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FINITE ELEMENT ANALYSIS OF A BENDING MOMENT

FORMULATION FOR THE VIBRATION PROBLEM OF A

NON-HOMOGENEOUS TIMOSHENKO BEAM

FELIPE LEPE, DAVID MORA, AND RODOLFO RODRÍGUEZ

Abstract. In this paper we analyze a low-order finite element method for
approximating the vibration frequencies and modes of a non-homogeneous
Timoshenko beam. We consider a formulation in which the bending moment
is introduced as an additional unknown. Optimal order error estimates are
proved for displacements, rotations, shear stress and bending moment of the
vibration modes, as well as a double order of convergence for the vibration
frequencies. These estimates are independent of the beam thickness, which
leads to the conclusion that the method is locking free. For its implementa-
tion, displacements and rotations can be eliminated leading to a well posed
generalized matrix eigenvalue problem for which the computer cost of its so-
lution is similar to that of other classical formulations. We report numerical
experiments which allow us to assess the performance of the method.

1. Introduction

This paper deals with the analysis of a finite element method to compute the
vibration modes of an elastic non-homogeneous beam modeled by Timoshenko equa-
tions. Structural components with continuous and discontinuous variations of the
geometry and of the physical parameters are common in buildings and bridges as
well as in aircraft, cars, ships, etc. For that reason, it is important to know the
vibration frequencies and modes of this kind of structures. This problem can be
formulated as a spectral problem whose eigenvalues and eigenfunctions are related
with the vibration frequencies and modes, respectively.

The Timoshenko theory to date is one of the most used models to approximate
the deformation of a thin or moderately thick elastic beam [5, 9, 12, 18, 20, 26, 30]).
It is well understood that standard finite elements applied to this model lead to
wrong results when the thickness of the beam is small due to the so called locking
phenomenon. To avoid locking, the most used techniques since long ago are based
on reduced integration or mixed formulations (see [2]).
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In this paper, we present a rigorous analysis of a low-order finite element method
to compute the vibration frequencies and modes of a non-homogeneous Timoshenko
beam, by means of a mixed bending moment formulation. A similar method was
recently introduced and analyzed for load problems in [23].

One advantage of such a formulation is that the bending moment and the shear
stress are computed directly and not by means of a post-process, which might
produce loss of accuracy. Moreover, the fact that these two quantities appear ex-
plicitly in the formulation could be useful to apply it to coupled problems in which
the coupling involve these quantities. Another motivation for considering this one-
dimensional problem is that it constitutes a stepping stone towards the more chal-
lenging goal of devising finite element spectral approximations for Reissner–Mindlin
plates based on bending moments formulations. Let us remark that this kind of
formulations have been recently proposed and analyzed in different frameworks for
instance in the following references [1, 4, 6, 10, 11].

Numerical analysis of eigenvalue problems arising from the computation of the
vibration modes for thin structures are not too many; among them we mention [15,
16, 17, 24, 25], where MITC-like methods for computing the vibration and buckling
modes of beams and plates were analyzed. One reason for this is that the extension
of mathematical results from load to vibration problems is not quite straightforward
for mixed methods. In fact, Boffi et al. [7, 8] showed that eigenvalue problems for
mixed formulations show peculiar features that make them substantially different
from the same methods applied to the corresponding source problems. In particu-
lar, they showed that the standard inf-sup and ellipticity in the kernel conditions,
which ensure convergence for the mixed formulation of source problems, are not
enough to attain the same goal in the corresponding eigenvalue problem. Among
the existing techniques to solve the vibration problem of Timoshenko beams, we
can mention [21] where a mixed formulation in terms of displacement, rotation and
shear stress has been proposed and analyzed for Timoshenko rods (which are of
course applicable to Timoshenko beams).

In this paper, we consider the vibration problem for an elastic beam. We follow
the approach proposed in [23] for the load problem. We introduce the bending
moment together with the shear stress as new unknowns in the model (we note
that the former usually represents a quantity of major interest in engineering appli-
cations), which together with the rotation and the transverse displacement lead us
to a mixed variational formulation. Then, we introduce a solution operator whose
eigenvalues are the reciprocals of the scaled squares of the vibration frequencies
of the beam. For the numerical approximation, we use piecewise linear and con-
tinuous finite elements for the bending moments and shear stress and piecewise
constants for the transverse displacement and the rotations. To study the conver-
gence of the proposed method and obtain error estimates, we adapt the classical
theory developed for non-compact operators in [13, 14]. We obtain optimal order
error estimates in terms of the mesh size h for the approximation of the vibration
modes and a double order for the vibration frequencies. These estimates are fully
independent of the beam thickness, which allows us to conclude that the method
is locking-free.

Since we have included as additional variables the bending moment and the shear
stress, one could think at first sight that the resulting method will be significantly
more expensive than the classical ones, which are based only in displacement and
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rotation variables. However, we show that these last two variables can be elimi-
nated in the resulting discrete problem without additional cost, which leads to an
eigenvalue problem of the same size and sparseness as those of the classical methods.

The outline of the paper is as follows. In Section 2, we recall the vibration prob-
lem for a Timoshenko beam. In Section 3 we develop the mathematical analysis of
the vibration problem. With this aim, we introduce a linear operator whose spec-
trum is related with the solution of the vibration problem. The resulting spectral
problem is shown to be well posed. Its eigenvalues and eigenfunctions are proved
to converge to the corresponding ones of the limit problem as the thickness of the
plate goes to zero, which corresponds to a an Euler-Bernoulli beam model. We
also prove in this section a regularity result for the eigenfunctions. In Section 4 we
introduce the finite element discretization of the spectral problem and the discrete
solution operator and prove some auxiliary results. In Section 5 we prove that the
proposed numerical scheme provides a correct spectral approximation. We also es-
tablish error estimates for the eigenvalues and eigenfunctions. Finally, we present in
Section 6 a set of numerical experiments to assess the performance of the method in
order to confirm that the experimental rates of convergence are in accordance with
the theory and to show that the method is completely locking-free. We also show
in this section how the displacement and the rotation variables can be eliminated
from the discrete eigenvalue problem, reducing its dimension to one half without
affecting the sparseness, symmetry and positive definiteness of the matrices.

We use standard notations for Sobolev spaces, norms and seminorms. For l ≥
0 and I an open interval, ‖ · ‖l,I stands for the norm of the Hilbertian Sobolev
space H l(I), with the convention H0(I) := L2(I). Moreover, D(I) denotes the
space of infinitely differentiable functions with compact support contained in I.
Additionally, we will denote with C a generic positive constant, possibly different
at different occurrences, buy always independent of the beam thickness t and the
mesh parameter h which will be introduced in the next sections.

Finally, given a linear bounded operator T : X → X , defined on a Hilbert
space X , we denote its spectrum by sp(T ) := {z ∈ C : (zI − T ) is not invertible}
and by ρ(T ) := C \ sp(T ) the resolvent set of T . Moreover, for any z ∈ ρ(T ),

Rz(T ) := (zI − T )
−1

: X → X denotes the resolvent operator of T corresponding
to z.

2. Timoshenko beam model

Let us consider an elastic beam which satisfies the Timoshenko hypotheses for
the admissible displacements. We assume that the geometry and the physical pa-
rameters of the beam may change along the axial direction. The deformation of
the beam is described in terms of the transverse displacement w and the rotation
of the transverse fibers β.

The equations for the vibration problem of a clamped Timoshenko beam reads
as follows (see [27, 28, 29]):

Find ω > 0 and 0 6= (β,w) ∈ H1
0 (I)×H1

0 (I) such that

∫

I

EIβ′η′ +

∫

I

GAkc(β − w′)(η − v′) = ω2

(∫

I

ρAwv +

∫

I

ρIβη

)

∀(η, v) ∈ H1
0 (I)×H1

0 (I),

(2.1)
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where I := (0, L), L being the length of the beam, ω is the angular vibration
frequency, E is the Young modulus, I the moment of inertia of the cross-section,
A the area of the cross-section, ρ the mass density, G := E/(2(1 + ν)) the shear
modulus, with ν being the Poisson ratio, and kc a correction factor. We consider
that E, I, A, ρ, kc and ν are piecewice smooth functions of the axial coordinate
x ∈ I, the most usual case being when all those coefficients are piecewise constant.
Moreover, primes denote derivatives with respect to the axial coordinate x.

It is well known that standard finite element procedures, used in formulations
such as (2.1) for very thin structures, are subject to numerical locking, a phenom-
enon induced by the difference of magnitude between the coefficients in front of
the different terms (see [2]). The appropriate framework for analyzing this is ob-
tained by rescaling formulation (2.1) so as to identify a family of problems with
a well-posed limit as the thickness becomes infinitely small. With this aim, we
introduce the following nondimensional parameter, characteristic of the thickness
of the beam:

(2.2) t2 :=
1

L

∫

I

I

AL2
dx,

which we assume may take values in the range (0, tmax].
We define

λ :=
ω2

t2
, Î :=

I

t3
, and Â :=

A

t
,

and assume that Î and Â are bounded above and below far from zero by constants
independent of the parameter t. Let us remark that, for instance, for a beam of
rectangular section b×d with b being a fixed length and d the thickness of the beam,
these values are constant and independent of d: Â = 2

√
3bL and Î = 2

√
3bL3.

We also define

E := EÎ, κ := GÂkc, J := ρÎ and P := ρÂ,

so that provided the physical coefficients E, ν and ρ are bounded above and below
far from zero, we immediately obtain that there exist strictly positive constants
E,E, κ, κ,P,P, J and J independent of t such that

(2.3)















E ≥ E ≥ E > 0 ∀x ∈ I,
κ ≥ κ ≥ κ > 0 ∀x ∈ I,
P ≥ P ≥ P > 0 ∀x ∈ I,
J ≥ J ≥ J > 0 ∀x ∈ I.

Then, problem (2.1) can be equivalently written as follows:
Find λ > 0 and 0 6= (β,w) ∈ H1

0 (I)×H1
0 (I) such that

∫

I

Eβ′η′ +
1

t2

∫

I

κ(β − w′)(η − v′) = λ

(∫

I

Pwv + t2
∫

I

Jβη

)

∀(η, v) ∈ H1
0 (I)×H1

0 (I).

(2.4)

It is easy to check that, as a consequence of (2.3), for each t > 0, the bilinear form
on the left hand side of (2.4) is elliptic with an ellipticity constant independent of
t.

Furthermore, because of the assumption on the physical and geometrical pa-
rameters, we have that E, κ, P and J are piecewise smooth. More precisely, we
assume that there exists a partition 0 = s0 < · · · < sn = L of the interval I,
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with s1, . . . , sn−1 being the points of discontinuity of E, κ, P or J, such that if we
denote by Si := (si−1, si), then, Ei := E|Si

∈ W 1,∞(Si), κi := κ|Si
∈ W 1,∞(Si),

Pi := P|Si
∈ W 1,∞(Si) and Ji := J|Si

∈ W 1,∞(Si), i = 1, . . . , n.
In this paper we will consider a bending moment formulation of the spectral

problem (2.4). With this end, we introduce the scaled bending moment σ := Eβ′

and shear stress γ := t−2κ(β − w′) as new unknowns in the model and test (2.4)
with η, v ∈ D(I) to obtain that −σ′ + γ = λt2Jβ and γ′ = λPw.

Thus, problem (2.4) can be equivalently written as follows:

(2.5)























σ = Eβ′ in I,
−σ′ + γ = λt2Jβ in I,
γ = t−2κ(β − w′) in I,
γ′ = λPw in I,
w(0) = β(0) = w(L) = β(L) = 0.

We introduce the following spaces that will be used in the sequel:

H := H1(I)×H1(I) and Q := L2(I)× L2(I).

We endow each space as well as H×Q with the corresponding product norm.
Testing the equations in (2.5) with adequate functions and integrating by parts,

we obtain the following variational formulation of this problem:
Find λ > 0 and 0 6= ((σ, γ), (β,w)) ∈ H×Q such that

∫

I

στ

E
+ t2

∫

I

γξ

κ
+

∫

I

β(τ ′ − ξ)−
∫

I

wξ′ = 0 ∀(τ, ξ) ∈ H,(2.6)

∫

I

η(σ′ − γ)−
∫

I

vγ′ = −λ

(

t2
∫

I

Jβη

∫

I

Pwv

)

∀(η, v) ∈ Q.(2.7)

We write this mixed problem in a more compact form as follows:
Find λ > 0 and 0 6= ((σ, γ), (β,w)) ∈ H×Q such that

a((σ, γ), (τ, ξ)) + b((τ, ξ), (β,w)) = 0 ∀(τ, ξ) ∈ H,(2.8)

b((σ, γ), (η, v)) = −λr((β,w), (η, v)) ∀(η, v) ∈ Q,(2.9)

where the bilinear forms a : H × H → R, b : H × Q → R and r : Q × Q → R are
defined by

a((σ, γ), (τ, ξ)) :=

∫

I

στ

E
+ t2

∫

I

γξ

κ
,(2.10)

b((τ, ξ), (η, v)) :=

∫

I

η(τ ′ − ξ)−
∫

I

vξ′,(2.11)

and

(2.12) r((β,w), (η, v)) :=

(

t2
∫

I

Jβη +

∫

I

Pwv

)

,

for all (σ, γ), (τ, ξ) ∈ H and (β,w), (η, v) ∈ Q.
It is easy to check that the so called continuous kernel

K := {(τ, ξ) ∈ H : b((τ, ξ), (η, v)) = 0 ∀(η, v) ∈ Q} ,
is given in this case by

K = {(τ, τ ′) : τ ∈ P1(I)} .
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The following lemmas, which have been proved in [23, Lemmas 2.1 and 2.2] show
that the ellipticity in the kernel and inf-sup classical conditions of mixed problems
holds true for (2.8)–(2.9).

Lemma 2.1. There exists α > 0 independent of t such that

a((τ, ξ), (τ, ξ)) ≥ α‖(τ, ξ)‖2H ∀(τ, ξ) ∈ K.

Lemma 2.2. There exists C > 0 independent of t such that

sup
06=(τ,ξ)∈H

b((τ, ξ), (η, v))

‖(τ, ξ)‖H
≥ C‖(η, v)‖Q ∀(η, v) ∈ Q.

Remark 2.1. We note that the eigenvalues of problem (2.8)–(2.9) are strictly pos-
itive. Indeed, it is easy to check that

λ =
a((σ, γ), (σ, γ))

r((β,w), (β,w))
≥ 0;

moreover λ = 0 implies (σ, γ) = 0, so that from (2.8) and Lemma 2.2, we have that
(β,w) = 0.

The goal of this paper is to propose and analyze a finite element method to
solve the spectral problem (2.8)–(2.9) and to obtain accurate approximations of
the eigenvalues λ (from which we obtain the angular vibration frequencies ω of the
beam) and the associated eigenfunctions.

3. Analysis of the spectral problem

Before introducing the numerical method, we define the linear operator corre-
sponding to the source problem associated with the spectral problem (2.8)–(2.9) and
prove some properties that will be useful for the subsequent convergence analysis:

Given (g, f) ∈ Q, find ((σ̂, γ̂), (β̂, ŵ)) ∈ H×Q such that

a((σ̂, γ̂), (τ, ξ)) + b((τ, ξ), (β̂, ŵ)) = 0 ∀(τ, ξ) ∈ H,(3.1)

b((σ̂, γ̂), (η, v)) = −r((g, f), (η, v)) ∀(η, v) ∈ Q.(3.2)

As a consequence of Lemmas 2.1 and 2.2, this problem is well posed (see, for
instance, [19, Section II.1.1]) and there exists a constant C > 0, independent of t,
such that

‖ŵ‖0,I + ‖β̂‖0,I + ‖σ̂‖1,I + ‖γ̂‖1,I ≤ C(t2‖g‖0,I + ‖f‖0,I) ≤ C‖(g, f)‖Q.
Thus, we are able to introduce the following bounded linear operator, which is

called the solution operator:

Tt : Q → Q,

(g, f) 7→ (β̂, ŵ).

It is easy to check that (µ, (β,w)), with µ 6= 0, is an eigenpair of Tt (i.e.,
Tt(β,w) = µ(β,w)) if and only if there exist (σ, γ) ∈ H such that, for λ = 1/µ,
(λ, (σ, γ), (β,w)) is a solution of problem (2.8)–(2.9). We recall that these eigenval-
ues are strictly positive (cf. Remark 2.1). Our aim is to approximate the smallest
eigenvalues of problem (2.8)–(2.9), which correspond to the largest eigenvalues of
the operator Tt.

This operator is self-adjoint with respect to the inner product r(·, ·) in Q. In fact,

given (g, f), (g̃, f̃) ∈ Q, let ((σ̂, γ̂), (β̂, ŵ)), ((σ̃, γ̃), (β̃, w̃)) ∈ H ×Q be the solutions
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to problem (3.1)–(3.2), with right hand side (g, f) and (g̃, f̃), respectively, so that

Tt(g, f) = (β̂, ŵ) and Tt(g̃, f̃) = (β̃, w̃). Then, using the symmetry of the bilinear
forms a(·, ·) and r(·, ·), we have

r((g, f), Tt(g̃, f̃)) =r((g, f), (β̃, w̃))

=−
(

a((σ̂, γ̂), (σ̃, γ̃)) + b((σ̃, γ̃), (β̂, ŵ)) + b((σ̂, γ̂), (β̃, w̃))
)

=r((g̃, f̃), (β̂, ŵ))

=r(Tt(g, f), (g̃, f̃)).

The operator Tt is also compact. To prove this we resort to the following addi-
tional regularity result, which has been proved in [23, Proposition 2.1].

Proposition 3.1. Given (g, f) ∈ Q. Let ((σ̂, γ̂), (β̂, ŵ)) ∈ H × Q be the unique
solution to problem (3.1)–(3.2). Then, there exists a constant C > 0 independent
of t, g and f such that

‖ŵ‖1,I + ‖β̂‖1,I + ‖σ̂‖1,I + ‖γ̂‖1,I ≤ C‖(g, f)‖Q.

Hence, as a consequence of the compact inclusionH1(I) →֒ L2(I), Tt is a compact
operator. Then, we know that the spectrum of Tt satisfies sp(Tt) = {0} ∪ {µn :
n ∈ N}, where {µn}n∈N is a sequence of positive eigenvalues which converges to
zero, the multiplicity of each non-zero eigenvalue being finite. Moreover, additional
regularity of the eigenfunctions holds as a consequence of the following improved
form of Proposition 3.1, which has been proved in [23, Remark 2.1].

Proposition 3.2. Let ((σ̂, γ̂), (β̂, ŵ)) ∈ H × Q be the solution of problem (3.1)–
(3.2). If g|Si

, f |Si
∈ H1(Si), i = 1, . . . , n, then, there exists C > 0 independent of t

such that

‖ŵ‖1,I + ‖β̂‖1,I + ‖σ̂‖1,I +
(

n
∑

i=1

‖σ̂′′‖20,Si

)1/2

+ ‖γ̂‖1,I +
(

n
∑

i=1

‖γ̂′′‖20,Si

)1/2

≤ C

(

‖g‖20,I + ‖f‖20,I +
n
∑

i=1

(

‖g′‖20,Si
+ ‖f ′‖20,Si

)

)1/2

.

As a consequence of this result and Proposition 3.1, we easily obtain the following
additional regularity for the eigenfunctions of problem (2.8)–(2.9).

Corollary 3.1. Let (λ, (σ, γ, β, w)) be a solution of problem (2.8)–(2.9). Then,
there exists C > 0 independent of t such that

‖w‖1,I + ‖β‖1,I + ‖σ‖1,I +
(

n
∑

i=1

‖σ′′‖20,Si

)1/2

+ ‖γ‖1,I +
(

n
∑

i=1

‖γ′′‖20,Si

)1/2

≤ Cλ‖(β,w)‖Q.

The rest of this section is devoted to prove the convergence of the operator Tt

as t goes to zero. For this purpose, we introduce the limit problem that we write as
follows:
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Given f ∈ L2(I), find ((σ0, γ0), (β0, w0)) ∈ H×Q such that
∫

I

σ0τ

E
+

∫

I

β0(τ
′ − ξ)−

∫

I

w0ξ
′ = 0 ∀(τ, ξ) ∈ H,(3.3)

∫

I

η(σ′
0 − γ0)−

∫

I

vγ′
0 = −

∫

I

Pfv ∀(η, v) ∈ Q.(3.4)

This is a mixed formulation of the load problem of an Euler-Bernoulli beam. Re-
peating the arguments used in the proof of [23, Theorem 2.3], we have that prob-
lem (3.3)–(3.4) is well posed. Moreover, the proof of Proposition 3.1 holds for t = 0,
too. Thus, the solution of problem (3.3)–(3.4) satisfies the following regularity re-
sult: There exists a constant C > 0 independent of f such that

(3.5) ‖w0‖1,I + ‖β0‖1,I + ‖γ0‖1,I + ‖σ0‖1,I ≤ C‖f‖0,I.

Now, let T0 be the following bounded linear operator:

T0 : Q → Q,

(g, f) 7→ (β0, w0).

We note that, because of (3.5), T0 is a compact operator. Moreover, it is self-
adjoint. In fact, essentially the same arguments used to prove that Tt is self-adjoint
holds for T0, too. Also the arguments of Remark 2.1 hold in this case and allow
us to show that the eigenvalues of T0 has to be strictly positive. So, the spectrum
also satisfies sp(T0) = {0} ∪ {µ0

n : n ∈ N}, where {µ0
n}n∈N is a sequence of positive

eigenvalues which converges to zero, the multiplicity of each non-zero eigenvalue
being finite.

The following lemma states the convergence in norm of Tt to T0.

Lemma 3.1. There exists a positive constant C independent of t such that

‖(Tt − T0)(g, f)‖Q ≤ Ct‖(g, f)‖Q.

Proof. Substracting (3.3)–(3.4) from (3.1)–(3.2), we obtain
∫

I

(σ̂ − σ0)τ

E
+

∫

I

(β̂ − β0)(τ
′ − ξ)−

∫

I

(ŵ − w0)ξ
′ = −t2

∫

I

γ̂ξ

κ
∀(τ, ξ) ∈ H,

∫

I

η((σ̂′ − σ′
0)− (γ̂ − γ0))−

∫

I

v(γ̂′ − γ′
0) = −t2

∫

I

Jgη ∀(η, v) ∈ Q.

Testing the system above with τ = σ̂ − σ0, ξ = γ̂ − γ0, η = β̂ − β0 and v = ŵ −w0

and subtracting the resulting equations, we obtain
∫

I

(σ̂ − σ0)
2

E
= t2

∫

I

Jg(β̂ − β0)− t2
∫

I

γ̂(γ̂ − γ0)

κ
.

Thus, by using (2.3), Proposition 3.1 and (3.5), we have

‖σ̂ − σ0‖20,I ≤ Ct2(‖g‖0,I‖β̂ − β0‖0,I + ‖γ̂‖0,I‖γ̂ − γ0‖0,I)

≤ Ct2
(

‖g‖0,I(‖β̂‖0,I + ‖β0‖0,I) + ‖γ̂‖0,I(‖γ̂‖0,I + ‖γ0‖I)
)

≤ Ct2‖(g, f)‖2Q.
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Now, we use Lemma 2.2, (3.1), (3.3), (2.3) and the above inequality, to obtain

‖(β̂, ŵ)− (β0, w0)‖Q ≤C sup
06=(τ,ξ)∈H

b((τ, ξ), (β̂ − β0, ŵ − w0))

‖(τ, ξ)‖H

=C sup
06=(τ,ξ)∈H

−
∫

I

(σ̂ − σ0)τ

E
− t2

∫

I

γ̂ξ

κ

‖(τ, ξ)‖H
≤ Ct‖(g, f)‖Q,

which allows us to complete the proof. �

As a consequence of this lemma, standard properties of separation of isolated
parts of the spectrum (see, for instance [22]) yield the following result.

Lemma 3.2. Let µ0 > 0 be an eigenvalue of T0 of multiplicity m. Let D be any
disc in the complex plane centered at µ0 and containing no other element of the
spectrum of T0. Then, for t small enough, D contains exactly m eigenvalues of Tt

(repeated according to their respective multiplicities). Consequently, each eigenvalue
µ0 > 0 of T0 is a limit of eigenvalues µ of Tt, as t goes to zero.

4. Spectral approximation

We will study in this section, the numerical approximation of the eigenvalue
problem (2.8)–(2.9). With this aim, first we consider a family of partitions of I,

Th : 0 = x0 < · · · < xN = L,

which are all refinements of the initial partition 0 = s0 < · · · < sn = L. Recall
that s1, . . . , sn−1 are the points of discontinuity of any of the coefficients, E, κ, P
or J. We denote Ij := (xj−1, xj), j = 1, . . . , N , and the largest subinterval length
is denoted h := max1≤j≤N (xj − xj−1). Notice that for any mesh Th, each Ij is
contained in one of the subinterval Si, i = 1, . . . , n, where the physical coefficients
are smooth.

We consider the space of piecewise linear continuous finite elements:

Wh := {ξh ∈ H1(I) : ξh|Ij ∈ P1(Ij), j = 1, . . . , N}.
For ξ ∈ H1(I) let Lhξ ∈ Wh be its Lagrange interpolant. We recall that

(4.1) ‖ξ − Lhξ‖1,I ≤ Ch





N
∑

j=1

‖ξ′′‖20,Ij





1/2

∀ξ|Ij ∈ H2(Ij), j = 1, . . . , N.

We will also consider the space of piecewise constant functions:

Zh := {vh ∈ L2(I) : vh|Ij ∈ P0(Ij), j = 1, . . . , N},
and the L2-projector onto Zh:

Ph : L2(I) → Zh,

v 7→ Phv ∈ Zh :

∫

I

(v − Phv)qh = 0 ∀qh ∈ Zh.

It is well known that

(4.2) ‖v − Phv‖0,I ≤ Ch|v|1,I ∀v ∈ H1(I).
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Defining Hh := Wh×Wh and Qh := Zh×Zh, the discretization of problem (2.8)–
(2.9) reads as follows:

Find λh > 0 and 0 6= ((σh, γh), (βh, wh)) ∈ Hh ×Qh such that

a((σh, γh), (τh, ξh)) + b((τh, ξh), (βh, wh)) = 0 ∀(τh, ξh) ∈ Hh,(4.3)

b((σh, γh), (ηh, vh)) = −λhr((βh, wh), (ηh, vh)) ∀(ηh, vh) ∈ Qh.(4.4)

As in the continuous case, we introduce for the analysis the discrete solution
operator

Tth : Q → Q

(g, f) 7→ (β̂h, ŵh),

where ((σ̂h, γ̂h), (β̂h, ŵh)) ∈ Hh × Qh is the solution of the corresponding discrete
source problem:

a((σ̂h, γ̂h), (τh, ξh)) + b((τh, ξh), (β̂h, ŵh)) = 0 ∀(τh, ξh) ∈ Hh,(4.5)

b((σ̂h, γ̂h), (ηh, vh)) = −r((g, f), (ηh, vh)) ∀(ηh, vh) ∈ Qh.(4.6)

It is easy to check that the discrete kernel

Kh := {(τh, ξh) ∈ Hh : b((τh, ξh), (ηh, vh)) = 0 ∀(ηh, vh) ∈ Qh} ,
coincides with the continuous one K = {(τ, τ ′) : τ ∈ P1(I)} . Therefore, the ellipti-
city estimate from Lemma 2.1 holds true for (τh, ξh) ∈ Kh with the same constant
α independent of t and h. Moreover, the discrete inf-sup condition

(4.7) sup
06=(τh,ξh)∈Hh

b((τh, ξh), (ηh, vh))

‖(τh, ξh)‖H
≥ C‖(ηh, vh)‖Q ∀(ηh, vh) ∈ Qh

holds true with a positive constant C independent of t and h (see [23, Lemma 3.2]).
Consequently, the discrete mixed problem (4.5)–(4.6) has a unique solution and
there holds

(4.8) ‖(σ̂h, γ̂h)‖H + ‖(β̂h, ŵh)‖Q ≤ C‖(g, f)‖Q,
once more with a positive constant C independent of t and h. Hence, Tth is a well
defined bounded linear operator.

Remark 4.1. The above estimate can be improved as follows:

(4.9) ‖(σ̂h, γ̂h)‖2H + ‖(β̂h, ŵh)‖2Q ≤ C

(

t2
∫

I

J|g|2 +
∫

I

P|f |2
)

,

always with a positive constant C independent of t and h. In fact, this follows easily
from taking into account the particular form of the right hand side of problem (4.5)–
(4.6) and using, for instance, [19, Remark II.1.3].

As in the continuous case, (µh, (βh, wh)), with µh 6= 0, is an eigenpar of Tth if and
only if there exists (σh, γh) ∈ Hh such that, for λh = 1/µh, (λh, (σh, γh, βh, wh)) is
a solution of problem (4.3)–(4.4). Moreover, the same arguments used for Tt allow
us to show that the operator Tth is self-adjoint with respect to the inner product
r(·, ·).

Our next goal is to obtain a spectral characterizaton for problem (4.3)–(4.4):

Lemma 4.1. The variational problem (4.3)–(4.4) has exactly dimQh eigenvalues,
repeated according to their respective multiplicities. All of them are real and positive.
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Proof. Taking particular bases of the discrete spaces, problem (4.3)–(4.4) can be
written in matrix form as follows:

(4.10)









A 0 E 0

0 C −D −E

Et −Dt 0 0

0 −Et 0 0

















~σh

~γh
~βh

~wh









= −λh









0 0 0 0

0 0 0 0

0 0 P 0

0 0 0 Q

















~σh

~γh
~βh

~wh









,

where ~σh, ~γh,
~βh and ~wh denote the vectors whose entries are the components in

those basis of σh, γh, βh and wh, respectively.
Now we define the following matrices

R :=

[

A 0

0 C

]

, S :=

[

E 0

−D −E

]

, T :=

[

P 0

0 Q

]

,

and vectors

~uh :=

[

~σh

~γh

]

, ~vh :=

[

~βh

~wh

]

,

to rewrite (4.10) as follows:

(4.11)

[

R S

St 0

] [

~uh

~vh

]

= −λh

[

0 0

0 T

] [

~uh

~vh

]

.

The system above is equivalent to solve

R~uh + S~vh =0

St~uh =− λhT~vh.

Since A,C,P and Q are scaled mass matrices, it is easy to check that all of them,
as well as R and T, are symmetric and positive definite (although not uniformly
in t) and hence invertible. Thus, from the first equation above we have that ~uh =
−R−1S~vh and substituting this into the second equation we obtain:

(4.12) (StR−1S)~vh = λhT~vh.

Conversely, if (λh, ~vh) is an eigenpar of the above problem, by defining ~uh :=
−R−1S~vh, we have that (λh, (~uh, ~vh)) is an eigenpar of (4.11).

The eigenvalue problem (4.12) is well posed because T is symmetric and positive
definite. The same holds true for StR−1S. In fact, this matrix is clearly symmetric
and semipositive definite. Moreover, it is positive definite because S~vh = 0 implies
~vh = 0, as a consequence of (4.7). Then, the generalized eigenvalue problem is
well posed and all its eigenvalues are real and positive. Therefore, the number of
eigenvalues of problem (4.10) equals the number of eigenvalues of this problem,
namely dimQh, and we complete the proof. �

In order to prove that the solutions of the discrete problem (4.5)–(4.6) converge
to those of the continuous problem (3.1)–(3.2), the standard procedure would be
to show that Tth converges in norm to Tt as h goes to zero. However, such a proof
does not seem straightforward in our case. In fact, ‖(Tt − Tth)(g, f)‖Q is bounded
for g and f piecewise smooth as follows:

‖(Tt − Tth)(g, f)‖Q ≤ Ch

(

‖g‖20,I + ‖f‖20,I +
n
∑

i=1

(

‖g′‖20,Si
+ ‖f ′‖20,Si

)

)1/2

,

but the last terms above are not bounded in general by ‖(g, f)‖Q. To circumvent
this drawback, we will resort instead to the spectral theory from [13] and [14].
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In spite of the fact that the main use of this theory is when Tt is a noncompact
operator, it can also be applied to compact Tt and we will show that in our case it
works.

The remainder of this section is devoted to prove the following properties which
will be used in the next section:

P1. ‖Tt − Tth‖h := sup
06=(gh,fh)∈Qh

‖(Tt − Tth)(gh, fh))‖Q
‖(gh, fh)‖Q

→ 0 as h → 0.

P2. ∀(η, v) ∈ Q, inf
(ηh,vh)∈Qh

‖(η, v)− (ηh, vh)‖Q → 0 as h → 0.

Property P2 is a consequence of the fact that piecewise constant functions are
dense in L2(I). Regarding property P1, we have the following result.

Lemma 4.2. Property P1 holds true; moreover, there exists a constant C > 0
independent of t and h such that

‖Tt − Tth‖h ≤ Ch.

Proof. Given (gh, fh) ∈ Qh, let ((σ̂, γ̂), (β̂, ŵ)) ∈ H × Q and ((σ̂h, γ̂h), (β̂h, ŵh) ∈
Hh × Qh be the solutions of problems (3.1)–(3.2) and (4.5)–(4.6), respectively, in

both cases with (g, f) = (gh, fh). Therefore, (β̂, ŵ) = Tt(gh, fh) and (β̂h, ŵh) =
Tth(gh, fh).

The same arguments used in the proof of Proposition 3.2 (see [23, Remark 2.1])
allow us to show that there exists a constant C > 0, independent of t, gh and fh,
such that

‖ŵ‖1,I + ‖β̂‖1,I + ‖σ̂‖1,I +





N
∑

j=1

‖σ̂′′‖20,Ij





1/2

+ ‖γ̂‖1,I +





N
∑

j=1

‖γ̂′′‖20,Ij





1/2

≤ C‖(gh, fh)‖Q,

(4.13)

where we have also used that g′h|Ij = f ′
h|Ij = 0, because gh and fh are piecewise

constant. On the other hand, since problem (4.5)–(4.6) is just the finite element
discretization of problem (3.1)–(3.2), using again the results from [23] (in particular,
Theorem 3.3), we have that

‖(Tt − Tth)(gh, fh)‖Q ≤‖((σ̂, γ̂), (β̂, ŵ))− ((σ̂h, γ̂h), (β̂h, ŵh))‖H×Q

≤C inf
((τh,ξh),(ηh,vh))∈Hh×Qh

‖((σ̂, γ̂), (β̂, ŵ))− ((τh, ξh), (ηh, vh))‖H×Q

≤C‖((σ̂, γ̂), (β̂, ŵ))− ((Lhσ̂,Lhγ̂), (Phβ̂,Phŵ))‖H×Q

≤Ch‖(gh, fh)‖Q,
where, for the last inequality we have used the error estimates (4.1) and (4.2)
together with the additional regularity result (4.13). Thus, the proof follows from
the definition of ‖Tt − Tth‖h and the above estimate. �

5. Convergence and error estimates.

In this section we will adapt the arguments from [13, 14] to prove convergence of
our spectral approximation as well as to obtain error estimates for the approximate
eigenvalues and eigenfunctions. With this end, we will use the following results.
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Lemma 5.1. Let F ⊂ C be a closed set such that F ∩ sp(T0) = ∅. Then, there
exist strictly positive constants t0 and C such that, ∀t < t0, F ∩ sp(Tt) = ∅ and

‖Rz(Tt)‖ := sup
06=(η,v)∈Q

‖Rz(Tt)(η, v)‖Q
‖(η, v)‖Q

≤ C ∀z ∈ F.

Proof. We consider the mapping z → ‖(zI − T0)
−1‖, which is continuous for all

z ∈ ρ(T0). It is clear that this mapping goes to zero as |z| → ∞. Hence, if
F ⊂ ρ(T0) is a closed subset, then the mapping above attains its maximum. Let

Ĉ := maxz∈F ‖(zI − T0)
−1‖; there holds

‖(zI − T0)(η, v)‖Q ≥ 1

Ĉ
‖(η, v)‖Q ∀(η, v) ∈ Q ∀z ∈ F.

Next, we observe that

‖(zI − T0)(η, v)‖Q ≤ ‖(zI − Tt)(η, v)‖Q + ‖(Tt − T0)(η, v)‖Q.
Moreover, according to Lemma 3.1, there exists t0 > 0 such that, for all t < t0,

‖(Tt − T0)(η, v)‖Q ≤ 1

2Ĉ
‖(η, v)‖Q ∀(η, v) ∈ Q.

Therefore, for all (η, v) ∈ Q, for all z ∈ F and for all t < t0,

‖(zI − Tt)(η, v)‖Q ≥ ‖(zI − T0)(η, v)‖Q − ‖(Tt − T0)(η, v)‖Q ≥ 1

2Ĉ
‖(η, v)‖Q.

Consequently, z is not an eigenvalue of Tt. Moreover, z 6= 0, because 0 /∈ ρ(T0).
Hence, since the spectrum of Tt consists of eigenvalues and µ = 0, we have that
z /∈ sp(Tt), so that (zI − Tt) is invertible for all t < t0 and for all z ∈ F . Moreover,
from the above inequality, we have that

‖Rz(Tt)‖ = ‖(zI − Tt)
−1‖ ≤ 2Ĉ

and we conclude the proof. �

The following result shows that Rz(Tth|Qh
) is bounded on any closed subset of

the complex plane not intersecting sp(T0), provided t and h are small enough. Here
and thereafter, h0 and t0 denote small positive constants, not necessarily the same
at each occurrence.

Lemma 5.2. Let F ⊂ C be a closed set such that F ∩ sp(T0) = ∅. Then, there
exist strictly positive constants h0, t0 and C such that, ∀h < h0 and ∀t < t0,
F ∩ sp(Tth) = ∅ and

‖Rz(Tth)‖h ≤ C ∀z ∈ F.

Proof. Let F be a closed set such that F∩sp(T0) = ∅. As an immediate consequence
of Lemma 5.1, we have that for all (η, v) ∈ Q, for all z ∈ F and for all t < t0,

‖(η, v)‖Q ≤ C‖(zI − Tt)(η, v)‖Q.
Now, from Lemma 4.2, we have that there exists h0 > 0 such that for all h < h0

‖(Tt − Tth)(ηh, vh)‖Q ≤ 1

2C
‖(ηh, vh)‖Q ∀(ηh, vh) ∈ Qh.

Then, for (ηh, vh) ∈ Qh and z ∈ F , we have

‖(zI−Tth)(ηh, vh)‖Q ≥ ‖(zI−Tt)(ηh, vh)‖Q−‖(Tt−Tth)(ηh, vh)‖Q ≥ 1

2C
‖(ηh, vh)‖Q.
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Since Qh is finite dimensional, we deduce that (zI − Tth) is invertible and, hence,
z /∈ sp(Tth). Moreover

‖Rz(Tth)‖h = ‖(zI − Tth)
−1‖h ≤ 2C ∀z ∈ F

and we complete the proof. �

An equivalent form of the first assertion of this theorem is that any open set of
the complex plane containing sp(T0), also contains sp(Tth) for h and t small enough.

The eigenvalues µ of Tt are tipically simple and converges to simple eigenvalues
T0 as t tends to zero. Because of this, we state our results only for eigenvalues of
Tt converging to a simple eigenvalue of T0 as t goes to zero.

Let µ0 6= 0 be an eigenvalue of T0 with multiplicity m = 1. Let D be a closed
disk centered at µ0 with boundary Γ such that 0 /∈ D and D ∩ sp(T0) = {µ0}. Let
t0 > 0 be small enough so that, for all t < t0, D contains only one eigenvalue µ of
Tt, which we already know is simple (cf. Lemma 3.2). Let E be the eigenspace of
Tt corresponding to µ.

According to Lemma 5.2 there exist t0 > 0 and h0 > 0 such that ∀t < t0 and
∀h < h0, Γ ⊂ ρ(Tth). Moreover, proceeding as in [13, Section 2], from properties P1
and P2 it follows that for h small enough Tth has exactly one eigenvalue µh ∈ D.
Let Eh be the eigenspace of Tth associated to µh. The theory in [14] could be
adapted too, to prove error estimates for the eigenvalues and eigenfunctions of Tth

to those of T0 as h and t go to zero. However, our goal is not this one, but to prove
that µh converges to µ as h goes to zero, with t < t0 fixed, and to provide the
corresponding error estimates for eigenvalues and eigenfunctions. With this aim,
we will modify accordingly the theory from [14].

Let Πh : Q → Q be defined for all (η, v) ∈ Q by Πh(η, v) = (Phη,Phv) ∈ Qh,
with Ph being the L2-projector defined in the previous section. The properties of
Ph lead to analogous properties for Πh; for instance, Πh is bounded uniformly on
h, namely, ‖Πh(η, v)‖Q ≤ ‖(η, v)‖Q. Moreover, the error estimate (4.2) holds for
Πh too:

(5.1) ‖Πh(η, v)− (η, v)‖Q ≤ Ch(|η|1,I + |v|1,I) ∀(η, v) ∈ H.

Next, we define

Bth := TthΠh : Q → Qh →֒ Q.

We observe that Bth and Tth have the same non-zero eigenvalues and correspond-
ing eigenfunctions. Furthermore, we have the following result analogous to [14,
Lemma 1].

Lemma 5.3. There exist strictly positive constants h0, t0 and C such that

‖Rz(Bth)‖ ≤ C ∀h < h0, ∀t < t0, ∀z ∈ Γ.

Proof. It is essentially identical to that of Lemma 5.2 from [24]. �

Next, we introduce

• Et : Q → Q, the spectral projector of Tt corresponding to the isolated
eigenvalue µ, namely,

Et :=
1

2πi

∫

Γ

Rz(Tt) dz;
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• Fth : Q → Q, the spectral projector of Bth corresponding to the eigenvalue
µh, namely,

Fth :=
1

2πi

∫

Γ

Rz(Bth) dz.

As a consequence of Lemma 5.3, the spectral projectors Fth are bounded uni-
formly in h and t for h and t small enough. Notice that Et(Q) is the eigenspace of
Tt associated to µ and Fth(Q) is the eigenspace of Bth (and hence of Tth) associated
to µh.

We recall the definition of the gap δ̂ between two closed subspaces Y and Z of
Q:

δ̂(Y, Z) := max {δ(Y, Z), δ(Z, Y )} ,
where

δ(Y, Z) := sup
y∈Y

‖y‖Q=1

(

inf
z∈Z

‖y − z‖Q
)

.

The following results will be used to prove convergence of the eigenspaces.

Lemma 5.4. There exist positive constants h0, t0 and C such that, for all h < h0

and for all t < t0,

‖(Et − Fth)|Et(Q)‖ ≤ ‖(Tt −Bth)|Et(Q)‖ ≤ Ch.

Proof. The proof of the first inequality follows from Lemmas 5.1 and 5.3 and the
same arguments as Lemma 3 from [14]. For the other inequality, let (β,w) ∈ Et(Q).
We have

‖(Tt −Bth)(β,w)‖Q ≤‖(Tt − TtΠh)(β,w)‖Q + ‖(TtΠh −Bth)(β,w)‖Q
≤‖Tt‖‖(I −Πh)(β,w)‖Q + ‖(Tt − Tth)Πh(β,w)‖Q
≤Ch(|β|1,I + |w|1,I) + Ch‖Πh(β,w)‖Q
≤Ch‖(β,w)‖Q,

where we have used (5.1), Lemma 4.2 and Corollary 3.1. �

Now, we are in position to prove an optimal order error estimate for the eigenspaces.

Theorem 5.1. There exist positive constants h0, t0 and C such that, for all h < h0

and for all t < t0,

δ̂ (Fth(Q), Et(Q)) ≤ Ch.

Proof. The proof follows by using Lemma 5.4 and arguing exactly as in the proof
of [14, Theorem 1]. �

In what follows, we state a preliminary suboptimal error estimate for |µ − µh|
that will be used in the sequel but which will be improved below (cf. Theorem 5.2).

Lemma 5.5. There exist strictly positive constants h0, t0 and C such that, for
h < h0 and t < t0,

|µ− µh| ≤ Ch.

Proof. The proof follows by repeating the arguments used in [24] to derive Lemma 5.6
from this reference. �
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Since the eigenvalue µ of Tt corresponds to an eigenvalue λ = 1/µ of prob-
lem (2.8)-(2.9), Lemma 5.5 leads to an error estimate for the approximation of λ
as well. However, the order of convergence O(h) in this lemma is not optimal. The
following lemma will be used to prove a double order of convergence for the corre-
sponding eigenvalues, but it is interesting by itself, too. In fact, it shows optimal
order convergence for the bending moment and shear stress of the vibration modes.

Lemma 5.6. Let (λ, (σ, γ, β, w)) and (λh, (σh, γh, βh, wh)) be the solutions of pro-
blems (2.8)–(2.9) and (4.3)–(4.4), respectively, with ‖(β,w)‖Q = ‖(βh, wh)‖Q = 1
and such that

(5.2) ‖β − βh‖0,I + ‖w − wh‖0,I ≤ Ch.

Then, for h and t small enough,

(5.3) ‖σ − σh‖1,I + ‖γ − γh‖1,I ≤ Ch.

Proof. Let ((σ̂, γ̂), (β̂, ŵ)) ∈ H×Q be the solution of the following auxiliary problem:

a((σ̂, γ̂), (τ, ξ)) + b((τ, ξ), (β̂, ŵ)) = 0 ∀(τ, ξ) ∈ H,(5.4)

b((σ̂, γ̂), (η, v)) = −λhr((βh, wh), (η, v)) ∀(η, v) ∈ Q.(5.5)

Notice that problem (4.3)–(4.4) can be seen as a discretization of the load problem
above. The arguments in the proof of Lemma 4.2 can be repeated, considering
gh = λhβh and fh = λhwh, to show that

(5.6) ‖((σ̂, γ̂), (β̂, ŵ))− ((σh, γh), (βh, wh))‖H×Q ≤ Chλh‖(βh, wh)‖Q ≤ Chλ.

the last inequality because λh → λ as a consequence of Lemma 5.5.
On the other hand, susbtracting (2.8)–(2.9) from (5.4)–(5.5), we obtain

a((σ − σ̂, γ − γ̂), (τ, ξ)) + b((τ, ξ), (β − β̂, w − ŵ)) = 0 ∀(τ, ξ) ∈ H,

b((σ − σ̂, γ − γ̂), (η, v)) = −r((λβ − λhβh, λw − λhwh), (η, v)) ∀(η, v) ∈ Q.

As a consequence of Lemmas 2.1 and 2.2, the problem above has a unique solution
(see, for instance, [19, Section II.1.1]) and there exists C > 0 such that

‖σ − σ̂‖1,I + ‖γ − γ̂‖1,I ≤ C(‖λβ − λhβh‖0,I + ‖λw − λhwh‖0,I)
≤ C(λ‖β − βh‖0,I + |λ− λh|‖βh‖0,I

+ λ‖w − wh‖0,I + |λ− λh|‖wh‖0,I)
≤ Ch,

the last inequality because of (5.2) and Lemma 5.5.
Finally, from the above inequality and (5.6) we obtain (5.3) and the proof is

complete. �

Now we are in a position to prove a double order of convergence for the eigen-
values.

Theorem 5.2. There exist strictly positive constants h0, t0 and C such that, for
h < h0 and t < t0,

|λ− λh| ≤ Ch2.
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Proof. Let (λ, (σ, γ, β, w)) and (λh, (σh, γh, βh, wh)) be as in Lemma 5.6. Then, we
write problem (2.8)–(2.9) and problem (4.3)–(4.4) as follows:

A((σ, γ, β, w), (τ, ξ, η, v)) = −λB((σ, γ, β, w), (τ, ξ, η, v)),

A((σh, γh, βh, wh), (τh, ξh, ηh, vh)) = −λhB((σh, γh, βh, wh), (τh, ξh, ηh, vh)),

where the bilinear forms A and B are defined by

A((σ, γ, β, w), (τ, ξ, η, v)) := a((σ, γ), (τ, ξ)) + b((τ, ξ), (β,w)) + b((σ, γ), (η, v)),

B((σ, γ, β, w), (τ, ξ, η, v)) := r((β,w), (η, v)).

Let U := (σ, γ, β, w) and Uh := (σh, γh, βh, wh). Then, it is easy to check the
following identity (see, for instance, [3, Lemma 9.1]):

(λ− λh)B(Uh, Uh) = A(U − Uh, U − Uh) + λB(U − Uh, U − Uh).

Now, since B(Uh, Uh) = t2
∫

I Jβ
2
h +

∫

I Pw
2
h and (σh, γh, βh, wh) can be seen as

the solution of problem (4.5)–(4.6) with data (g, f) = λh(βh, wh), as a consequence
of Remark 4.1, we have that

B(Uh, Uh) ≥
1

Cλ2
h

‖(βh, wh)‖2Q =
1

Cλ2
h

.

Since λh → λ and λ > 0, for h small enough

B(Uh, Uh) ≥
1

2Cλ2
,

the right hand side being a positive constant independent of h and t. Hence from
Theorem 5.1 and Lemma 5.6, we obtain

|λ− λh| ≤ Ch2

and the proof is complete. �

6. Numerical results

We report in this section the results of some numerical tests computed with a
MATLAB code implementing the finite element method described above. For all
the tests we have considered a clamped beam of length L and uniform meshes of
N elements, with different values of N .

In all the tests, we have used the following physical parameters:

• Young modulus: E = 2.1× 106 Kgf/cm2, (1 Kgf= 980 kg/cm2),
• Poisson ratio: ν = 0.3,
• Density: ρ = 7.85× 10−3 kg/cm3,
• Correction factor: kc = 1.

6.1. Implementation. The generalized eigenvalue problem that has to be solved
has been written in matrix form into the proof of Lemma 4.1 (cf. (4.10)). This is
a degenerate matrix generalized eigenvalue problem since none of the matrices is
positive definite. Therefore, its solution would need of some specialized software.
Alternativaly, problem (4.10) has been equivalently written as (4.12), where both
matrices are symmetric and positive definite. However, on the left hand side there
is a full matrix, because R−1 is full too. Therefore, (4.12) is not appropiate for the
computer solution of the problem, either.
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Instead, we proceed from (4.11) as follows: From the second equation T~vh =
− 1

λh
St~uh and, since T is invertible, ~vh = − 1

λh
T−1St~uh. Substituting this into the

first equation of (4.11) we arrive at

(6.7) (ST−1St)~uh = λhR~uh.

Matrix R is symmetric and positive definite, whereas (ST−1St) is symmetric and
semipositive definite. Thus, this generalized eigenvalue problem can be solved with
standard software. Moreover, sinceT is formed by two mass matrices with piecewise
constant elements, it is diagonal. Hence to compute T−1 is completely inexpensive
and the matrix (ST−1St) result as sparse as R. The only minor drawback is that
the eigenvalue problem (6.7) has the spurious eigenvalue λh = 0 with multiplicity
2. Since T−1 is positive definite, the eigenspace associated to λh = 0 is the kernel
of S. Using the standard basis of the finite element spaces Wh (piecewise linear and
continuous elements) and Zh (piecewise constant elements) it is posible to prove
that if ~uh = (~σh, ~γh)

t with ~σh and ~γh being the vector of nodal components of
σh ∈ Wh and γh ∈ Wh, respectively, thus (S~uh)i =

∫

Ij
(σ′

h − γh), i = 1, . . . , N .

Therefore, ~uh ∈ kerS implies that either γh = 0 and σh is constant or γh is
constant and σ′

h = γh. Thus, the eigenspace of λh = 0 in problem (6.7) is spanned
by (1, 0) ∈ Hh and (x, 1) ∈ Hh.

6.2. Test 1: Uniform beam with analytical solution. The aim of this first
test is to validate the computer code by solving a problem with known analytical
solution. With this purpose, we will compare the exact vibration frequencies of a
uniform clamped beam as that shown in Figure 1 (undeformed beam) with those
computed with the method analyzed in this paper.

L

d

b

Figure 1. Undeformed uniform beam.

We note also that for this kind of beam, we have that I = bd3

12 and A = bd are
constant.

In Table 1 we report the three lowest vibration frequencies computed by our
method with four different meshes (N = 16, 32, 64, 128). We have taken L = 120 cm
and a square cross section of side-length b = d = 20 cm. The table includes
computed orders of convergence and the exact vibration frequencies.

Table 1. Angular vibration frequencies of a uniform beam.

Mode N = 16 N = 32 N = 64 N = 128 Order Exact

ωh
1 4017.49 4000.74 3996.84 3995.90 2.1 3995.61

ωh
2 9778.27 9644.64 9613.68 9606.23 2.1 9603.80

ωh
3 170614.73 16621.41 16520.22 16495.89 2.1 16487.94
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It can be seen from Table 1 that the computed frequencies converge to the exact
ones with an optimal quadratic order.

6.3. Test 2: Beam with a smoothly varying cross-section. In this test we
apply the method analyzed in this paper to a beam of rectangular section with
smoothly varying thickness. With this purpose, we consider a beam as that shown
in Figure 2.

L

d

b

3d

Figure 2. Smoothly varying cross-section beam.

Let b and d be as shown in Figure 2. We have taken L = 100, b = 3 and d = 3 cm.
The equation of the top and botton surfaces of the beam are

z = ± 150d

2x+ 100
, 0 ≤ x ≤ 100.

Hence, the area of the cross section and the moment of inertia are given by

A(x) =
900d

2x+ 100
, I(x) =

1

4

(

300d

2x+ 100

)3

, 0 ≤ x ≤ 100.

In Table 2 we report the four lowest vibration frequencies computed by our
method with four different meshes (N = 16, 32, 64, 128). The table includes com-
puted orders of convergence as well as more accurate values obtained by means of
a least-squares fitting.

Table 2. Angular vibration frequencies of a beam with a smoothly
varying cross-section.

Mode N = 16 N = 32 N = 64 N = 128 Order Extrap.

ωh
1 1674.8167 1667.2007 1665.2819 1664.8012 2.03 1664.6419

ωh
2 4382.5912 4308.8768 4290.4391 4285.8294 2.03 4284.3014

ωh
3 8432.5758 8139.6797 8067.2309 8049.1697 2.03 8043.1848

ωh
4 13875.8820 13078.9166 12884.6634 12836.4208 2.03 12820.4405

It can be seen from Table 2 that the computed vibration frequencies also converge
with an optimal quadratic order as predicted by the theoretical results.

We show in Figure 3 the deformed beam for the four lowest vibration modes.
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ωh
1 ωh

2

ωh
3 ωh

4

Figure 3. Smoothly varying cross-section beam; four vibration
modes with lowest frequency.

6.4. Test 3: Rigidly joined beams. The aim of this test is to apply the method
analyzed in this paper to a beam with area varying discontinuously along its axis.
With this purpose, we consider a composed beam formed by two rigidly joined
beams as shown in Figure 4. Moreover, we will assess the performance of the
method as the thickness d approaches to zero to check that the proposed method
is thoroughly locking-free.

3d

b L/2

d

L

d

Figure 4. Rigidly joined beams.

Let b and d be as shown in Figure 4. We have taken L = 100 and b = 3, so that
the area of the cross section and the moment of inertia are:

A(x) =

{

9d, 0 ≤ x ≤ 50,
3d, 50 < x ≤ 100,

I(x) =

{

27d3

4 , 0 ≤ x ≤ 50,

d3

4 , 50 < x ≤ 100.

We have used uniform meshes with an even number N of elements, so that the
point x = L/2 is always a node of the mesh as required by the theory.

In Table 3 we present the results for the lowest computed rescaled eigenvalue

λh
1 =

(

ωh
1 /t
)2
, with varying thickness d and different meshes. According to (2.2),

the nondimensional parameter t is given in this case by t2 = 5d2

8L2 . Again, we
have computed the orders of convergence and more accurate extrapolated values
by means of a least-squares fitting.
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The results from Table 3 show clearly that the method does not deteriorate when
the thickness parameter becomes small, thus we may conclude that the method is
locking-free.

Table 3. Lowest rescaled eigenvalue λ1
h (multiplied by 10−10) of

a composed beam with varying thickness d.

Thickness N = 16 N = 32 N = 64 N = 128 Order Extrap.
d = 4 4.72371 4.68871 4.67989 4.67768 2.03 4.67695
d = 0.4 5.00424 4.96518 4.95534 4.95288 2.03 4.95207
d = 0.04 5.00724 4.96813 4.95829 4.95582 2.03 4.95500
d = 0.004 5.00727 4.96816 4.95831 4.95585 2.03 4.95503

Finally, we show in Figure 5 the deformed beam for the two lowest frequency
vibration modes.

ωh
1 ωh

2

Figure 5. Rigidly joined beams; two lowest frequency vibration modes.
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[3] I. Babuška and J. Osborn, Eigenvalue Problems, in: Handbook of Numerical Analysis, Vol.
II, P.G. Ciarlet and J.L. Lions, eds., North-Holland, Amsterdam (1991) pp. 641–787.

[4] E.M. Behrens and J. Guzmán, A new family of mixed methods for the Reissner-Mindlin
plate model based on a system of first-order equations. J. Sci. Comput., 49, (2011) pp. 137–
166.

[5] L. Beirão da Veiga, C. Lovadina and A. Reali, Avoiding shear locking for the Timoshenko
beam problem via isogeometric collocation methods. Comput. Methods Appl. Mech. Engrg.,
241–244, (2012) pp. 38–51.

[6] L. Beirão da Veiga, D. Mora and R. Rodŕıguez, Numerical analysis of a locking-free
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