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Abstract

In this work we analyze a primal-mixed finite element method for the coupling of quasi-Newtonian
fluids with porous media in 2D and 3D. The flows are governed by a class of nonlinear Stokes and
linear Darcy equations, respectively, and the transmission conditions on the interface between the
fluid and the porous medium are given by mass conservation, balance of normal forces and the
Beavers-Joseph-Saffman law. We apply a primal formulation in the Stokes domain and a mixed
formulation in the Darcy formulation. The “strong coupling” concept means that the conservation
of mass across the interface is introduced as an essential condition in the space where the velocity
unknowns live. In this way, under some assumptions on the nonlinear kinematic viscosity, a gener-
alization of the Babuska-Brezzi theory is utilized to show the well posedness of the primal-mixed
formulation. Then, we introduce a Galerkin scheme in which the discrete conservation of mass is
imposed approximately through an orthogonal projector. The unique solvability of this discrete
system and its Strang-type error estimate follow from the generalized Babuska-Brezzi theory as
well. In particular, the feasible finite element subspaces include Bernadi-Raugel elements for the
Stokes flow, and either the Raviart-Thomas elements of lowest order or the Brezzi-Douglas-Marini
elements of first order for the Darcy flow, which yield nonconforming and conforming Galerkin
schemes, respectively. In turn, piecewise constant functions are employed to approximate in both
cases the global pressure field in the Stokes and Darcy domain. Finally, several numerical results
illustrating the good performance of both discrete methods and confirming the theoretical rates of
convergence, are provided.

1 Introduction

The development of suitable numerical methods to solve the Stokes-Darcy and related coupled prob-
lems, including porous media with cracks, the incorporation of the Brinkman equation in the model,
and linear as well as nonlinear behaviors, has become a very active research area during the last decade
(see, e.g., [B], [11], [12], [13], [14], [15], [19], [26], [28], [32], [35], [36] and the references therein). In
particular, a mixed finite element method for a class of nonlinear Stokes-Darcy coupled problem aris-
ing in industrial filtring application and involving a non-Newtonian fluid, is introduced and analized
n [I3]. Up to the authors’ knowledge, this is the first work dealing with the fully-coupled problem
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for non-Newtonian Stokes and Darcy flows. In fact, the fluid is modeled there by the generalized
nonlinear Darcy equation in the porous medium. In addition, the approach in [I3] employs the primal
method in the Stokes domain and the dual-mixed method in the Darcy region, which means that only
the original velocity and pressure unknowns are considered in the fluid, whereas a further unknown
(velocity) is added in the porous medium. The corresponding interface conditions are given by the
mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law, and since one of
them becomes essential, the trace of the Darcy pressure on the interface needs also to be incorpo-
rated as an additional Lagrange multiplier. More recently, the model from [13] is recasted in [14] as
a reduced matching problem on the interface by using a mortar space approach. As a consequence,
a parallel algorithm for the problems in both regions is derived, which allows to solve the coupled
problem utilizing existing codes for Stokes and Darcy simulations.

On the other hand, the a priori error analyses of a primal-mixed finite element method for 2D
Stokes-Darcy coupled problem, in which primal and mixed formulations are employed in the Stokes
and Darcy domains, respectively, were developed in [19] and [30]. This approach allows, on the one
hand, to consider the natural unknowns, that is, the velocity vector fields and the pressure field in
both domains, and on the other hand, the utilization of different families of finite element subspaces
in each media. The model considered in [19] refers to a linearized Stokes equations coupled with a
linearized Darcy equations. In addition, since the approach in [19] leads to essential transmission
conditions, these are imposed weakly and hence the trace of the porous medium pressure becomes
the corresponding Lagrange multiplier. However, in [30], the mass conservation across the interface
between both domains was included as an essential condition in the velocity unknowns space, and
hence the resulting primal-mixed formulation does not need the trace of the porous media pressure as
an additional unknown.

The purpose of the present work is to extend the analysis and results from [30] to the model
problem from [I3], that is to the coupling of quasi-Newtonian fluids with porous media. To this end,
and following a similar approach from [I3] (see also [19] and [30]), we apply a primal formulation in
the fluid domain while a mixed formulation is applied in the porous medium. In addition, the balance
of normal forces and Beavers-Joseph-Saffman law are imposed weakly (exactly as in [19] and [30]),
but following the idea introduced in [30], the mass conservation across the interface is imposed as an
essential condition in the velocity unknowns space. All these equations yield a nonlinear primal-mixed
formulation, whose well-posedness is proved by applying the generalization of the Babuska-Brezzi
theory developed in [I7] (see also [18]). In addition, since the insertion of the mass conservation as
an essential condition in the velocity unknowns space leads to a nonconforming Galerkin scheme, we
need to modify the generalized Babuska-Brezzi theory from [17] to be able to show the uniqueness of
the discrete scheme and derive the corresponding a priori Strang-type estimate.

The rest of this work is organized as follows: In Section 2 we introduce the model problem and
derive the primal-mixed variational formulation, which shows a nonlinear mixed formulation structure.
A slight modification of the usual Babuska-Brezzi theory developed in [34] is also given here to analyze
the solvability of our continuous formulation. Next, in Section 3 we provide the discrete analogue of
the abstract theory developed in [I7] (see also [I8]), which allows us to establish the solvability and
stability of nonconforming Galerkin schemes associated with weak formulations of nonlinear mixed
problems. This abstract framework is then applied, under some general assumptions on the finite
element subspaces, to prove the well-posedness of the nonconforming discrete scheme associated with
our continuous problem. Specific choices of finite element subspaces satisfying these assumptions are
also described here. Finally, several numerical results illustrating the performance of the method and
confirming the theoretical rates of convergence, are reported in Section 4.



2 The continuous problem

We begin this section by introducing some notations to be used throughout this paper.

2.1 Preliminaries

In what follows, R¥? denotes the space of tensors (or matrices) T := (7;;) with real entries, and I is
the identity tensor (or identity matrix) of R?*¢. Also, in this space we consider the tensorial inner
product given by

o:.T:= E dO’Z‘jTZ‘j Vo, T € RdXd,
t,j=1

with induced norm

d 1/2
lo| := { Z a%} Vo € R4,

4,j=1

In turn, given H and @ Hilbert spaces with induced norms H . H y and H . H o’ respectively, we endow the
HHXQ = H . HH + H . HQ In addition, we denote by H

and H the spaces H? and H*?, respectively. Also, If H' denotes the dual space of the Hilbert space
H, we let [-, ] 1« Pe the duality pairing between H "and H. Furthermore, we utilize the standard

simplified terminology for Sobolev spaces and norms. In particular, given s € R, a domain U C R¢,
and an open or closed curve I' C R¢, we consider the Sobolev spaces

product space H x ) with the product norm H .

H°(U) := [H*(U)]? and H(T) := [H3(D)]".

However, when s = 0 we usually write L?(U) and L?(T') instead of H%(U) and H%(T), respectively,
as well as L2(U) and L?(T") instead of H(U) and H%(T), respectively. The corresponding norms are
denoted by H . Hs y and H . HS p for the respective space on U and I, respectively. In addition, given

u,v € L2(U), u,v € L2(U), and o, T € L2(U), we set

()0 = /U wv, (V) i /U v

and

(o’,T)O,U = /Uo' ST

We also need to introduce the space

LiU) = {uELQ(U): /Uu:()}. (2.1)

Further, (-, ->F denotes the duality pairing between H~'/2(I') and HY/?(T'), and between H~/?(T")

and H'Y2(I') with respect to the L?(I") and L?(I") inner products, respectively. When I is an open
curve of R? and ¥ is a closed curve in R? such that I' C 3, we introduce the extension operator
Eo: H'?2(T) — L?*(X) defined by

Eo(¢) = { % ZE 27\1“ vy € HYA(T),



and the space
Hy (r) = {w e HV(): Bo(w) € H'A()},

which is endowed with the norm Hle/Z,OO,F = HEo(w)Hl/zE, UNS HééQ(F). The expression <-, ->F

is also employed in this case to denote the duality pairing between HOIéQ(F) and Ho_ol/ 2(I‘), where
H&)l/Q(F) is the dual space of H&éz(F). In particular, note that given n € H~/2(%), its restriction to
I' defined by

(e, ) o= (0, Eo(w))y Wb € Hy (),

is an element of HO_Ol/ 2(I‘). The corresponding vector versions of Hégz(l“) and HO_Ol/ 2(I’) are denoted

by Hééz(r) and Haol/2(1“)7 respectively, and <., >

pairing.
On the other hand, with div denoting the usual divergence operator, the Hilbert space

s is also employed to refer to the respective duality

H(div;U) := {T e L(U): divre L2(U)},

is standard in the realm of mixed problems (see [9], [23]). The norm of this space is denoted by ||-|| divU

Moreover, given a nonempty set S of R and a nonnegative integer k, we denote by Py (S) the space of
polynomials defined in S with total degree at most k. Also, Px(S) denotes the corresponding vector
version of Py(S). Finally, we employ 0 to denote a generic null vector, the null functional or the null
operator, and we use C' with or without subscripts, bars, tildes or hats, to denote generic constants
independent of the discretization parameters, which may take different values at different places.

2.2 The model problem

Let © C R? be a Lipschitz polyhedral (polygonal if d = 2) domain with boundary I := 9Q which
has been subdivided in two subdomains Qg and Qp such that Qs N Qp = 0, O = Qg U Qp, and
905 N ONp = ¥ is the nonempty polygonal interface between Qg and Qp. Also, we let I's := Qg\Z
and I'p := Qp\E. On ¥ and on I' we denote by n := (n1,ns,...,n4)® the unit normal vector which
is chosen pointing outward from g U X U Q2p and g. Note that n points inward from ¥ to Qp.
In addition, in the 2D case we denote by t := (—ng,n1)* the fixed unit tangent vector on ¥ (see
Figure [2.1)). The model problem we are interested in consists of the movement of an incompressible
quasi-Newtonian viscous fluid that occupies the region {2g and that flows towards and from the region
Qp through the interface ¥, where (p is saturated with the same fluid.

More precisely, the governing equations in {)g are those of the nonlinear Stokes problem with
homogeneous Dirichlet boundary condition on I's, that is:

—diV{M (IVus]) Vug — psﬂ} = fs in Qg,
divug = 0 in Qg, (2.2)
us = 0 onlyg,

where div is the usual divergence operator div applied along each row of a tensor, ug is the velocity
vector field in g, ps is the pressure field in Qg, p : RT — R™ is the nonlinear kinematic viscosity,
and fs € L2(Qg) is a known volume force. In turn, in 2 we consider the linearized Darcy model with
Neumann boundary condition on I'p:

K_luD +Vpp = 0 in Qp,
diVLlD = fD in QD, (23)
up-n = 0 on FD,



Figure 2.1: Layout of the geometry of the coupled problem.

where up is the velocity vector field in Qp, pp is the pressure field in Qp, fp € L%(QD) 1S a source
term, and K is a symmetric and uniformly positive definite tensor with entries in L>°(2p), which
represents the permeability of (2p divided by a constant approximation of the viscosity. Finally, the
transmission conditions across > are given by the conservation of mass, balance of normal forces and
Beavers-Joseph-Saffman law:

Uus-n = up-n on X,

2.4
{M(\VUS\)VHS—psl[}n+1/f<c*17rtus = —ppn on X, (24)

where v is a constant approximation of the viscosity p on ¥, mw := w — (w-n)n and k € L*({)p)
is a given coefficient that is bounded from below by a positive constant a.e. on X. We remark
that the kind of nonlinear Stokes problem given by appears in the modeling of a large class
of non-Newtonian fluids (see e.g. [27], [33]). In particular, the Ladyzhenskaya law for fluids with
large stresses (see [27]), also known as power law, is given by u(t) = ug + ut?=2 Vvt € R*, with
po > 0, up > 0 and B > 1, and the Carreau law for viscoplastic flows (see, e.g. [29] and [33]) reads
pw(t) = po 4+ p(1+12)B-2/2 vt ¢ R with pg > 0, g1 > 0 and > 1. In what follows we let
Hij R4 _ R be the mapping defined by

pij(o) = ullol)oy Vo = (o) € R (2.5)

Throughout this work we suppose that p is of class C'! and that there exist positive constants ag and
40 such that for all o, 7 € R?*4

Opij .
|:U”L](o.)| < ’70|0-|’ ‘a'uj < Y0, Vl,j,k,l € {17 7d} (26)
Okl
and
O
S P o) migm > aolTl?. (2.7)

oo
ijdel=1 OOkl

It is easy to check that the Carreau law satisfies (2.6) and (2.7 for all o > 0, and for all g € [1,2].
In particular, with 8 = 2 we recover the usual linear Stokes model.
2.3 A primal-mixed formulation

In this subsection we proceed as in [19] and [30], and introduce a primal-mixed formulation of the
coupled problem given by (2.2), (2.3)) and (2.4). To this end, we consider the spaces

H%S(QS) = {VS S Hl(Qs) : vg=0 on FS}



and
Hr, (div;Qp) = {VD € H(div;Qp): vp-n=0 on FD}.
Here, H(div;Qp) is endowed with the inner product
(uD’VD)div,QD = (uD’VD)o,QD + (diqu,diva)OﬂD,VuD,vD € H(div;Qp),

o 2 . . . .
and its induced norm H . H div.op T (-, ) div.Op Next, in order to construct a primal-mixed formulation

of 1} || and || we begin by testing the first equation in lb with vg € H%s (Qg). In this way,
integrating by parts the term (div{x (|Vug|) Vus — psl}, Vs)o qg> introducing the Dirichlet boundary
condition ug = 0 on I'y, and using that psl : Vvg = pg div vg we obtain

(n(IVus|)Vus, Vvs) o o = (ps, divvs), o — ({#(IVus)Vus — psIin, vs) o = (fs,vs) g o s
which, using from that
—{u(|Vus|)Vug — psl}n = vs~'mug +ppn  on 3,
vields

(1(|Vug|)Vusg, VVS)QQS + (ve~tmug, Tvs)y,

= 1
+<VS . I],pD>Z — (ps’divvs)()’gs - (fS7VS)0,QS VVS S HFS (QS)

On the other hand, multiplying the first equation of (2.3)) by vp € Hr,(div;Qp), integrating by
parts, and using that —n is the unit normal vector of ¥ pointing inward to {lp, we arrive at

(K_luD’vD)O,QD — <VD . l’l,pD>2 — (pD,diVVD)QQD =0 Vvpe€ HFD (div; QD).
Hence, adding the last two equations we get

(1(|Vus|)Vus, Vvs), o + (ve~ ' mus, mvs)g + (K Mup, vp)
PRI s ED

—(ps, divvs), o, — (pp,divvp) g+ ((vs = vD) -0, pp)y. = (fs,vs) g (2.8)

for all v := (vg,vp) € HILS (Qs) x Hrp, (div; Qp). In turn, from the second equations of 1) and lj

we obtain
(q,divus)QQS + (q,diqu)O’QD = (fD,q)(),QD Vg e L*(Q). (2.9)

Now, proceeding as in [30], we introduce the first transmission condition of (2.4]) into the definition
of the velocities space H, that is

H:= {V = (vs, VD) € H%S(Qs) X Hp,(div;Qp): vs-nm=vp-n on E}. (2.10)

This space is endowed with the usual norm of the product space H%s (Qg) x Hr (div; Qp). Note that,
according to the foregoing definition, (2.8) becomes

(1(|Vug|)Vus, VVS)O,QS + (ve~tmug, Tvs )y,

i : = (fs, Vv .= , H.
+(K™up, vp)g o) = (ps, divvs) o, = (pp, divvp)g o (fs,v8) g0 Vv i=(vD,vD) €

(2.11)



Then, proceeding as in [19], we find that the resulting weak formulation reduces to a nonlinear system
with three unknowns, namely

us € H} (Qs), up € Hp,(div;Tp) and p:= { ps. onfls oy

pp on {lp

satisfying (2.9) and (2.11). More precisely, our primal-mixed formulation reads: Find (u,p) :=
((us,up),p) € H x L*(Q) such that

a(u,v)+b(v,p) = [F,V]g,.xg YveEH,

buq) = [Gdlgeq Ya€L*(Q), (2.12)

where the semilinear form a : H x H — R, the bilinear form b: H x L?(2) — R, and the functionals
F e H and G € L*(Q), are defined by

a(u,v) = (u(|Vus|)Vus,Vvs)0’QS + <V/€_17Ttlls,7ftvs>2 + (K_luD,vD)()’QD Yu,v € H,
b(V7 Q) = _(Q7 diVVS)O,QS - (Q7 diVVD)O,QD V(V, Q) € H x LQ(Q)7

[FV)pm = (B, v8) g0, ¥ EH, and [Goqlg,q = (f0.0)q, Vi€ L Q).

Now, it is easy to see from 1} that, fixing the first component of a, its second component defines a
bounded linear functional. In turn, it is quite clear that b is a bounded bilinear form. Hence, we can
introduce the nonlinear operator A : H — H’ and the linear operator B : H — [L?(Q2)’] given by

[A(u),V]H,XH =a(u,v) VYu,veH,
and
[B(v), q] L2(Q)xL2(Q) = b(v,q) V(v,q) € Hx L*(Q),
whence the primal-mixed formulation can be re-written as: Find (u,p) € H x L?(2) such that

[A(u)7V]H/><H + [B(V),p] L2(Q)YxL2(Q) [F’ V] H'xH Vv eH,

2.13
[B(u)a Q] L2(Q) xL2(Q) [G, CI] Q'xQ Vq € LQ(Q) ( )

However, it is easy to show that this system is not unique solvable since, given any solution (u,p) :=
((us,up),p) € Hx L?() of (2 - ) (equivalently (2.13} - u,p+c) is also a solutlon for each c € R. In
order to overcome thls non—unlqueness we recall the decomp051t10n L*(Q) = L3(Q) @ R, (cf. . ,
define Q := L3(f2), and consider the modified primal-mixed formulation: Find (u,p) € H x Q such
that

[A (W), V] gpygg + [BOV): 2] QxQ [Fov]em Vv EH,

2.14
[B(u)ﬂﬂQ/XQ = [G’q]Q/XQ v(] € Q ( )
The following lemma shows the connection between and (| -

Lemma 2.1. Let (u,p) € H x L*(Q) be a solution of (2.13) and define py € L3(£2) by

; /
po=p—i5 [ P
€2 Ja

Then (u,po) € H x Q is a solution of (2.14]). Conversely, let (u,py) € H x Q be a solution of -,
and given ¢ € R, define p := pg + c. Then (u,p) € H x L?(Q) is a solution of -



Proof. First, let (u,p) € H x L*(Q) be a solution of (2.13). We define py € L2(2) by

ith ! /

po:=p—c, Wi c:=— | p.
€ Jo

Then, for any v € H we have, using the first equation in (2.13)),

[A(u),V]H,XH + [B(V)7p0] Q'xQ :[A(u)vv] H xH + [B(V),p - C] L2(Q)/ x L2(%)
:[F, V]H,XH - c[B(V), 1]L2(Q),XL2(Q).
Now, since vs - n = vp - n on % and n points inward to Q2p on X, we get

[B(V),l] = —(l,diVVS)OQS — (l,diVVD) VD N — Vg .n’1>E =0,

L2()' x L2() 0.Qp <

which, replaced back into the foregoing equation, gives
[A(), V] T [B<V>’p0}Q’xQ = [Fv]g.m YVEH,

thus showing that the first equation in is satisfied. In turn, the second equation of is
clearly satisfied since Q C L?(2).

Conversely, let (u,pg) € H x Q be a solution of and let ¢ € R. Then, defining p := pg + ¢
we see from the first equation in that for all v € H there holds

[A @), V] gy p + BV oy wrze) = [AW): V] + BV 2ol grug + ¢ BV ooy 2o

= [A(u)’V]H’XH + [B(V),po]Q/XQ = [F’ V]H’XH’

that is the first equation in (2.13)) is satisfied. Now, given q := qo + ¢ € L?(Q) := L3(Q) & R, with
qo € Lg(Q) and ¢ € R, we deduce, using the second equation in (2.14) and the identity G(1) = 0
(which follows from the fact that fp € L3(Qp)), that

[B(u), Q] L2(Q)' xL2(Q) = [B(u), CIO] Q'xQ +c- [B<u)7 1] L2(Q) x L2(Q) = G(QO) = G(q),
which proves that the second equation in (2.13)) holds. O

According to the previous lemma, throughout the rest of the paper we consider the primal-mixed
formulation ([2.14]).

2.4 An abstract theory for a class of nonlinear mixed problems

Let H and Q be Hilbert spaces with dual spaces H' and @', and let A : H — H’ be a nonlinear
operator, and B : H — @' be a linear operator with adjoint B’ : Q — H’. Then, given F € H' and
G € @', we are interested in the following variational problem: Find (u,p) € H x @ such that

[A(u)’U]H’xH + [B(U)’p]Q’xQ - [F’ U]H’XH Vo € H’

B,dgng = [Gidlgreg Ya€Q (2.15)

In order to analyze the unique solvability of (2.15]), we need to introduce some assumptions on the
operators A: H — H and B: H — Q.

(H.1) There exists v > 0 such that A is Lipschitz continuous, that is

HA(U) - A(U)HH/ < 7Hu - UHH Vu,v € H.



(H.2) There exists a > 0 such that for any z € H, the nonlinear operator A(z+-) is strongly monotone
in the null space of the linear operator B, that is

aHu—szg [A(z +u) — A(z +v),u — v] Vu,v €V,

H'xH

where V := {’UEH: [B(U),q]Q,XQ:O VqEQ}.

(H.3) There exists 5 > 0 such that the following continuous inf-sup condition holds

[B(v),4]
sup ——- 219 > Bllall, Vae Q-
o Tl

We now recall from [23] a result establishing equivalent statements for (H.3).
Lemma 2.2. The following are equivalent:
i) (H.3) is satisfied.
i) B’ is an isomorphism from @ onto V°, where
H'xH

vei{Fen's [Py, =0 wev}

18 the polar set of V', and there holds

1B' @)l > Bllall, VaeQ

iii) B is an isomorphism from V1 onto Q' and there holds

1B()]

o = Bllvlly Yoevt

iv) B: H— Q' is surjective.
Proof. See [23, Chapter 1, Section 4] for details. O

While the solvability analysis of (2.15]) follows as a particular case of [34, Proposition 2.3], we
provide next an alternative proof by adapting the arguments from [I8]. Indeed, for each G € H', we
first set

VG = {UEH! [B(’U),CI]Q,XQ: [G’q]Q’XQ vqu}

In particular, when G = 0, we just write V instead of V to denote the null space of the linear operator
B. Obviously, since B is linear and bounded, V' becomes a closed subspace of H. Then, we associate
with (2.15)) the following problem: Find u € Vi such that

[A(u),v] g = [Fov] gy Y0 EV. (2.16)
The next result establishes the connection between ([2.15)) and (2.16)).

Lemma 2.3. Let (u,p) € H x Q be a solution of (2.15). Then, u € Vg and u is a solution of
(2.16). Conversely, let u € Vi be a solution of the problem (2.16|). Then, there exists p € Q such that

(u,p) € H x Q is a solution of (2.15]).



Proof. Let (u,p) € H x @ be a solution of (2.15)). Then, from the second equation in (2.15)) we have
that u € Vg, and clearly u is a solution of |) since [B( ) ] oxQ = 0 Vv e V. Conversely, let

u € Vg be a solution of 1} It follows that |B(u), ]Q’XQ [G q] 0'xQ Yq € QQ, which says that
2.15

the second equation in (2.15|) is satisfied. In turn, from Lemmawe know that B’ is an isomorphism
from @ onto V°, and since F' — A(u) € V°, we deduce that there exists a unique p € @ such that

B'(p) = F — A(u). In this way, the pair (u,p) € H X @ solves (2.15). O

Now, given G € @', we know from Lemma that there exists a unique ug € V= such that
B(ug) = G. It follows that for each u € Vi there holds u —ug € V, that is u = ug + ug, with ug € V
and hence problem ([2.16)) can be re-stated, equivalently, as: Find ug € V such that

[A(uo +ua),v] oy = [Fo0] ooy YO EV. (2.17)

According to the foregoing analysis, we have the following result, which states that problems (2.16]
and (2.17) are equivalent.

Lemma 2.4. Given ug € Vg, we let ug € V be a solution of (2.17). Then, u := ug + ug € Vg is
a solution of (2.16). Conversely, let u € Vg be a solution of (2.16). Then, there exist ug € V* and
ug € V' such that u = ug + ug, and ug € V 1is solution of (2.17)).

The next result establishes the unique solvability of problem ([2.17)).
Theorem 2.1. (H.1) and (H.2) imply that problem (2.17)) is well posed.

Proof. 1t follows from a classical result in nonlinear functional analysis (see, e.g. [31, Chapter 3,
Section 3. ]

Moreover, we remark from this last result that the solution ug + ug € Vi of (2.17)) is independent
of the election of ug € V+NVg. In fact, given other 4g € Vi, we let 4o € V be the unique solution of

[A(to + 16),v] oy = [Fo0] ooy YO EV.

Since [A(ﬁo + ug), v] HixH = [A((ﬂo + ag —ug) + ug), v] 1w g for each v € V, we deduce from The-
orem 2.1 with ug € Vi, that Gg + @g — ug = ug, whence g + g = up + ug € V.
Now, we introduce the main result of this section.

Theorem 2.2. Assume that (H.1), (H.2) and (H.3) hold. Then, there exists a unique solution (u,p) €
H x Q of (2.15)). In addition, there exists a constant C' > 0, depending on the constants a,~y and
provided by (H.1), (H.1) and (H.2), such that

< C’{HF|

1w 2) || 0 » ot HA(O)HH,}. (2.18)

Proof. The unique solvability of (2.15)) follows straightforwardly from Lemmas [2.3] m 3l and [2.4] H, and The-
orem To show the estimate (2.18)) we let ug € V and ug € V+ N Vg, provided by Lemma .
such that u = ug + ug. Then, since B is an isomorphism from V+ onto Q' (cf. Lemma , we get

(2.19)

Jucll < 21
In turn, from (H.2) and problem , we have
oluof3; <[Aluo +ua) — A(uc),uo) 11,y

:[F7 ’LL()] H' xH + [A<0) - A(’U,G’),UO] H'xH [A(O) U’O] H'xH’
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which, applying (H.1) and the fact that F, A(0) € H', yields

Jeoll,r < {121

e + A0 (2.20)

On the other hand, applying (H.3) to p € Q, we get

<
Alpllg < sup

whence, using that

[B(v)7p]Q’><Q = [Ev] g = [AW) 0] oy
+ [A(0) — A(u), ]

U < H

and applying (H.1), leads to

1
Ipllg < 5{117]

The proof follows by combining (2.19) and

[B(v),p] Q'xQ

I/l

9

v#0

A(O),v] Yv € H,

H'xH [ H'xH

‘H'+7H“HH+ HA(O)HH’} (2.21)

then replacing the resulting estimate in (2.21)).

2.20) with the inequality HuHH < HUOHH + HUGHH, and
O

2.5 Analysis of the weak formulation

In this section we show the unique solvabilit

y of (2.14]) by checking first that (H.1), (H.2), and (H.3)

are satisfied, and then applying Theorem We begin our analysis with the characterization of the

null space V of the operator B.

Lemma 2.5. There holds,

V:{VGHZ div v =0 in Qg and diva:0mQD}.

Proof. Given v € V, we have

—(g,divvs) oo — (g, div vD)QQD =0 VYgeQ:=LiQ).

In turn, since vg - n = vp - n on X, we get
0= <VD'H—VS‘H,1>E

that is,

= —(17diVVD)07QD — (l,diVVS)QQS,

—(¢,divvp)oo, — (¢,divvs)ons =0 Ve e R.

Then, the decomposition L?(Q2) = LZ(Q2) & R implies that

—(q,divvs)uQS - (q,diVVD)O@D =0 Vqe L*(Q),

which yields divvg = 0 in Qg and divvp = 0 in Qp, thus finishing the proof. ]

The continuous inf-sup condition for the

operator B is shown next.

11



Lemma 2.6. There exists a constant 8 > 0 such that

B(v),q]q
sup M > 8|l qva € Q.
vy (N[

Proof. Let ¢ € Q. A well-known result (see e.g. [23]) yields the existence of z € H}(Q2) and C > 0,
independent of z, such that —divz = ¢ in 2 and HZH1Q < C’Hqu. Next, we put wg := z|og and
wp := z|q,. Then, we observe that wg-n = wp -n on 3, that is w := (wg, wp) € H. It follows that

[B(w). 0] =l 0 [l < [lz], g, < Clalg. which gives

B(v),q] o B(w), q] o
p 20 aa , B0 tlane , 1))
oA T T

and the proof is completed. O

The next lemma shows that the nonlinear operator, induced by the term (,u(|VuS|)VuS, Vvs)
satisfies (H.1) and (H.2).

07987

Lemma 2.7. Let Ag : H%S(QS) — [H%S(QS)]’ be the nonlinear operator given by
[As(us),VS] = (u(]VusDVus,VVs)QQS Yug, vg € H%S(QS),

where [-,-] denotes the duality pairing between H%s (Qs) and [H%S(Qs)]/- Then, Ag is Lipschitz con-
tinuous, and for each zg € H%S(QS), Ag(zs + -) is strongly monotone.

Proof. Let ug, vs, wg € HlLS (Qs). By definition of Ag we have that

[As(us) — Ag(vs), ws]| = / (1(|Vus|)Vus — pu(|Vvs|)Vvg) : Vwg,

Qs

which, denoting o := Vug, 7 := Vvg, and 7 := Vwg, becomes

[As(us) — As(vs), ws] = /Q (o) — u(ryr) i 7= 3 / (oo — ull)ry)ag.

i,j=1

Next, using (2.5) and setting &(m) := mo + (1 — m)T Vm € (0,1), we can write for each i,j €
{1,...,d},

N(’UDUU (|T|)sz sz( sz / 8mﬂl]

which yields

[As(us) — As(vs), Z /Qs (/01 agklﬂij(&)(akl - Tkl>dm>7~'ij-

i,5,k,0=1

12



Hence, applying (2.6)) and the Cauchy-Schwarz inequality, we find that

[As(us) — Ag(vs), ws]

HAS(uS) Ag(vs HHl(Q sup
wgeH! (Qg)
wg#0

< sollus — vl

Similarly, given zg, ug, vs € H%S (Qs), and denoting o := Vzg, 7 := Vug, 7 := Vvg, and a(m) :=
m(ec+7)+ (1 —m)(e+7) Vme (0,1), we obtain

[Ag(zs + ug) — Ag(zg + vs), ug — vg| = / { (lo+ 7))o +7) = p(lo+7)(e + 7:)} (1 —7)
zj; 1 /f;s / 8o'kl M” TZJ %ij)(Tkl N %kl)dm

In this way, using now (2.7)) and the Friedrich-Poincaré inequality, we get

- 2
[As(zs + us) — As(zs + vs), us — vs] > dol[us — vs||] o,
with @ > 0 depending on g and the constant provided by the aforementioned inequality. O

Note now that the nonlinear operator A can be written as
[A(u),v ]H’xH [As(us), vs] + (vk~ 7r1tus,7rtvs>2 (K_luD,VD)O’QD Vu,v € H. (2.22)
The following lemma shows that A satisfies (H.1) and (H.2).

Lemma 2.8. Let HpD(diVO; Qp) = {VD € Hr, (div;Qp) : divvp = 0}. Then, the nonlinear operator
A is Lipschitz continuous in H%S(Qs) x Hrp (div; Qp), and for each z € H%s (Qg) x Hrp(div; Qp),
A(z + ) is strongly monotone in H%s (Qs) x Hrp, (div%; Qp).

Proof. Tt follows straightforwardly from the corresponding properties of Ag (cf. Lemma |2.7)) and from
the fact that the expressions <1//<c_17rtus,7rtvs>g and <K‘1uD, VD)o,qp induce positive semi-definite,
symmetric and uniformly positive definite bilinear forms, respectively. O

The main result of this section is established as follows.

Theorem 2.3. There exists a unique (u,p) € H x Q solution of the primal-mized formulation (2.14])
and there exists C > 0 such that

100l < C{ sl + 10l -

Proof. Tt follows from Lemmas and and a straightforward application of Theorem
2.2 ]

3 The discrete problem

In this section we introduce and analyze a nonconforming Galerkin scheme for the primal-mixed
formulation (2.14)). We begin with the following discrete abstract analysis.

13



3.1 A nonconforming discrete scheme

We begin by recalling that the unique solvability ¢ of (2.15) is guaranteed by Theorem [2.2, Now, we let
H and Q be two Hilbert spaces with dual spaces H’ and Q’ respectively, such that H C Hand @ C Q,
and we consider finite dimensional subspaces Hj C H and Q;, € Q. Also, we let A : H — H' be a
nonlinear operator, and let B : H — Q' be a linear operator with adjomt B’ Q — H'. Then, given
F e H and G € Q' we consider the nonconforming discrete scheme of : Find (up,pn) € Hp X Qn
such that

[A(Uh)yvh]glxg‘l’[B(Uh)aph]@x@ = [1::'7Uh]gzxg Vup, € Hy,

[B(“h)’qh]@x(g = [G’Qh]Q’xQ Yan € Qn. (3.1)

Note that the nonconformity of (3.1]) is due to the fact that Hj, and @, are not necessarily contained
in H and Q, respectively, and also because A and B dot not necessarily coincide with the operators
A and B. Now, given G € Q’, we set

Vé,h = {Uh S Hh : [B( ) qh]Q’XQ [G qh]Q’xQ VQh € Qh}

In particular, if G =0, we just write V}, instead of Vpj, to denote the discrete kernel of the operator
B. In order to establish the uniqueness, stability, and corresponding a priori estimate for the discrete
scheme (3.1)) we need to introduce some hypotheses:

(H.4) There exists a constant 3 > 0, independent of h, such that

B 9 N v () ~
[ (Uh) qh]Q xQ > BHQhHQ Yan € Qb

sup
”ﬁh%h HUhHH

(H.5) The operator A is Lispchitz continuous in H with constant 5 > 0, that is

“fl(u) - A(v),w]f{,xg‘ < lju - UHHHwHH Vu,v,w € H.

(H.6) For all z;, € Hpy, the operator fl(zh + ) is strongly monotone in V;, with constant o > 0
independent of h, that is,

[A(Zh + uh) — A(Zh + vh),uh — h]H’XH > OzH’u,h — ’UhHH Yup, vy, € Hp,.

Applying Lemma [2.2] - to the present discrete scheme, we deduce from (H.4) that the discrete version
of B is an isomorphism from Vh onto @), whence we find that there exists a unique Ugy, € Vh such

that [ (uG ) qh] GxG = [G, qh] /%0 Van € Qp. Note that this also says that ug, € Vh N Ve
Then, we associate with (| the discrete problem: Find ugj € V}, such that

[A(uo n+ Ug h) Uh] il = [F Uh]H’xﬁ Yo € Vy, (3.2)

which is the discrete analogue of . In addition, using similar arguments to those employed in
the proof of Lemma we can prove the corresponding connection between and . Further,
similary as in Section 2.4 (cf. Lemma, we remark that is actually equivalent to the problem:
Find vy, € V@h such that

[A<uh)’vh]H’xH [F Uh]H’xfI V?}h € Vh'

We now establish the well-posedness of (2.17)).
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Lemma 3.1. Assumptions (H.5) and (H.6) guarantee the unique solvability of (3.2]).
Proof. It follows from [31, Chapter 3, Theorem 3.3.23]. O

As for the continuous case, we remark here that the solution ug + uz, € Vg, of || is inde-
pendent of the choice of ug y, € Ve The well-posedness of 1D is stated now.

Theorem 3.1. There exists a unique (un,prn) € Hp x Qp solution of (3.1). In addition, there exists
a constant C' > 0, independent of h, such that

s w1 < C{I1F N7 + Gl + [AO)]| . §-
Proof. The proof follows similarly as for Theorem O

We now aim to derive an a priori error estimate for (2.15) and its discrete scheme (3.1]). Hereafter,
we let (u,p) € HxQ and (up, pr) € Hp, X Qp, be the unique solutions of the weak formulation ([2.15)) and
the nonconforming Galerkin scheme 1) respectively, and let us ), € Vi, and ugn € Vj, provided
by the foregoing analysis, such that u, = uz ;, + ug . The next two preliminary results show partial

error estimates for Hu — UhH 7 and H p— th 50 8s well as a translation property between the discrete
subspaces V;, and Hy,.

Lemma 3.2. Under the assumptions (H.4), (H.5), and (H.6) there hold

o=l = 0nf nf, =gl + jn, -l

v EVY
[F*A(u)*él(p),wh]g/xg [F*Fawh]gfxg
+ sup + sup )
%hhi‘gl HwhHH %hhi‘gl HwhHH
and
o=l < Co{ e mlly + g = il

+ sup [F_A(u)_B/(p)vvh]H/XH_l_ sup [F—F,Uh]gzxg ’
”Sh%h [onl vghigh [onl

Bl

Q,,l} and Cy = L max {ﬁN—i— HB‘

B Q/vi’?l}‘

Proof. We first estimate Hu — uhH ;- Given vy, € Vi, we have from the triangle inequality

where Cq 1= émax{d + 7, |

ol = o+ w0l < s g+ ol + o=l 3
Now, applying (H.6) with z, = ug p,, we deduce that
a||uo,n — Uthq < [zzl(u&h +ug.p) — A(U(;,h + UR), U0,k = Vh) gy
= [Aun), uon = vn] g = [Alugy, +vn) won = va] g
Then, using that

[B(Uo,h - Uh),Qh}Q,XQ =0 Vgn € Qh,
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and that )
[A(uh)’uo’h _vh]H’xH [F Uo,h _vh]H’xfI’

we find, after adding and substracting appropiate terms, that

aHUO h — Uh’HH [F Uo,h — Uh] HxH [B(Uo,h - Uh)?Qh] O'x0 [A(ué’h + Uh)a uo,n — Uh}I:I’XI:I
=[F — Au) — '(p),u()’h - Uh]g/xg + [F — F,uop — vh}ﬁ['xﬁ[
+ [Buon = vn),p = 4n] 51y + [A() = Alugy, +vn), o — 0n) gy iy
which, applying the boundedness provided by the duality parings and the assumption (H.5), dividing

by &||lugn — vn|lg, and then combining the resulting inequality with (3.3), implies that for each
(vn,qn) € Vi X Qp, there holds

[ — | < {(aﬂ)Hu— (ugp +vn)ll p—anllg (3.4)
- A(U) - B/(p)7wh:|]f[/><f] [F - Fvwh]ﬁlxg
+ sup Hu} H ~ + sup Hw H } .

On the other hand, applying (H.4) we obtain for each ¢, € @,

3 B(Uh)7ph_qh A v O
Bth_QhHQS sup [ ]Q xQ

) (3.5)
Uheh(’)h H”hHﬁ

and according to the first equation of , we can write
[B(Uh),ph - Qh] %) = [B(Uh),ph} a0~ [B(Uh)7Qh] Q%O
]H'xH [A(“h%”h}f{/xﬁl - [B(Uh)vq’l]@/x@
2 Oh] o T 1F = A(u) = B'(p), va] H'xH
‘1‘[121( ) — A( h)s v ]H’XH+ [B(Uh)ap—q}z]@/x@,
that is, for each (vp, qn) € Hp X @), there holds

[B(vp), ph — ]Q’ =[F-F O] e+ LF — A(u) — B'(p), vs] i
+ [A(u) - A(“h)?”h] H' <H + [B<vh)7p - qh] O'xO

= [F,
=[F-

Replacing the foregoing identity back into (3.5)), and applying (H.5) and the boundedness of B, we
arrive at

1. ~
= ol <33l sl + 181 - ol
A B . F—F w75
g e Epeea
w 0 w .
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Hence, applying the triangle inequality we conclude that

[P = pnllg <llp = anllg + [lon — anll 5

1(. L
SB{VHU_UhHg—F (6+ |B Q,) p—anllg (3.6)
+ sup [F — A(U) i B‘/}(p),UJh]H,XFI + sup [F _‘fau‘)‘h]ﬁlxﬁ }

Finally, the result follows applying infimum on V}, and @}, in (3.4)), and also taking infimum on @, in
the (3.6). O

It remains to estimate inf |u— (ug, + vn)|
vRLEVR )

Lemma 3.3. There holds

> Which is provided by the following lemma.

[G - B(u)’%] O'x0

inf Huf(ué,h+vh)HH SC’{ inf HufvhHHqL sup

vpEVR vnCHp, qghig)h H‘Jh‘ Q
G—G a1 5.0
+ sup [ qh]QXQ},
qgheﬁ)h Hq’lHQ

with C' = %max {B + HB

Q,,1}.

Proof. Given v, € Hy, we know from (H.4) that there exists a unique wy, € VhL N Hj, such that

[B(wn),an]5wq = [Blug, — 0n)sahlgug Y an € Qn, (3.7)
and there holds
1 B(wn),an)gg 1 [B(ug,, = n), 4l g
HwhHQ SE SEIQ) [ HQhH ~]Q xQ = B sgg G’thh(’L~ hexQ
qgh?foh @ q5h+0h @
:i sup [B(u_@h) _B(U_u@h)v(Ih]Q/XQ
B qghE;éQOh Hq}LHQ
B, G = Blu)ar] s G —Granly. s
< H ~Q w— @h“@ +1~ sup [ (u) qh]Q xQ + sup [ Qh]Q ) ’
B\ aneQn HQhHQ an€Qn HQhHQ
an#0 qn#0

where the foregoing expressions have arised after adding and substracting B (u) and G, and realizing
that [B(UG h)’Qh]Q’XQ = [G7qh]Q’xQ YV qn € Qp. Then, noting from (3.7) that o5, + wp, — Ugp € Vi,
we find that

inf [ju— (ug, +on)llg < [lw = (ugp+on+wn —ugp)llg < llu—onllz + [[wall 5

v EVY
Bl G- Bl - - GGl -
< <1+H ~{Q>Hu—f;h ﬁ+l~ sup [ () Qh]QXQ sup [ Qh]QXQ ,
B B\ aneQn HQh‘ o) aheQn HQhHQ
qn#0 qn#0
which, taking infimum on 9y, € Hj, yields the required inequality and completes the proof. O
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The main result of this section is established as follows.

Theorem 3.2. Under the assumptions (H.4), (H.5), and (H.6), the nonconforming discrete scheme
(3.1) is stable, and there holds the Strang-type error estimate

[ = unp =)l < CF ok, Mlu—vnllz+ inf o=l

- [F—wﬂuW—BTmfwﬂgwﬁg% [F— F,wn] g,
el el Tl
+ sup Gl B(U)7qh]@x@ + sup G-6 qh]QIXQ }
‘Jghig)h H%HQ Q(;zhig)h H%HQ
Proof. The proof follows from a straightforward application of Lemmas and O

It is important to observe from Theorem that if H, C H, then

F—A(u)— B (p),vn] 7. 5 F—F, o). 5
sup [ (u) (p) Uh]H xH _ 0 and sup [ Uh]H xH _ 0
achy ol achy Tl
Similarly, if Qp C @, then
G — B(u),qn] 5~ G—-G,qnls. -
sup [ (w) Qh]Q @ — 0 and sup [ qh}Q X9 .
an€Qn H%HQ an€Qn H%HQ
qn#0 qn#0

Therefore, when Hp C H and @y C @, the a priori error bound provided by Theorem becomes
the usual Cea error estimate. In other words, the last four terms in that estimate constitute the
consistency error for the case in which Hy and @)y are not subspaces of H and @), respectively.

3.2 Analysis of the Galerkin scheme

Let Ts and Tp be separate shape-regular families of triangulations, that is, satisfying the minimum
angle condition, of Qg and Qp, respectively, by triangles (or tetrahedra) T of diameter hr, assume that
the vertices of 7g and 7p coincide on the interface ¥, and let 7, := Tg U Tp, where h := max{hg, hp},
hs := max{hp : T € Ts}, and hp := max{hp : T € Tp}. Since the triangulations Tg and 7p coincide
on 3, we let ¥, be the set of edges/faces inherited from 75 and 7p. Then, we let Hg , Hp j, and Qp,
be discrete finite dimensional subspaces of H%S(Qs), Hr,, (div; Qp) and L?(Q), respectively, and we
set

Qno == QrNL§(). (3.8)

In addition, we denote by ®g; and ®p the subspaces of the normal components on X from Hgj,
and Hp p,, respectively, that is,

q’S,h = {V&h . n]g Vg h € HS,h} and (I)D,h = {VD,h . 1’1|2 1VDh € HD,h}-

Then, if 1T}, : LQ(Z) — ®p j, denotes the orthogonal projector, and I:Ih = Hg j, x Hp p,, we introduce
the finite element subspace

H; = {Vh = (VS,h7VD,h) € I:Ih : Hh(VS,h ‘N —Vpy - Il) =0 on E}. (3.9)
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From this definition we observe that the discrete subspace Hj, is not contained in H, but the space
H = H} (€2s) x Hry (div; 2p) contains both Hj, and H. Also, we observe that A : H - H is

well- deﬁned nonlinear operator, B : H — Q' is a well-defined linear and bounded operator, and the
extension of ' to H belongs to H'. Then, we now introduce the nonconforming Galerkin scheme:
Find (up,pn) € Hy, X Qp o such that

[A(uh)vvh]H/XH + [B(Vh)vph] Q'xQ = [Fa Vh] H' xH \V/Vh € Hhu

3.10
[B(U.h), Qh] Q'xQ = [G7 Qh] Q' xQ VQh S Qh,O' ( )

The nonconformity of this discrete scheme refers to the fact that Hjy, is not contained in H. We note
from the definition of the finite element subspace Hj, that IIj(vsy -n —vpy -n) = 0 on X, for all
vy, € Hy, which is equivalent to saying that ITj,(vs ,-n)—vp ,-n = 0 on X, for all vj, € Hj,. Then, since
I, : L2(%) — ®p 5, is the orthogonal projector, the discrete scheme becomes conforming if only
if the discrete normal components on ¥ from Hgj, are contained in the discrete normal components
on X from HD,ha i.e., if only if (I)S,h - (I)D,h'

In what follows we need to consider some hypotheses concerning the subspaces involved in the
discrete formulation , the linear operator B, and the existence of a stable lifting operator from
Hp j, onto ®p . The set of assumptions is as follows.

(H.7) there holds Py(Xp) C ®p j, where Py(X}) is the space of piecewise constant functions defined
on Xj.

(H.8) there exists B > 0, independent of h, such that

B(vy), ,
wp [B(va),an]q

V‘f,ffoh H"hHH

Q> BHQhHQ Van € Qno-

(H.9) divHp 4, is contained in the restriction of the discrete subspace Qj to Qp.

(H.10) there exists an operator Ly, : ®@p j, — Hp p, satisfying the following properties:

a) there exists a constant C' > 0, independent of h, such that
HLh(ngvh)Hdiv,QD < C||¢D,hH,1/2700’2 V¢ph € Pp -
b) for all ¢p j € ®p p, there holds
Ly(¢pn) n=¢pp on 3.

We say in this case that Ly, is a stable discrete lifting of ®p j,.
It is easy to prove that (H.7) and a classical duality argument imply the following approximation
property of the projector IIj:

€ =IOl 1o < Ol V& € LAD). (3.11)
Moreover, employing Sobolev interpolation estimates we find that (see, e.g. [16, Proof of Lemma 4.8])
le =M@ llos < CR2|[g]ly s VEEHA(D). (3.12)

We now establish the first result of this section.
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Lemma 3.4. Let Vy = (VS,havD,h) S Vh = {Vh S Hh : [B(vh),qh] Q'xQ =0 th € Qh,()}.
Then, divvp p, =0 on Qp.

Proof. By definition of the linear operator B we get
—(qn, diVVs,h)o’Qs - (C_ImdiVVD,h)O,QD =0 Vgn € Qnyo-
Also, (H.7) and the orthogonalilty condition satisfied by II; imply
0= (Hp(vsp-n—vpy-m), 1>2 =(vgp-n—vpy-n, 1>E = (1, diVVS:h)o,QS + (1, diVVDJL)O’QD,
which, together with the decomposition Qp = Qp 0 © R, yield
—(Qh7diVVS,h)07QS — (q}HdiVVD,h)O,QD =0 Vg, € Qp.

In particular, (qh,divvuh) 0.0p = 0, for all g5 belonging to the restriction of Qp to 2p, and hence
(H.9) and the foregoing identity give divvp = 0 on Qp. O

The next result establishes the well-posedness of our discrete scheme (|3.10]).

Lemma 3.5. There exists a unique solution (up,pp) € Hy X Qpo of the nonconforming discrete
scheme (3.10)). In addition, there exists C > 0, independent of h, such that

w20 s < O sl + 170l -

Proof. We first recall from Lemma that the nonlinear operator A is Lipschitz continuous in H.
Also, it is clear from Lemma that V, C H%S(QS) x Hr, (div’; Qp). Then, given z;, € Hj, we
know from Lemma that the nonlinear operator A(zj, + -) is strongly monotone in Vj, and hence
the nonlinear operator A satisfies (H.5) and (H.6) (cf. Section 3.1). Therefore, noting also that (H.4)
follows from (H.8), the proof becomes a straightforward application of Theorem (3.1 0

We now show the a priori error estimate for the primal-mixed formulation (2.14) and the Galerkin

scheme ((3.10)).

Lemma 3.6. Let (u,p) € H x Q and (up,pr) € Hy x Qpo be the unique solutions, guaranteed by
Theorem and Lemma of the continuous problem (2.14)) and its nonconforming discrete scheme
(3.10), respectively. Then there exists C > 0, independent of h, such that

[(u—uy,p _ph)HHXQ s C{ Vhiggh [[u— vy + qhie%fh,o lp— QhHQ - h1/2HpD - Hh(pD)Ho,E } :

Proof. Applying Theorem [3.2] we have the estimate

H(u — Up, P _ph)HHXQ < Cl{ Vgglf—lh Hu - VhHH + qh'iEI(leh,O Hp - QhHQ (313)
[F— A(u) = B'(0), Vi o
+ sup ,
v\f;{oh thHH

where C > 0 is a constant independent of h. Now, we just need to bound the consistency term on the
right hand side of the above inequality. To this end, we proceed as in [30] and let Py : L2(3) — Py(Xh)
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be the orthogonal projector and Pq : L2(X) — Po(X},) its vector version. Recalling (2.8)), we note
that pp € H'(2p). Then the consistency error term in (3.13)) yields

[F — A(u) — B/(p),Vh] H/xH — <(VS,h — VD,h) . Il,pD>Z Vv, € Hy,. (3.14)

Now, given v, € Hy, we first observe that

((vsp = vDa) - 1,pD)y, = (Vs = VDh) - 10, pD )y, — (Ip(Vsp -1 — VD - 1), pp)y,
= ((vsp — VD) -1, )y, — (In(Vs - ) — VD - 0, pp )y,
h(VS,h 1), D)y,
D)>2
Further, from (H.7) we find that for all v € H'/2(X) there holds
(Po(vsp-m),v— Hh(v)>E = (Po(vs,, - n), U>E — (Po(vs,p - m), Hh(v)>E
= <’P0(Vs’h . n), U>E - <Hh (P()(VSJI . n)), U>E
prm— O’

= (vs,n -, pp)y, — (I
= <VS,h "N, pp — (

that is, (Po(vs - m), v — Hh(v)>E =0 Vv e HY?(X). Then, taking in particular v = pp|s;, we obtain
from the foregoing identity

((vs,p — VD) - 1,pp )5 = (Vs - 0, pp — i (pp) )y, — (Po(vs,n - m),pp — Ik(pp) )5
= (vs,n - —Po(vsn - ), pp — L (pp) )y
In turn, since Po(vs ) -n € Py(Xy), we deduce that
(Po(vsh-m) — Po(vsp) -mv—1II,(v))y, =0 Yve HY3(Y),
whence
((vs,n — VD) - 1,pD)5, = (Vs -0 — Po(vsn) -, pp — I (pp) )y

Then, from the normal trace theorem in H'(f)g), using a well known approximation estimate for
piecewise constant functions and the trace theorem in H'(Qg), we deduce that

((vsp = VD) -m,pp)y < [[vsn - = Po(vsp) - nHo,z lpp — Hh(pD)Ho,z
< Ohl/2HVS,hH1/2,00,2 HpD - Hh(pD)”o,z
< Ch2||vsall, g [lpp = T(eo)fo -
that is,
((v§,n — VD) - 1,pD )5, < éhl/ZHVs,hHLQS | — Hh(PD)HO,E,
with C' > 0 a constant independent of h. Thus, dividing the previous inequality by [Vs.a]| g nOting

that HVS»hH1 Qs < thHH, and taking supremum on Hy, we conclude that

((vsh — VD) -
sup

V‘iﬁg” thHH

PO)S < G — o) .

The result follows by combining the previous inequality with (3.13]) after replacing (3.14]) back into
B13). 0
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The next result establishes an approximation property of the discrete space Hy,.

Lemma 3.7. There exists C > 0, independent of h, such that for each v := (vg,vp) € H there holds

V;glh [V = Vil < C{ Vs,higlf{&h [vs = VSvhHLQS - VD,fjglfID,h [vp — VDvthiv,QD

+ hl/QHVS -n — Hh(VS : n)HO,E}’

with C > 0 a constant independent of h.

Proof. This proof is provided in [30, Proposition 4.1]. In what follows we describe the main aspects of
it. Let Igy : H%S(QS) — Hg, and IIpp, : Hrp(div; Qp) — Hp j, be the orthogonal projectors with
respect to the inner products L?(2s) and L?(Qp), respectively. Then, given v := (vs,vp) € H, we
set

VS.h

)

= HS,h("S) and VD,h = HD,h(VD) — Lh (HD,h(VD) ‘n — Hh(HS,h(VS) . n)) s

where Ly : ®pj, — Hp, is the stable discrete lifting defined in (H.10). It follows precisely from
(H.10) that

vp,p -0 =IIp (vp) - n — Ly (IIp p(vp) - n — I, (IIg 1 (vs) - n)) - n

=, (s p(vs) -n) = (Vs -m) on X,

)
which shows that the pair v, := (Vs s, vp,) belongs to Hy,. Next, the triangle inequality and (H.10)
again imply that

[V =vallg = l[vs =vsnll g + [vD = vDrll 0,
< |lvsp = Tsn(vs)|, o, + VD = o a(vD) |l gy + [La(Mpa(vp) - 0= (s 4 (vs) - 0))|| 4 00
< [ven = s u(vs)ll g, + VD =T a(vD) ||y 0, + ClTIDA(VD) - 0 = T(TTs a(vs) - 1)y g g0 -
Now, since vs -1 = vp - m on S, using the normal trace theorem in H (div; Q) we get
|Tp 4 (vp) - n—11, (s 4 (vs) - n)|| 1/2.00.5
< |[vp n—Tpu(vp) - nH_l/ZOQZ + ||vs - n — Iy (vs, - n)H_l/lOO,Z

< CHVD - HDﬁ(VD)HdiV,QD + HVS =T (v - n)Hq/z,oo,E’

whence, adding and substracting appropiate terms, employing the estimate (3.11]) twice, and applying
the trace theorem in H!(Qg), we find that

|vs - n—IL, (g (vs) - < ||@=104)(vs - n = II4(vs - n)

H 1/2,00,X — Hfl/Q,OO,E

HT =) (vs -0 =vs )|y jpgox +[[Vs - m=Ven-nl|_ 5005
< O {lvs m =T (vs -0y + [[vs  m = ve - mllg s b+ [[vs m = vennl|_, 0
< C{lvs = vsull, g, + B¥{Ivs = Ta(vs -m) |},
which completes the proof. O

We now summarize the unique solvability and the Strang-type a priori error estimate for the
nonconforming discrete scheme ([3.10) in the following theorem.
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Theorem 3.3. There exists a unique (up,pp) € Hy x Qpo solution of (3.10), and there holds

H(u —Up,p — ph)HHXQ S C {ianS,heHS,h Hus - vS7hH17QS
‘diV7QD + infg,eqy Hp - qhHQ (3.15)
+ h1/2(HpD - Hh(pD)HO’E + HUS -1 — Iy (ug - n)H0,2> }’

+ infyy ,enp, HUD — VDb

where C' > 0 is a constant independent of h.

Proof. The proof follows from a straightforward application of Lemmas and O

3.3 Particular choices of finite element subspaces

In this section we specify concrete 2D examples of finite element subspaces of H%S (Qg), Hry, (div, Qp)
and LZ(12) satisfying (H.7)-(H.10). Given T € Tg, we first define the local Bernardi-Raugel space (see
[6]), denoted by BR(T), as

BR(T) = Pl(T) @ Span{n2n3n17 mnsnsg, 771772113}7 (316)

where 11,72 and 13 are the baricentric coordinates of the triangle T', and n;, ns and ns are the three
unit normal components to the opposite sides of its corresponding vertices, which point outwards on
OT. In turn, given T € Tp, we let RT(T) be the local Raviart-Thomas space of lowest order, that is

RTy(T) := Po(T) & Py(T)x. (3.17)

where x denotes a generic vector of R?. Also, we consider the local Brezzi-Douglas-Marini space of
order one, which is given by

BDM;(T) = Py(T). (3.18)

In what follows, we describe two different examples of finite element subspaces for the Stokes and Darcy
domains in terms of the local spaces defined in (3.16), (3.17)) and (3.18]), with their corresponding finite
element subspaces approximating the pressure field in 2.

3.3.1 Bernadi-Raugel 4+ Raviart-Thomas

The subspaces Hgp, Hpp, Hy (cf. (9)), and Qpno of HL (Qs), Hr,(diviQp), H, and L(Q),
respectively, are defined as

HS,h = {VS,h S [C(ﬁs)]Q : VS,h’T € BR(T) VT € 7-3} N H%S (QS),

Hp ), = {VD,h € H(div;Qp) : vpulr € RIH(T) VT € 76} N Hry, (div; Qp),

Hh = {Vh = (VS,hva,h) (S HS,h X HD,h : Hh(V&h ‘N —Vpp n) =0 on Z} s (3.19)
and

Qno = {qh € L2(Q) : qulr € Po(T) VT € Th} N L2(9). (3.20)
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From these particular choices of finite element subspaces, and taking into account the definition of the
local spaces BR and RT (cf. (3.16) and (3.17)), respectively), we observe that the discrete spaces ®g
and ®p j become

D ), 1= {¢s,h € C(2p) : s ule € Pi(e) Vee Eh}
and
<I)D,h = {¢D,h : Eh — R: ¢D,h’e € PQ(@) Ve € Zh},

that is, ®g 3, is the space of continuous piecewise linear functions defined on ¥;, while ®p 5, is the space
of piecewise constant functions defined on ¥;. Note that the discrete space ®gj is not contained in
®p 1, which means that the discrete scheme is nonconforming in this case. In turn, it is clear
that (H.7) and (H.9) are satisfied. In addition, (H.10) has been shown in the 2D case (see [30])
without any requeriment on the meshes for both the Raviart-Thomas subspace of lowest order (cf.
(3.17)) and the Brezzi-Douglas-Marini subspaces for any nonnegative integer [ > 1. Finally, in order
to verify (H.8) we proceed similarly as in [19]. To this end, we let Ilg : H%s (Qg) — Hgy, be the
Bernadi-Raugel interpolation operator (cf. [6], [23]), which is linear and bounded with respect to the
H!(Qg)-norm. More precisely, given vg € H%s (Qg), this interpolation operator is characterized by the
following identities:

/Hs(vs) ‘e = /VS -n., for each edge e of Tg, (3.21)

and
IIs(vs(a)) = In(vs(a)) for each node a of Tg,

where I, is the Clément regularization operator defined in [23, Appendix A, A.3]. Note that, as a
consequence of (3.21)), there holds

/ qrdivIIg(vg) = / grdivvs Vg in the restriction of Qy, to Qs. (3.22)
O Qg

Equivalently, if Ps denotes the L?(£2g)—orthogonal projection onto the restriction of Qj to Qg, then
the relation (3.22) can be rewritten as

Ps(div(IIs(vs))) = Ps(divvs) Vvs € Hp (). (3.23)

In turn, we let Ilp : H%D (2p) — Hp p, be the Raviart-Thomas interpolation operator of lowest order,
which, given vp € H%D (Qp), is characterized by:

/HD(VD) ‘N, = /VD -ne, for each edge e of Tp. (3.24)
e e
Similarly as for Ilg, we find that (3.24]) yields

/ qpdivIIp(vp) = / grdivvp Vg, in the restriction of Qp to Qp. (3.25)
QD QD

Equivalently, if Pp denotes the L?(£2p)—orthogonal projection onto the restriction of Qy, to Qp, then
the relation (3.25) can be rewritten as

diV(HD(VD)) = PD(diVVD) Yvp € HllﬂD (QD) (3.26)
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In addition, we know that the Raviart-Thomas interpolation operator Ilp satisfies the following ap-
proximation property: For any vp € H!(Q)p), there exists C' > 0, independent of h, such that

HVD - HD(VD)HO,QD < ChDHVDHmD' (3.27)

The next result shows that (H.8) also holds.

Lemma 3.8. There exists §1 > 0, independent of h, such that

B ) /
s [B(vi),ah] g v q

> /BIHQhHQ Van € Q-
Vhigh HV’ZHH

Vh

Proof. Given g, € Qpp, a well-known result (see, e.g. [23]) implies the existence of z € H}(2) such
that —divz = ¢ in Q2 and HZH1 0 < C’thHOQ. We define

Wg.h 1= Hs(Ws) S H&h and WD h = HD(WD) S HDJ“

where wg 1= z|q, and wp = w|q,. It is clear that w := (wg, wp) belongs to H. This fact together

with (3.21)) and (3.24)) yield

/W&h-ne:/Ws'neI/WD'ne:/WDﬁ'ne VeGEh. (328)
e e e e

Now, since I, : L?(%) — ®p ), is the orthogonal projector and ®p ; becomes the piecewise constant
functions, we obtain that

/{6 - Hh(‘f)} =0 VéeL’(X), Ve edgeofX.

e

Then (3.28)) and the foregoing identity applied to £ = wgy, - n € L*(X) imply that

/Hh(wsﬁ ‘n) = /Wsﬁ ‘n= /WD,h ‘n Ve edge of X,

and combining this last relation with the fact that II,(wgy - n) — wpp, - n € Py(X)), we deduce that
I (wg p,-m) = wp j, -1 on X, that is the pair wy, := (wg , Wp ) belongs to Hy. Further, (3.23)) yields

Ps(divws ;) = Ps(divws) = Ps(—gn) = —qn  in g,
and implies that
divwp , = Pp (diVWD) =Pp(—qn) = —qn in Qp.
It follows that

On the other hand, since the operator Ilg is bounded, there holds

Iwsall, o = Cllwsll o, = Cllzll o < eflan]lyor
and applying we have that

1w allaw 0 =lWoillo gy, + ldivwoallg g, < Chllwolly o, + [[wo

0.0p T HQhHO,Q < CQHQhHO,Q’
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where we used here, from the previous estimate, that HWDH1 W < HZH1 < C’thHO o- Therefore,
we have that HWhHH < C3HQhHO,Q’ and using we conclude that

[B(Vh)’ Qh] Q' xQ > [B(Wh)’ Qh] Q' xQ

- Il

sup

1
>
v‘},f;{)h HVhHH = 3 HQhHO,Qa

with ¢3 > 0 a constant independent of A.

O]

Finally, we recall from [23] (see also [6]) an approximation property for the Bernadi-Raugel inter-
polation operator Ilg, that is: for each vg € H?(Qg), there exists C > 0, independent of hg, such
that

Jvs ~ TIs6vs)], g, < Chs|lvs (3:30

We are now in a position to establish the main result of this section.

Theorem 3.4. Let Hj, and Qp, o be the finite element subspaces defined by (3.19) and (3.20)), respec-
tively. Then the nonconforming discrete scheme (3.10) has a unique solution (up,pp) € Hp X Qpo
and there exists ¢1 > 0, independent of h, such that

Jonson e < 1 1l + [l

where Fy, = F|n, and Gy, = Gl|q,,,- In addition, assume that the unique solution (u,p) € H x Q of
the primal-mized formulation ([2.14)) is such that ug € H?(Qg), us - nly € Hl/Q(E), up € HY(Qp),
divwp € HY(Qp), and p € HY(Q). Then there exists ca > 0, independent of h, such that

[(u— uh’p_ph)HHxQ S o {hs‘us‘zﬂs +hp (‘U‘D‘LQD + ‘diqu|1,QD> +h‘p‘179 + hfus- nH1/2,E} :

Proof. The proof follows from a straightforward application of Theorem and the approximation
properties of the subspaces and projectors involved. In particular, (3.12)) allows to estimate the
expressions HpD — Hh(pD)Ho,z and Hug -n — I (ug - n)HO’E in (3.15)). O

3.3.2 Bernadi-Raugel 4+ Brezzi-Douglas-Marini

The specific subspaces Hg p,, Hp 1, Hy, (cf. (3.9))), and Qp o of H%S (Qg), Hrp (div; Qp), H, and LE(),
respectively, are

Hg ), = {vs,h € [C(ﬁs)f :vsnlr € BR(T) VT € Ts} NH (Qs),

Hp,, = {VD,h € H(div; Op) : vpulr € BDMy(T) VT € 713} N Hr, (div; Qp),

Hh = {Vh = (VS,hva,h) (S HS,h X HD,h : Hh(VS,h ‘N —VDpp- Il) =0 on Z} R (331)
and
Qno = {qh € L2(Q) : gulr € Bo(T) VT € Th} N L2(9). (3.32)

We observe that the discrete space ®g , is formed by continuous piecewise quadratic functions while the
discrete space ®p 5 becomes the piecewise linear functions. Therefore, the discrete mixed formulation
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is nonconforming as well. In turn, (H.7) holds because Py(X)) C P1(X),) = ®pp. Further, it
is clear that (H.9) is satisfied. Also, we know from [30, Appendix] that (H.10) is satisfied in the 2D
case with no requeriment on the meshes around 3 for the Raviart-Thomas subspace of lowest order
(cf. ) and for the Brezzi-Douglas-Marini subspace of any nonnegative integer order.

On the other hand, in order to prove the discrete inf-sup condition for the linear operator B (cf.
(H.8)), we introduce the BDM interpolation operator IIp 4 : H%D (Qp) — Hp, (cf. [8]) which, given
vp € H%D(QD), is characterized by the following indentity:

/(VD —IIpy(vp)) - mnep=0 Vpe Pi(e) Ve edge of Tp. (3.33)

€

Moreover, if we denote by Pp the L?(Qp)-orthogonal onto the restriction of Q, to Qp, (3.33)) implies
that

diVHD,h(VD) = PD(diVVD) Yvp € H%D (QD) (334)

We now recall from [9] an approximation property of the interpolation operator Ilp p: there exists
C > 0, independent of h, such that for each vp € H'(Qp) there holds

¥ ~ Tl 0 < oVl - (335

In addition, we recall from [30, Appendix] the following result summarizing the properties of a stable
lifting.

Lemma 3.9. There exists an operator Ly, : Hp j, = ®p j, with the properties indicated in (H.10) (cf.
Section 3.2). In addition, there holds

leL(gbh) = ;|/E¢h quh S (I)D,h- (336)

Proof. See [30, Appendix]. O
The hypothesis (H.8) is proved next.

Lemma 3.10. There exists B > 0, independent of h, such that

B(vy), ,
sup [ (Vh) Qh]Q

V‘}fgh thHH

Q> 52H%HQ Van € Q-

Proof. Let g, € L3(2). We know that there exists z € H}(Q2) such that
—divz = ¢, in Q and HZHM) < C’thHO,Q. (3.37)
We let wg := z|qg, Wp = 2|y, and then we define
wgp, = IIg(wg) € Hg;, and wpy :=IIp,(wp) + Ly (HhWS,h -n —IIp p(wp) - n) € Hp .

It is clear that w := (wg,wp) € H, and (H.10) implies that the pair wj, := (Ws 4, Wp ) belongs to

H;,. In addition, and yield
Ps (diVWS’h) = Pg (diVHS(Ws)) =Pg (diVWs) = Ps(—qn) = —qn  in Qg,
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and
divIIp p(wp) = Pp(divwp) = Pp(—qn) = —¢» in Op.
Next,
[B(Wh), th] grvq = HQhHOQ (an, divLy, (I ws -0 — Ip p(Wp) - 1)) o o . (3.38)
Moreover, from (cf. Lemma [3.9) we get
divLy, (HhWS,h -n —IIp ,(wp) - n) = ‘21”/2 {HhWS,h -n —IIp »(wp) - n},

whence, using (3.21)), (3.33)) and the fact that w := (wg, wp) belongs to H, we find for each e edge of

Y that
/thsﬁ-n—/ws,h-n—/ws-n—/wD-n—/HDﬁ(WD)-n
e e e e e

which proves that
divLy, (HhWS,h -n — IIp »(wp) - n) =0.
The foregoing relation and lead to
[B(Wh), an] qrrg = H%H(zm- (3.39)

On the other hand, the boundedness of the interpolation operator Ilg and (3.37)) imply that

[Ws.nllag < Cllwsll o < Clizll g < ellanllyq- (3.40)
In turn, since divwp = divIIp j(wp) = —¢p, we have that
HWD —Hpp(wp Hdlv Op HWD —Ip p(wp HOQ ;

so that the above relation, the uniform boundedness of Lj, (cf. (H.10)), and (3.37)) lead to

lwp.ally 0 < W0 = Ton(WD) gy 0, + WDl 0, + [Ln (T (ws) -1 = TIp (W) - 1) [| 5, 0,
< HWD — IIp p(wp HO,QD + HWDHLQD + CHHhHS(WS) n — IIp 5 (wp) nH—1/2,00,2
< ChDHWDHLQ + HWDH1,QD + éHHhHS(Ws) -n —1IIp (wp) - nH—l/Q,OO,Z
< ChDHZHLQ + HZHIQ + é”HhHS(WS) -n —1IIp 5 (wp) - anl/Q,OO,Z
< C2Hq’ZHQ + é“HhHS(WS) n—Ipp(wp) - nH71/2,00,27
that is

HWDJLHdiv,QD < CQH%HQ + éHHhHS(WS) -n —TIIp (wp) - nH—1/2,00,2' (3.41)

Now, the trace theorems on H!'(Q2g) and on H(div;Qp), the boundedness of II; and Ilg, and the
estimates (3.35) and (3.37) imply that the second term on the right hand side of (3.41)) can be

28



bounded as follows

HHhHS(WS) -n —IIp p(wp) - nH—1/2,00,E <C HHhHS(WS) : nHo,z + HHDvh(WD) : nH_1/2,oo,2
<C HHS(WS)HO,E + CQHHD(WD)Hdiv,QD
<Ch HHS(WS)HLQS + C2HHD(WD)HdiV,QD
<Cillws||, o + Cafwp = Tn(wp)|y g, + C2l[Wpllyy 0,
<Ci[lwsl|, o + Cohnlwol|, o, + Colwnll, o,
<G llzl|, o < esllanllo0r

i.e.,
|11, XI5 (ws) - n — TIp(wp) - nH—1/2,00,2 503”‘%”0,9'

Replacing this last inequality back into (3.41) and combining the resulting estimate with (3.40]) we
can deduce that

[Whllg < HWS:hHLQs T HWDvthiv,Q S C4H%H0,Q' (3.42)

Thus, from (3.39)) and (3.42)) we conclude that

B(vh),qh , B(Wh),qn| o 1
sup [ ]Q xQ > [ ]Q -4 2 7H%HQ’
vpeHy, thHH HWhHH €4
Vh7£0
with ¢4 > 0 a constant independent of h. ]

Then, by applying again Theorem and the approximation properties of the subspaces and
projectors involved, we arrive at the following main result.

Theorem 3.5. Let Hj, and Qp, o be the finite element subspaces defined by (3.31) and (3.32)), respec-
tively. Then, the nonconforming Galerkin scheme (3.10) has a unique solution (un,pp) € Hp, X Qp o,
and there exists c3 > 0, independent of h, such that

Ql}?

where Fy, == F|u, and Gy, = G‘Qh,O' In addition, assume that the unique solution (u,p) € H x Q of
the primal-mized formulation ([2.14)) is such that us € H?(Qg), us - nly € H1/2(Z), up € HY(Qp),
divup € HY(Qp), and p € H*(Q). Then, there exists cy > 0, independent of h, such that

Jw.2) i < es{I1Bnllg + 16l

2= = ) < ea{ Pslfus g + B (un] g, + v )+ Bl o+ s -l .

3.3.3 A general Approach

Irrespective of the previous analysis in Sections and we remark that the results in [30] can
be extended to the present situation in such a way that (H.8) is simplified as follows:

(H.11) there exists B > 0, independent of k, such that

B(Vh), an|q
sup [B(va) h]QxQ

VhGI:Ih thHH
v

> 5H%HQ Vg € Qn,
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Stokes Velocity Press. || Darcy | Vel. | Press. || Order
MINT P;+bubbles Psont || BDM; | Py Py h
Taylor-Hood, k& > 2 Py P || BDMy | Py | Pry hk
Conf Crouzeix-Raviart P,-+bubbles P, BDM, | Py P, h?
Bernardi-Raugel P -+face bubbles Py BDM, | Py Py h

Table 3.1: Coupling of Stokes elements with BDM elements. The superscript ©* refers to the demand
of continuity for the discrete pressure space. The bubbles are used for wvelocities in the MINI and
conformal Crouzeiz-Raviart elements: an internal Py1(T') bubble is added to the velocity space on
each element. For the Bernardi-Raugel element, face bubbles are included on all internal faces, but no
bubbles are added on faces lying on ¥. When these bubbles (not needed for stability) are added, the
method stops being a particular case of this class.

Stokes Velocity Press. || Darcy Vel. Press. || Order
MINT P,+bubbles pgont RTy RTy Py h
Taylor-Hood, k > 2 P, P || RTy—1 | RTx—1 | Prs hF
Bernardi-Raugel P +face bubbles Py Ry Ry Py h
P,-iso-P; P, (T3"%) Pt || BDM, | Py P h

Table 3.2: Coupling of Stokes elements with BDM and RT elements and their order of convergence.
The superscript <" refers to the demand of continuity for the discrete pressure space. The bubbles
are used for velocities in the MINI element. The triangulation 7'Sh/2 is a one level refinement of ’Tsh
and P1(7'Sh/2) is the space of piecewise linear functions with respect to 7'Sh/2. For the Bernardi-Raugel
element, face bubbles are only included on the internal faces. Adding them to faces on ¥ does not
change the convergence order. In that case Bernardi-Raugel can be coupled with BDM; as well.

where
I:Ih = [HS,h N H(l)(Qs)] X [HD,h N Ho(div; QD)]

and

QhIZ{QhGth/Q qn =0, /Qth:o}.

S

Indeed, it was shown in [30] that one can combine either the RT-element or the BDM-element of order
k, with any stable FEM for Stokes of the same order, to obtain a global (conforming as in Table
or nonconforming as in Table coupled scheme of order of convergence k. In particular, when the
BR elements are employed in the fluid, the corresponding face bubbles do not need to be considered
on the faces lying on ¥, which yields a conforming scheme (see [30, Proposition 3.1] for the respective
proof). Note also that, in spite of the foregoing modification, the associated approximation property
remains unaltered.
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4 Numerical Results

In this section we present numerical examples in 2D illustrating the good performance of the discrete
scheme on a set of uniform triangulations of the domains 2g and {2p. We begin by introducing
additional notations. In what follows, N stands for the number of degree of freedom defining the
corresponding finite element subspaces Hj, and Qpo. Then, given the unique solutions (u,p) :=
((us,up),p) € H x Q and (up,pp) := ((us s, upr),pn) € Hy x Qp o of the primal-mixed formulation
and the discrete scheme , respectively, the corresponding individual and global errors are
denoted by

e(uS) = HUS - us’hHLQS’ e(uD) = HuD - uD,thinDa and e(p) = Hp _thQQa

and
efuss, up. ) == {e(us)? + e(up)? + e(p)?}

Also, we let r(ug), r(up) and r(p) be the experimental rates of convergence given by

r(ug) = log(e(us)/e'(us)) r(up) = log(e(up)/€’(up))
ST T oy 0 NPT T (b

and

._ log(e(p)/€'(p))
" ogai)

where h and I’ denote two consecutive meshsizes with errors e and €/, respectively. Further, we let
r(us, up, p) be the experimental rate for the total error defined by

o log(e(us, up, p)/€'(us, up, p))
r(us, up,p) := log(h/h)

In the following two sections we present several numerical examples for the nonconforming and con-
forming versions of the discrete scheme . For both cases, we choose kK = 1, K =1, and consider
the nonlinear function p : Rt — R given by a particular case of the Carreau law for viscoplastic
flows, that is

p(t) = po +pa(1+ )P0 /2 vt e BT,

with pg = p1 = 0.5 and 5 = 1.5. It is easy to check in this case that the assumptions (2.6) and ([2.7)
are satisfied with

—2
70:Mo+,u1{|62|+1} and  ap = po-

4.1 A nonconforming case

Here we consider the pair of finite element subspaces Hj, and Qp, ¢ given in Section |3.3.1] (cf. (3.19),
(3.20))), which yields a nonconforming discrete scheme (3.10f). In what follows we set

curlqg := ﬁ —ﬁ '
9= Oxs’ Ox1/)
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In Example 1 we set the regions Qg := (—1,1)?\[0,1)? and Qp := (0,1)? of R?, and choose the
data fg and fp so that the exact solution is given by the smooth functions

us(x) = curl (3(a3 + 23) (2} — 1)(e - 1)?) ,

7'(' TL1 1 9 | 1
p(x) = 4cos< 5 ){a}g—i—z 2 cos [2 <x2+2>]} on (lg

(z1 — 1)%sin® (27 (x2 + 0.5)) on Qp.

Next, in Example 2 we consider the regions Qg := (—1,1)?\ (=1,0]? and Qp := (—1,0)? of R?,
and choose the data fg and fp so that the exact solutions is given by

and

us(x) i= curl (3(a? + 23)(af ~ 1)%(a3 - 1)?) ,

and
exp(z1 + x2)x129 on (g
p(x) =
(21 +1)%sin® (27(z2 +0.5)) on Qp.
Note that in this example ug becomes singular at the origin.

The numerical results shown below were obtained using a MATLAB code. In Tables .1 and .2 we
summarize the convergence history of the discrete primal-mixed scheme as applied to Examples
1 and 2, for sequences of quasi-uniform triangulations of the domains. We observe in Table looking
at the corresponding experimental rates of convergence, that the O(h) predicted by Theorem is
attained by all the unknowns in Example 1. In addition, we notice that the dominant error is given
by e(up). The behavior of the experimental rates of convergence can be also checked from Figure
where we display the mesh size h and the errors e(ug), e(up) and e(p) versus the degrees of freedom
N. In particular, we realize there that e(p) is quite below the other individual errors and that, in spite
of its convergence slower than O(h) at the beginning, it rapidly stabilizes around that order later on.
Concerning Example 2, we note on the contrary in Table [4.2| that r(ug) lies around 1/2 whereas r(p)
shows large oscillations, which is certainly due to the singular behaviour of the corresponding exact
solution. However, r(up) does not seem to be affected by the lack of regularity of ug since it behaves
always as O(h). The foregoing facts are also observed in Figure where we display the mesh size h
and the errors e(ug), e(up) and e(p) versus the degrees of freedom N. This example is certainly very
suitable to explore in the future the application of an adaptive algorith based on a posteriori error
estimates. Indeed, one would expect that by means of this procedure the optimal rates of convergence
would be recovered by all the unknowns. On the other hand, in Figures and we
show some components of the approximate (left) and exact (right) solutions. We notice from Figures
and that the piecewise constant functions approximate quite well the pressure in the Darcy
domain Qp and the interior of the Stokes region ()g, whereas this approximation deteriorates a bit
near by 0Qg\X. In turn, in Figures and we see that the Bernardi-Raugel subspace provides a
quite good approximation of the velocity in the Stokes domain (g.

4.2 A conforming case

We now consider the pair of finite element subspaces Hj, and Q¢ given in Section [3.3.2] (cf. (3.31)),
3.32)), but with the modification explained at the end of Section so that the resulting scheme
3.10) becomes conforming. Then, for the Example 3 we set the regions {2g := (—1,1) x (—1,0) and
Qp = (—1,1) x (0,1) of R?, and choose the data fs and fp so that the exact solution is given by the
smooth functions

ug(x) := curl (sin(rzy 4 7/4) sin?(2mz1) (1 + x2)2) ,
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h N e(us) r(us) e(up) r(up) e(p) r(p) | e(us,up,p) r(ug,up,p)
1/17 | 12828 | 3.989E—00 - 5.612E—00 - 2.806E—01 - 6.891E—00 — ()
1/19 | 16114 | 3.509E—00 1.153 | 5.040E—00 0.967 | 2.741E—01 0.209 | 6.147E—00 1.027 (5)
1/21 | 19882 | 3.178E—00 0.990 | 4.491E—00 1.152 | 2.573E—01 0.635 | 5.508E—00 1.097 (5)
1/25 | 28121 | 2.718E—00 0.896 | 3.787E—00 0.978 | 2.003E—01 1.436 | 4.666E—00 0.951 (5)
1/35 | 54222 | 1.915E—00 1.040 | 2.763E—00 0.937 | 1.331E—01 1.216 | 3.365E—00 0.971 (5)
1/45 | 91170 | 1.482E—00 1.022 | 2.072E—00 1.145 | 1.007E—01 1.109 | 2.550E—00 1.104 (5)
1/55 | 135720 | 1.201E—00 1.049 | 1.721E—00 0.925 | 8.112E—02 1.077 | 2.100E—00 0.966 (5)
1/65 | 190019 | 1.017TE—00 0.991 | 1.461E—00 0.982 | 7.188E—02 0.724 | 1.782E—00 0.984 (5)
1/75 | 254402 | 8.851E—01 0.974 | 1.244E—00 1.123 | 6.147E—02 1.093 | 1.528E—00 1.073 (5)
1/85 | 325129 | 7.754E—01 1.057 | 1.101E—00 0.973 | 5.173E—02 1.378 | 1.348E—00 1.001 (5)
1/95 | 403178 | 6.953E—01 0.981 | 9.951E—01 0.913 | 4.445E—02 1.364 | 1.215E—00 0.936 (5)
1/105 | 493751 | 6.296E—01  0.991 | 9.021E—01  0.980 | 4.114E—02 0.773 | 1.101E—00 0.984 (5)
1/115 | 592931 | 5.691E—01 1.111 | 8.196E—01 1.054 | 3.650E—02 1.315 | 9.985E—01 1.073 (5)
1/125 | 705036 | 5.246E—01 0.976 | 7.469E—01 1.113 | 3.416E—02 0.796 | 9.134E—01 1.068 (5)

Table 4.1: EXAMPLE 1, convergence history

h N e(ug) r(ug) e(up) r(up) e(p) r(p) | e(us,up,p) r(us,up,p)
1/17 | 12853 | 2.856E—00 - 5.560E—00 - 5.160E—01 - 6.272E—00 — ()
1/19 | 16108 | 2.67IE—00 0.602 | 5.059E—00 0.848 | 4.950E—01 0.372 | 5.743E—00 0.793 (5)
1/21 | 19671 | 2.577TE—00 0.359 | 4.596E—00 0.959 | 4.854E—01 0.196 | 5.292E—00 0.817 (5)
1/25 | 28444 | 2.313E—00 0.622 | 3.761E—00 1.151 | 4.365E—01 0.609 | 4.437E—00 1.011 (5)
1/35 | 54513 | 2.144E—00 0.225 | 2.774E—00 0.904 | 5.668E—01 - 3.552E—00 0.661 (5)
1/45 | 91225 | 1.767TE—00 0.769 | 2.000E—00 1.127 | 3.214E—01 2.257 | 2.756E—00 1.010 (5)
1/55 | 136347 | 1.704E—00 0.182 | 1.724E—00 0.960 | 3.269E—01 - 2.446E—00 0.595 (5)
1/65 | 190171 | 1.597E—00 0.388 | 1.463E—00 0.982 | 3.012E—01 0.489 | 2.187E—00 0.670 (5)
1/75 | 254577 | 1.493E—00 0.469 | 1.257TE—00 1.063 | 3.224E—01 - 1.978E—00 0.701 (5)
1/85 | 324355 | 1.427E—00 0.360 | 1.109E—00 0.997 | 2.650E—01 1.567 | 1.827E—00 0.635 (4)
1/95 | 403975 | 1.457E—00 - 9.954E—01  0.973 | 3.119E—01 - 1.792E—00 0.173 (4)
1/105 | 496126 | 1.359E—00 0.698 | 9.007E—01  0.998 | 2.800E—01 1.079 | 1.654E—00 0.800 (4)
1/115 | 595622 | 1.331E—00 0.229 | 8.211E—01 1.018 | 2.895E—01 - 1.590E—00 0.432 (4)
1/125 | 707479 | 1.262E—00 0.634 | 7.532E—01  1.034 | 2.328E—01 2.614 | 1.488E—00 0.795 (4)

Table 4.2: EXAMPLE 2, convergence history
and
exp(z) + x2)x122 on Qg
p(x) = 1 5
3 <1 — L9 — — sin(ﬂx2)> sin®(mwx1) cos(mzy) on Qp.
T

The numerical results shown below were also obtained using a MATLAB code. In Table we
summarize the convergence history of the discrete primal-mixed scheme ([3.10)) as applied to Example
3, for sequences of quasi-uniform triangulations of the domains. Similarly as for Example 1, we observe
there, looking at the corresponding experimental rates of convergence, that the order O(h) predicted
by Theorem is attained by all the unknowns. In addition, the individual errors e(ug) and e(up)
are the dominant ones in this example. This fact is even more clear in Figure [1.7] where one sees that
e(ug) and e(up) are quite above e(p). Moreover, we observe there that e(p) seems to converge a bit
faster than O(h) at the beginning but then it rapidly stabilizes around that order. Finally, in Figures
and we show some components of the approximate (left) and exact (right) solutions for this
example. In particular, we remark that the Raviart-Thomas subspace reconstructs quite accurately
the velocity in the porous medium Qp.
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Figure 4.2: EXAMPLE 1, Stokes pressure with N = 54222
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Figure 4.3: EXAMPLE 1, Darcy pressure with N = 54222
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Figure 4.5: EXAMPLE 2, first component of the Stokes velocity with NV = 54513

Figure 4.6: EXAMPLE 2, second component of the Stokes velocity with N = 54513
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Figure 4.8: EXAMPLE 3, first component of the Darcy velocity with N = 31203

Figure 4.9: EXAMPLE 3, second component of the Darcy velocity with N = 31203
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