
www.inf.udec.cl/~lilian/UDE/

Key words: Gene regulatory networks, Boolean networks, Update
schedule, Algorithms, Labeled digraph.

1. Introduction

Boolean networks (BNs) were introduced by Stuart Kauffman in [14] to
model gene regulatory networks (GRNs). The gene expression level, in this
case, is modeled by binary values, 0 or 1, indicating two transcriptional
states, either active or inactive, respectively, and this level changes in time
according to some local activation function which depends on the states of a
set of nodes (genes). The dynamics of the network, is governed by an update
schedule which determines when each node has to be updated.

In the original model, the updating scheme was considered to be syn-
chronous, that is at each time step, the state of all nodes is updated at the
same time. Numerous are the examples of GRNs modeled by Boolean net-
works with synchronous update schedule [1, 15, 16, 7, 25]. However, due to
the synchronous scheme is considered not being very realistic many GRN
modelers have used other schedule updates with different levels of asynchro-
nism [26, 18, 10].

Several studies have shown that different updating rules may lead to dis-
tinct dynamical behaviors of a same network, specially to distinct attractor
sets [6, 10, 4, 2]. Consequently, it is increasingly common to use different
update schedules in the modeling of a GRN to better capture an observed bi-
ological phenomenon. In this regard, in the last years has been published ex-
amples of GRNs modeled by BNs with deterministic update schedules where
the state of each node is updated once in every time step and in a given
fixed order (see for example: [22, 11, 23, 24, 8, 19]). These update schedules
can be seen as an extension of the parallel scheme where the node set of
the network is partitioned into groups which are sequentially updated follow
a given sequence and whose nodes are synchronously updated. This family
of update schedules includes the sequential schedules (each group has size
one), the parallel schedule (there is only one group) and the block-sequential
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schedules. In the past, a lot of analytical work has been done about the
dynamical behavior of BNs with this kind of scheme [21, 9, 13, 20, 5, 12].

In [4] equivalence classes of deterministic update schedules in BNs were
defined according to the interaction digraph associated to the network, with
labels on its arcs, which correspond to the relative order of the updating of
the extreme nodes of these arcs. The authors showed in [4] that the elements
of such equivalence classes yield exactly the same dynamical behavior of the
network. Hence, the number of different dynamical behaviors of a BN is
at most the maximum number of non-equivalent update schedules of the
network, which is usually much less than the total number of deterministic
update schedules [2]. In this way, it is important to have an efficient algorithm
for enumerating all non-equivalent deterministic update schedules. Besides,
the preserving of a certain dynamical property, as the limit cycles of a BN
with different update schedules, could impose some labels on certain arcs of
the interaction digraph. Thus, other important question is determining the
set of non-equivalent update schedules which verify certain constraints on the
order of some nodes to be updated. In this paper, we address both problems
and construct efficient algorithms to solve them.

The algorithms designed use two strategies, the first one is avoid infeasible
solutions using a polynomial algorithm. The second one is to make use of
the structural characteristics of the digraph of interaction associated to a
BN, as the presence of bridges, to divide the problem into subproblems, with
smaller instances, which can be solved independently and whose solutions can
be combined to determine the general solution. This procedure significantly
reduces the total execution time of the main algorithm.

As example of application of the constructed algorithms we determined
in few seconds the whole set of non-equivalent deterministic schemes and set
of the schedules feasible of sharing the limit cycle of the synchronous BN
constructed to model the mammalian cell cycle network exhibited in [10].

2. Definitions and notation

A Boolean network N = (F, s) is defined by a finite set V of n elements;
n state variables xv ∈ {0, 1}, v ∈ V ; a function F = (fv)v∈V : {0, 1}n →
{0, 1}n called global activation function, where its component functions fv
are called local activation functions, and an update schedule defined by a
function s : V → {1, . . . , n} such that s(V ) = {1, . . . ,m} for some m ≤ n.
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The update of value states of the Boolean network with an update func-
tion s is given by xk+1

v = fv(x
lu
u : u ∈ V ), where lu = k if s(v) ≤ s(u) and

lu = k + 1 if s(v) > s(u).

12

3 4

f1(x) = x1 ∧ x4
f2(x) = x1 ∨ x4
f3(x) = x2
f4(x) = x1
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3 4

⊕

	

	 ⊕ ⊕ 	

lab(1, 1) = ⊕
lab(1, 2) = 	
lab(2, 3) = 	
lab(4, 2) = ⊕
lab(4, 1) = ⊕
lab(1, 4) = 	

s(i) = i, ∀i ∈ {1, . . . , n}
a) b)

Figure 1: a) Interaction digraph associated to a Boolean network. b) Labeled digraph
associated to a Boolean network and an update schedule.

Given a digraph G we will denote its set of vertices as VG and its set of
arcs as AG.

The digraph associated to a function F = (fv)v∈V , called interaction
digraph, is the directed graph GF , where VGF = V and (u, v) ∈ AGF if and
only if fv depends on xu, i.e., if there exists x ∈ {0, 1}n such that fv(x) 6=
fv(x̄

u), with x̄u different of x only in position u. See an example of an
interaction digraph in Figure 1a.

Given a digraph G a label function is any function lab : AG → {⊕,	,#}.
We call labeled digraph to (G, lab). In Figure 1b we see a labeled digraph in
which its arcs are labeled according to its function lab. We denote A⊕(G,lab) =

{(u, v) ∈ AG|lab(u, v) = ⊕}. Analogously we define A	(G,lab) and A#
(G,lab).

Given a label function lab, we call support to the set Sup(lab) = A⊕(G,lab)∪
A	(G,lab). The arcs in the support are also called labeled arcs, remaining arcs
of G will be called unlabeled arcs.

We say that (G, lab) is fully labeled if Sup(lab) = AG. Otherwise, we say
that it is partially labeled.

The label function l̃ab : AG → {⊕,	,#} is an extension of

lab : AG → {⊕,	,#} if ∀a ∈ Sup(lab), l̃ab(a) = lab(a). If Sup(l̃ab) = AG,

we call l̃ab a full extension.
Given a digraph G and a partial label function lab. If lab(a) = #, we

define the simple extension laba=⊕, as the function where: ∀e ∈ AG \ {a},
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laba=⊕(e) = lab(e) and laba=⊕(a) = ⊕. Analogously, we define the simple
extension laba=	.

In [4] was defined the update digraph related to a network N = (F, s) as
(GF , labs); where labs is the label function related to the scheme s, that is
given by labs(i, j) = ⊕ if s(i) ≥ s(j) and labs(i, j) = 	 if s(i) < s(j). In
Figure 1b its shown an update digraph. We can see that lab = labs.

In this way, given any label function lab : AG → {	,⊕}, we say that
the digraph (G, lab) is update if there exists s such that (G, lab) = (G, labs),
which can be found in polynomial time using for example the algorithm
exhibited in [3] (see Appendix).

In this work we extend the concept of update digraph to partially labeled
digraphs. We say that (G, lab) is an update digraph, if there exists a full
extension lab ′ such that (G, lab ′) is update.

We denote as S(G, lab) the set of full extensions of lab ′ that make (G, lab ′)
an update digraph.

Given a labeled digraph (G, lab), we define the reverse digraph (GR, labR),
where VGR

= VG,

AGR
=
{

(u, v)|(u, v) ∈ A⊕(G,lab) ∨ (v, u) ∈ A	(G,lab)

}
and labR(u, v) = 	 if (v, u) ∈ A	(G,lab) and labR(u, v) = ⊕ otherwise. In
Figure 2 we show an example of a labeled digraph and its associated reverse
digraph.
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Figure 2: a) A labeled digraph (G, lab). b) The associated reverse digraph (GR, labR). c)
A negative reverse path: (6, 4, 2, 3, 5).

Given a labeled digraph (G, lab) and G′ a subdigraph of G, we define the
lab restricted to the subdigraph G′ as lab|AG′ : AG′ → {⊕,	,#}, such that
∀a ∈ AG′ : lab|AG′ (a) = lab(a).
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Given a labeled digraph (G, lab), there is a reverse path from node v1 to
vn in G, if there exists a sequence of nodes (v1, v2, . . . , vn) which verifies:

∀i ∈ {1, . . . , n− 1} , (vi, vi+1) ∈ A⊕(G,lab) ∨ (vi+1, vi) ∈ A	(G,lab)

In other words, there exists a path in the reverse digraph.
There is a negative reverse path from v1 to vn, if there exists a path in the

reverse digraph that contains a negative arc. In Figure 2c the path marked
by the gray arrows is a reverse path from 6 to 5. This is also a negative
reverse path, because the arc (3, 2) is on the sequence.

A forbidden cycle (defined in [3]) is a negative reverse path (v1, v2, . . . , vn)
where v1 = vn.

The previous concepts will lead us to define binary relations RP ⊆ VG×VG
and NRP ⊆ VG×VG, respectively reverse path and negative reverse path. To
simplify the notation we denote RP(i, j)⇐⇒ (i, j) ∈ RP and NRP(i, j)⇐⇒
(i, j) ∈ NRP.

In labeled digraphs, we define positive strongly connected component in
the same way as the strongly connected component, but restricting to the
digraph induced by positive arcs.

3. Complexity of update digraph extension problem

In this article we are interested in finding the extensions of a partial
labeled digraph (eventually with empty support) that are update digraphs or
equivalently a set of non-equivalent deterministic update schedules satisfying
some constraints about the relative order of updating of some nodes of the
network. More precisely, we address the following problem:

Update digraph extension (UDE): Given a labeled digraph (G, lab), to
find the set S(G, lab) of all full extensions lab ′ of lab such that (G, lab ′) is an
update digraph.

To know the computational complexity of the UDE problem, we study
the following counting problem associated to UDE:

Counting update digraph extensions (CUDE): Given (G, lab) a la-
beled digraph, to determine the number of all full extensions lab ′ of lab such
that (G, lab ′) is an update digraph.

We will prove that CUDE is a difficult problem, thereby we can conclude
the complexity of the UDE problem.
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Theorem 1. CUDE is #P-complete.

The proof (see Appendix) is based in the idea that an acyclic labeled digraph
is an update digraph if and only if its reverse digraph is acyclic. This is
because in the reverse digraph of an update digraph the only allowed cycles
have every arc labeled as positive. In this way, it is easy to define a bijection
between an update digraph and the acyclic orientation of its underlaying
graph.

Note that previous result tell us that to know the total number of ex-
tensions from a partially labeled digraph is a hard problem, while that the
related existence problem is known to be polynomial [3].

4. Algorithms

In this section we present the theoretical results that leads to design an
algorithm that solve the UDE problem. In first place, we focus on verify
the existence of one solution, then we reduce our problem contracting each
positive strongly connected component in one vertex. In second place, we
present the two main results of this article: they are the effect of forcing
arcs, that allows to eliminate infeasible solutions in polynomial time, and the
division of our problem into smaller pieces using algorithms to find bridges
and strongly connected components.

4.1. Verify

First, we verify whether the labeled digraph is an update digraph. To
check this, we use the ReversePaths algorithm to search any forbidden cycle.
ReversePaths algorithm is an adaptation of Floyd-Warshall algorithm, where
instead of finding minimum weight paths, we determine the existence of
reverse paths and negative reverse paths between each pair of vertices. The
algorithm returns the matrix M where: M(u, v) = ∞ if it does not exist a
reverse path from u to v, M(u, v) = −1 if there is a negative reverse path
from u to v and M(u, v) = 1 otherwise. See details of ReversePaths and Verify
algorithms in Appendix.

4.2. Reduction

As we mentioned above, the UDE problem belongs to a class of problems
for which there are not known polynomial algorithms that solve them. Hence,
the reduction of instance of the problem is very important. In this way, we
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define the reduced digraph of an update digraph which involves replacing
each positive strongly connected by a single vertex.

The following lemma is a property of the update digraphs which allows
to define correctly the reduced digraph of an update digraph.

Lemma 2. Let (G, lab) be an update digraph, G1 and G2 two positive

strongly connected components of G, and l̃ab a full extension such that
(G, l̃ab) is a fully labeled update digraph. Then ∀a, a′ ∈ AG ∩ (VG1 × VG2):

l̃ab(a) = l̃ab(a′).

The proof of this lemma (detailed in Appendix) uses the fact that if l̃ab(a) 6=
l̃ab(a′) then there exists a forbidden cycle in the labeled digraph.

From the previous lemma we know that we can preliminarily label some
arcs. This help us to avoid a multidigraph when we obtain the reduced
digraph or problems in its label function.

Definition 1. Let (G, lab) be an update digraph and {G1, . . . , Gk} its pos-
itive strongly connected components. We define its reduced labeled digraph
R(G, lab) by R(G, lab) = (Grd = (Vrd, Ard), labrd), where Vrd = {v1, . . . , vk}
and Ard =

{
(vi, vj)|∃(u, v) ∈ AG ∩

(
VGi
× VGj

)}
Furthermore, labrd(vi, vj) = lab(u, v), if ∃(u, v) ∈

(
VGi
× VGj

)
∩ Sup(lab)

and labrd(vi, vj) = # otherwise. We say that a labeled digraph (G, lab) is
reduced if (G, lab) = R(G, lab).

Note that if (G, lab) is connected, then obviously R(G, lab) is also con-
nected. Furthermore, as (G, lab) is an update digraph, then R(G, lab) is an
update digraph, since otherwise there would be a forbidden cycle.

Example 1. In Figure 3 an example of a reduced digraph is shown. The
nodes 4, 5 and 6 are in a positive strongly connected component, so in the
reduced digraph they are all represented by node v4.

Theorem 3. The elements of the solution set of the UDE problem for
(G, lab) are in bijection with those of the UDE problem for R(G, lab).

The proof of this theorem uses the previous lemma (details in Appendix). In
fact, if we have an unlabeled arc between nodes in the same positive strongly
connected component, this must be labeled positive to avoid a forbidden cy-
cle. In terms of update schedule, that means that every node in the positive
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strongly connected component is updated at the same time, so we can repre-
sent all these nodes in one. Also, the arcs between different positive strongly
connected components must have the same direction in the reverse digraph
to avoid forbidden cycles, hence we can represent all of them by just one that
has the right direction in the reverse digraph.

The application of this results leads to Algorithm 1. In this algorithm
we use SCC+, i.e. the algorithm that returns the positive strongly connected
components of a digraph. This is very easy to construct using, for example,
Tarjan algorithm.

Algorithm 1 Reduce

Require: An update digraph (G, lab).
Ensure: The reduced digraph (Grd, labrd).
1: {G1, . . . , Gk} ← SCC+(G, lab)
2: VGrd

← {w1, . . . , wk}
3: AGrd

← ∅
4: for i = 1 to k do
5: for j = 1 to k do
6: if ∃(u, v) ∈ AG with u ∈ VGi

and v ∈ VGj
then

7: AGrd
← AGrd

∪ (wi, wj)

8: for all do(wi, wj) ∈ AGrd

9: if ∃u ∈ VGi
, v ∈ VGj

and lab(u, v) = 	 then
10: labrd(u, v)← 	
11: else if ∃u ∈ VGi

, v ∈ VGj
and lab(u, v) = ⊕ then

12: labrd(u, v)← ⊕
13: else
14: labrd(u, v)← #
15: return (Grd, labrd)

4.3. Force

Given an update digraph (G, lab) with Sup(lab) 6= AG, there are situa-
tions in which an unlabeled arc (i, j) ∈ AG may be labeled just in one way
to keep the update digraph property. In fact, if every unlabeled arc is forced
to have a unique label the solutions of the UDE problem is unique.

Example 2. In figure 4 a) we see that there exists a negative reverse path
from 3 to 2 (3,1,2) and in b) we see that there exists a reverse path from
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Figure 3: a) An update digraph. b) The reduced digraph.

2 to 4, then the unlabeled arcs (2,3) and (2,4) must be labeled negative and
positive respectively as shown in c).

23

1

45

⊕

#
	

	

#

#

# 23

1

45

⊕

#
	

	

#

#

# 23

1

45

⊕

#
	

	

#

#

#

a) b) c)

Figure 4: Example of forced arcs.

The fact that there exists an unlabeled arc forced to have an unique
label, called simply forced arc, depends only on the existence of reverse and
negative reverse paths in the interaction digraph as shown in the following
proposition.

Proposition 4 (Forced arc). Let (G, lab) be an update digraph, (i, j) ∈
AG and lab(i, j) = #, then:

1. ∀(i, j) ∈ AG : NRP(j, i) ⇐⇒
(
G, lab(i,j)=⊕

)
is a non update digraph;

then we say that the arc (i, j) is forced to be negative.

2. ∀(i, j) ∈ AG : RP(i, j) ⇐⇒
(
G, lab(i,j)=	

)
is a non update digraph;

then we say that the arc (i, j) is forced to be positive.

Proof. We will proof the first case, the second one is analogous.
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(=⇒) If we consider that there exists a negative reverse path from j to i,
then if we label (i, j) positive, there will be a negative reverse path (forbidden

cycle) from j to j. Hence,
(
G, lab(i,j)=⊕

)
is a non update digraph.

(⇐=) If
(
G, lab(i,j)=⊕

)
is a non update digraph and (G, lab) is, then a

forbidden cycle is produced by labeling positive the arc (i, j). Hence there
exists a negative reverse path from j to i in (G, lab).

It is important to observe that the order in which the forced arcs are
chosen to be labeled is irrelevant in the label obtained. This is because of
the labeling of forced arcs do not give us additional information in terms
of reverse and negative reverse paths in the interaction digraph. Indeed, if
there exists a negative reverse path from j to i we label this negative forced
arc (i, j), i.e, we add a new negative reverse path from j to i. Analogously, if
there is a reverse path from i to j in the interaction digraph, we label (i, j)
positive, i.e. we add a new reverse path from i to j.

To check the existence of forced arcs allows to avoid extensions that are
not update schedules. Hence, we build Algorithm 2 that labels all the forced
arcs. Applying this algorithm to an update digraph we obtain the maximal
extension, which is the extension of G such that every forced arc is labeled.

Algorithm 2 Force

Require: An update digraph (G, lab).
Ensure: A maximal extension of lab
1: l̃ab ← lab
2: M ← ReversePaths(G, lab)
3: for all a ∈ Sup(lab), with a = (i, j) do
4: if M(i, j) 6=∞ then

5: l̃ab ← l̃ab
a=⊕

6: else if M(j, i) = −1 then

7: l̃ab ← l̃ab
a=	

8: return l̃ab

Next, we introduce a simple algorithm, called SimpleLabel, to find all
the extensions of a given partially labeled update digraph and which uses
the Force algorithm. Firstly, this algorithm finds the maximal extension of
the given label function. Thereafter, the algorithm labels an unlabeled arc
positive and and recursively calls itself. In this way, it finds all the solutions
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with this arc labeled positive, then it repeats the procedure labeling the arc
negative. Finally the total solution is the union of both solution sets.

Algorithm 3 SimpleLabel

Require: An update digraph (G, lab)
Ensure: The set S(G, lab) denoted by S and its cardinal number r := |S|
1: (S, r)← (∅, 0)
2: lab ← Force(G, lab)
3: if Sup(lab) = A(G) then
4: return (lab, 1)
5: else
6: Let be a ∈ A(G) \ Sup(lab)
7: (S1, r1)← SimpleLabel(G, laba=⊕)
8: (S2, r2)← SimpleLabel(G, laba=	)
9: (S, r)← (S1 ∪ S2, r1 + r2)

10: return (S, r)

4.4. Divide and conquer

In order to improve the efficiency of the SimpleLabel algorithm, we use
structural properties of the digraph to divide the problem into subproblems,
by partitioning the arc set, such that their combined solutions give us the
solution of the original problem. To formalize this combination of solutions
we define operator ⊗.

Definition 2. Given a digraph G; {Ai}ki=1 a partition of AG and {Ai}ki=1

a family of label functions such that for every i ∈ {1, . . . , }, Li ⊆
{lab|lab : Ai → {⊕,	,#} is label function of G}, we define:

L1 ⊗ · · · ⊗ Lk = {lab : AG → {⊕,	,#} |∃labi ∈ Li, lab|Ai
= labi}

The following result is directly obtained from the previous definition.

Proposition 5. Let (G, lab) be a digraph such that its connected components
are G1, . . . , Gk, then

S(G, lab) = S(G1, lab|AG1
)⊗ · · · ⊗ S(Gk, lab|AGk

)
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4.4.1. Division by bridges

The first division is to separate nodes joined by a bridge in the underlying
graph (i.e. the graph obtained by replacing all directed edges of G with
undirected edges). This idea comes from the fact that any forbidden cycle
cannot contain any bridge.

Proposition 6. Let (G, lab) be a labeled connected digraph, GU the under-
lying graph of G the and uv a bridge of GU that divides G into G1 and G2,
we denote by Gb = G[{u, v}] then

S(G, lab) = S(G1, lab|AG1
)⊗ S(Gb, lab|AGb

)⊗ S(G2, lab|AG2
).

The proof of this proposition is detailed in Appendix. In Figure 5 we can
see an example of division by bridges of a labeled digraph with the associated
partition of arc set.
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Figure 5: a) Labeled digraph. b) Underlying graph. c) Partition of arc set produced by
the division by bridges.

4.4.2. Division by strongly connected components

Another way to simplify the digraph consists in divide it by its strongly
connected components in the extended reverse digraph, i.e. the reverse di-
graph where unlabeled arcs are replaced by unlabeled arcs in both directions.
As in the case of bridges, forbidden cycles cannot use arcs connecting different
strongly connected components.
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Proposition 7. Let (G, lab) be an update digraph with G1, . . . , Gk its
strongly connected components of the extended reverse digraph, we define the
set of arcs:

AT =
⋃
i,j

AG ∩
(
VGi
× VGj

)
,

which it is composed by the arcs between strongly connected components of
the extended reverse digraph of (G, lab). Then,

S(G, lab) = S(G̃1, lab|A
G̃1

)⊗ · · · ⊗ S(G̃k, lab|A
G̃k

)⊗ {lab|AT
}

where ∀i ∈ {1, . . . , k} , G̃i = G[VGi
]

The proof of this last proposition is similar to that of the Proposition 6
shown in Appendix, and is based on the fact that (G, lab) is an update

digraph if and only if every labeled digraph (G̃i, lab|A
G̃i

) is update digraph.

Next we define the Algorithm 4, called Label, that requires as input an
update digraph with a label function without forced arcs, and which uses the
divisions defined above to partition our problem. It applies the sames ideas
of SimpleLabel, i.e. to force arcs, label one and apply recursively the same
algorithm.
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32
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5 32
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G̃1 G̃2 G[AT ]

d)

Figure 6: a) Labeled digraph. b) Extended reverse digraph. c) Strongly connected compo-
nents. d) Partition of arc set produced by the division by strongly connected components.
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Algorithm 4 Label

Require: (G, lab), a maximal extension of an update digraph.
Ensure: The set S(G, lab) denote by S and its cardinal number r := |S|
1: (S, r)← (∅, 1)
2: {(G1, labG1) , . . . , (Gk, labGk

)} ← Bridges(GU)
3: for i = 1 to k do
4: if Sup(labGi

) = AGi
then

5: S ← S ⊗ {labGi
}

6: else
7: {(H1, labH1), . . . , (Hp, labHp)} ← SCC+(Gi, labGi

)
8: if p = 1 then
9: Let a ∈ AH1 be an arc such that lab(a) = #

10: lab+ ← Force
(
H1, laba=⊕

H1

)
11: if Sup(lab+) 6= AH1 then
12: (Ŝ, r̂)← Label(H1, lab+)
13: else
14: (Ŝ, r̂)← (

{
lab+

}
, 1)

15: lab− ← Force
(
H1, laba=	

H1

)
16: if Sup(lab−) 6= AH1 then
17: (S̃, r̃)← Label(H1, lab−)
18: else
19: (S̃, r̃)← (

{
lab−

}
, 1)

20: (S, r)← (S ⊗ (Ŝ ∪ S̃), r · (r̂ + r̃))
21: else
22: for j = 1 to p do
23: if Sup(labHj

) = AHj
then

24: S ← S ⊗
{

labHj

}
25: else
26: (S̃, r̃)← Label(Hj, labHj

)

27: (S, r)← (S ⊗ S̃, r · r̃)
28: return (S, r)

Finally, we present the main algorithm to solve the UDE problem, named
UpdateLabel, which first checks if the labeled digraph (G, lab) received as
input is an update digraph, i.e. if S(G, lab) 6= ∅.
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5. Comparison of the algorithm with and without division

To illustrate the efficiency of doing divisions in the main algorithm we
compare the performance of our algorithm Label against SimpleLabel algo-
rithm that only uses the idea of forced arcs. As the algorithms require an
update digraph as input, we use the main algorithm ( UpdateLabel algorithm)
to call Label or SimpleLabel. The tests were run in complete digraphs and
chains (see Figure 7) with empty support in a laptop with Processor: In-
tel Core i5-3317U, CPU: 1.7GHz, RAM memory: 6 GB, operating system:
Windows 8.1 (64 bits). In Table 1 we can see as the main algorithm with La-
bel runs faster than with SimpleLabel, even in the case of complete digraphs
where there is a small number of divisions.

Algorithm 5 UpdateLabel

Require: A labeled digraph (G, lab)
Ensure: The set S(G, lab) denote by S and its cardinal number r :=
|S(G, lab)|.

1: if Verify(G, lab) = false then
2: return (∅, 0)
3: else
4: (Grd, labrd)← Reduce(G, lab)

5: l̃ab ← Force(Grd, labrd)

6: return Label(Grd, l̃ab) (or SimpleLabel(Grd, l̃ab))

2 3 41 5

Figure 7: Example of a chain Pn where n = 5.

6. Application to Mammalian cell cycle network

In this section we use the implementation of the main algorithm intro-
duced in the previous section over the Mammalian cell cycle network con-
structed in [10] and studied with different deterministic update schedules in
[23], where some theoretical results were given. Then we analyze the obtained
results showing the main advantages of this algorithm.
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Graph Nodes Arcs |S(G, lab)| SimpleLabel Label
K3 3 6 13 0.02 0.02
K5 5 20 541 0.18 0.13
K7 7 42 47 293 140.76 0.79
K8 8 56 545 835 > 22 200.00 1.90
P10 10 18 19 683 4.43 0.02
P12 12 22 177 147 313.68 0.02
P50 50 98 349 − 0.09
P200 200 398 3199 − 0.17

Table 1: Results obtained when the main algorithm is used with and without divisions on
some digraphs. Here the time is measured in seconds.

The Mammalian cell cycle network has 10 nodes and 31 arcs. A detailed
description of the network can be found in Table 1 in Appendix. In Figure 8
we see the interaction digraph of the network.
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a) b)

Figure 8: a) The interaction digraph of the Mammalian cell cycle network. b) Mammalian
cell cycle network with some labeled arcs (GM , labM ).

We apply our main algorithm to the unlabeled digraph (GM , lab#), where
∀a ∈ AGM

, lab#(a) = #, and we find all the full extensions, i.e. all non-
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equivalent updates schedules, in 27.61 seconds. There exists a total of 466712
elements in S(GM , lab#).

This network synchronously updated, denoted Np = (F, sp) has only one
fixed point and one limit cycle of length 7 as attractors:

Fixed Point: x0 = (0, 1, 0, 0, 0, 1, 0, 1, 0, 0)
Limit Cycle: C = {x0, x1, x2, x3, x4, x5, x6, x7}, where:

x0 = (1, 0, 1, 0, 0, 0, 0, 1, 1, 0)
x1 = (1, 0, 1, 1, 0, 0, 0, 1, 0, 0)
x2 = (1, 0, 1, 1, 1, 0, 0, 1, 0, 0)
x3 = (1, 0, 0, 1, 1, 0, 0, 0, 0, 0)

x4 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 1)
x5 = (1, 0, 0, 0, 1, 0, 1, 0, 1, 1)
x6 = (1, 0, 0, 0, 0, 0, 1, 1, 1, 0)
x7 = (1, 0, 1, 0, 0, 0, 0, 1, 1, 0)

In our study we are interested in finding all the non-equivalent determinis-
tic update schedules the yield the limit cycle C. This give us some restrictions
over the label function, so we can easily label some arcs to reduce the space
of search.

Example 3. In local activation function fv7 we know that when xv7 is 1,
xv10 is 1. Observing the limit cycle, we see that x6v7 is 1 but x6v10 is 0, so if
lab(10, 7) = 	 the cycle is not possible, because it means that s(v10) < s(v7)
(xv10 is updated before xv7).

Similarly we can check fv10. In this case the function depends on v7 and
v8. Specifically when xv10 is 1, both xv7 and xv8 must be 0. So in row sixth,
we conclude that lab(7, 10) = ⊕; but we cannot label (8, 10) using the same
idea.

Finally is easy to see that we can label (5,3); (3,4); (7,5); (10,7); (5,8);
(7,8); (8,9) and (7,10) are positive arcs if we are looking for label functions
that preserve the mentioned cycle.

The label digraph obtained with the previous information is shown in
Figure 8b).

Using the main algorithm with input this partially label digraph we find in
just 0.40 seconds all the 1440 elements of S(GM , labM). In [23] they studied
the update digraphs that preserve the limit cycle C, but they considered
each member of S(GM , lab#) as a possible candidate, i.e. the total of 466712
elements.

Considering the simplicity of get labM from lab# and the great reduction
in both time of execution and total solutions, we can realize the advantages
taken from the use of our algorithm.
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7. Conclusions

In this article we addressed the problem of enumerating all non-equivalent
deterministic update schedules for a given interaction digraph. We construct
an algorithm that uses two major ideas in its design. The first one is the base
on the Force algorithm, which in polynomial time checks whether the given
labels on some arcs uniquely determine the label in others (only possible
extension). This allows to eliminate infeasible solutions in polynomial time.

The second one is to make use of the structural characteristics of the
interaction digraph associated to a BN, as the presence of bridges, to divide
the problem into subproblems, with smaller instances, which can be solved
independently and whose solutions can be combined to determine the general
solution. This idea is applied to strongly connected components in a digraph
induced by the labeled. In this case we have obtain a relative order between
set of nodes, that allow to find the solution as a combinations of the solution
of the parts. This procedure significantly reduces the total execution time of
the main algorithm as observed in Table 1.

A. Appendix

A.1. Complexity

Theorem 8. CUDE is #P-complete.

Proof. We reduce the Acyclic Orientation problem (AO problem) to
CUDE. The AO problem consists in given a graph G, count the number
of orientations of G that does not contain any cycle. It is known that the
Acyclic Orientation problem is #P-complete [17].

Let G be a graph with VG = {1, . . . , n}, we define G′ (an acyclic orien-
tation of G) with VG′ = VG and AG′ = {(u, v)|uv ∈ EG ∧ u > v}. Obviously
we can construct G′ in polynomial time.

We denote the sets:

OG = {G0|G0 an acyclic orientation of G} , and

DG′ = {lab|(G′, lab) is a fully labeled update digraph}

We define the function φ : OG → DG′ , such that ∀G0 ∈ OG, φ(G0) =
labG0 , where ∀(u, v) ∈ AG′ , labG0(u, v) = ⊕ if (u, v) ∈ AG0 and labG0(u, v) =
	 if (v, u) ∈ AG0 .
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Since G0 and G′ are orientations of G, then ∀(u, v) ∈ AG′ , (u, v) ∈ AG0 or
(v, u) ∈ AG0 . Thus, labG0 is a full label of G′. Besides, because G is an acyclic
orientation, then (G, labG0) is an update digraph. Hence, labG0 ∈ DG′ , i.e.
labG0 is well defined.

Furthermore, φ is injective. Indeed, let G1 = (V,A1) and G2 = (V,A2)
be two acyclic orientations of G:

φ(G1) = φ(G2)⇒ labG1 = labG2

⇒ ∀(u, v) ∈ AG′ : labG1(u, v) = labG2(u, v)

⇒ ∀(u, v) ∈ AG′ : ((u, v) ∈ A1 ∧ (u, v) ∈ A2)
∨ ((v, u) ∈ A1 ∧ (v, u) ∈ A2)

⇒ A1 = A2 ⇒ G1 = G2

Function φ is also surjective. For all lab such that (G′, lab) is an update
digraph, we have that G′R (reverse digraph of G′) is an acyclic orientation of
G. In fact, it does not have cycles, since otherwise G′ would have a forbidden
cycle or a positive component. The first option is not possible, because it is
an update digraph and the second one is also impossible because G′ would
have a cycle. Therefore φ is surjective and hence bijective.

A.2. Verify

The Verify algorithm checks whether the labeled digraph is an update
digraph for searching forbidden cycles. For this, we use Algorithm 7, called
ReversePaths which is an adaptation from Floyd-Warshall algorithm, where
instead of finding minimum weight paths, we determine the existence of
reverse paths and negative reverse paths between each pair of vertices.

In ReversePaths we define the function M(u, v) = ∞ if it does not exist
a reverse path from u to v, M(u, v) = −1 if there is a negative reverse path
from u to v and M(u, v) = 1 otherwise. And also the commutative binary
operator � where:

a� b =


∞ if a =∞∨ b =∞
1 if a = b = 1

−1 otherwise.
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Algorithm 6 Verify

Require: A digraph G = (V,A) and a label function lab : A→ {⊕,	,#}.
Ensure: true if (G, lab) is an update digraph, and false otherwise.
1: for all u ∈ V (G) do
2: if (there exists a negative reverse path from u to u ) then
3: return false
4: return true

Algorithm 7 ReversePaths

Require: A labeled digraph (G, lab)
Ensure: The matrix M of all reverse and negative paths of (G, lab)
1: Let M be a matrix |VG| × |VG|
2: for all (u, v) ∈ VG × V(G) do
3: if (v, u) ∈ A	(G,lab) then

4: M(u, v)← −1
5: else if (u, v) ∈ A⊕(G,lab) then

6: M(u, v)← 1
7: else
8: M(u, v)←∞
9: for k = 1 to |VG| do

10: for i = 1 to |VG| do
11: for j = 1 to |VG| do
12: if M(i, k)�M(k, j) < M(i, j) then
13: M(i, j)←M(i, k)�M(k, j)

14: return M

A.3. Reduction

Lemma 9. Let (G, lab) be an update digraph, G1 and G2 two positive

strongly connected components of G, and l̃ab a full extension such that
(G, l̃ab) is a fully labeled update digraph. Then ∀a, a′ ∈ AG ∩ (VG1 × VG2):

l̃ab(a) = l̃ab(a′).

Proof. Let (G, l̃ab) be a fully labeled update digraph, with G1 and G2

two positive strongly connected components of G; and (u, v), (x, y) ∈ AG ∩
(VG1 × VG2). Let us assume that l̃ab(u, v) = ⊕ and l̃ab(x, y) = 	. Thus,
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we have that RP(u, v) and NRP(y, x). Furthermore, RP(v, y) and RP(x, u),
because u, x ∈ VG1 and v, y ∈ VG2 . Then, we deduce from the properties of
both relations that NRP(u, u), i.e., there exists a forbidden cycle. This lead

us to a contradiction, because (G, l̃ab) is an update digraph. Hence, we have

that l̃ab(u, v) = l̃ab(x, y).

Theorem 10. The elements of the solution set of the UDE problem for
(G, lab) are in bijection with those of the UDE problem for R(G, lab).

Proof. Let φ : S(G, lab)→ S(R(G, lab)), be a function defined by: ∀lab ′ ∈
S(G, lab), φ(lab ′) = lab ′′, such that ∀(vi, vj) ∈ Ard, lab ′′(vi, vj) = lab ′(u, v);
where u ∈ VGi

and v ∈ VGj
.

Now, we proof that (Grd, lab ′′) is an update digraph.
Let us suppose that there exists a forbidden cycle in (Grd, lab ′′), then

there exists a sequence (u1, . . . , ul) such that:

∀i ∈ {1, . . . , l − 1} , (ui, ui+1) ∈ A⊕(Grd,lab
′′)
∨ (ui+1, ui) ∈ A	(Grd,lab

′′)

Without loss of generality, we say that ui represents the positive strongly
connected component Gi. Then, by definition of AGrd

we know that given
(uj, uk), (uk, uh) ∈ AGrd

there exists (v1, v2), (v3, v4) ∈ AG with v2, v3 ∈ Gk,
v1 ∈ Gj, v4 ∈ Gh. Hence, we know that given a reverse path or a negative
reverse path in Grd, there exists one in G. Then, if there exists a forbidden
cycle in (Grd, lab ′′) there will be one in (G, lab ′). Therefore φ is well defined.

Furthermore φ is injective. Indeed, given lab1, lab2 ∈ S(G, lab), φ(lab1) =
lab ′′1, φ(lab2) = lab ′′2 and {G1, . . . , Gk} the positive strongly connected com-
ponents of (G, lab) then lab1 6= lab2 implies there exists (u, v) ∈ AG, such
that lab1(u, v) 6= lab ′′2(u, v), where u ∈ VGi

, v ∈ VGj
, and i 6= j. Then,

lab ′′1(wi, wj) 6= lab ′′2(wi, wj).
We also have that φ is surjective. Given lab ′′ ∈ S(R(G, lab)), we define

the function lab ′ by:
∀(u, v) ∈ AG; ∀i, j ∈ {1, . . . , k}, i 6= j, with u ∈ Gi, v ∈ Gj: lab ′(u, v) =

lab ′′(vi, vj) and ∀(u, v) ∈ AG; ∀i ∈ {1, . . . , k}, with u, v ∈ Gi: lab ′(u, v) = ⊕.
It is easy to see that lab ′ ∈ S(G, lab) and φ(lab ′) = lab ′′

A.4. Force

Proposition 11. Let (G, lab) be an update digraph and a ∈ AG a positive
forced arc, then:
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1. ∀i, j ∈ VG : NRP(i, j) in (G, lab)⇐⇒ NRP(i, j) in (G, laba=⊕)

2. ∀i, j ∈ VG : RP(i, j) in (G, lab)⇐⇒ RP(i, j) in (G, laba=⊕)

The previous result is analogous for a negative forced arc.

Proof. We prove only the first case, the second one is analogous.

(=⇒) It is direct, because
(
G, lab(i,j)=⊕

)
is an extension of (G, lab). As

in a extension there are at least the same labeled arcs. Hence, it is easy to
see that if there exists a negative reverse path in the original digraph, then
there exists in its extension.

(⇐=) Considering a negative reverse path in (G, laba=⊕) we show that
there exists a negative reverse path in (G, lab). The only difference between
both digraphs is the positive forced arc a. We know that any forced arc do
not add information in terms of reverse and negative reverse paths.

A.5. Divide and conquer

A.5.1. Divide by bridges

Proposition 12. Let (G, lab) be a labeled connected digraph, GU the under-
lying graph of G and uv ∈ E(GU) a bridge that divide G in G1 and G2, we
denote by Gb = G[{u, v}] then

S(G, lab) = S(G1, lab|AG1
)⊗ S(Gb, lab|AGb

)⊗ S(G2, lab|AG2
)

Proof. Given lab ′ ∈ S(G, lab), then it is clear that lab ′ ∈ S(G1, lab|AG1
)⊗

S(Gb, lab|AGb
)⊗ S(G2, lab|AG2

).

Given lab ′ ∈ S(G1, lab1) ⊗ S(Gb, lab|AGb
) ⊗ S(G2, lab2), let suppose that

u ∈ G1 and v ∈ G2, and lab ′ /∈ S(G, lab), since is clear that lab ′ is a fully label
extension, then (G, lab ′) is a non update digraph and it contains a forbidden
cycle. Without loss of generality, we say that there exists a cycle starting
in u1 which is part of G1 component, as (G1, lab1) is an update digraph,
it cannot exists a cycle in it. This implies that (u, v) must be part of the
sequence, but it could not exist a forbidden cycle in Gb, so the cycle should
be in G2, which is impossible. Hence, lab ∈ S(G, lab ′).

A.5.2. Divide by strongly connected components

Another way to simplify the digraph consists in to divide it by its strongly
connected components in the extended reverse digraph, i.e. the reverse di-
graph where unlabeled arcs are replaced by unlabeled arcs in both directions.
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Proposition 13. Let (G, lab) be an update digraph with G1, . . . , Gk its
strongly connected components of the extended reverse digraph, we define a
set of arcs:

AT =
⋃
i,j

AG ∩
(
VGi
× VGj

)
,

which it is composed by the arcs between SCC of the extended reverse digraph
of (G, lab). Then, we verify that:

S(G, lab) = S(G̃1, lab|AG1
)⊗ · · · ⊗ S(G̃k, lab|AGk

)⊗ {lab|AT
}

where ∀i ∈ {1, . . . , k} , G̃i = G[VGi
]

Proof. Given lab ′ ∈ S(G, lab) if there is not a forbidden cycle in G, nei-
ther there is a cycle in any of its strongly connected components over its ex-
tended reverse digraph, therefore lab ′ ∈ S(G̃1, lab|AG1

)⊗· · ·⊗S(G̃k, lab|AGk
)⊗

{lab|AT
}. Furthermore, lab ′ ∈ S(G̃1, lab|AG1

)⊗· · ·⊗S(G̃k, lab|AGk
) =⇒ lab ′ ∈

S(G, lab). This is easy to prove, because as they are strongly connected com-
ponents, there are not back and forth paths between them.

A.6. Application

name id function

CycD v1 xv1
Rb v2 (¬xv1 ∧ ¬xv10) ∧ ([¬xv4 ∧ ¬xv5 ] ∨ xv6)
E2F v3 (¬xv2 ∧ ¬xv5 ∧ ¬xv10) ∨ (xv6 ∧ ¬xv2 ∧ ¬xv10)
CycE v4 xv3 ∧ ¬xv2
CycA v5 (¬xv2 ∧ ¬xv7 ∧ ¬(xv8 ∧ xv9)) ∧ (xv3 ∨ xv5)
p27 v6 (¬xv1 ∧ ¬xv10) ∧ ([¬xv4 ∧ ¬xv5 ] ∨ [xv6 ∧ ¬(xv4 ∧ xv5)])
Cdc20 v7 xv10
Cdh1 v8 (¬xv5 ∧ ¬xv10) ∨ xv7 ∨ (xv6 ∧ ¬xv10)
UbcH10 v9 ¬xv8 ∨ (xv8 ∧ xv9 ∧ [xv7 ∨ xv5 ∨ xv10 ])
CycB v10 ¬xv7 ∧ ¬xv8

Table 2: Notation for the nodes of the mammalian cell cycle network (GM )
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régulation génétique. Ph.D. thesis, Université Joseph Fourier (Greno-
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