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Abstract

In this paper we propose and analyze a new mixed variational formulation for the stationary
Boussinesq problem. Our method, which employs a technique previously applied to the Navier-
Stokes equations, is based first on the introduction of a modified pseudostress tensor depending
nonlinearly on the velocity through the respective convective term. Next, the pressure is eliminated,
and an augmented approach for the fluid flow, which incorporates Galerkin type terms arising from
the constitutive and equilibrium equations, and from the Dirichlet boundary condition, is coupled
with a primal-mixed scheme for the main equation modeling the temperature. In this way, the only
unknowns of the resulting formulation are given by the aforementioned nonlinear pseudostress, the
velocity, the temperature, and the normal derivative of the latter on the boundary. An equivalent
fixed-point setting is then introduced and the corresponding classical Banach Theorem, combined
with the Lax-Milgram Theorem and the Babuška-Brezzi theory, are applied to prove the unique
solvability of the continuous problem. In turn, the Brouwer and the Banach fixed point theorems
are utilized to establish existence and uniqueness of solution, respectively, of the associated Galerkin
scheme. In particular, Raviart-Thomas spaces of order k for the pseudostress, continuous piecewise
polynomials of degree ≤ k + 1 for the velocity and the temperature, and piecewise polynomials
of degree ≤ k for the boundary unknown become feasible choices. Finally, we derive optimal a
priori error estimates, and provide several numerical results illustrating the good performance of the
augmented mixed-primal finite element method and confirming the theoretical rates of convergence.
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1 Introduction

The devising of suitable numerical methods for solving the Boussinesq equations and its generaliza-
tions, such as temperature-dependent coefficient problems, has become a very active research area
in recent years (see, e.g. [2, 4, 13, 15, 16, 26, 28, 31], and the references therein). This fact has
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been motivated by its diverse applications in industry (fume cupboard ventilation, heat exchangers,
cooling of electronic equipments, cooling of nuclear reactors, etc.), and in geophysics or oceanogra-
phy (climate predictions, oceanic flows, etc.), to name a few. The Bousisnesq model, also known as
natural-convection flow model, is a system of equations modelling incompressible non-isothermal fluid
flows. They couple the stationary incompressible Navier-Stokes equations for the fluid variables (ve-
locity and pressure) with a convection-diffusion equation for the temperature variable. The coupling is
through a buoyancy term typically acting in direction opposite to gravity and through the convective
term in the convection-diffusion equation.

Up to the authors’ knowledge, one of the first works in analyzing a finite element discretization for
the Boussinesq equations is [4]. In that work, the authors provide a complete analysis of a primal
formulation for the coupled problem, in which the main unknowns are the velocity, the pressure and
the temperature of the fluid. At the continuous level it is proved existence of at least one weak
solution, and uniqueness of solution under a smallness assumption on the data. On the other hand,
at the discrete level it is established suitable assumptions on the finite elements subspaces ensuring
that the associated Galerkin scheme is well posed and convergent. In particular, the use of any pair
of stable Stokes elements for the fluid variables and Lagrange elements for the temperature leads to a
convergent scheme. Later on, a new mixed formulation for the two-dimensional Boussinesq equations
has been introduced and analyzed in [15], where the gradient of the velocity and the gradient of
the temperature are set as further unknowns (besides the velocity, pressure and temperature). The
corresponding mixed finite element scheme employs Raviart-Thomas elements of lowest order for the
gradients and piecewise constants for the velocity, temperature and pressure. Existence of solution
and convergence of the numerical scheme are proved near a nonsingular solution and quasi-optimal
error estimates are provided.

The purpose of the present work is to contribute in the development of new numerical methods
for the Boussinesq problem allowing, on the one hand, optimal convergence, and on the other hand,
the possibility of computing further variables of interest, such as the vorticity and the gradient of
the velocity, as a postprocess of the discrete solutions. In this direction, a new optimally convergent
augmented-mixed finite element method for the Navier-Stokes equation has been recently developed
in [10] (see also [6], [7], [8], [25] for related works). This method, which extends recent results on
pseudostress-based formulations for the Stokes problem (see e.g. [9], [17], [21], [22], [24], and the
references therein), consists in a new formulation for the Navier-Stokes problem with Dirichlet bound-
ary conditions, where the main unknowns are the velocity and the so called nonlinear pseudostress
tensor depending nonlinearly on the velocity through the respective convective term. The pressure is
eliminated by using the incompressibility condition, and can be recovered as a simple postprocess of
the nonlinear pseudostress tensor, as well as the vorticity and the gradient of the fluid. Due to the
presence of the convective term in the system, the velocity is kept in H1, which leads to the incorpo-
ration of Galerkin type terms arising from the constitutive and equilibrium equations, and from the
Dirichlet boundary condition, into the variational formulation. The introduction of these terms allows
to circumvent the necessity of proving inf-sup conditions, and as a result, to relax the hypotheses
on the corresponding discrete subspaces (see for instance [5], [18] and [19] for the foundations of this
procedure). In this way, the classical Banach’s fixed point Theorem and Lax-Milgram’s Lemma can
be applied to prove existence and uniqueness of solution of the continuous and discrete problems.

According to the above discussion, in the present paper we employ the augmented-mixed formulation
introduced in [10] for the Navier-Stokes equations, which is coupled with a primal-mixed scheme for
the convection-diffusion equation modelling the temperature, and introduce a new augmented mixed-
primal variational formulation for the Boussinesq equations, which yields the aforementioned nonlinear
pseudostress, the velocity, the temperature, and the normal derivative of the latter on the boundary
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as the main unknowns of the resulting formulation. Next, following basically the approach from [3]
for a related coupled flow-transport problem, we introduce an equivalent fixed-point setting, and then
apply the classical Banach Theorem combined with the Lax-Milgram Theorem and the Babuška-
Brezzi theory, to prove the unique solvability of the continuous problem for sufficiently small data.
Analogously, we apply a fixed-point argument and derive sufficient conditions on the finite element
subspaces ensuring that the associated Galerkin scheme becomes well posed. In particular, Raviart-
Thomas spaces of order k for the nonlinear pseudostress, continuous piecewise polynomials of degree
≤ k+1 for the velocity and the temperature, and piecewise polynomials of degree ≤ k for the boundary
unknown become feasible choices. These choices of finite elements subspaces yield optimally convergent
Galerkin schemes.

Outline

We have organized the contents of this paper as follows. The remainder of this section introduces some
standard notation and functional spaces. In Section 2 we introduce the model problem written in terms
of the velocity, pressure and temperature. Then, utilizing the incompressibility condition, we eliminate
the pressure and rewrite the equations equivalently in terms of the nonlinear pseudostress, velocity
and temperature. In Section 3 we derive the augmented mixed-primal variational formulation, clearly
justifying the necessity of augmentation, and analyze its well-posedness under a smallness assumption
on the data. Next, in Section 4 we define the Galerkin scheme, and derive general hypotheses on the
finite element subspaces ensuring that the discrete scheme becomes well posed. Here we apply the
Brouwer theorem to prove existence of solution whereas the Banach fixed point theorem is utilized to
prove uniqueness of solution. In addition, suitable choices of finite element subspaces satisfying these
assumptions are introduced in Section 4.3. In Section 5 we provide the corresponding Cea’s estimate
and establish the rate of convergence associated to the finite element subspaces defined in Section
4.3. Finally, in Section 6 we provide several numerical results illustrating the performance of the
augmented mixed-primal finite element method and confirming the theoretical rates of convergence.

Preliminaries

Let us denote by Ω ⊆ Rn, n ∈ {2, 3}, a given bounded domain with polyhedral boundary Γ, and
denote by ν the outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue
spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖ · ‖s,Ω and seminorm | · |s,Ω. In particular, H1/2(Γ)
is the space of traces of functions of H1(Ω) and H−1/2(Γ) denotes its dual. By M and M we will denote
the corresponding vectorial and tensorial counterparts of the generic scalar functional space M, and
‖ · ‖, with no subscripts, will stand for the natural norm of either an element or an operator in any
product functional space.

We recall that the space

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

equipped with the usual norm

‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω ,

is a Hilbert space. As usual, I stands for the identity tensor in Rn×n, and | · | denotes the Euclidean
norm in Rn. Also, for any vector fields v = (vi)i=1,n and w = (wi)i=1,n we set the gradient, divergence,
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and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=
n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n .

In addition, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=

n∑
i=1

τii, τ : ζ :=

n∑
i,j=1

τijζij , and τ d := τ − 1

n
tr(τ ) I .

2 The model problem

We consider the stationary Boussinesq problem given by

−µ∆u + (∇u)u + ∇p − g ϕ = 0 in Ω ,

divu = 0 in Ω ,

−div(K∇ϕ) + u · ∇ϕ = 0 in Ω ,

u = uD on Γ ,

ϕ = ϕD on Γ ,

(2.1)

where the unknowns are the velocity u, the pressure p, and the temperature ϕ of a fluid occupying the
region Ω. The given data are the fluid viscosity µ > 0, the external force per unit mass g ∈ L∞(Ω),
the boundary velocity uD ∈ H1/2(Γ), the boundary temperature ϕD ∈ H1/2(Γ), and a uniformly
positive definite tensor K ∈ L∞(Ω) describing the thermal conductivity. Note that uD must satisfy
the compatibility condition ∫

Γ
uD · ν = 0 , (2.2)

which comes from the incompressibility condition of the fluid. Uniqueness of a pressure solution of

(2.1), (see e.g. [28]), is ensured in the space L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
. We now introduce

the auxiliary tensor unknown

σ := µ∇u − (u⊗ u) − p I in Ω , (2.3)

and realize that the first equation in (2.1) can be rewritten as

− divσ − g ϕ = 0 in Ω . (2.4)

Moreover, it is easy to see that (2.3) together with the incompressibility condition given by the second
equation in (2.1) are equivalent to the pair of equations

µ∇u − (u⊗ u)d = σd in Ω ,

p = − 1

n
tr(σ + u⊗ u ) in Ω .

(2.5)

4



Consequently, we can eliminate the pressure unknown (which can be approximated later on by the
postprocessed formula suggested by the second equation of (2.5)), and arrive at the following system
of equations with unknowns u, σ, and ϕ

µ∇u − (u⊗ u)d = σd in Ω ,

−divσ − g ϕ = 0 in Ω ,

−div(K∇ϕ) + u · ∇ϕ = 0 in Ω ,

u = uD on Γ ,

ϕ = ϕD on Γ ,∫
Ω

tr(σ + u⊗ u) = 0 .

(2.6)

Note that the incompressibility of the fluid is implicitly present in the new constitutive equation
relating σ and u (first equation of (2.6)). In turn, the fact that the pressure p must belong to L2

0(Ω)
(for uniqueness reasons) is guaranteed by the equivalent statement given by the last equation of (2.6).

3 The continuous formulation

3.1 The augmented mixed–primal formulation

In what follows, we derive a weak formulation of problem (2.6). We start by recalling (see e.g. [5],
[20]) that there holds

H(div; Ω) = H0(div; Ω) ⊕ R I , (3.1)

where

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫
Ω

tr(ζ) = 0

}
.

More precisely, for each ζ ∈ H(div; Ω) there exists a unique ζ0 := ζ−
(

1

n |Ω|

∫
Ω

tr(ζ)

)
I ∈ H0(div; Ω)

and c :=
1

n |Ω|

∫
Ω

tr(ζ) ∈ R, such that

ζ = ζ0 + c I . (3.2)

In particular, the eventual solution σ in (2.6) can be descomposed as σ = σ0 + c I where σ0 ∈
H0(div; Ω) and, according to the last equation in (2.6), c is given explicity en terms of u as

c = − 1

n |Ω|

∫
Ω

tr(u⊗ u) . (3.3)

Hence, since σd = σd
0 and divσ = divσ0, throughout the rest of the paper we rename σ0 as

σ ∈ H0(div; Ω) and observe that the first and second equations of (2.6) remain unchanged. In this
way, multiplying the constitutive equation by a test function τ ∈ H(div; Ω) and using the Dirichlet
condition for u, we get∫

Ω
σd : τ d + µ

∫
Ω
u · div τ +

∫
Ω

(u⊗ u)d : τ d = µ 〈 τν , uD 〉Γ ∀ τ ∈ H(div; Ω) , (3.4)
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where 〈 · , · 〉Γ stands for the duality pairing between H−1/2(Γ) and H1/2(Γ). Note, however, that (3.4)
is actually satisfied in advance for τ = d I with d ∈ R, since in this case all the terms appearing there
vanish. In particular, the compatibility condition (2.2) explains this fact for the term on the right
hand side of (3.4). According to this and the decomposition (3.1), we realize that (3.4), which is the
weak form of the constitutive equation, reduces, equivalently, to∫

Ω
σd : τ d + µ

∫
Ω
u · div τ +

∫
Ω

(u⊗ u)d : τ d = µ 〈 τν , uD 〉Γ ∀ τ ∈ H0(div; Ω) . (3.5)

In turn, the equilibrium equation given by the second equation of (2.6) can be rewritten as

− µ

∫
Ω
v · divσ − µ

∫
Ω
ϕ g · v = 0 ∀v ∈ L2(Ω) . (3.6)

On the other hand, regarding the heat equation modelling ϕ, we multiply the third equation of (2.6)
by ψ ∈ H1(Ω), integrate by parts and introduce, as a new unknown, the normal component of the
temperature flux, that is λ := −K∇ϕ · ν ∈ H−1/2(Γ), so that we get∫

Ω
K∇ϕ · ∇ψ + 〈λ, ψ 〉Γ +

∫
Ω

(u · ∇ϕ )ψ = 0 ∀ψ ∈ H1(Ω) . (3.7)

Finally, the Dirichlet condition ϕ = ϕD on Γ is imposed weakly as

〈 ξ, ϕ 〉Γ = 〈 ξ, ϕD 〉Γ ∀ ξ ∈ H−1/2(Γ) . (3.8)

Before continuing we observe that the third terms on the left hand sides of (3.4) and (3.7) require
the unknown u to live in a smaller space than L2(Ω). Indeed, by applying Cauchy-Schwarz and
Hölder inequalities, and then the continuous injection of H1(Ω) into L4(Ω) (cf. [1, Theorem 4.12],
[29, Theorem 1.3.4]), we find that there exist positive constants c1(Ω) and c2(Ω), such that∣∣∣∣ ∫

Ω
(u⊗w )d : τ d

∣∣∣∣ ≤ c1(Ω) ‖u‖1,Ω ‖w‖1,Ω ‖τ‖0,Ω ∀u, w ∈ H1(Ω) , ∀ τ ∈ L2(Ω) , (3.9)

and ∣∣∣∣∫
Ω

(u · ∇ϕ)ψ

∣∣∣∣ ≤ c2(Ω) ‖u‖1,Ω ‖ψ‖1,Ω |ϕ|1,Ω ∀u ∈ H1(Ω), ∀ϕ ,ψ ∈ H1(Ω) . (3.10)

According to the above, and in order to be able to analyze the present variational formulation of (2.6),
we now augment (3.5) - (3.8) through the incorporation of the following redundant Galerkin terms

κ1

∫
Ω

(
µ∇u − (u⊗ u)d − σd

)
: ∇v = 0 ∀v ∈ H1(Ω) ,

κ2

∫
Ω

divσ · div τ + κ2

∫
Ω
ϕ g · div τ = 0 ∀ τ ∈ H0(div; Ω) ,

κ3

∫
Γ
u · v = κ3

∫
Γ
uD · v ∀v ∈ H1(Ω) ,

(3.11)

where κ1, κ2 and κ3 are positive parameters to be specified later. Note that the identities required in
(3.11) are nothing but the constitutive and the equilibrium equations along with the Dirichlet condition
for the velocity, but all them tested differently from (3.5) - (3.6). In this way, we arrive at the following
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augmented mixed-primal formulation: Find (σ, u, ϕ, λ ) ∈ H0(div; Ω)×H1(Ω)× H1(Ω)× H−1/2(Γ)
such that

A( (σ,u) , (τ ,v) ) + Bu( (σ,u) , (τ ,v) ) = Fϕ(τ ,v) + FD(τ ,v) ,

a(ϕ, ψ) + b(ψ , λ) = Fu,ϕ(ψ) ,

b(ϕ , ξ) = G(ξ) ,

(3.12)

for all ( τ , v, ψ, ξ ) ∈ H0(div; Ω) × H1(Ω) × H1(Ω) × H−1/2(Γ), where the forms A, Bw, a, and b
are defined, respectively, as

A((σ,u), (τ ,v)) :=

∫
Ω
σd : ( τ d − κ1∇v ) +

∫
Ω

(µu + κ2 divσ ) · div τ

−µ
∫

Ω
v · divσ + µκ1

∫
Ω
∇u : ∇v + κ3

∫
Γ
u · v ,

(3.13)

Bw( (σ,u) , (τ ,v) ) := −
∫

Ω
(u⊗w)d :

(
κ1∇v − τ d

)
, (3.14)

a(ϕ,ψ) :=

∫
Ω
K∇ϕ · ∇ψ , (3.15)

and
b(ψ , ξ) := 〈 ξ, ψ 〉Γ , (3.16)

for all (σ,u), (τ ,v) ∈ H0(div; Ω) × H1(Ω), for all w ∈ H1(Ω), for all ϕ, ψ ∈ H1(Ω), and for all
ξ ∈ H−1/2(Γ). Note that A, Bw (with a given w ∈ H1(Ω)), a, and b are bilinear. In turn, Fϕ (with
a given ϕ ∈ H1(Ω)) , FD, Fu,ϕ (with a given (u, ϕ) ∈ H1(Ω)×H1(Ω)), and G are the bounded linear
functionals defined by

Fϕ(τ ,v) :=

∫
Ω
ϕg ·

(
µv − κ2 div τ

)
∀ (τ ,v) ∈ H0(div; Ω) × H1(Ω) , (3.17)

FD(τ ,v)) := κ3

∫
Γ
uD · v + µ 〈 τν ,uD 〉Γ ∀ (τ ,v) ∈ H0(div; Ω) × H1(Ω) , (3.18)

Fu,ϕ(ψ) := −
∫

Ω
(u · ∇ϕ )ψ ∀ψ ∈ H1(Ω) , (3.19)

and
G(ξ) := 〈 ξ, ϕD 〉Γ ∀ ξ ∈ H−1/2(Γ) . (3.20)

The well-posedness of (3.12) is addressed below in Sections 3.2, 3.3, and 3.4 by applying the fixed
point approach that is explained next. We only remark in advance that it aims to decouple the primal
unknowns given by the velocity u and the temperature ϕ, through the introduction of two uncoupled
linear problems.

3.2 A fixed point approach

We now describe our fixed-point strategy to solve (3.12). We start by denoting H := H1(Ω)×H1(Ω)
and defining the operator S : H −→ H0(div; Ω) × H1(Ω) by

S(w, φ) := (S1(w, φ),S2(w, φ)) = (σ,u) ∀ (w, φ) ∈ H , (3.21)
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where (σ,u) is the unique solution of the problem: Find (σ, u) ∈ H0(div; Ω) × H1(Ω) such that

A( (σ,u) , (τ ,v) ) + Bw( (σ,u) , (τ ,v) ) =
(
Fφ + FD

)
(τ ,v) , (3.22)

for all (τ ,v) ∈ H0(div; Ω) × H1(Ω) . Here, the form A and the functional FD are defined exactly as
in (3.13) and (3.18), respectively. In turn, the bilinear form Bw( ·, · ) and the linear functional Fφ are
given by (3.14) and (3.17) (with φ instead of ϕ), respectively.

In addition, we also introduce the operator S̃ : H −→ H1(Ω) defined as

S̃(w, φ) := ϕ ∀ (w, φ) ∈ H , (3.23)

where ϕ ∈ H1(Ω) is the first component of the unique solution of the problem: Find (ϕ, λ) ∈
H1(Ω) ×H−1/2(Γ) such that

a(ϕ, ψ) + b(ψ, λ) = Fw,φ(ψ) ∀ψ ∈ H1(Ω)

b(ϕ , ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ) ,
(3.24)

where a and b are the forms introduced in (3.15) - (3.16) and Fw,φ is defined by (3.19).

In this way, by introducing the operator T : H −→ H as

T(w, φ) := (S2(w, φ), S̃(S2(w, φ), φ)) ∀ (w, φ) ∈ H , (3.25)

we realize that (3.12) can be rewritten as the fixed-point problem: Find (u, ϕ) ∈ H such that

T(u, ϕ) = (u, ϕ) . (3.26)

This fact certainly requires that both operators S and S̃ be well defined. In other words, we first need
to analyze the well-posedness of the uncoupled problems (3.22) and (3.24), which is precisely what we
carry out in the following section.

3.3 Well-posedness of the uncoupled problems

We begin by recalling the following lemmas which are useful to prove ellipticity properties.

Lemma 3.1 There exists c3(Ω) > 0 such that

c3(Ω) ‖τ 0‖20,Ω ≤ ‖τ d‖20,Ω + ‖div τ‖20,Ω ∀τ = τ 0 + cI ∈ H(div; Ω),

Proof. See [5, Proposition 3.1]. �

Lemma 3.2 There exists c4(Ω) > 0 such that

|v|21,Ω + ‖v‖20,Γ ≥ c4(Ω) ‖v‖21,Ω ∀v ∈ H1(Ω).

Proof. See [17, Lemma 3.3]. �

The next result provides conditions under which the operator S in (3.21) is well-defined, or equiv-
alently, the problem (3.22) is well-posed.
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Lemma 3.3 Assume that κ1 ∈ (0, 2 δ) with δ ∈ (0, 2µ), and κ2, κ3 > 0. Then, there exists
r0 > 0 such that for each r ∈ (0, r0), the problem (3.22) has a unique solution (σ,u) := S(w, φ) ∈
H0(div; Ω) ×H1(Ω) for each (w, φ) ∈ H such that ‖w‖1,Ω ≤ r. Moreover, there exists a constant
cS > 0, independent of (w, φ), such that there holds

‖S(w, φ)‖ = ‖(σ,u)‖ ≤ cS

{
‖g‖∞,Ω ‖φ‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
. (3.27)

Proof. For a given w in H1(Ω), we observe from (3.14) that Bw is clearly a bilinear form. Also, from
Cauchy-Schwarz’s inequality and the trace theorem with constant c0(Ω), we get

|A( (σ,u) , (τ ,v) )| ≤ ‖σd‖0,Ω ‖τ d‖0,Ω + κ1 ‖σd‖0,Ω |v|1,Ω + µ ‖u‖0,Ω ‖div τ‖0,Ω

+ κ2 ‖divσ‖0,Ω ‖div τ‖0,Ω + µ ‖v‖0,Ω ‖divσ‖0,Ω

+ µκ1 |u|1,Ω|v|1,Ω + c0(Ω)κ3 ‖u‖0,Γ ‖v‖0,Ω ,

whereas, utilizing the estimation (3.9), we deduce that for all (σ,u), (τ ,v) ∈ H0(div; Ω) × H1(Ω)
there holds

|Bw((σ,u), (τ ,v))| ≤ c1(Ω) (κ2
1 + 1)1/2 ‖w‖1,Ω ‖u‖1,Ω ‖(τ ,v)‖ . (3.28)

It follows from the foregoing inequalities that there exists a positive constant, denoted by ‖A + Bw‖,
and depending on µ, κ1, κ2, κ3, c0(Ω), c1(Ω), and ‖w‖1,Ω, such that

|A( (σ,u) , (τ ,v) ) + Bw( (σ,u) , (τ ,v) )| ≤ ‖A + Bw‖ ‖(σ,u)‖ ‖(τ ,v)‖ (3.29)

for all (σ,u) , (τ ,v) ∈ H0(div; Ω) × H1(Ω). In turn, we have from (3.13) that

A( (τ ,v) , (τ ,v) ) = ‖τ d‖20,Ω − κ1

∫
Ω
τ d : ∇v + κ2 ‖div τ‖20,Ω + µκ1 |v|21,Ω + κ3 ‖v‖20,Γ ,

which, using the Cauchy-Schwarz and Young inequalities, and then Lemmas 3.1 and 3.2, yields for
any δ > 0 and for all (τ ,v) ∈ H0(div; Ω) × H1(Ω),

A( (τ ,v) , (τ ,v) ) ≥
(

1 − κ1

2 δ

)
‖τ d‖20,Ω + κ2 ‖div τ‖20,Ω + κ1

(
µ − δ

2

)
|v|21,Ω + κ3 ‖v‖20,Γ

≥ α3 ‖τ‖2div;Ω + c4(Ω)α2 ‖v‖21,Ω ≥ α(Ω) ‖(τ ,v)‖2 ,
(3.30)

where, assuming the stipulated hypotheses for δ and κ1,

α1 := min
{

1− κ1

2 δ
,
κ2

2

}
, α2 := min

{
κ1

(
µ − δ

2

)
, κ3

}
α3 := min

{
α1 c3(Ω),

κ2

2

}
, and α(Ω) := min

{
α3, c4(Ω)α2

}
.

The above shows that A is elliptic with constant α(Ω), and hence, employing (3.28), we deduce that
for all (τ ,v) ∈ H0(div; Ω) × H1(Ω) there holds(

A + Bw
)(

(τ ,v), (τ ,v)
)
≥
(
α(Ω)− (κ2

1 + 1)1/2 c1(Ω) ‖w‖1,Ω
)
‖(τ ,v)‖2 ≥ α(Ω)

2
‖(τ ,v)‖2 , (3.31)

provided (κ2
1 + 1 )1/2 c1(Ω) ‖w‖1,Ω ≤

α(Ω)

2
. Therefore, the ellipticity of the form A + Bw is ensured

with the constant
α(Ω)

2
, independent of w, by requiring ‖w‖1,Ω ≤ r0, with

r0 :=
α(Ω)

2 (κ2
1 + 1)1/2 c1(Ω)

. (3.32)
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Next, concerning the functionals Fφ and FD, we first see that, for a given φ ∈ H1(Ω), Fφ is clearly
linear in H0(div; Ω) × H1(Ω), and by using Cauchy-Schwarz’s inequality and the trace theorems in
H(div; Ω) and H1(Ω) with constants 1 and c0(Ω), respectively, we find that

‖Fφ ‖ ≤ (µ2 + κ2
2)1/2 ‖g‖∞,Ω ‖φ‖0,Ω . (3.33)

and
‖FD ‖ ≤ κ3 c0(Ω) ‖uD‖0,Γ + µ ‖uD‖1/2,Γ . (3.34)

In this way, denoting MS := max
{

(µ2 + κ2
2)1/2, κ3 c0(Ω)

}
, we deduce from (3.33) and (3.34) that

‖Fφ + FD‖ ≤ MS

{
‖g‖∞,Ω ‖φ‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
. (3.35)

We conclude by Lax-Milgram Theorem (see e.g. [20], Theorem 1.1) that there is a unique solution
(σ,u) := S(w, φ) ∈ H0(div; Ω) × H1(Ω) of (3.22), and the corresponding continuous dependence
result together with the constant of ellipticity α(Ω)/2 and the estimate (3.35) imply (3.27) with the

positive constant cS :=
2MS

α(Ω)
, which is clearly independent of w and φ. �

On the other hand, a straightforward application of the Babǔska-Brezzi theory provides the well-
posedness of (3.24). In fact, we have the following result.

Lemma 3.4 For each (w, φ) ∈ H := H1(Ω) × H1(Ω) there exists a unique pair (ϕ, λ) ∈ H1(Ω) ×
H−1/2(Γ) solution of problem (3.24), and there holds

‖S̃(w, φ)‖ ≤ ‖(ϕ, λ)‖ ≤ c
S̃

{
‖w‖1,Ω |φ|1,Ω + ‖ϕD‖1/2,Γ

}
, (3.36)

where c
S̃

is a positive constant independent of (w, φ).

Proof. It is clear from (3.15) and (3.16) that a and b are bounded bilinear forms in H1(Ω) × H1(Ω)
and H1(Ω) × H−1/2(Γ), respectively, with constants ‖a‖ := ‖K‖∞,Ω and ‖b‖ := 1. In addition,
it is easy to see that the bilinear form b satisfies the inf-sup condition since its induced operator is
given by R∗−1/2 ◦ γ0 : H1(Ω) −→ H−1/2(Γ), where γ0 : H1(Ω) −→ H1/2(Γ) is the trace operator,

which is surjective, and R−1/2 : H−1/2(Γ) −→ H1/2(Γ) is the usual Riesz operator, which is bijective.
Moreover, it is clear that the kernel of the aforementioned induced operator is V := H1

0(Ω), and hence,
recalling that K is a uniformly positive definite tensor, and using the Friedrichs-Poincaré inequality,
we deduce that a is V−elliptic with a constant αa(Ω) depending only on Ω. In turn, it is quite clear
that for each (w, φ) ∈ H the functionals Fw,φ and G are linear and bounded in H1(Ω) and H1/2(Γ),
respectively. In particular, according to the duality pairing of H−1/2(Γ) and H1/2(Γ), and the estimate
(3.10), it follows from (3.19) and (3.20) that

‖Fw,φ‖(H1(Ω))′ ≤ c2(Ω) ‖w‖1,Ω |φ|1,Ω (3.37)

and
‖G‖−1/2,Γ ≤ ‖ϕD‖1/2,Γ . (3.38)

In this way, the Babǔska-Brezzi theory (see e.g. [20, Theorem 2.3]) ensures the existence of a unique
(ϕ, λ) ∈ H1(Ω) × H−1/2(Γ) solution of (3.24) and a positive constant c

S̃
depending on ‖a‖, αa(Ω),

c2(Ω) and the inf-sup constant of b, such that the estimate (3.36) holds. �
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3.4 Solvability analysis of the fixed point equation

Having proved the well-posedness of the uncoupled problems (3.22) and (3.24), which ensures that
the operators S, S̃ and T (cf. Section 3.2) are well defined, we now aim to establish the existence of
a unique fixed point of the operator T. For this purpose, in what follows we verify the hypothesis of
the Banach fixed point Theorem. We begin with the following result.

Lemma 3.5 Let r ∈
(
0, r0

)
, with r0 given by (3.32) (cf. proof of Lemma 3.3), let W be the closed

ball in H defined by W :=
{

(w, φ) ∈ H : ‖(w, φ)‖ ≤ r
}

, and assume that the data satisfy

c(r)
{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
+ c

S̃
‖ϕD‖1/2,Γ ≤ r , (3.39)

where
c(r) := max

{
r, 1
} (

1 + c
S̃
r
)
cS ,

with cS and c
S̃

as in (3.27) and (3.36), respectively. Then there holds T(W ) ⊆ W .

Proof. Given (w, φ) in the ball W of radius r ∈
(
0, r0

)
, it follows that (u, ϕ) := T(w, φ) is well

defined since ‖w‖1,Ω ≤ r. Then, according to the definition of the operator T (cf. (3.25)), and
employing the continuous dependence estimates (3.36) and (3.27), it follows that

‖(u, ϕ)‖ ≤ ‖S2(w, φ)‖1,Ω + c
S̃

{
r ‖S2(w, φ)‖1,Ω + ‖ϕD‖1/2,Γ

}
≤

(
1 + c

S̃
r
)
‖S2(w, φ)‖1,Ω + c

S̃
‖ϕD‖1/2,Γ

≤
(

1 + c
S̃
r
)
cS

{
r ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
+ c

S̃
‖ϕD‖1/2,Γ

≤ c(r)
{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
+ c

S̃
‖ϕD‖1/2,Γ ,

and hence the result follows from the assumption (3.39). �

Next, we establish two lemmas that will be useful to derive conditions under which the operator T
is continuous. We start with the following estimate regarding the operator S.

Lemma 3.6 Let r ∈
(
0, r0

)
, with r0 given by (3.32). Then there exists a positive constant CS,

depending on the viscosity µ, the stabilization parameters κ1 and κ2, the constant c1(Ω) (cf. (3.9)),
and the ellipticity constant α(Ω) of the bilinear form A (cf. (3.30) in the proof of Lemma 3.3), such
that

‖S(w, φ) − S(w̃, φ̃)‖ ≤ CS

{
‖g‖∞,Ω ‖φ− φ̃‖0,Ω + ‖S2(w, φ)‖1,Ω ‖w − w̃‖1,Ω

}
, (3.40)

for all (w, φ) , (w̃, φ̃) ∈ H such that ‖w‖1,Ω , ‖w̃‖1,Ω ≤ r.

Proof. Given r and (w, φ), (w̃, φ̃) ∈ H as indicated, we let (σ,u) := S(w, φ) and (σ̃, ũ) := S(w̃, φ̃)
be the corresponding solutions of problem (3.22). Then, using the bilinearity of A and Bw for any w,
it follows easily from (3.22) that(

A + Bw̃
)
((σ,u)− (σ̃, ũ), (τ ,v)) = F

φ−φ̃(τ ,v) − Bw−w̃((σ,u), (τ ,v))
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for all (τ ,v) ∈ H0(div; Ω) × H1(Ω). Hence, applying the ellipticity of A + Bw̃ (cf. (3.31)), and
employing the bounds (3.33) and (3.28) for F

φ−φ̃ and Bw−w̃, respectively, we find that

α(Ω)

2
‖(σ,u) − (σ̃, ũ)‖2 ≤

(
A + Bw̃

)
((σ,u) − (σ̃, ũ), (σ,u) − (σ̃, ũ))

= F
φ−φ̃
(
(σ,u) − (σ̃, ũ)

)
− Bw−w̃

(
(σ,u), (σ,u) − (σ̃, ũ)

)
≤
{

(µ2 + κ2
2)1/2 ‖g‖∞,Ω ‖φ− φ̃‖0,Ω + (κ2

1 + 1)1/2 c1(Ω) ‖u‖1,Ω ‖w − w̃‖1,Ω
}
‖(σ,u) − (σ̃, ũ)‖ ,

which, denoting CS :=
2

α(Ω)
max

{
(µ2 + κ2

2)1/2, (κ2
1 + 1)1/2 c1(Ω)

}
and recalling that u = S2(w, φ),

yields (3.40) and concludes the proof. �

In turn, the following result establishes the Lipschitz-continuity of the operator S̃.

Lemma 3.7 There exists a positive constant C
S̃

, depending on c2(Ω) (cf. (3.10)) and the ellipticity
constant αa(Ω) of the bilinear form a in the kernel of b, such that

‖S̃(w, φ) − S̃(w̃, φ̃)‖ ≤ C
S̃

{
‖w‖1,Ω |φ− φ̃|1,Ω + ‖w − w̃‖1,Ω |φ̃|1,Ω

}
(3.41)

for all (w, φ), (w̃, φ̃) ∈ H.

Proof. Given (w, φ), (w̃, φ̃) ∈ H, we let (ϕ, λ), (ϕ̃, λ̃) ∈ H1(Ω) × H−1/2(Γ) be the corresponding
solutions of (3.24), so that ϕ := S̃(w, φ) and ϕ̃ := S̃(w̃, φ̃). Then, using the linearity of the forms a
and b, we deduce from both formulations (3.24) that

a(ϕ− ϕ̃, ψ) + b(ψ, λ− λ̃) = F
w,φ−φ̃(ψ) + F

w−w̃,φ̃(ψ) ∀ψ ∈ H1(Ω)

b(ϕ− ϕ̃ , ξ) = 0 ∀ ξ ∈ H−1/2(Γ) .
(3.42)

Next, noting from the second equation of (3.42) that ϕ − ϕ̃ belongs to the kernel V of b, taking
ψ = ϕ− ϕ̃ and ξ = λ− λ̃ in (3.42), using the ellipticity of a in V , and employing the bound (3.37) for
F
w,φ−φ̃ and F

w−w̃,φ̃, we deduce starting from the first equation of (3.42) that

αa(Ω) ‖ϕ− ϕ̃‖21,Ω ≤ a(ϕ− ϕ̃, ϕ− ϕ̃) =
∣∣F
w,φ−φ̃(ϕ− ϕ̃) + F

w−w̃,φ̃(ϕ− ϕ̃)
∣∣

≤ c2(Ω)
{
‖w‖1,Ω |φ− φ̃|1,Ω + ‖w − w̃‖1,Ω |φ̃|1,Ω

}
‖ϕ− ϕ̃‖1,Ω ,

which gives (3.41) with C
S̃

: =
c2(Ω)

αa(Ω)
. �

As a consequence of the previous lemmas, we have the following result.

Lemma 3.8 Let r ∈
(
0, r0

)
, with r0 given by (3.32), and let W :=

{
(w, φ) ∈ H : ‖(w, φ)‖ ≤ r

}
.

Then, there exists CT > 0, depending on r and the constants cS, CS, and C
S̃

(cf. (3.27), (3.40), and
(3.41), respectively), such that

‖T(w, φ) − T(w̃, φ̃)‖ ≤ CT

{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
‖(w, φ)− (w̃, φ̃)‖ (3.43)

for all (w, φ), (w̃, φ̃) ∈ W .
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Proof. Given r ∈
(
0, r0

)
and (w, φ), (w̃, φ̃) ∈ W , we first observe, according to the definition of T

(cf. (3.25)), the Lipschitz-continuity of S̃ (cf. (3.41)), and the fact that ‖φ̃‖1,Ω ≤ r, that

‖T(w, φ) − T(w̃, φ̃)‖ ≤ ‖S2(w, φ)− S2(w̃, φ̃)‖ + ‖S̃(S2(w, φ), φ)− S̃(S2(w̃, φ̃), φ̃)‖

≤
(
1 + C

S̃
r) ‖S2(w, φ)− S2(w̃, φ̃)‖ + C

S̃
‖S2(w, φ)‖1,Ω |φ− φ̃|1,Ω ,

which, employing the Lipschitz-continuity of S (cf. (3.40)), yields

‖T(w, φ) − T(w̃, φ̃)‖ ≤
(
1 + C

S̃
r)CS ‖g‖∞,Ω ‖φ− φ̃‖0,Ω

+
{(

1 + C
S̃
r
)
CS ‖w − w̃‖1,Ω + C

S̃
|φ− φ̃|1,Ω

}
‖S2(w, φ)‖ .

(3.44)

Then, applying the a priori estimate for S (cf. (3.27)), noting now that ‖φ‖1,Ω ≤ r, and performing
some algebraic manipulations, we deduce from (3.44) that

‖T(w, φ) − T(w̃, φ̃)‖ ≤

{
CT,1 ‖g‖∞,Ω + CT,2

{
‖uD‖0,Γ + ‖uD‖1/2,Γ

}}
‖(w, φ)− (w̃, φ̃)‖ ,

where

CT,1 :=
(
1 + C

S̃
r
)
CS (1 + cS r) + C

S̃
cS r and CT,2 :=

{(
1 + C

S̃
r
)
CS + C

S̃

}
cS .

In this way, (3.43) follows from the foregoing inequality by defining CT := max
{
CT,1, CT,2

}
. �

We are ready now to prove that our fixed-point scheme (3.26) is well-posed. Indeed, we know from
Lemmas 3.3 and 3.4 that the operator T is well-defined. Furthermore, the assumption on the data
given by (3.39) (cf. Lemma 3.5) guarantees that T maps W into itself for any ball W in H with radius
r ∈ (0, r0). In turn, it is clear from Lemma 3.8 that T is Lipschitz-continuous. In addition, assuming
additionally that ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ is sufficiently small, T becomes a contraction, and
hence the Banach fixed point Theorem can be applied. More precisely, we have the following result.

Theorem 3.9 Let κ1 ∈ (0, 2 δ), with δ ∈ (0, 2µ), and κ2, κ3 > 0, and given r ∈ (0, r0), let

W :=
{

(w, φ) ∈ H : ‖(w, φ)‖ ≤ r
}

. Assume that the data satisfy

c(r)
{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
+ c

S̃
‖ϕD‖1/2,Γ ≤ r

and
CT

{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
< 1 .

Then, problem (3.12) has a unique solution (σ,u, ϕ, λ) ∈ H0(div; Ω) × H1(Ω) × H1(Ω) × H1/2(Γ),
with (u, ϕ) ∈W . Moreover, there hold

‖(σ,u)‖ ≤ cS

{
r ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
and

‖(ϕ, λ)‖ ≤ c
S̃

{
r ‖u‖1,Ω + ‖ϕD‖1/2,Γ

}
.

Proof. It follows from Lemmas 3.5 and 3.8, the Banach fixed point theorem, and the a priori estimates
(3.27) and (3.36). We omit further details. �
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4 The Galerkin scheme

In this section we introduce and analyze the Galerkin scheme of the augmented mixed-primal formu-
lation (3.12). To this end, we adopt the discrete analogue of the fixed-point strategy introduced in
Section 3.2.

4.1 Preliminaries

We begin by considering arbitrary finite dimensional subspaces

Hσh ⊆ H0(div; Ω) , Hu
h ⊆ H1(Ω) , Hϕ

h ⊆ H1(Ω) , and Hλ
h ⊆ H−1/2(Γ) , (4.1)

whose specific choices will be described later on in Section 4.3. Hereafter, h stands for the size of a
regular triangulation Th of Ω made up of triangles K (when d = 2) or tetrahedra K (when d = 3)

of diameter hK , that is h := max
{
hK : K ∈ Th

}
. According to the above, the corresponding

Galerkin scheme of problem (3.12) reads: Find (σh, uh, ϕh, λh ) ∈ Hσh × Hu
h × Hϕ

h × Hλ
h such that

A( (σh,uh) , (τ h,vh) ) + Buh( (σh,uh) , (τ h,vh) ) = Fϕh(τ h,vh) + FD(τ h,vh)

a(ϕh, ψh) + b(ψh , λh) = Fuh,ϕh(ψh )

b(ϕh , ξh) = G(ξh) ,

(4.2)

for all ( τ h, vh, ψh, ξh ) ∈ Hσh × Hu
h × Hϕ

h × Hλ
h.

In order to address the well-posedness of (4.2), we proceed in what follows analogously as in Section
3.2. Indeed, we first set Hh := Hu

h ×Hϕ
h and define the operator Sh : Hh −→ Hσh × Hu

h by

Sh(wh, φh) := (S1,h(wh, φh),S2,h(wh, φh)) = (σh,uh) ∀ (wh, φh) ∈ Hh ,

where (σh,uh) ∈ Hσh × Hu
h is the unique solution of

A( (σh,uh) , (τ h,vh) ) + Bwh( (σh,uh) , (τ h,vh) ) = Fφh(τ h,vh) + FD(τ h,vh) (4.3)

for all (τ h,vh) ∈ Hσh × Hu
h . Just for sake of completeness we recall here that the form A and the

functional FD are defined in (3.13) and (3.18), respectively. In turn, with wh and φh given, the bilinear
form Bwh( ·, · ) and the linear functional Fφh are those corresponding to (3.14) and (3.17), respectively,
with w = wh and ϕ = φh.

Furthermore, we introduce the operator S̃h : Hh −→ Hϕ
h defined as

S̃h(wh, φh) := ϕh ∀ (wh, φh) ∈ Hh ,

where ϕh ∈ Hϕ
h is the first component of the unique solution of the problem: Find (ϕh, λh) ∈ Hϕ

h ×Hλ
h

such that
a(ϕh, ψh) + b(ψh, λh) = Fwh,φh(ψh) ∀ψh ∈ Hϕ

h

b(ϕh , ξh) = G(ξh) ∀ ξh ∈ Hλ
h .

(4.4)

Certainly, a and b are the forms introduced in (3.15) - (3.16), and Fwh,φh is defined as in (3.19) with
u = wh and ϕ = φh.

Therefore, by introducing the operator Th : Hh −→ Hh as

Th(wh, φh) =: (S2,h(wh, φh), S̃h(S2,h(wh, φh), φh)) ∀ (wh, φh) ∈ Hh , (4.5)
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we see that solving (4.2) is equivalent to finding a fixed point of Th, that is (uh, ϕh) ∈ Hh such that

Th(uh, ϕh) = (uh, ϕh) . (4.6)

In the following section we first establish the well-posedness of both (4.3) and (4.4), thus confirming
that Sh, S̃h, and hence Th, are all well defined, and then address the solvability of the discrete fixed
point equation (4.6).

4.2 Solvability analysis

We begin by remarking that the same tools utilized in the proof of Lemma 3.3 can be employed now
to prove the unique solvability of the discrete problem (4.3). In fact, it is quite straightforward to see
that for each wh ∈ Hu

h the bilinear form A + Bwh is bounded as in (3.29) with a constant depending
on µ, κ1, κ2, κ3, c0(Ω), and ‖wh‖1,Ω. In addition, under the same assumptions from Lemma 3.3 on
the stabilization parameters and the given wh ∈ Hu

h (instead of w), A + Bwh becomes elliptic in
Hσh × Hu

h with the same constant obtained in (3.31). On the other hand, it is clear that for each
φh ∈ Hϕ

h the functional Fφh is linear and bounded as in (3.33). The foregoing discussion and the
Lax-Milgram theorem allow to conclude the following result.

Lemma 4.1 Assume that κ1 ∈ (0, 2 δ) with δ ∈ (0, 2µ), and κ2, κ3 > 0. Then, for each r ∈
(0, r0) and for each (wh, φh) ∈ Hh such that ‖wh‖1,Ω ≤ r, the problem (4.3) has a unique solution
(σh,uh) =: Sh(wh, φh) ∈ Hσh × Hu

h . Moreover, with the same constant cS > 0 from Lemma 3.3,
which is independent of (wh, φh), there holds

‖Sh(wh, φh)‖ = ‖(σh,uh)‖ ≤ cS

{
‖g‖∞,Ω ‖φh‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
. (4.7)

On the other hand, in order to analyze problem (4.4), we need to incorporate further hypotheses
on the discrete spaces Hϕ

h and Hλ
h. For this purpose, we now let Vh be the discrete kernel of b, that is

Vh :=
{
ψh ∈ Hϕ

h : b(ψh, ξh) = 0 ∀ ξh ∈ Hλ
h

}
.

Then, we assume that the following discrete inf-sup conditions hold:

(H.1) There exists a constant α̂ > 0, independent of h, such that

sup
ψh∈Vh
ψh 6=0

a(ψh, ψh)

‖ψh‖1,Ω
≥ α̂ ‖ψh‖1,Ω ∀ψh ∈ Vh . (4.8)

(H.2) There exists a constant β̂ > 0, independent of h, such that

sup
ψh∈Hϕh
ψh 6=0

b(ψh, ξh)

‖ψh‖1,Ω
≥ β̂ ‖ξh‖−1/2,Γ ∀ξh ∈ Hλ

h . (4.9)

Specific examples of spaces verifying (H.1) and (H.2) are described later on in Section 4.3.

We are now in a position to establish the following result.
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Lemma 4.2 For each (wh, φh) ∈ Hu
h × Hϕ

h there exists a unique pair (ϕh, λh) ∈ Hϕ
h × Hλ

h solution
of problem (4.4), and there holds

‖S̃h(wh, φh)‖ ≤ ‖(ϕh, λh)‖ ≤ c̃
S̃

{
‖wh‖1,Ω |φh|1,Ω + ‖ϕD‖1/2,Γ

}
, (4.10)

where c̃
S̃

is a positive constant depending on ‖a‖, α̂ (cf. (4.8)), β̂ (cf. (4.9)), and c2(Ω).

Proof. It follows from a straightforward application of the discrete Babuška-Brezzi theory (see e.g.
[20, Theorem 2.4]). In fact, we first notice that the bilinear forms a and b are certainly bounded on
any pair of subspaces of the corresponding continuous spaces. In turn, the linear functional Fwh,φh is
bounded on Hϕ

h exactly as stated in (3.37) but replacing there w and φ by wh and φh, respectively,
whereas the restricction of G to Hλ

h is clearly bounded as indicated in (3.38). The other hypotheses
required by the theory are exactly those described in (H.1) and (H.2), and hence we omit further
details. �

We now aim to show the solvability of (4.2) by analyzing the equivalent fixed point equation (4.6).
To this end, in what follows we verify the hypotheses of the Brouwer fixed point theorem, which reads
as follows (see, e.g. [12], Theorem 9.9-2).

Theorem 4.3 Let W be a compact and convex subset of a finite dimensional Banach space X, and
let T : W −→ W be a continuous mapping. Then T has at least one fixed point.

The discrete version of Lemma 3.5 is given as follows.

Lemma 4.4 Let r ∈
(
0, r0

)
, with r0 given by (3.32) (cf. proof of Lemma 3.3), let

Wh :=
{

(wh, φh) ∈ Hh : ‖(wh, φh)‖ ≤ r
}
,

and assume that the data satisfy

c̃(r)
{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
+ c̃

S̃
‖ϕD‖1/2,Γ ≤ r , (4.11)

where
c̃(r) := max

{
r, 1
} (

1 + c̃
S̃
r
)
cS ,

with cS and c̃
S̃

as in (3.27) (or (4.7)), and (4.10), respectively. Then there holds Th(Wh) ⊆ Wh.

Proof. It follows by similar arguments to those employed in the proof of Lemma 3.5 by using now the
discrete stability estimates given by (4.7) and (4.10). �

Next, we provide the discrete analogues of Lemmas 3.6 and 3.7, whose proofs, being either analogous
or similar to the corresponding continuous ones, are omitted. We just remark that Lemma 4.5 below
is proved almost verbatim as the proof of Lemma 3.6, whereas Lemma 4.6 is derived by using the
discrete inf-sup condition (4.8) instead of the Vh-ellipticity of a (analogously as it was for Lemma 3.7),
where Vh is the discrete kernel of b. To this respect, note that (4.8) is more general, and hence less
restrictive, than assuming that the bilinear form a is elliptic in Vh. In other words, the latter is not
necessary but only sufficient condition for (4.8), which is precisely what we apply below in Section 4.3
for a particular choice of subspaces. In turn, unless Vh is contained in V , which occurs in many cases
but not always, the Vh-ellipticity of a does not follow from its eventual V -ellipticity.
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Lemma 4.5 Let r ∈
(
0, r0

)
, with r0 given by (3.32). Then there holds

‖Sh(wh, φh) − Sh(w̃h, φ̃h)‖ ≤ CS

{
‖g‖∞,Ω ‖φh− φ̃h‖0,Ω + ‖S2,h(wh, φh)‖1,Ω ‖wh−w̃h‖1,Ω

}
(4.12)

for all (wh, φh) , (w̃h, φ̃h) ∈ Hh such that ‖wh‖1,Ω , ‖w̃h‖1,Ω ≤ r, where CS is the same positive
constant from Lemma 3.6.

Lemma 4.6 There exists a positive constant C̃
S̃

, depending on c2(Ω) (cf. (3.10)) and the discrete
inf-sup constant α̂ (cf. (4.8)), such that

‖S̃h(wh, φh) − S̃h(w̃h, φ̃h)‖ ≤ C̃
S̃

{
‖wh‖1,Ω |φh − φ̃h‖1,Ω + ‖wh − w̃h‖1,Ω |φ̃h|1,Ω

}
(4.13)

for all (wh, φh), (w̃h, φ̃h) ∈ Hh.

As a consequence of the foregoing lemmas, we are able to establish next the continuity of the
operator Th.

Lemma 4.7 Let r ∈
(
0, r0

)
, with r0 given by (3.32), and let

Wh :=
{

(wh, φh) ∈ Hh : ‖(wh, φh)‖ ≤ r
}
.

Then, there exists C̃T > 0, depending on r and the constants cS, CS, and C̃
S̃

(cf. (4.7), (4.12), and
(4.13), respectively), such that

‖Th(wh, φh) − Th(w̃h, φ̃h)‖ ≤ C̃T

{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
‖(wh, φh)− (w̃h, φ̃h)‖

(4.14)
for all (wh, φh), (w̃h, φ̃h) ∈ Wh.

Proof. It follows analogously to the proof of Lemma 3.8 by using now the estimates (4.7), (4.12), and
(4.13), instead of (3.27), (3.40), and (3.41), respectively. Consequently, the resulting constant C̃T is
given by max

{
C̃T,1, C̃T,2

}
, where

C̃T,1 :=
(
1 + C̃

S̃
r
)
CS (1 + cS r) + C̃

S̃
cS r and C̃T,2 :=

{(
1 + C̃

S̃
r
)
CS + C̃

S̃

}
cS .

�

We are able now to establish the existence of a fixed-point of the operator Th.

Theorem 4.8 Let κ1 ∈ (0, 2 δ), with δ ∈ (0, 2µ), and κ2, κ3 > 0, and given r ∈ (0, r0), let

Wh :=
{

(wh, φh) ∈ Hh : ‖(wh, φh)‖ ≤ r
}

. Assume that the data satisfy

c̃(r)
{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
+ c̃

S̃
‖ϕD‖1/2,Γ ≤ r ,

where the constant c̃(r) is defined in Lemma 4.4. Then, problem (4.2) has at least one solution
(σh,uh, ϕh, λh) ∈ Hσh × Hu

h × Hϕ
h × Hλ

h, with (uh, ϕh) ∈Wh. Moreover, there hold

‖(σh,uh)‖ ≤ cS

{
r ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
and

‖(ϕh, λh)‖ ≤ c̃
S̃

{
r ‖uh‖1,Ω + ‖ϕD‖1/2,Γ

}
.

17



Proof. Thanks to Lemmas 4.4 and 4.7, it follows from a straightforward application of the Brouwer
fixed point theorem (cf. Theorem 4.3). �

Furthermore, by requiring a stronger assumption on the data so that the operator Th becomes a
contraction, we obtain the following existence and uniqueness result for (4.2).

Theorem 4.9 In addition to the hypotheses of Theorem 4.8, assume that the data satisfy

C̃T

{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
< 1 ,

where C̃T is the constant from Lemma 4.7. Then, problem (4.2) has a unique solution (σh,uh, ϕh, λh)
∈ Hσh × Hu

h × Hϕ
h × Hλ

h, with (uh, ϕh) ∈Wh, and the same a priori estimates from Theorem 4.8 hold.

Proof. It follows from (4.14) and a direct application of the Banach fixed point theorem. �

4.3 Specific finite element subspaces

In this section we introduce specific finite element subspaces satisfying (4.1), and the discrete inf-sup
conditions given by the hypotheses (H.1) and (H.2). In what follows, given an integer k ≥ 0 and
a set S ⊆ Rn, Pk(S) denotes the space of polynomial functions on S of degree ≤ k. Then, with the
same notations from Section 4.1, we define for each K ∈ Th the local Raviart–Thomas space of order
k as

RTk(K) := Pk(K) ⊕ Pk(K)x ,

where, according to the terminology described in Section 1, Pk(K) := [ Pk(K) ]n, and x is a generic
vector in Rn. Similarly, C(Ω) = [C(Ω)]n. Then, we introduce the finite element subspaces approx-
imating the unknowns σ and u as the global Raviart–Thomas space of order k, and the Lagrange
space given by the continuous piecewise polynomial vectors of degree ≤ k + 1, respectively, that is

Hσh :=
{
τ h ∈ H0(div; Ω) : ct τ

∣∣∣
K
∈ RTk(K) , ∀ c ∈ Rn ∀K ∈ Th

}
(4.15)

and
Hu
h :=

{
vh ∈ C(Ω) : vh

∣∣∣
K
∈ Pk+1(K) ∀K ∈ Th

}
. (4.16)

Also, the approximating space for the temperature ϕ is given by the continuous piecewise polynomials
of degree ≤ k + 1, that is

Hϕ
h :=

{
ψh ∈ C(Ω) : ψh

∣∣∣
K
∈ Pk+1(K) ∀K ∈ Th

}
. (4.17)

Next, for reasons that become clear below in Lemma 4.10, we let
{

Γ̃1, Γ̃2, . . . , Γ̃m
}

be an independent

triangulation of Γ (made of triangles in R3 or straight segments in R2), and define h̃ := max
j∈{1,...,m}

|Γ̃j |.

Then, with the same integer k ≥ 0 employed in the definitions (4.15), (4.16), and (4.17), we set

Hλ
h̃

:=
{
ξ
h̃
∈ L2(Γ) : ξ

h̃

∣∣∣
Γ̃j
∈ Pk(Γ̃j) ∀ j ∈ { 1, 2, · · · ,m }

}
. (4.18)

On the other hand, in order to check that Hϕ
h and Hλ

h̃
do satisfy the assumptions (H1) and (H2)

of the previous section, we first observe that the discrete kernel of b is given by

Vh :=
{
ψh ∈ Hϕ

h : 〈ξ
h̃
, ψh〉Γ = 0 ∀ ξ

h̃
∈ Hλ

h̃

}
.
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In particular, ξ
h̃
≡ 1 belongs to Hλ

h̃
, and hence Vh is contained in the space

V̂ :=
{
ψ ∈ H1(Ω) :

∫
Γ
ψ = 0

}
,

where, thanks to the generalized Poincaré inequality, ‖ · ‖1,Ω and | · |1,Ω become equivalent. This fact
together with the uniform positiveness of K imply that the bilinear form a is Vh−elliptic, and thus
the assumption (H.1) is trivially satisfied.

In turn, concerning the discrete inf-sup condition for the bilinear form b, we recall the following
result from [20].

Lemma 4.10 There exist C0 > 0 and β > 0, independent of h and h̃, such that for all h ≤ C0 h̃,
there holds

sup
ψh∈Hϕh
ψh 6=0

b(ψh, ξh̃)

‖ψh‖1,Ω
≥ β̂ ‖ξ

h̃
‖−1/2,Γ ∀ξ

h̃
∈ Hλ

h̃
. (4.19)

Proof. It follows basically from the same arguments from [20, Lemma 4.7], where the approximating
spaces for ϕ and λ are defined as above but with k = 0. In fact, it suffices to replace the orthogonal
projector from H1(Ω) onto the continuous piecewise polynomials of degree ≤ 1 (employed there), by
the one onto the continuous piecewise polynomials of degree ≤ k + 1 (required here). Further details
are omitted. �

It is important to remark here that, under the present choices of finite element subspaces, the
restriction on the meshsizes required by Lemma 4.10 must be incorporated in the statements of
Theorems 4.8 and 4.9, as well as henceforth in the subsequent results in which these specific spaces
are involved. We end this section by recalling from [20] the approximation properties of the specific
finite element subspaces introduced here.

(APσh ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each σ ∈
Hs(Ω) ∩H0(div; Ω) with divσ ∈ Hs(Ω), there holds

dist(σ,Hσh ) ≤ C hs
{
‖σ‖s,Ω + ‖divσ‖s,Ω

}
. (4.20)

(APuh ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each u ∈
Hs+1(Ω), there holds

dist(u,Hu
h ) ≤ C hs ‖u‖s+1,Ω . (4.21)

(APϕ
h)] there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each ϕ ∈

Hs+1(Ω), there holds
dist(ϕ,Hϕ

h) ≤ C hs ‖ϕ‖s+1,Ω . (4.22)

(APλ
h̃
) there exists C > 0, independent of h̃, such that for each s ∈ (0, k + 1], and for each λ ∈

H−1/2+s(Γ), there holds
dist(λ,Hλ

h̃
) ≤ C h̃s ‖λ‖−1/2+s,Γ . (4.23)
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5 A priori error analysis

In this section we derive an a priori error estimate for our Galerkin scheme with arbitrary finite
element subspaces satisfying the hypotheses stated in Section 4.2. More precisely, given (σ, u, ϕ, λ) ∈
H0(div; Ω) × H1(Ω) × H1(Ω) × H1/2(Γ), with (u, ϕ) ∈ W , and (σh, uh, ϕh, λh) ∈ Hσh × Hu

h ×
Hϕ
h × Hλ

h, with (uh, ϕh) ∈ Wh, solutions of problems (3.12) and (4.2), respectively, we are interested
in obtaining an upper bound for

‖(σ, u, ϕ, λ) − (σh, uh, ϕh, λh)‖ .

For this purpose, we first rearrange (3.12) and (4.2) as the following pairs of continuous and discrete
formulations(

A + Bu
)
((σ,u), (τ ,v)) =

(
Fϕ + FD

)
(τ ,v) ∀ (τ ,v) ∈ H0(div; Ω)×H1(Ω) ,(

A + Buh
)
((σh,uh), (τ h,vh)) =

(
Fϕh + FD

)
(τ h,vh) ∀ (τ h,vh) ∈ Hσh ×Hu

h ,
(5.1)

and
a(ϕ,ψ) + b(ψ, λ) = Fu,ϕ(ψ) ∀ψ ∈ H1(Ω) ,

b(ϕ, ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ) ,

a(ϕh, ψh) + b(ψh, λh) = Fuh,ϕh(ψh) ∀ψh ∈ Hϕ
h ,

b(ϕh, ξh) = G(ξh) ∀ ξh ∈ Hλ
h .

(5.2)

Next, we recall from [30, Theorems 11.1 and 11.2] two abstract results that will be employed in
our subsequent analysis. The first one is the standard Strang Lemma for elliptic variational problems,
which will be straightforwardly applied to the pair (5.1). In turn, the second result is a generalized
Strang-type estimate for saddle point problems whose continuous and discrete schemes differ only in
the functionals involved, as it is the case of (5.2).

Lemma 5.1 Let V be a Hilbert space, F ∈ V ′, and A : V × V → R be a bounded and V−elliptic
bilinear form. In addition, let {Vh}h>0 be a sequence of finite dimensional subspaces of V , and for
each h > 0 consider a bounded bilinear form Ah : Vh × Vh → R and a functional Fh ∈ V ′h. Assume
that the family {Ah}h>0 is uniformly elliptic, that is, there exists a constant α̃ > 0, independent of h,
such that

Ah(vh, vh) ≥ α̃ ‖vh‖2V ∀ vh ∈ Vh , ∀h > 0 .

In turn, let u ∈ V and uh ∈ Vh such that

A(u, v) = F (v) ∀ v ∈ V and Ah(uh, vh) = Fh(vh) ∀ vh ∈ Vh .

Then, for each h > 0 there holds

‖u− uh‖V ≤ CST

{
sup
wh∈Vh
wh 6=0

|F (wh)− Fh(wh)|
‖wh‖V

+ inf
vh∈Vh
vh 6=0

(
‖u− vh‖V + sup

wh∈Vh
wh 6=0

|A(vh, wh)−Ah(vh, wh)|
‖wh‖V

)}
,

(5.3)

where CST := α̃−1 max{ 1, ‖A‖ }.
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Lemma 5.2 Let H and Q be Hilbert spaces, F ∈ H ′, G ∈ Q′, and let a : H × H → R and
b : H × Q → R be bounded bilinear forms satisfying the hypotheses of the Babuška-Brezzi theory.
Furthermore, let {Hh}h>0 and {Qh}h>0 be sequences of finite dimensional subspaces of H and Q,
respectively, and for each h > 0 consider functionals Fh ∈ H ′h and Gh ∈ Q′h. In addition, assume
that a and b satisfy the hypotheses of the discrete Babuška-Brezzi theory uniformly on Hh and Qh,
that is, there exist positive constants ᾱ and β̄, independent of h, such that, denoting by Vh the discrete
kernel of b, there holds

sup
ψh∈Vh
ψh 6=0

a(ψh, ψh)

‖ψh‖1,Ω
≥ ᾱ ‖ψh‖1,Ω ∀ψh ∈ Vh and sup

ψh∈Hh
ψh 6=0

b(ψh, ξh)

‖ψh‖H
≥ β̄ ‖ξh‖Q ∀ ξh ∈ Qh. (5.4)

In turn, let (ϕ, λ) ∈ H × Q and (ϕh, λh) ∈ Hh × Qh, such that

a(ϕ,ψ) + b(ψ, λ) = F (ψ) ∀ψ ∈ H

b(ϕ, ξ) = G(ξ) ∀ ξ ∈ Q ,

and
a(ϕh, ψh) + b(ψh, λh) = Fh(ψh) ∀ψh ∈ Hh

b(ϕh, ξh) = Gh(ξh) ∀ ξh ∈ Qh .

Then, for each h > 0 there holds

‖ϕ − ϕh‖H + ‖λ− λh‖Q ≤ C̄ST

{
inf

ψh∈Hh
ψh 6=0

‖ϕ − ψh‖H + inf
ξh∈Qh
ξh 6=0

‖λ − ξh‖Q

+ sup
φh∈Hh
φh 6=0

|F (φh) − Fh(φh)|
‖φh‖H

+ sup
ηh∈Qh
ηh 6=0

|G(ηh) − Gh(ηh)|
‖ηh‖H

} (5.5)

where C̄ST is a positive constant depending only on ‖a‖, ‖b‖, ᾱ and β̄.

In what follows, we denote as usual

dist
(

(σ,u),Hσh ×Hu
h

)
= inf

(τh,vh)∈Hσh×H
u
h

‖(σ,u) − (τ h,vh)‖

and
dist

(
(ϕ, λ),Hϕ

h ×Hλ
h

)
= inf

(ψh,ξh)∈Hϕh×Hλh

‖(ϕ, λ) − (ψh, ξh)‖

Then, we have the following lemma establishing a preliminary estimate for ‖(σ,u) − (σh,uh)‖.

Lemma 5.3 Let CST :=
2

α(Ω)
max{1, ‖A + Bu ‖}, where α(Ω) is the constant yielding the ellipticity

of both A and A + Bw for any w ∈ H1(Ω) (cf. (3.30) and (3.31) in the proof of Lemma 3.3). Then,
there holds

‖(σ,u)− (σh,uh)‖ ≤ CST

{(
1 + c1(Ω) (κ2

1 + 1)1/2 ‖u− uh‖1,Ω

)
dist

(
(σ,u),Hσh ×Hu

h

)
+ c1(Ω) (κ2

1 + 1)1/2 ‖u− uh‖1,Ω ‖u‖1,Ω + (µ2 + κ2
2)1/2 ‖g‖∞,Ω ‖ϕ− ϕh‖0,Ω

}
.

(5.6)
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Proof. From Lemma 3.3 we have that the bilinear forms A + Bu and A + Buh are both bounded
and elliptic with the same constant 2

α(Ω) . Also, Fϕ +FD and Fϕh +FD are bounded linear functionals

in H0(div; Ω)×H1(Ω) and Hσh ×Hu
h , respectively. Then, a straightforward application of Lemma 5.1

to the context (5.1) gives

‖(σ,u)− (σh,uh)‖ ≤ CST

{∥∥∥Fϕ−ϕh∣∣∣Hσh×Huh
∥∥∥

+ inf
(τh,vh)∈Hσh×H

u
h

(τh,vh)6=0

(
‖(σ,u)− (τ h,vh)‖+ sup

(ζh,wh)∈Hσh×H
u
h

(ζh,wh)6=0

|Bu−uh((τ h,vh), (ζh,wh))|
‖(ζh,wh)‖

)}
.

(5.7)

where CST := 2
α(Ω) max{1, ‖A + Bu‖}. We now proceed to estimate each term appearing at the

right-hand side of the foregoing inequality. Firstly, employing (3.33) (cf. proof of Lemma 3.3) with
φ = ϕ− ϕh, we readily obtain∥∥∥Fϕ−ϕh∣∣∣Hσh×Huh

∥∥∥ ≤ (µ2 + κ2)1/2 ‖g‖∞,Ω ‖ϕ− ϕh‖0,Ω . (5.8)

In turn, by applying (3.28) withw = u−uh, adding and substracting u, and then bounding ‖u−vh‖1,Ω
by ‖(σ,u)− (τ h,vh)‖, we find that

|Bu−uh((τ h,vh), (ζh,wh))| ≤ c1(Ω) (κ2
1 + 1)1/2 ‖u− uh‖1,Ω ‖vh‖1,Ω ‖(ζh,wh)‖

≤ c1(Ω) (κ2
1 + 1)1/2 ‖u− uh‖1,Ω ‖(σ,u)− (τ h,vh)‖ ‖(ζh,wh)‖

+ c1(Ω) (κ2
1 + 1)1/2 ‖u− uh‖1,Ω ‖u‖1,Ω ‖(ζh,wh)‖ ,

which yields

sup
(ζh,wh)∈Hσh×H

u
h

(ζh,wh)6=0

|Bu−uh((τ h,vh), (ζh,wh))|
‖(ζh,wh)‖

≤ c1(Ω) (κ2
1 + 1)1/2 ‖u− uh‖1,Ω ‖u‖1,Ω

+ c1(Ω) (κ2
1 + 1)1/2‖u− uh‖1,Ω ‖(σ,u)− (τ h,vh)‖ .

(5.9)

In this way, by replacing (5.8) and (5.9) back into (5.7), and applying the infimum to the resulting
term having ‖(σ,u)− (τ h,vh)‖ as a factor, we get (5.6) and conclude the proof. �

Next, as for the error ‖(ϕ, λ)− (ϕh, λh)‖ arising from (5.2), we have the following result.

Lemma 5.4 There exists a constant ĈST > 0, depending only on ‖a‖, ‖b‖, α̂ (cf. (4.8)) and β̂ (cf.
(4.9)), such that

‖(ϕ, λ)− (ϕh, λh)‖ ≤ ĈST

{
c2(Ω) ‖u− uh‖1,Ω |ϕ|1,Ω

+ c2(Ω) ‖uh‖1,Ω |ϕ− ϕh|1,Ω + dist
(

(ϕ, λ),Hϕ
h ×Hλ

h

)}
.

(5.10)

Proof. We first observe that (H.1) and (H.2) from Section 4.2 guarantee that the hypothesis (5.4) in
Lemma 5.2 is satisfied. Hence, by applying this lemma to the context given by (5.2), we find that the
corresponding estimate (5.5) becomes

‖(ϕ, λ)− (ϕh, λh)‖ ≤ ĈST

{∥∥∥(Fu,ϕ − Fuh,ϕh)∣∣∣Hϕh
∥∥∥+ dist

(
(ϕ, λ),Hϕ

h ×Hλ
h

)}
, (5.11)
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where ĈST is a positive constant depending only on ‖a‖, ‖b‖, α̂, and β̂. Next, by rewriting

Fu,ϕ − Fuh,ϕh = Fu−uh,ϕ + Fuh,ϕ−ϕh ,

and using the bound (3.37), we deduce that∥∥∥(Fu−uh,ϕ + Fuh,ϕh−ϕh

)∣∣∣
Hϕh

∥∥∥ ≤ c2(Ω)
{
‖u− uh‖1,Ω |ϕ|1,Ω + ‖uh‖1,Ω |ϕ− ϕh|1,Ω

}
.

Finally, the required estimate (5.10) follows by replacing the foregoing inequality in (5.11). �

We are now in a position to derive the Céa estimate for the global error

‖(σ,u)− (σh,uh)‖ + ‖(ϕ, λ)− (ϕh, λh)‖ .

Indeed, by adding the estimates (5.6) and (5.10) from Lemmas 5.3 and 5.4, respectively, we find that

‖(σ,u)− (σh,uh)‖ + ‖(ϕ, λ)− (ϕh, λh)‖ ≤ ĈST dist
(

(ϕ, λ),Hϕ
h ×Hλ

h

)
+ CST

(
1 + c1(Ω) (κ2

1 + 1)1/2 ‖u− uh‖1,Ω
)

dist
(

(σ,u),Hσh ×Hu
h

)
+

(
ĈST c2(Ω) ‖uh‖1,Ω + CST (µ2 + κ2

2)1/2 ‖g‖∞,Ω
)
‖ϕ− ϕh‖1,Ω

+
(
ĈST c2(Ω) |ϕ|1,Ω + CST c1(Ω) (κ2

1 + 1)1/2 ‖u‖1,Ω
)
‖u− uh‖1,Ω .

Next, employing the estimates for u, ϕ, and uh given by (3.27), (3.36), and (4.7), respectively, and
then performing some algebraic manipulations, we find that

‖(σ,u)− (σh,uh)‖ + ‖(ϕ, λ)− (ϕh, λh)‖ ≤ ĈST dist
(

(ϕ, λ),Hϕ
h ×Hλ

h

)
+ CST

(
1 + c1(Ω) (κ2

1 + 1)1/2 ‖u− uh‖1,Ω
)

dist
(

(σ,u),Hσh ×Hu
h

)
+ C(g,uD, ϕD)

{
‖(σ,u)− (σh,uh)‖ + ‖(ϕ, λ)− (ϕh, λh)‖

}
,

(5.12)

where

C(g,uD, ϕD) := max
{

C1(g,uD, ϕD),C2(g,uD, ϕD)
}
,

C1(g,uD, ϕD) :=
{
r C1 + C2

}
‖g‖∞,Ω + C1

{
‖uD‖0,Γ + ‖uD‖1/2,Γ

}
,

C2(g,uD, ϕD) := C3

{
r ‖ g ‖∞,Ω + ‖uD ‖0,Γ + ‖uD ‖1/2,Γ

}
+ C4 ‖ϕD ‖1/2,Γ ,

and the constants C1, C2, C3, and C4, are given by

C1 := ĈST c2(Ω) cS , C2 := CST (µ2 + κ2
2)1/2 ,

C3 := cS

{
ĈST c2(Ω) + r c

S̃
+ CST c1(Ω) (κ2

1 + 1)1/2
}
, and C4 := ĈST c2(Ω) c

S̃

In this way, since the expression multiplying dist
(

(σ,u),Hσh ×Hu
h

)
in (5.12) is already controlled

by constants, parameters, and data only, and since the constants Ci(g,uD, ϕD), i ∈ {1, 2}, depend
linearly on the data g, uD, and ϕD, we conclude from the foregoing analysis the following main result.
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Theorem 5.5 Asume that the data g, uD and ϕD are such that

Ci(g,uD, ϕD) ≤ 1

2
∀ i ∈ {1, 2} . (5.13)

Then, there exits a positive constant C5, depending only on parameters, data and other constants, all
of them independent of h, such that

‖(σ,u)− (σh,uh)‖ + ‖(ϕ, λ)− (ϕh, λh)‖

≤ C5

{
dist

(
(σ,u),Hσh ×Hu

h

)
+ dist

(
(ϕ, λ),Hϕ

h ×Hλ
h

)}
.

(5.14)

Proof. It suffices to realize from (5.13) that C(g,uD, ϕD) ≤ 1
2 , which, combined with (5.12), yields

‖(σ,u)− (σh,uh)‖ + ‖(ϕ, λ)− (ϕh, λh)‖ ≤ 2 ĈST dist
(

(ϕ, λ),Hϕ
h ×Hλ

h

)
+ 2CST

(
1 + c1(Ω) (κ2

1 + 1)1/2 ‖u− uh‖1,Ω
)

dist
(

(σ,u),Hσh ×Hu
h

)
.

The rest of the proof reduces to employ the upper bounds for ‖u‖1,Ω and ‖uh‖1,Ω. �

Finally, we complete our a priori error analysis with the rates of convergence of the Galerkin scheme
when the specific finite element subspaces introduced in Section 4.3 are employed.

Theorem 5.6 In addition to the hypotheses of Theorems 3.9, 4.9, and 5.5, assume that there exists
s > 0 such that σ ∈ Hs(Ω), divσ ∈ Hs(Ω), u ∈ Hs+1(Ω), ϕ ∈ Hs+1(Ω), and λ ∈ H−1/2+s(Γ),
and that the finite element subspaces are defined by (4.15), (4.16), (4.17), and (4.18). Then, there
exist C > 0, independent of h and h̃, such that for all h ≤ C0 h̃ there holds

‖(σ,u)− (σh,uh)‖ + ‖(ϕ, λ)− (ϕh, λh)‖ ≤ C h̃min{s,k+1} ‖λ‖−1/2+s,Γ

+ C hmin{s,k+1}
{
‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s+1,Ω + ‖ϕ‖s+1,Ω

}
.

(5.15)

Proof. It follows from the Céa estimate (5.14) and the approximation properties (APσh ), (APuh ),
(APϕ

h) and (APλ
h̃
) specified in Section 4.3. �

We end this section by remarking that, for practical purposes, particularly for the implementation
of the examples reported below in Section 6, the restriction on the meshsizes is verified in an heuristic
sense only. More precisely, since the constant C0 involved there is actually unknown, we simply assume
C0 = 1/2 and consider a partition of Γ with a meshsize h̃ given approximately by the double of h.
The numerical results to be provided in that section will confirm the suitability of this choice.

6 Numerical results

In this section we present two examples illustrating the performance of our augmented mixed-primal
finite element scheme (4.2) on a set of quasi-uniform triangulations of the corresponding domains
and considering the finite element spaces introduced in Section 4.3. Our implementation is based
on a FreeFem++ code (see [23]), in conjunction with the direct linear solver UMFPACK (see [14]).
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Regarding the implementation of the iterative methods, the iterations are terminated once the relative
error of the entire coefficient vectors between two consecutive iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of freedom
defining the finite element subspaces Hσh , Hu

h , Hϕ
h and Hλ

h and tol is a fixed tolerance to be specified
on each example. For each example shown below we simply take (u0

h, ϕ
0
h) = (0, 0) as initial guess,

and we choose the parameters κ1 = µ, κ2 = µ2 and κ2 = µ2, which clearly satisfy the hypotheses of
Lemma 4.8, with δ = µ.

We now introduce some additional notation. The individual errors are denoted by:

e(σ) := ‖σ − σh‖div;Ω , e(u) := ‖u− uh‖1,Ω , e(p) := ‖p− ph‖0,Ω ,

e(ϕ) := ‖ϕ− ϕh‖1,Ω , e(λ) := ‖λ− λh‖0,Γ ,

where p is the exact pressure of the fluid and ph is the postprocessed discrete pressure suggested by
the formulae given in (2.5) and (3.3), namely,

ph = − 1

n
tr
{
σh + chI + (uh ⊗ uh)

}
, with ch := − 1

n|Ω|

∫
Ω

tr(uh ⊗ uh) .

Moreover, it is not difficult to show that there exists C > 0, independent of h, such that

‖p− ph‖0,Ω ≤ C
{
‖σ − σh‖div;Ω + ‖u− uh‖1,Ω

}
,

which says that the rate of convergence of ph is the same provided by (5.15) (cf. Theorem 5.6).

Next, we let r(σ), r(u), r(p), r(ϕ), and r(λ) be the experimental rates of convergence given by

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
, r(p) :=

log(e(p)/e′(p))

log(h/h′)
,

r(ϕ) :=
log(e(ϕ)/e′(ϕ))

log(h/h′)
, r(λ) :=

log(e(λ)/e′(λ))

log(h̃/h̃′)
.

where h and h′, (h̃ and h̃′ for λ) denote two consecutive meshsizes with errors e and e′.

In our first example we illustrate the accuracy of our method considering a manufactured exact
solution defined on Ω := (−1/2, 3/2)×(0, 2). We consider the viscosity µ = 1, the thermal conductivity
K = ex1+x2I ∀ (x1, x2) ∈ Ω, and the external force g = (0,−1)t. Then, the terms on the right-hand
sides are adjusted so that the exact solution is given by the functions

ϕ(x1, x2) = x2
1(x2

2 + 1),

u(x1, x2) =

 1− eλx1 cos(2πx2)

λ
2πe

λx1 sin(2πx2)

 ,

p(x1, x2) = −1

2
e2λx1 + p̄,
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where

λ :=
−8π2

µ−1 +
√
µ−2 + 16π2

.

and the constant p̄ is such that
∫

Ω p = 0. Notice that (u, p) is the well known analytical solution
for the Navier-Stokes problem obtained by Kovasznay in [27], which presents a boundary layer at
{−1/2} × (0, 2).

In Table 1 we summarize the convergence history for a sequence of quasi-uniform triangulations,
considering the finite element spaces introduced in Section 4.3 with k = 0 and k = 1, and solving the
nonlinear problem with the fixed-point iteration provided in Section 4.2 with a tolerance tol = 1E−8.
We observe there that the rate of convergence O(hk+1) predicted by Theorem 5.6 (when s = k + 1)
is attained in all the cases. Next, in Figures 1, 2 and 3 we display (to the left) the approximate
temperature, the approximate velocity magnitude and vector field, and the approximate pressure,
respectively, and we compare them with their corresponding exact counterparts (to the right). All
the figures were built using the RT0 − P1 − P1 − P0 approximation with N = 177320 degrees of
freedom. In all the cases we observe that the finite element subspaces employed provide very accurate
approximations to the unknowns, showing a good behaviour on the boundary layer.

In our second example we illustrate a more realistic situation in which the exact solution is un-
known. Here, we consider the geometry Ω = (−1, 1) × (−1, 2), the viscosity fluid µ = 1, the thermal
conductivity K = I, the external force g = (0,−1)t, and the boundary data

uD(x1, x2) = 0 and ϕD(x1, x2) := (x1 + 1)ex1x2 on Γ.

Notice, that ϕD attains its maximum value at (x1, x2) = (1, 1), whereas ϕD = 0 on {−1}× (−1, 1). In
Table 2 we summarize the convergence history for a sequence of uniform triangulations, considering a
RT0 − P1 − P1 − P0 approximation and a tolerance tol = 1E−8. There, the errors and experimental
rates of convergence are computed by considering the discrete solution obtained with a finer mesh
(N = 2822774) as the exact solution. We observe that the rate of convergence O(h) is attained by
all the unknowns. Next, in Figure 4 we display the approximates temperature (left) and pressure
(right) whereas in Figure 5 we show the first and second components of the velocity (bottom) together
with the velocity magnitude and the velocity vector field (top). All the figures were obtained with
N=177644 degrees of freedom. We can observe that the discrete temperature and velocity preserve
the prescribed boundary conditions.

References

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press. Elsevier Ltd, 2003.

[2] K. Allali, A priori and a posteriori error estimates for Boussinesq equations, International
Journal of Numerical Analysis and Modeling, vol. 2, no. 2, pp. 179–196, (2005).

[3] M. Alvarez, G.N. Gatica, and R. Ruiz-Baier, An augmented mixed-primal finite element
method for a coupled flow-transport problem. ESAIM: Mathematical Modelling and Numerical
Analysis, to appear.

[4] C. Bernardi, B. Métivet, B. Pernaud-Thomas, Couplage des équations de Navier-Stokes et
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iterations for the mixed RT0−P1−P1−P0 and RT1−P2−P2−P1 approximations of the boussinesq
equations.

27



11.2-0.00356 2.95e-13 11.2

Figure 1: Example 1: ϕh (left) and ϕ (right) with N = 177320 (RT0 − P1 − P1 − P0).

0.045 18.8 0.00426 19

Figure 2: Example 1: velocitiy magnitudes |uh| (left) and |u| (right) and velocity
vector fields with N = 177320 (RT0 − P1 − P1 − P0).
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-157 7.13 -155 7.14

Figure 3: Example 1: postprocessed discrete pressure ph (left) and exact pressure (right)
with N = 177320 (RT0 − P1 − P1 − P0).

errors and rates of convergence for the mixed-primal
RT0 − P1 − P1 − P0 approximation
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solution.
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Figure 4: Example 1: ph (left) and ϕh (right) with N = 177320
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Figure 5: Example 2: velocity magnitude (top left), velocity vector field (top right), first
component of uh (bottom left) and second component fo uh (bottom right) with N = 701022
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