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Centro de Investigación en
Ingenieŕıa Matemática (CI2MA)
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Abstract

In this work we analyze a primal-mixed finite element method for the coupling of quasi-Newtonian
fluids with porous media in 2D and 3D. The flows are governed by a class of nonlinear Stokes and
linear Darcy equations, respectively, and the transmission conditions on the interface between the
fluid and the porous medium are given by mass conservation, balance of normal forces and the
Beavers-Joseph-Saffman law. We apply a primal formulation in the Stokes domain and a mixed
formulation in the Darcy formulation. The “strong coupling” concept means that the conservation
of mass across the interface is introduced as an essential condition in the space where the velocity
unknowns live. In this way, under some assumptions on the nonlinear kinematic viscosity, a gener-
alization of the Babuška-Brezzi theory is utilized to show the well posedness of the primal-mixed
formulation. Then, we introduce a Galerkin scheme in which the discrete conservation of mass is
imposed approximately through an orthogonal projector. The unique solvability of this discrete
system and its Strang-type error estimate follow from the generalized Babuška-Brezzi theory as
well. In particular, the feasible finite element subspaces include Bernadi-Raugel elements for the
Stokes flow, and either the Raviart-Thomas elements of lowest order or the Brezzi-Douglas-Marini
elements of first order for the Darcy flow, which yield nonconforming and conforming Galerkin
schemes, respectively. In turn, piecewise constant functions are employed to approximate in both
cases the global pressure field in the Stokes and Darcy domain. Finally, several numerical results
illustrating the good performance of both discrete methods and confirming the theoretical rates of
convergence, are provided.

1 Introduction

The development of suitable numerical methods to solve the Stokes-Darcy and related coupled prob-
lems, including porous media with cracks, the incorporation of the Brinkman equation in the model,
and linear as well as nonlinear behaviors, has become a very active research area during the last decade
(see, e.g., [5], [11], [12], [13], [14], [15], [19], [26], [28], [32], [35], [36] and the references therein). In
particular, a mixed finite element method for a class of nonlinear Stokes-Darcy coupled problem aris-
ing in industrial filtring application and involving a non-Newtonian fluid, is introduced and analized
in [13]. Up to the authors’ knowledge, this is the first work dealing with the fully-coupled problem

∗This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, and
project Anillo ACT1118 (ANANUM); and by Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Universidad
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for non-Newtonian Stokes and Darcy flows. In fact, the fluid is modeled there by the generalized
nonlinear Darcy equation in the porous medium. In addition, the approach in [13] employs the primal
method in the Stokes domain and the dual-mixed method in the Darcy region, which means that only
the original velocity and pressure unknowns are considered in the fluid, whereas a further unknown
(velocity) is added in the porous medium. The corresponding interface conditions are given by the
mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law, and since one of
them becomes essential, the trace of the Darcy pressure on the interface needs also to be incorpo-
rated as an additional Lagrange multiplier. More recently, the model from [13] is recasted in [14] as
a reduced matching problem on the interface by using a mortar space approach. As a consequence,
a parallel algorithm for the problems in both regions is derived, which allows to solve the coupled
problem utilizing existing codes for Stokes and Darcy simulations.

On the other hand, the a priori error analyses of a primal-mixed finite element method for 2D
Stokes-Darcy coupled problem, in which primal and mixed formulations are employed in the Stokes
and Darcy domains, respectively, were developed in [19] and [30]. This approach allows, on the one
hand, to consider the natural unknowns, that is, the velocity vector fields and the pressure field in
both domains, and on the other hand, the utilization of different families of finite element subspaces
in each media. The model considered in [19] refers to a linearized Stokes equations coupled with a
linearized Darcy equations. In addition, since the approach in [19] leads to essential transmission
conditions, these are imposed weakly and hence the trace of the porous medium pressure becomes
the corresponding Lagrange multiplier. However, in [30], the mass conservation across the interface
between both domains was included as an essential condition in the velocity unknowns space, and
hence the resulting primal-mixed formulation does not need the trace of the porous media pressure as
an additional unknown.

The purpose of the present work is to extend the analysis and results from [30] to the model
problem from [13], that is to the coupling of quasi-Newtonian fluids with porous media. To this end,
and following a similar approach from [13] (see also [19] and [30]), we apply a primal formulation in
the fluid domain while a mixed formulation is applied in the porous medium. In addition, the balance
of normal forces and Beavers-Joseph-Saffman law are imposed weakly (exactly as in [19] and [30]),
but following the idea introduced in [30], the mass conservation across the interface is imposed as an
essential condition in the velocity unknowns space. All these equations yield a nonlinear primal-mixed
formulation, whose well-posedness is proved by applying the generalization of the Babuška-Brezzi
theory developed in [17] (see also [18]). In addition, since the insertion of the mass conservation as
an essential condition in the velocity unknowns space leads to a nonconforming Galerkin scheme, we
need to modify the generalized Babuška-Brezzi theory from [17] to be able to show the uniqueness of
the discrete scheme and derive the corresponding a priori Strang-type estimate.

The rest of this work is organized as follows: In Section 2 we introduce the model problem and
derive the primal-mixed variational formulation, which shows a nonlinear mixed formulation structure.
A slight modification of the usual Babuška-Brezzi theory developed in [34] is also given here to analyze
the solvability of our continuous formulation. Next, in Section 3 we provide the discrete analogue of
the abstract theory developed in [17] (see also [18]), which allows us to establish the solvability and
stability of nonconforming Galerkin schemes associated with weak formulations of nonlinear mixed
problems. This abstract framework is then applied, under some general assumptions on the finite
element subspaces, to prove the well-posedness of the nonconforming discrete scheme associated with
our continuous problem. Specific choices of finite element subspaces satisfying these assumptions are
also described here. Finally, several numerical results illustrating the performance of the method and
confirming the theoretical rates of convergence, are reported in Section 4.
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2 The continuous problem

We begin this section by introducing some notations to be used throughout this paper.

2.1 Preliminaries

In what follows, Rd×d denotes the space of tensors (or matrices) τ := (τij) with real entries, and I is
the identity tensor (or identity matrix) of Rd×d. Also, in this space we consider the tensorial inner
product given by

σ : τ :=
∑
i,j=1

dσijτij ∀σ, τ ∈ Rd×d,

with induced norm

|σ| :=
{ d∑
i,j=1

σ2
ij

}1/2

∀σ ∈ Rd×d.

In turn, given H and Q Hilbert spaces with induced norms
∥∥ ·∥∥

H
and

∥∥ ·∥∥
Q

, respectively, we endow the

product space H ×Q with the product norm
∥∥ · ∥∥

H×Q :=
∥∥ · ∥∥

H
+
∥∥ · ∥∥

Q
. In addition, we denote by H

and H the spaces Hd and Hd×d, respectively. Also, If H ′ denotes the dual space of the Hilbert space
H, we let

[
·, ·
]
H′×H be the duality pairing between H ′ and H. Furthermore, we utilize the standard

simplified terminology for Sobolev spaces and norms. In particular, given s ∈ R, a domain U ⊆ Rd,
and an open or closed curve Γ ⊆ Rd, we consider the Sobolev spaces

Hs(U) := [Hs(U)]d and Hs(Γ) := [Hs(Γ)]d .

However, when s = 0 we usually write L2(U) and L2(Γ) instead of H0(U) and H0(Γ), respectively,
as well as L2(U) and L2(Γ) instead of H0(U) and H0(Γ), respectively. The corresponding norms are
denoted by

∥∥ · ∥∥
s,U

and
∥∥ · ∥∥

s,Γ
for the respective space on U and Γ, respectively. In addition, given

u, v ∈ L2(U), u,v ∈ L2(U), and σ, τ ∈ L2(U), we set(
u, v
)

0,U
:=

∫
U
uv,

(
u,v

)
0,U

:=

∫
U

u · v

and (
σ, τ

)
0,U

:=

∫
U
σ : τ .

We also need to introduce the space

L2
0(U) :=

{
u ∈ L2(U) :

∫
U
u = 0

}
. (2.1)

Further,
〈
·, ·
〉

Γ
denotes the duality pairing between H−1/2(Γ) and H1/2(Γ), and between H−1/2(Γ)

and H1/2(Γ) with respect to the L2(Γ) and L2(Γ) inner products, respectively. When Γ is an open
curve of Rd and Σ is a closed curve in Rd such that Γ ⊆ Σ, we introduce the extension operator
E0 : H1/2(Γ)→ L2(Σ) defined by

E0(ψ) :=

{
ψ on Γ,
0 on Σ\Γ ∀ψ ∈ H1/2(Γ),
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and the space

H
1/2
00 (Γ) :=

{
ψ ∈ H1/2(Γ) : E0(ψ) ∈ H1/2(Σ)

}
,

which is endowed with the norm
∥∥ψ∥∥

1/2,00,Γ
:=
∥∥E0(ψ)

∥∥
1/2,Σ

, ∀ψ ∈ H1/2
00 (Γ). The expression

〈
·, ·
〉

Γ

is also employed in this case to denote the duality pairing between H
1/2
00 (Γ) and H

−1/2
00 (Γ), where

H
−1/2
00 (Γ) is the dual space of H

1/2
00 (Γ). In particular, note that given η ∈ H−1/2(Σ), its restriction to

Γ defined by 〈
η|Γ, ψ

〉
Γ

:=
〈
η,E0(ψ)

〉
Σ

∀ψ ∈ H1/2
00 (Γ),

is an element of H
−1/2
00 (Γ). The corresponding vector versions of H

1/2
00 (Γ) and H

−1/2
00 (Γ) are denoted

by H
1/2
00 (Γ) and H

−1/2
00 (Γ), respectively, and

〈
·, ·
〉

Σ
is also employed to refer to the respective duality

pairing.
On the other hand, with div denoting the usual divergence operator, the Hilbert space

H(div;U) :=
{
τ ∈ L2(U) : divτ ∈ L2(U)

}
,

is standard in the realm of mixed problems (see [9], [23]). The norm of this space is denoted by
∥∥·∥∥

div,U
.

Moreover, given a nonempty set S of Rd and a nonnegative integer k, we denote by Pk(S) the space of
polynomials defined in S with total degree at most k. Also, Pk(S) denotes the corresponding vector
version of Pk(S). Finally, we employ 0 to denote a generic null vector, the null functional or the null
operator, and we use C with or without subscripts, bars, tildes or hats, to denote generic constants
independent of the discretization parameters, which may take different values at different places.

2.2 The model problem

Let Ω ⊆ Rd be a Lipschitz polyhedral (polygonal if d = 2) domain with boundary Γ := ∂Ω which
has been subdivided in two subdomains ΩS and ΩD such that ΩS ∩ ΩD = ∅, Ω = ΩS ∪ ΩD, and
∂ΩS ∩ ∂ΩD = Σ is the nonempty polygonal interface between ΩS and ΩD. Also, we let ΓS := ΩS\Σ
and ΓD := ΩD\Σ. On Σ and on Γ we denote by n := (n1, n2, ..., nd)

t the unit normal vector which
is chosen pointing outward from ΩS ∪ Σ ∪ ΩD and ΩS. Note that n points inward from Σ to ΩD.
In addition, in the 2D case we denote by t := (−n2, n1)t the fixed unit tangent vector on Σ (see
Figure 2.1). The model problem we are interested in consists of the movement of an incompressible
quasi-Newtonian viscous fluid that occupies the region ΩS and that flows towards and from the region
ΩD through the interface Σ, where ΩD is saturated with the same fluid.

More precisely, the governing equations in ΩS are those of the nonlinear Stokes problem with
homogeneous Dirichlet boundary condition on ΓS, that is:

−div
{
µ (|∇uS|)∇uS − pSI

}
= fS in ΩS,

divuS = 0 in ΩS,
uS = 0 on ΓS,

(2.2)

where div is the usual divergence operator div applied along each row of a tensor, uS is the velocity
vector field in ΩS, pS is the pressure field in ΩS, µ : R+ → R+ is the nonlinear kinematic viscosity,
and fS ∈ L2(ΩS) is a known volume force. In turn, in ΩD we consider the linearized Darcy model with
Neumann boundary condition on ΓD:

K−1uD +∇pD = 0 in ΩD,
divuD = fD in ΩD,
uD · n = 0 on ΓD,

(2.3)
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Figure 2.1: Layout of the geometry of the coupled problem.

where uD is the velocity vector field in ΩD, pD is the pressure field in ΩD, fD ∈ L2
0(ΩD) is a source

term, and K is a symmetric and uniformly positive definite tensor with entries in L∞(ΩD), which
represents the permeability of ΩD divided by a constant approximation of the viscosity. Finally, the
transmission conditions across Σ are given by the conservation of mass, balance of normal forces and
Beavers-Joseph-Saffman law:

uS · n = uD · n on Σ,{
µ (|∇uS|)∇uS − pSI

}
n + νκ−1πtuS = −pDn on Σ,

(2.4)

where ν is a constant approximation of the viscosity µ on Σ, πtw := w − (w · n)n and κ ∈ L∞(ΩD)
is a given coefficient that is bounded from below by a positive constant a.e. on Σ. We remark
that the kind of nonlinear Stokes problem given by (2.2) appears in the modeling of a large class
of non-Newtonian fluids (see e.g. [27], [33]). In particular, the Ladyzhenskaya law for fluids with
large stresses (see [27]), also known as power law, is given by µ(t) = µ0 + µ1t

β−2 ∀t ∈ R+, with
µ0 ≥ 0, µ1 > 0 and β > 1, and the Carreau law for viscoplastic flows (see, e.g. [29] and [33]) reads
µ(t) = µ0 + µ1(1 + t2)(β−2)/2 ∀t ∈ R+, with µ0 ≥ 0, µ1 > 0 and β ≥ 1. In what follows we let
µij : Rd×d → R be the mapping defined by

µij(σ) = µ(|σ|)σij ∀σ := (σkl) ∈ Rd×d. (2.5)

Throughout this work we suppose that µ is of class C1 and that there exist positive constants α0 and
γ0 such that for all σ, τ ∈ Rd×d

|µij(σ)| ≤ γ0|σ|,
∣∣∣∣∂µij∂σkl

∣∣∣∣ ≤ γ0, ∀i, j, k, l ∈ {1, ..., d} (2.6)

and

d∑
i,j,k,l=1

∂µij
∂σkl

(σ) τijτkl ≥ α0|τ |2 . (2.7)

It is easy to check that the Carreau law satisfies (2.6) and (2.7) for all µ0 > 0, and for all β ∈ [1, 2].
In particular, with β = 2 we recover the usual linear Stokes model.

2.3 A primal-mixed formulation

In this subsection we proceed as in [19] and [30], and introduce a primal-mixed formulation of the
coupled problem given by (2.2), (2.3) and (2.4). To this end, we consider the spaces

H1
ΓS

(ΩS) :=
{

vS ∈ H1(ΩS) : vS = 0 on ΓS

}
5



and

HΓD
(div; ΩD) :=

{
vD ∈ H(div; ΩD) : vD · n = 0 on ΓD

}
.

Here, H(div; ΩD) is endowed with the inner product(
uD,vD

)
div,ΩD

:=
(
uD,vD

)
0,ΩD

+
(
divuD,divvD

)
0,ΩD

,∀uD,vD ∈ H(div; ΩD),

and its induced norm
∥∥ ·∥∥2

div,ΩD
:=
(
·, ·
)

div,ΩD
. Next, in order to construct a primal-mixed formulation

of (2.2), (2.3) and (2.4), we begin by testing the first equation in (2.2) with vS ∈ H1
ΓS

(ΩS). In this way,

integrating by parts the term
(
div
{
µ (|∇uS|)∇uS − pSI

}
,vS

)
0,ΩS

, introducing the Dirichlet boundary
condition uS = 0 on ΓS, and using that pSI : ∇vS = pS div vS we obtain(

µ(|∇uS|)∇uS,∇vS

)
0,ΩS
−
(
pS,divvS

)
0,ΩS
−
〈{
µ(|∇uS|)∇uS − pSI

}
n,vS

〉
Σ

=
(
fS,vS

)
0,ΩS

,

which, using from (2.4) that

−
{
µ(|∇uS|)∇uS − pSI

}
n = νκ−1πtuS + pDn on Σ,

yields (
µ(|∇uS|)∇uS,∇vS

)
0,ΩS

+
〈
νκ−1πtuS,πtvS

〉
Σ

+
〈
vS · n, pD

〉
Σ
−
(
pS,divvS

)
0,ΩS

=
(
fS,vS

)
0,ΩS

∀vS ∈ H1
ΓS

(ΩS).

On the other hand, multiplying the first equation of (2.3) by vD ∈ HΓD
(div; ΩD), integrating by

parts, and using that −n is the unit normal vector of Σ pointing inward to ΩD, we arrive at(
K−1uD,vD

)
0,ΩD
−
〈
vD · n, pD

〉
Σ
−
(
pD,divvD

)
0,ΩD

= 0 ∀vD ∈ HΓD
(div; ΩD).

Hence, adding the last two equations we get(
µ(|∇uS|)∇uS,∇vS

)
0,ΩS

+
〈
νκ−1πtuS,πtvS

〉
Σ

+
(
K−1uD,vD

)
0,ΩD

−
(
pS,divvS

)
0,ΩS
−
(
pD,divvD

)
0,ΩD

+
〈
(vS − vD) · n, pD

〉
Σ

=
(
fS,vS

)
0,ΩS

, (2.8)

for all v := (vS,vD) ∈ H1
ΓS

(ΩS)×HΓD
(div; ΩD). In turn, from the second equations of (2.2) and (2.3),

we obtain (
q,divuS

)
0,ΩS

+
(
q,divuD

)
0,ΩD

=
(
fD, q

)
0,ΩD

∀q ∈ L2(Ω). (2.9)

Now, proceeding as in [30], we introduce the first transmission condition of (2.4) into the definition
of the velocities space H, that is

H :=
{

v := (vS,vD) ∈ H1
ΓS

(ΩS)×HΓD
(div; ΩD) : vS · n = vD · n on Σ

}
. (2.10)

This space is endowed with the usual norm of the product space H1
ΓS

(ΩS)×HΓD
(div; ΩD). Note that,

according to the foregoing definition, (2.8) becomes(
µ(|∇uS|)∇uS,∇vS

)
0,ΩS

+
〈
νκ−1πtuS,πtvS

〉
Σ

+
(
K−1uD,vD

)
0,ΩD
−
(
pS, divvS

)
0,ΩS
−
(
pD,divvD

)
0,ΩD

=
(
fS,vS

)
0,ΩS

∀v := (vD,vD) ∈ H.

(2.11)
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Then, proceeding as in [19], we find that the resulting weak formulation reduces to a nonlinear system
with three unknowns, namely

uS ∈ H1
ΓS

(ΩS), uD ∈ HΓD
(div; ΓD) and p :=

{
pS on ΩS

pD on ΩD
∈ L2(Ω),

satisfying (2.9) and (2.11). More precisely, our primal-mixed formulation reads: Find (u, p) :=
((uS,uD), p) ∈ H× L2(Ω) such that

a(u,v) + b(v, p) =
[
F,v

]
H′×H ∀v ∈ H,

b(u, q) =
[
G, q

]
Q′×Q ∀q ∈ L2(Ω),

(2.12)

where the semilinear form a : H×H→ R, the bilinear form b : H× L2(Ω)→ R, and the functionals
F ∈ H′ and G ∈ L2(Ω)′, are defined by

a(u,v) :=
(
µ(|∇uS|)∇uS,∇vS

)
0,ΩS

+
〈
νκ−1πtuS,πtvS

〉
Σ

+
(
K−1uD,vD

)
0,ΩD

∀u,v ∈ H,

b(v, q) := −
(
q,divvS

)
0,ΩS
−
(
q,divvD

)
0,ΩD

∀(v, q) ∈ H× L2(Ω),

[
F,v

]
H′×H :=

(
fS,vS

)
0,ΩS

∀v ∈ H, and
[
G, q

]
Q′×Q :=

(
fD, q

)
0,ΩD

∀q ∈ L2(Ω).

Now, it is easy to see from (2.6) that, fixing the first component of a, its second component defines a
bounded linear functional. In turn, it is quite clear that b is a bounded bilinear form. Hence, we can
introduce the nonlinear operator A : H→ H′ and the linear operator B : H→ [L2(Ω)′] given by[

A(u),v
]
H′×H := a(u,v) ∀u,v ∈ H,

and [
B(v), q

]
L2(Ω)′×L2(Ω)

:= b(v, q) ∀(v, q) ∈ H× L2(Ω),

whence the primal-mixed formulation (2.12) can be re-written as: Find (u, p) ∈ H× L2(Ω) such that[
A(u),v

]
H′×H +

[
B(v), p

]
L2(Ω)′×L2(Ω)

=
[
F,v

]
H′×H ∀v ∈ H,[

B(u), q
]
L2(Ω)′×L2(Ω)

=
[
G, q

]
Q′×Q ∀q ∈ L2(Ω).

(2.13)

However, it is easy to show that this system is not unique solvable since, given any solution (u, p) :=
((uS,uD), p) ∈ H×L2(Ω) of (2.12) (equivalently (2.13)), (u, p+ c) is also a solution for each c ∈ R. In
order to overcome this non-uniqueness, we recall the decomposition L2(Ω) = L2

0(Ω) ⊕ R, (cf. (2.1)),
define Q := L2

0(Ω), and consider the modified primal-mixed formulation: Find (u, p) ∈ H ×Q such
that [

A(u),v
]
H′×H +

[
B(v), p

]
Q′×Q =

[
F,v

]
H′×H ∀v ∈ H,[

B(u), q
]
Q′×Q =

[
G, q

]
Q′×Q ∀q ∈ Q.

(2.14)

The following lemma shows the connection between (2.13) and (2.14).

Lemma 2.1. Let (u, p) ∈ H× L2(Ω) be a solution of (2.13) and define p0 ∈ L2
0(Ω) by

p0 := p− 1

|Ω|

∫
Ω
p.

Then (u, p0) ∈ H×Q is a solution of (2.14). Conversely, let (u, p0) ∈ H×Q be a solution of (2.14),
and given c ∈ R, define p := p0 + c. Then (u, p) ∈ H× L2(Ω) is a solution of (2.13).
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Proof. First, let (u, p) ∈ H× L2(Ω) be a solution of (2.13). We define p0 ∈ L2
0(Ω) by

p0 := p− c, with c :=
1

|Ω|

∫
Ω
p.

Then, for any v ∈ H we have, using the first equation in (2.13),[
A(u),v

]
H′×H +

[
B(v), p0

]
Q′×Q =

[
A(u),v

]
H′×H +

[
B(v), p− c

]
L2(Ω)′×L2(Ω)

=
[
F,v

]
H′×H − c

[
B(v), 1

]
L2(Ω)′×L2(Ω)

.

Now, since vS · n = vD · n on Σ and n points inward to ΩD on Σ, we get[
B(v), 1

]
L2(Ω)′×L2(Ω)

= −
(
1, divvS

)
0,ΩS
−
(
1,divvD

)
0,ΩD

=
〈
vD · n− vS · n, 1

〉
Σ

= 0,

which, replaced back into the foregoing equation, gives[
A(u),v

]
H′×H +

[
B(v), p0

]
Q′×Q =

[
F,v

]
H′×H ∀v ∈ H ,

thus showing that the first equation in (2.14) is satisfied. In turn, the second equation of (2.14) is
clearly satisfied since Q ⊆ L2(Ω).

Conversely, let (u, p0) ∈ H ×Q be a solution of (2.14) and let c ∈ R. Then, defining p := p0 + c
we see from the first equation in (2.14) that for all v ∈ H there holds[
A(u),v

]
H′×H +

[
B(v), p

]
L2(Ω)′×L2(Ω)

=
[
A(u),v

]
H′×H +

[
B(v), p0

]
Q′×Q + c ·

[
B(v), 1

]
L2(Ω)′×L2(Ω)

=
[
A(u),v

]
H′×H +

[
B(v), p0

]
Q′×Q =

[
F,v

]
H′×H,

that is the first equation in (2.13) is satisfied. Now, given q := q0 + c ∈ L2(Ω) := L2
0(Ω) ⊕ R, with

q0 ∈ L2
0(Ω) and c ∈ R, we deduce, using the second equation in (2.14) and the identity G(1) = 0

(which follows from the fact that fD ∈ L2
0(ΩD)), that[

B(u), q
]
L2(Ω)′×L2(Ω)

=
[
B(u), q0

]
Q′×Q + c ·

[
B(u), 1

]
L2(Ω)′×L2(Ω)

= G(q0) = G(q),

which proves that the second equation in (2.13) holds.

According to the previous lemma, throughout the rest of the paper we consider the primal-mixed
formulation (2.14).

2.4 An abstract theory for a class of nonlinear mixed problems

Let H and Q be Hilbert spaces with dual spaces H ′ and Q′, and let A : H → H ′ be a nonlinear
operator, and B : H → Q′ be a linear operator with adjoint B′ : Q → H ′. Then, given F ∈ H ′ and
G ∈ Q′, we are interested in the following variational problem: Find (u, p) ∈ H ×Q such that[

A(u), v
]
H′×H +

[
B(v), p

]
Q′×Q =

[
F, v

]
H′×H ∀v ∈ H,[

B(u), q
]
Q′×Q =

[
G, q

]
Q′×Q ∀q ∈ Q. (2.15)

In order to analyze the unique solvability of (2.15), we need to introduce some assumptions on the
operators A : H → H ′ and B : H → Q′.

(H.1) There exists γ > 0 such that A is Lipschitz continuous, that is∥∥A(u)−A(v)
∥∥
H′
≤ γ

∥∥u− v∥∥
H
∀u, v ∈ H.
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(H.2) There exists α > 0 such that for any z ∈ H, the nonlinear operator A(z+ ·) is strongly monotone
in the null space of the linear operator B, that is

α
∥∥u− v∥∥2

H
≤
[
A(z + u)−A(z + v), u− v

]
H′×H ∀u, v ∈ V,

where V :=
{
v ∈ H :

[
B(v), q

]
Q′×Q = 0 ∀q ∈ Q

}
.

(H.3) There exists β > 0 such that the following continuous inf-sup condition holds

sup
v∈H
v 6=0

[
B(v), q

]
Q′×Q∥∥v∥∥
H

≥ β
∥∥q∥∥

Q
∀q ∈ Q.

We now recall from [23] a result establishing equivalent statements for (H.3).

Lemma 2.2. The following are equivalent:

i) (H.3) is satisfied.

ii) B′ is an isomorphism from Q onto V ◦, where

V ◦ :=
{
F ∈ H ′ :

[
F, v

]
H′×H = 0 ∀v ∈ V

}
is the polar set of V , and there holds∥∥B′(q)∥∥

H′
≥ β

∥∥q∥∥
Q
∀q ∈ Q.

iii) B is an isomorphism from V ⊥ onto Q′ and there holds∥∥B(v)
∥∥
Q′
≥ β

∥∥v∥∥
H
∀v ∈ V ⊥.

iv) B : H → Q′ is surjective.

Proof. See [23, Chapter 1, Section 4] for details.

While the solvability analysis of (2.15) follows as a particular case of [34, Proposition 2.3], we
provide next an alternative proof by adapting the arguments from [18]. Indeed, for each G ∈ H ′, we
first set

VG :=
{
v ∈ H :

[
B(v), q

]
Q′×Q =

[
G, q

]
Q′×Q ∀q ∈ Q

}
.

In particular, when G = 0, we just write V instead of V0 to denote the null space of the linear operator
B. Obviously, since B is linear and bounded, V becomes a closed subspace of H. Then, we associate
with (2.15) the following problem: Find u ∈ VG such that[

A(u), v
]
H′×H =

[
F, v

]
H′×H ∀v ∈ V. (2.16)

The next result establishes the connection between (2.15) and (2.16).

Lemma 2.3. Let (u, p) ∈ H × Q be a solution of (2.15). Then, u ∈ VG and u is a solution of
(2.16). Conversely, let u ∈ VG be a solution of the problem (2.16). Then, there exists p ∈ Q such that
(u, p) ∈ H ×Q is a solution of (2.15).
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Proof. Let (u, p) ∈ H ×Q be a solution of (2.15). Then, from the second equation in (2.15) we have
that u ∈ VG, and clearly u is a solution of (2.16) since

[
B(v), p

]
Q′×Q = 0 ∀v ∈ V . Conversely, let

u ∈ VG be a solution of (2.16). It follows that
[
B(u), q

]
Q′×Q =

[
G, q

]
Q′×Q ∀q ∈ Q, which says that

the second equation in (2.15) is satisfied. In turn, from Lemma 2.2 we know that B′ is an isomorphism
from Q onto V ◦, and since F − A(u) ∈ V ◦, we deduce that there exists a unique p ∈ Q such that
B′(p) = F −A(u). In this way, the pair (u, p) ∈ H ×Q solves (2.15).

Now, given G ∈ Q′, we know from Lemma 2.2 that there exists a unique uG ∈ V ⊥ such that
B(uG) = G. It follows that for each u ∈ VG there holds u−uG ∈ V , that is u = u0 +uG, with u0 ∈ V
and hence problem (2.16) can be re-stated, equivalently, as: Find u0 ∈ V such that[

A(u0 + uG), v
]
H′×H =

[
F, v

]
H′×H ∀v ∈ V. (2.17)

According to the foregoing analysis, we have the following result, which states that problems (2.16)
and (2.17) are equivalent.

Lemma 2.4. Given uG ∈ VG, we let u0 ∈ V be a solution of (2.17). Then, u := u0 + uG ∈ VG is
a solution of (2.16). Conversely, let u ∈ VG be a solution of (2.16). Then, there exist uG ∈ V ⊥ and
u0 ∈ V such that u = u0 + uG, and u0 ∈ V is solution of (2.17).

The next result establishes the unique solvability of problem (2.17).

Theorem 2.1. (H.1) and (H.2) imply that problem (2.17) is well posed.

Proof. It follows from a classical result in nonlinear functional analysis (see, e.g. [31, Chapter 3,
Section 3].

Moreover, we remark from this last result that the solution u0 + uG ∈ VG of (2.17) is independent
of the election of uG ∈ V ⊥∩VG. In fact, given other ũG ∈ VG, we let ũ0 ∈ V be the unique solution of[

A(ũ0 + ũG), v
]
H′×H =

[
F, v

]
H′×H ∀v ∈ V.

Since
[
A(ũ0 + ũG), v

]
H′×H =

[
A((ũ0 + ũG − uG) + uG), v

]
H′×H for each v ∈ V, we deduce from The-

orem 2.1 with uG ∈ VG, that ũ0 + ũG − uG = u0, whence ũ0 + ũG = u0 + uG ∈ VG.
Now, we introduce the main result of this section.

Theorem 2.2. Assume that (H.1), (H.2) and (H.3) hold. Then, there exists a unique solution (u, p) ∈
H × Q of (2.15). In addition, there exists a constant C > 0, depending on the constants α, γ and β
provided by (H.1), (H.1) and (H.2), such that∥∥(u, p)

∥∥
H×Q ≤ C

{∥∥F∥∥
H′

+
∥∥G∥∥

Q′
+
∥∥A(0)

∥∥
H′

}
. (2.18)

Proof. The unique solvability of (2.15) follows straightforwardly from Lemmas 2.3 and 2.4, and The-
orem 2.1. To show the estimate (2.18) we let u0 ∈ V and uG ∈ V ⊥ ∩ VG, provided by Lemma 2.4,
such that u = u0 + uG. Then, since B is an isomorphism from V ⊥ onto Q′ (cf. Lemma 2.2), we get∥∥uG∥∥H ≤ 1

β

∥∥B(uG)
∥∥
Q′

=
1

β

∥∥G∥∥
Q′
. (2.19)

In turn, from (H.2) and problem (2.17), we have

α
∥∥u0∥∥2

H
≤
[
A(u0 + uG)−A(uG), u0

]
H′×H

=
[
F, u0

]
H′×H +

[
A(0)−A(uG), u0

]
H′×H −

[
A(0), u0

]
H′×H ,
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which, applying (H.1) and the fact that F, A(0) ∈ H ′, yields∥∥u0∥∥H ≤ 1

α

{∥∥F∥∥
H′

+ γ
∥∥uG∥∥H +

∥∥A(0)
∥∥
H′

}
. (2.20)

On the other hand, applying (H.3) to p ∈ Q, we get

β
∥∥p∥∥

Q
≤ sup

v∈H
v 6=0

[
B(v), p

]
Q′×Q∥∥v∥∥
H

,

whence, using that[
B(v), p

]
Q′×Q =

[
F, v

]
H′×H −

[
A(u), v

]
H′×H

=
[
F, v

]
H′×H +

[
A(0)−A(u), v

]
H′×H −

[
A(0), v

]
H′×H

∀v ∈ H,

and applying (H.1), leads to ∥∥p∥∥
Q
≤ 1

β

{∥∥F∥∥
H′

+ γ
∥∥u∥∥

H
+
∥∥A(0)

∥∥
H′

}
. (2.21)

The proof follows by combining (2.19) and (2.20) with the inequality
∥∥u∥∥

H
≤
∥∥u0∥∥H +

∥∥uG∥∥H , and
then replacing the resulting estimate in (2.21).

2.5 Analysis of the weak formulation

In this section we show the unique solvability of (2.14) by checking first that (H.1), (H.2), and (H.3)
are satisfied, and then applying Theorem 2.2. We begin our analysis with the characterization of the
null space V of the operator B.

Lemma 2.5. There holds,

V =
{

v ∈ H : div vS = 0 in ΩS and div vD = 0 in ΩD

}
.

Proof. Given v ∈ V, we have

−
(
q,div vS

)
0,ΩS
−
(
q,div vD

)
0,ΩD

= 0 ∀q ∈ Q := L2
0(Ω).

In turn, since vS · n = vD · n on Σ, we get

0 =
〈
vD · n− vS · n, 1

〉
Σ

= −(1,div vD)0,ΩD
− (1,div vS)0,ΩS

,

that is,

−(c,div vD)0,ΩD
− (c,div vS)0,ΩS

= 0 ∀c ∈ R.

Then, the decomposition L2(Ω) = L2
0(Ω)⊕R implies that

−
(
q,div vS

)
0,ΩS
−
(
q,div vD

)
0,ΩD

= 0 ∀q ∈ L2(Ω),

which yields div vS = 0 in ΩS and div vD = 0 in ΩD, thus finishing the proof.

The continuous inf-sup condition for the operator B is shown next.
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Lemma 2.6. There exists a constant β > 0 such that

sup
v∈H
v 6=0

[
B(v), q

]
Q′×Q∥∥v∥∥

H

≥ β
∥∥q∥∥

Q
∀q ∈ Q.

Proof. Let q ∈ Q. A well-known result (see e.g. [23]) yields the existence of z ∈ H1
0(Ω) and C > 0,

independent of z, such that −divz = q in Ω and
∥∥z∥∥

1,Ω
≤ C

∥∥q∥∥
Q

. Next, we put wS := z|ΩS
and

wD := z|ΩD
. Then, we observe that wS · n = wD · n on Σ, that is w := (wS,wD) ∈ H. It follows that[

B(w), q
]
Q′×Q =

∥∥q∥∥2

Q
and

∥∥w∥∥
H
≤
∥∥z∥∥

1,Ω
≤ C

∥∥q∥∥
Q

, which gives

sup
v∈H
v 6=0

[
B(v), q

]
Q′×Q∥∥v∥∥

H

≥

[
B(w), q

]
Q′×Q∥∥w∥∥

H

≥ 1

C

∥∥q∥∥
Q
,

and the proof is completed.

The next lemma shows that the nonlinear operator, induced by the term
(
µ(|∇uS|)∇uS,∇vS

)
0,ΩS

,

satisfies (H.1) and (H.2).

Lemma 2.7. Let AS : H1
ΓS

(ΩS)→ [H1
ΓS

(ΩS)]′ be the nonlinear operator given by[
AS(uS),vS

]
:=
(
µ(|∇uS|)∇uS,∇vS

)
0,ΩS

∀uS,vS ∈ H1
ΓS

(ΩS),

where
[
·, ·
]

denotes the duality pairing between H1
ΓS

(ΩS) and [H1
ΓS

(ΩS)]′. Then, AS is Lipschitz con-

tinuous, and for each zS ∈ H1
ΓS

(ΩS), AS(zS + ·) is strongly monotone.

Proof. Let uS,vS,wS ∈ H1
ΓS

(ΩS). By definition of AS we have that

[
AS(uS)−AS(vS),wS

]
=

∫
ΩS

(µ(|∇uS|)∇uS − µ(|∇vS|)∇vS) : ∇wS,

which, denoting σ := ∇uS, τ := ∇vS, and τ̃ := ∇wS, becomes

[
AS(uS)−AS(vS),wS

]
=

∫
ΩS

(µ(|σ|)σ − µ(|τ |)τ ) : τ̃ =
d∑

i,j=1

∫
ΩS

(µ(|σ|)σij − µ(|τ |)τij)τ̃ij .

Next, using (2.5) and setting σ̃(m) := mσ + (1 − m)τ ∀m ∈ (0, 1), we can write for each i, j ∈
{1, ..., d},

µ(|σ|)σij − µ(|τ |)τij = µij(σ)− µij(τ ) =

∫ 1

0

∂

∂m
µij(σ̃)dm

=
d∑

k,l=1

∫ 1

0

∂σ̃kl
∂m

∂

∂σ̃kl
µij(σ̃)dm =

d∑
k,l=1

∫ 1

0

∂

∂σ̃kl
µij(σ̃)(σkl − τkl)dm,

which yields

[
AS(uS)−AS(vS),wS

]
=

d∑
i,j,k,l=1

∫
ΩS

(∫ 1

0

∂

∂σ̃kl
µij(σ̃)(σkl − τkl)dm

)
τ̃ij .
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Hence, applying (2.6) and the Cauchy-Schwarz inequality, we find that

∥∥AS(uS)−AS(vS)
∥∥
H1(ΩS)′

= sup
wS∈H1(ΩS)

wS 6=0

[
AS(uS)−AS(vS),wS

]∥∥wS

∥∥
1,ΩS

≤ γ0

∥∥uS − vS

∥∥
1,ΩS

.

Similarly, given zS, uS,vS ∈ H1
ΓS

(ΩS), and denoting σ := ∇zS, τ := ∇uS, τ̃ := ∇vS, and σ̂(m) :=
m(σ + τ ) + (1−m)(σ + τ̃ ) ∀m ∈ (0, 1), we obtain

[
AS(zS + uS)−AS(zS + vS),uS − vS

]
=

∫
ΩS

{
µ(|σ + τ |)(σ + τ )− µ(|σ + τ̃ |)(σ + τ̃ )

}
: (τ − τ̃ )

=

d∑
i,j,k,l=1

∫
ΩS

∫ 1

0

∂

∂σ̂kl
µij(σ̂)(τij − τ̃ij)(τkl − τ̃kl)dm.

In this way, using now (2.7) and the Friedrich-Poincaré inequality, we get[
AS(zS + uS)−AS(zS + vS),uS − vS

]
≥ α̃0

∥∥uS − vS

∥∥2

1,ΩS
,

with α̃0 > 0 depending on α0 and the constant provided by the aforementioned inequality.

Note now that the nonlinear operator A can be written as[
A(u),v

]
H′×H =

[
AS(uS),vS

]
+
〈
νκ−1πtuS,πtvS

〉
Σ

+
(
K−1uD,vD

)
0,ΩD

∀u,v ∈ H. (2.22)

The following lemma shows that A satisfies (H.1) and (H.2).

Lemma 2.8. Let HΓD
(div0; ΩD) :=

{
vD ∈ HΓD

(div; ΩD) : divvD = 0
}

. Then, the nonlinear operator

A is Lipschitz continuous in H1
ΓS

(ΩS) × HΓD
(div; ΩD), and for each z ∈ H1

ΓS
(ΩS) × HΓD

(div; ΩD),

A(z + ·) is strongly monotone in H1
ΓS

(ΩS)×HΓD
(div0; ΩD).

Proof. It follows straightforwardly from the corresponding properties of AS (cf. Lemma 2.7) and from
the fact that the expressions 〈νκ−1πtuS,πtvS〉Σ and 〈K−1uD, vD〉0,ΩD

induce positive semi-definite,
symmetric and uniformly positive definite bilinear forms, respectively.

The main result of this section is established as follows.

Theorem 2.3. There exists a unique (u, p) ∈ H×Q solution of the primal-mixed formulation (2.14)
and there exists C > 0 such that∥∥(u, p)

∥∥
H×Q ≤ C

{∥∥fS

∥∥
0,ΩS

+
∥∥fD

∥∥
0,ΩD

}
.

Proof. It follows from Lemmas 2.5, 2.6, 2.7 and 2.8, and a straightforward application of Theorem
2.2.

3 The discrete problem

In this section we introduce and analyze a nonconforming Galerkin scheme for the primal-mixed
formulation (2.14). We begin with the following discrete abstract analysis.
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3.1 A nonconforming discrete scheme

We begin by recalling that the unique solvability of (2.15) is guaranteed by Theorem 2.2. Now, we let
H̃ and Q̃ be two Hilbert spaces with dual spaces H̃ ′ and Q̃′, respectively, such that H ⊆ H̃ and Q ⊆ Q̃,
and we consider finite dimensional subspaces Hh ⊆ H̃ and Qh ⊆ Q̃. Also, we let Ã : H̃ → H̃ ′ be a
nonlinear operator, and let B̃ : H̃ → Q̃′ be a linear operator with adjoint B̃′ : Q̃ → H̃ ′. Then, given
F̃ ∈ H̃ ′ and G̃ ∈ Q̃′ we consider the nonconforming discrete scheme of (2.15): Find (uh, ph) ∈ Hh×Qh
such that [

Ã(uh), vh
]
H̃′×H̃ +

[
B̃(vh), ph

]
Q̃′×Q̃ =

[
F̃ , vh

]
H̃′×H̃ ∀vh ∈ Hh,[

B̃(uh), qh
]
Q̃′×Q̃ =

[
G̃, qh

]
Q̃′×Q̃ ∀qh ∈ Qh.

(3.1)

Note that the nonconformity of (3.1) is due to the fact that Hh and Qh are not necessarily contained
in H and Q, respectively, and also because Ã and B̃ dot not necessarily coincide with the operators
A and B. Now, given G̃ ∈ Q̃′, we set

VG̃,h :=
{
vh ∈ Hh :

[
B̃(vh), qh

]
Q̃′×Q̃ =

[
G̃, qh

]
Q̃′×Q̃ ∀qh ∈ Qh

}
.

In particular, if G̃ = 0, we just write Vh instead of V0,h to denote the discrete kernel of the operator
B̃. In order to establish the uniqueness, stability, and corresponding a priori estimate for the discrete
scheme (3.1) we need to introduce some hypotheses:

(H.4) There exists a constant β̃ > 0, independent of h, such that

sup
vh∈Hh
vh 6=0

[
B̃(vh), qh

]
Q̃′×Q̃∥∥vh∥∥H̃ ≥ β̃

∥∥qh∥∥Q̃ ∀qh ∈ Qh.

(H.5) The operator Ã is Lispchitz continuous in H with constant γ̃ > 0, that is∣∣∣[Ã(u)− Ã(v), w
]
H̃′×H̃

∣∣∣ ≤ γ̃∥∥u− v∥∥H̃∥∥w∥∥H̃ ∀u, v, w ∈ H.

(H.6) For all zh ∈ Hh, the operator Ã(zh + ·) is strongly monotone in Vh with constant α > 0
independent of h, that is,[

Ã(zh + uh)− Ã(zh + vh), uh − vh
]
H̃′×H̃ ≥ α̃

∥∥uh − vh∥∥2

H̃
∀uh, vh ∈ Hh.

Applying Lemma 2.2 to the present discrete scheme, we deduce from (H.4) that the discrete version
of B̃ is an isomorphism from V ⊥h onto Q′h, whence we find that there exists a unique uG̃,h ∈ V

⊥
h such

that
[
B̃(uG̃,h), qh

]
Q̃′×Q̃ =

[
G̃, qh

]
Q̃′×Q̃ ∀qh ∈ Qh. Note that this also says that uG̃,h ∈ V

⊥
h ∩ VG̃,h.

Then, we associate with (3.1) the discrete problem: Find u0,h ∈ Vh such that[
Ã(u0,h + uG̃,h), vh

]
H̃′×H̃ =

[
F̃ , vh

]
H̃′×H̃ ∀vh ∈ Vh, (3.2)

which is the discrete analogue of (2.17). In addition, using similar arguments to those employed in
the proof of Lemma 2.3, we can prove the corresponding connection between (3.1) and (3.2). Further,
similary as in Section 2.4 (cf. Lemma 2.4), we remark that (3.2) is actually equivalent to the problem:
Find uh ∈ VG̃,h such that [

Ã(uh), vh
]
H̃′×H̃ =

[
F̃ , vh

]
H̃′×H̃ ∀vh ∈ Vh.

We now establish the well-posedness of (2.17).
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Lemma 3.1. Assumptions (H.5) and (H.6) guarantee the unique solvability of (3.2).

Proof. It follows from [31, Chapter 3, Theorem 3.3.23].

As for the continuous case, we remark here that the solution u0,h + uG̃,h ∈ VG̃,h of (3.2) is inde-
pendent of the choice of uG̃,h ∈ VG̃,h. The well-posedness of (3.1) is stated now.

Theorem 3.1. There exists a unique (uh, ph) ∈ Hh × Qh solution of (3.1). In addition, there exists
a constant C̃ > 0, independent of h, such that∥∥(uh, ph)

∥∥
H̃×Q̃ ≤ C̃

{∥∥F̃∥∥
H̃′

+
∥∥G̃∥∥

Q̃′
+
∥∥Ã(0)

∥∥
H̃′

}
.

Proof. The proof follows similarly as for Theorem 2.2.

We now aim to derive an a priori error estimate for (2.15) and its discrete scheme (3.1). Hereafter,
we let (u, p) ∈ H×Q and (uh, ph) ∈ Hh×Qh be the unique solutions of the weak formulation (2.15) and
the nonconforming Galerkin scheme (3.1), respectively, and let uG̃,h ∈ VG̃,h and u0,h ∈ Vh, provided
by the foregoing analysis, such that uh = uG̃,h + u0,h. The next two preliminary results show partial

error estimates for
∥∥u − uh∥∥H̃ and

∥∥p − ph∥∥Q̃, as well as a translation property between the discrete
subspaces Vh and Hh.

Lemma 3.2. Under the assumptions (H.4), (H.5), and (H.6) there hold

∥∥u− uh∥∥H̃ ≤ C1

{
inf

vh∈Vh

∥∥u− (uG̃,h + vh)
∥∥
H̃

+ inf
qh∈Qh

∥∥p− qh∥∥Q̃
+ sup
wh∈Vh
wh 6=0

[
F − Ã(u)− B̃′(p), wh

]
H̃′×H̃∥∥wh∥∥H̃ + sup

wh∈Vh
wh 6=0

[
F̃ − F ,wh

]
H̃′×H̃∥∥wh∥∥H̃

}
,

and

∥∥p− ph∥∥Q̃ ≤ C2

{∥∥u− uh∥∥H̃ + inf
qh∈Qh

∥∥p− qh∥∥Q̃
+ sup
vh∈Hh
vh 6=0

[
F − Ã(u)− B̃′(p), vh

]
H̃′×H̃∥∥vh∥∥H̃ + sup

vh∈Hh
vh 6=0

[
F̃ − F , vh

]
H̃′×H̃∥∥vh∥∥H̃

}
,

where C1 := 1
α̃ max

{
α̃+ γ̃,

∥∥B̃∥∥
Q̃′
, 1
}

and C2 := 1
β̃

max
{
β̃ +

∥∥B̃∥∥
Q̃′
, γ̃, 1

}
.

Proof. We first estimate
∥∥u− uh∥∥H̃ . Given vh ∈ Vh, we have from the triangle inequality∥∥u− uh∥∥H̃ =
∥∥u− (uG̃,h + u0,h)

∥∥
H̃
≤
∥∥u− (uG̃,h + vh)

∥∥
H̃

+
∥∥u0,h − vh∥∥H̃ . (3.3)

Now, applying (H.6) with zh = uG̃,h, we deduce that

α̃
∥∥u0,h − vh∥∥2

H̃
≤
[
Ã(uG̃,h + u0,h)− Ã(uG̃,h + vh), u0,h − vh

]
H′×H

=
[
Ã(uh), u0,h − vh

]
H̃′×H̃ −

[
Ã(uG̃,h + vh), u0,h − vh

]
H̃′×H̃ .

Then, using that [
B̃(u0,h − vh), qh

]
Q̃′×Q̃ = 0 ∀qh ∈ Qh ,
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and that [
Ã(uh), u0,h − vh

]
H̃′×H̃ =

[
F̃ , u0,h − vh

]
H̃′×H̃ ,

we find, after adding and substracting appropiate terms, that

α̃
∥∥u0,h − vh∥∥2

H̃
≤
[
F̃ , u0,h − vh

]
H̃′×H̃ −

[
B̃(u0,h − vh), qh

]
Q̃′×Q̃ −

[
Ã(uG̃,h + vh), u0,h − vh

]
H̃′×H̃

=
[
F − Ã(u)− B̃′(p), u0,h − vh

]
H̃′×H̃ +

[
F̃ − F , u0,h − vh

]
H̃′×H̃

+
[
B̃(u0,h − vh), p− qh

]
Q̃′×Q̃ +

[
Ã(u)− Ã(uG̃,h + vh), u0,h − vh

]
H̃′×H̃ ,

which, applying the boundedness provided by the duality parings and the assumption (H.5), dividing
by α̃‖u0,h − vh‖H̃ , and then combining the resulting inequality with (3.3), implies that for each
(vh, qh) ∈ Vh × Qh there holds

∥∥u− uh∥∥H̃ ≤ 1

α̃

{(
α̃+ γ̃

)∥∥u− (uG̃,h + vh)
∥∥
H̃

+
∥∥B̃∥∥

Q̃′

∥∥p− qh∥∥Q̃ (3.4)

+ sup
wh∈Vh
wh 6=0

[
F − Ã(u)− B̃′(p), wh

]
H̃′×H̃∥∥wh∥∥H̃ + sup

wh∈Vh
wh 6=0

[
F̃ − F ,wh

]
H̃′×H̃∥∥wh∥∥H̃

}
.

On the other hand, applying (H.4) we obtain for each qh ∈ Qh

β̃
∥∥ph − qh∥∥Q̃ ≤ sup

vh∈Hh
vh 6=0

[
B̃(vh), ph − qh

]
Q̃′×Q̃∥∥vh∥∥H̃ , (3.5)

and according to the first equation of (3.1), we can write[
B̃(vh), ph − qh

]
Q̃′×Q̃ =

[
B̃(vh), ph

]
Q̃′×Q̃ −

[
B̃(vh), qh

]
Q̃′×Q̃

=
[
F̃ , vh

]
H̃′×H̃ −

[
Ã(uh), vh

]
H̃′×H̃ −

[
B̃(vh), qh

]
Q̃′×Q̃

=
[
F̃ − F , vh

]
H̃′×H̃ +

[
F − Ã(u)− B̃′(p), vh

]
H̃′×H̃

+
[
Ã(u)− Ã(uh), vh

]
H̃′×H̃ +

[
B̃(vh), p− qh

]
Q̃′×Q̃,

that is, for each (vh, qh) ∈ Hh × Qh there holds[
B̃(vh), ph − qh

]
Q̃′×Q̃ =

[
F̃ − F , vh

]
H̃′×H̃ +

[
F − Ã(u)− B̃′(p), vh

]
H̃′×H̃

+
[
Ã(u)− Ã(uh), vh

]
H̃′×H̃ +

[
B̃(vh), p− qh

]
Q̃′×Q̃.

Replacing the foregoing identity back into (3.5), and applying (H.5) and the boundedness of B̃, we
arrive at

∥∥ph − qh∥∥Q̃ ≤ 1

β̃

{
γ̃
∥∥u− uh∥∥H̃ +

∥∥B̃∥∥
Q̃′

∥∥p− qh∥∥Q̃
+ sup
wh∈Hh
wh 6=0

[
F − Ã(u)− B̃′(p), wh

]
H̃′×H̃∥∥wh∥∥H̃ + sup

wh∈Hh
wh 6=0

[
F̃ − F ,wh

]
H̃′×H̃∥∥wh∥∥H̃

}
.
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Hence, applying the triangle inequality we conclude that∥∥p− ph∥∥Q̃ ≤∥∥p− qh∥∥Q̃ +
∥∥ph − qh∥∥Q̃

≤ 1

β̃

{
γ̃
∥∥u− uh∥∥H̃ +

(
β̃ +

∥∥B̃∥∥
Q̃′

)∥∥p− qh∥∥Q̃ (3.6)

+ sup
wh∈Hh
wh 6=0

[
F − Ã(u)− B̃′(p), wh

]
H̃′×H̃∥∥wh∥∥H̃ + sup

wh∈Hh
wh 6=0

[
F̃ − F ,wh

]
H̃′×H̃∥∥wh∥∥H̃

}
.

Finally, the result follows applying infimum on Vh and Qh in (3.4), and also taking infimum on Qh in
the (3.6).

It remains to estimate inf
vh∈Vh

∥∥u− (uG̃,h + vh)
∥∥
H̃

, which is provided by the following lemma.

Lemma 3.3. There holds

inf
vh∈Vh

∥∥u− (uG̃,h + vh)
∥∥
H̃
≤C

{
inf

vh∈Hh

∥∥u− vh∥∥H̃ + sup
qh∈Qh
qh 6=0

[
G− B̃(u), qh

]
Q̃′×Q̃∥∥qh∥∥Q̃

+ sup
qh∈Qh
qh 6=0

[
G̃−G, qh

]
Q̃′×Q̃∥∥qh∥∥Q̃

}
,

with C := 1
β̃

max
{
β̃ +

∥∥B̃∥∥
Q̃′
, 1
}

.

Proof. Given v̂h ∈ Hh, we know from (H.4) that there exists a unique wh ∈ V ⊥h ∩Hh such that[
B̃(wh), qh

]
Q̃′×Q̃ = [B̃(uG̃,h − v̂h), qh]Q̃×Q̃ ∀ qh ∈ Qh, (3.7)

and there holds

∥∥wh∥∥Q̃ ≤ 1

β̃
sup
qh∈Qh
qh 6=0

[
B̃(wh), qh

]
Q̃′×Q̃∥∥qh∥∥Q̃ =

1

β
sup
qh∈Qh
qh+0

[B̃(uG̃,h − v̂h), qh]Q̃×Q̃∥∥qh∥∥Q̃
=

1

β̃
sup
qh∈Qh
qh 6=0

[
B̃(u− v̂h)− B̃(u− uG̃,h), qh

]
Q̃′×Q̃∥∥qh∥∥Q̃

≤

∥∥B̃∥∥
Q̃′

β̃

∥∥u− v̂h∥∥Q̃ +
1

β̃

{
sup
qh∈Qh
qh 6=0

[
G− B̃(u), qh

]
Q̃′×Q̃∥∥qh∥∥Q̃ + sup

qh∈Qh
qh 6=0

[
G̃−G, qh

]
Q̃′×Q̃∥∥qh∥∥Q̃

}
,

where the foregoing expressions have arised after adding and substracting B̃(u) and G, and realizing
that [B̃(uG̃,h), qh]Q̃′×Q̃ = [G̃, qh]Q̃′×Q̃ ∀ qh ∈ Qh. Then, noting from (3.7) that v̂h + wh − uG̃,h ∈ Vh,
we find that

inf
vh∈Vh

∥∥u− (uG̃,h + vh)
∥∥
H̃
≤
∥∥u− (uG̃,h + v̂h + wh − uG̃,h)

∥∥
H̃
≤
∥∥u− v̂h∥∥H̃ +

∥∥wh∥∥H̃
≤
(

1 +

∥∥B̃∥∥
Q̃′

β̃

)∥∥u− v̂h∥∥H̃ +
1

β̃

{
sup
qh∈Qh
qh 6=0

[
G− B̃(u), qh

]
Q̃′×Q̃∥∥qh∥∥Q̃ + sup

qh∈Qh
qh 6=0

[
G̃−G, qh

]
Q̃′×Q̃∥∥qh∥∥Q̃

}
,

which, taking infimum on v̂h ∈ Hh, yields the required inequality and completes the proof.
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The main result of this section is established as follows.

Theorem 3.2. Under the assumptions (H.4), (H.5), and (H.6), the nonconforming discrete scheme
(3.1) is stable, and there holds the Strang-type error estimate

∥∥(u− uh, p− ph)
∥∥
H̃×Q̃ ≤ C

{
inf

vh∈Hh

∥∥u− vh∥∥H̃ + inf
qh∈Qh

∥∥p− qh∥∥Q̃
+ sup
wh∈Hh
wh 6=0

[
F − Ã(u)− B̃′(p), wh

]
H̃′×H̃∥∥wh∥∥H̃ + sup

wh∈Hh
wh 6=0

[
F̃ − F ,wh

]
H̃′×H̃∥∥wh∥∥H̃

+ sup
qh∈Qh
qh 6=0

[
G− B̃(u), qh

]
Q̃′×Q̃∥∥qh∥∥Q̃ + sup

qh∈Qh
qh 6=0

[
G̃−G, qh

]
Q̃′×Q̃∥∥qh∥∥Q̃

}
.

Proof. The proof follows from a straightforward application of Lemmas 3.2 and 3.3.

It is important to observe from Theorem 3.2 that if Hh ⊆ H, then

sup
vh∈Hh
vh 6=0

[
F − Ã(u)− B̃′(p), vh

]
H̃′×H̃∥∥vh∥∥H̃ = 0 and sup

vh∈Hh
vh 6=0

[
F̃ − F , vh

]
H̃′×H̃∥∥vh∥∥H̃ = 0.

Similarly, if Qh ⊆ Q, then

sup
qh∈Qh
qh 6=0

[
G− B̃(u), qh

]
Q̃′×Q̃∥∥qh∥∥Q̃ = 0 and sup

qh∈Qh
qh 6=0

[
G̃−G, qh

]
Q̃′×Q̃∥∥qh∥∥Q̃ = 0.

Therefore, when Hh ⊆ H and Qh ⊆ Q, the a priori error bound provided by Theorem 3.2 becomes
the usual Cea error estimate. In other words, the last four terms in that estimate constitute the
consistency error for the case in which Hh and Qh are not subspaces of H and Q, respectively.

3.2 Analysis of the Galerkin scheme

Let TS and TD be separate shape-regular families of triangulations, that is, satisfying the minimum
angle condition, of ΩS and ΩD, respectively, by triangles (or tetrahedra) T of diameter hT , assume that
the vertices of TS and TD coincide on the interface Σ, and let Th := TS ∪ TD, where h := max{hS, hD},
hS := max{hT : T ∈ TS}, and hD := max{hT : T ∈ TD}. Since the triangulations TS and TD coincide
on Σ, we let Σh be the set of edges/faces inherited from TS and TD. Then, we let HS,h, HD,h and Qh

be discrete finite dimensional subspaces of H1
ΓS

(ΩS), HΓD
(div; ΩD) and L2(Ω), respectively, and we

set

Qh,0 := Qh ∩ L2
0(Ω). (3.8)

In addition, we denote by ΦS,h and ΦD,h the subspaces of the normal components on Σ from HS,h

and HD,h, respectively, that is,

ΦS,h :=
{

vS,h · n|Σ : vS,h ∈ HS,h

}
and ΦD,h :=

{
vD,h · n|Σ : vD,h ∈ HD,h

}
.

Then, if Πh : L2(Σ)→ ΦD,h denotes the orthogonal projector, and H̃h := HS,h ×HD,h, we introduce
the finite element subspace

Hh :=
{

vh := (vS,h,vD,h) ∈ H̃h : Πh(vS,h · n− vD,h · n) = 0 on Σ
}
. (3.9)
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From this definition we observe that the discrete subspace Hh is not contained in H, but the space
H̃ := H1

ΓS
(ΩS) × HΓD

(div; ΩD) contains both Hh and H. Also, we observe that A : H̃ → H̃′ is a

well-defined nonlinear operator, B : H̃ → Q̃′ is a well-defined linear and bounded operator, and the
extension of F to H̃ belongs to H̃′. Then, we now introduce the nonconforming Galerkin scheme:
Find (uh, ph) ∈ Hh ×Qh,0 such that[

A(uh),vh
]
H′×H +

[
B(vh), ph

]
Q′×Q =

[
F,vh

]
H′×H ∀vh ∈ Hh,[

B(uh), qh
]
Q′×Q =

[
G, qh

]
Q′×Q ∀qh ∈ Qh,0.

(3.10)

The nonconformity of this discrete scheme refers to the fact that Hh is not contained in H. We note
from the definition of the finite element subspace Hh that Πh(vS,h · n − vD,h · n) = 0 on Σ, for all
vh ∈ Hh, which is equivalent to saying that Πh(vS,h ·n)−vD,h ·n = 0 on Σ, for all vh ∈ Hh. Then, since
Πh : L2(Σ)→ ΦD,h is the orthogonal projector, the discrete scheme (3.10) becomes conforming if only
if the discrete normal components on Σ from HS,h are contained in the discrete normal components
on Σ from HD,h, i.e., if only if ΦS,h ⊆ ΦD,h.

In what follows we need to consider some hypotheses concerning the subspaces involved in the
discrete formulation (3.10), the linear operator B, and the existence of a stable lifting operator from
HD,h onto ΦD,h. The set of assumptions is as follows.

(H.7) there holds P0(Σh) ⊆ ΦD,h, where P0(Σh) is the space of piecewise constant functions defined
on Σh.

(H.8) there exists β̃ > 0, independent of h, such that

sup
vh∈Hh
vh 6=0

[
B(vh), qh

]
Q′×Q∥∥vh∥∥H ≥ β̃

∥∥qh∥∥Q ∀qh ∈ Qh,0.

(H.9) divHD,h is contained in the restriction of the discrete subspace Qh to ΩD.

(H.10) there exists an operator Lh : ΦD,h → HD,h, satisfying the following properties:

a) there exists a constant C > 0, independent of h, such that∥∥Lh(φD,h)
∥∥

div,ΩD
≤ C

∥∥φD,h

∥∥
−1/2,00,Σ

∀φD,h ∈ ΦD,h.

b) for all φD,h ∈ ΦD,h there holds

Lh(φD,h) · n = φD,h on Σ.

We say in this case that Lh is a stable discrete lifting of ΦD,h.
It is easy to prove that (H.7) and a classical duality argument imply the following approximation

property of the projector Πh:∥∥ξ −Πh(ξ)
∥∥
−1/2,00,Σ

≤ Ch1/2
∥∥ξ∥∥

0,Σ
∀ ξ ∈ L2(Σ) . (3.11)

Moreover, employing Sobolev interpolation estimates we find that (see, e.g. [16, Proof of Lemma 4.8])∥∥ξ −Πh(ξ)
∥∥

0,Σ
≤ C h1/2

∥∥ξ∥∥
1/2,Σ

∀ ξ ∈ H1/2(Σ) . (3.12)

We now establish the first result of this section.
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Lemma 3.4. Let vh := (vS,h,vD,h) ∈ Vh :=
{

vh ∈ Hh :
[
B(vh), qh

]
Q′×Q = 0 ∀qh ∈ Qh,0

}
.

Then, divvD,h = 0 on ΩD.

Proof. By definition of the linear operator B we get

−
(
qh, divvS,h

)
0,ΩS
−
(
qh, divvD,h

)
0,ΩD

= 0 ∀qh ∈ Qh,0.

Also, (H.7) and the orthogonalilty condition satisfied by Πh imply

0 =
〈
Πh(vS,h · n− vD,h · n), 1

〉
Σ

=
〈
vS,h · n− vD,h · n, 1

〉
Σ

=
(
1, divvS,h

)
0,ΩS

+
(
1,divvD,h

)
0,ΩD

,

which, together with the decomposition Qh = Qh,0 ⊕R, yield

−
(
qh,divvS,h

)
0,ΩS
−
(
qh,divvD,h

)
0,ΩD

= 0 ∀qh ∈ Qh.

In particular,
(
qh,divvD,h

)
0,ΩD

= 0, for all qh belonging to the restriction of Qh to ΩD, and hence

(H.9) and the foregoing identity give divvD,h = 0 on ΩD.

The next result establishes the well-posedness of our discrete scheme (3.10).

Lemma 3.5. There exists a unique solution (uh, ph) ∈ Hh × Qh,0 of the nonconforming discrete
scheme (3.10). In addition, there exists C > 0, independent of h, such that∥∥(uh, ph)

∥∥
H×Q ≤ C

{∥∥fS

∥∥
0,ΩS

+
∥∥fD

∥∥
0,ΩD

}
.

Proof. We first recall from Lemma 2.8 that the nonlinear operator A is Lipschitz continuous in H̃.
Also, it is clear from Lemma 3.4 that Vh ⊆ H1

ΓS
(ΩS) × HΓD

(div0; ΩD). Then, given zh ∈ Hh, we
know from Lemma 2.8 that the nonlinear operator A(zh + ·) is strongly monotone in Vh, and hence
the nonlinear operator A satisfies (H.5) and (H.6) (cf. Section 3.1). Therefore, noting also that (H.4)
follows from (H.8), the proof becomes a straightforward application of Theorem 3.1.

We now show the a priori error estimate for the primal-mixed formulation (2.14) and the Galerkin
scheme (3.10).

Lemma 3.6. Let (u, p) ∈ H × Q and (uh, ph) ∈ Hh × Qh,0 be the unique solutions, guaranteed by
Theorem 2.2 and Lemma 3.5 of the continuous problem (2.14) and its nonconforming discrete scheme
(3.10), respectively. Then there exists C > 0, independent of h, such that

∥∥(u− uh, p− ph)
∥∥
H×Q ≤ C

{
inf

vh∈Hh

∥∥u− vh
∥∥
H

+ inf
qh∈Qh,0

∥∥p− qh∥∥Q + h1/2
∥∥pD −Πh(pD)

∥∥
0,Σ

}
.

Proof. Applying Theorem 3.2 we have the estimate

∥∥(u− uh, p− ph)
∥∥
H×Q ≤ C1

{
inf

vh∈Hh

∥∥u− vh
∥∥
H

+ inf
qh∈Qh,0

∥∥p− qh∥∥Q (3.13)

+ sup
vh∈Hh
vh 6=0

[
F −A(u)−B′(p),vh

]
H′×H∥∥vh∥∥H

}
,

where C1 > 0 is a constant independent of h. Now, we just need to bound the consistency term on the
right hand side of the above inequality. To this end, we proceed as in [30] and let P0 : L2(Σ)→ P0(Σh)
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be the orthogonal projector and P0 : L2(Σ) → P0(Σh) its vector version. Recalling (2.8), we note
that pD ∈ H1(ΩD). Then the consistency error term in (3.13) yields[

F −A(u)−B′(p),vh
]
H′×H =

〈
(vS,h − vD,h) · n, pD

〉
Σ
∀vh ∈ Hh. (3.14)

Now, given vh ∈ Hh, we first observe that〈
(vS,h − vD,h) · n, pD

〉
Σ

=
〈
(vS,h − vD,h) · n, pD

〉
Σ
−
〈
Πh(vS,h · n− vD,h · n), pD

〉
Σ

=
〈
(vS,h − vD,h) · n, pD

〉
Σ
−
〈
Πh(vS,h · n)− vD,h · n, pD

〉
Σ

=
〈
vS,h · n, pD

〉
Σ
−
〈
Πh(vS,h · n), pD

〉
Σ

=
〈
vS,h · n, pD −Πh(pD)

〉
Σ
.

Further, from (H.7) we find that for all v ∈ H1/2(Σ) there holds〈
P0(vS,h · n), v −Πh(v)

〉
Σ

=
〈
P0(vS,h · n), v

〉
Σ
−
〈
P0(vS,h · n),Πh(v)

〉
Σ

=
〈
P0(vS,h · n), v

〉
Σ
−
〈
Πh (P0(vS,h · n)), v

〉
Σ

= 0,

that is,
〈
P0(vS,h · n), v −Πh(v)

〉
Σ

= 0 ∀v ∈ H1/2(Σ). Then, taking in particular v = pD|Σ, we obtain
from the foregoing identity〈

(vS,h − vD,h) · n, pD

〉
Σ

=
〈
vS,h · n, pD −Πh(pD)

〉
Σ
−
〈
P0(vS,h · n), pD −Πh(pD)

〉
Σ

=
〈
vS,h · n− P0(vS,h · n), pD −Πh(pD)

〉
Σ
.

In turn, since P0(vS,h) · n ∈ P0(Σh), we deduce that〈
P0(vS,h · n)−P0(vS,h) · n, v −Πh(v)

〉
Σ

= 0 ∀v ∈ H1/2(Σ) ,

whence 〈
(vS,h − vD,h) · n, pD

〉
Σ

=
〈
vS,h · n−P0(vS,h) · n, pD −Πh(pD)

〉
Σ
.

Then, from the normal trace theorem in H1(ΩS), using a well known approximation estimate for
piecewise constant functions and the trace theorem in H1(ΩS), we deduce that〈

(vS,h − vD,h) · n, pD

〉
Σ
≤
∥∥vS,h · n−P0(vS,h) · n

∥∥
0,Σ

∥∥pD −Πh(pD)
∥∥

0,Σ

≤ Ch1/2
∥∥vS,h

∥∥
1/2,00,Σ

∥∥pD −Πh(pD)
∥∥

0,Σ

≤ C̃h1/2
∥∥vS,h

∥∥
1,ΩS

∥∥pD −Πh(pD)
∥∥

0,Σ
,

that is, 〈
(vS,h − vD,h) · n, pD

〉
Σ
≤ C̃h1/2

∥∥vS,h

∥∥
1,ΩS

∥∥pD −Πh(pD)
∥∥

0,Σ
,

with C̃ > 0 a constant independent of h. Thus, dividing the previous inequality by
∥∥vS,h

∥∥
1,ΩS

, noting

that
∥∥vS,h

∥∥
1,ΩS
≤
∥∥vh∥∥H, and taking supremum on Hh, we conclude that

sup
vh∈Hh
vh 6=0

〈
(vS,h − vD,h) · n, pD

〉
Σ∥∥vh∥∥H ≤ C̃h1/2

∥∥pD −Πh(pD)
∥∥

0,Σ
.

The result follows by combining the previous inequality with (3.13) after replacing (3.14) back into
(3.13).
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The next result establishes an approximation property of the discrete space Hh.

Lemma 3.7. There exists C > 0, independent of h, such that for each v := (vS,vD) ∈ H there holds

inf
vh∈Hh

∥∥v − vh
∥∥
H
≤ C

{
inf

vS,h∈HS,h

∥∥vS − vS,h

∥∥
1,ΩS

+ inf
vD,h∈HD,h

∥∥vD − vD,h

∥∥
div,ΩD

+ h1/2
∥∥vS · n−Πh(vS · n)

∥∥
0,Σ

}
,

with C > 0 a constant independent of h.

Proof. This proof is provided in [30, Proposition 4.1]. In what follows we describe the main aspects of
it. Let ΠS,h : H1

ΓS
(ΩS) → HS,h and ΠD,h : HΓD

(div; ΩD) → HD,h be the orthogonal projectors with

respect to the inner products L2(ΩS) and L2(ΩD), respectively. Then, given v := (vS,vD) ∈ H, we
set

vS,h := ΠS,h(vS) and vD,h := ΠD,h(vD)− Lh (ΠD,h(vD) · n−Πh(ΠS,h(vS) · n)) ,

where Lh : ΦD,h → HD,h is the stable discrete lifting defined in (H.10). It follows precisely from
(H.10) that

vD,h · n =ΠD,h(vD) · n− Lh (ΠD,h(vD) · n−Πh(ΠS,h(vS) · n)) · n
=Πh(ΠS,h(vS) · n) = Πh(vS,h · n) on Σ,

which shows that the pair vh := (vS,h,vD,h) belongs to Hh. Next, the triangle inequality and (H.10)
again imply that∥∥v − vh

∥∥
H

=
∥∥vS − vS,h

∥∥
1,ΩS

+
∥∥vD − vD,h

∥∥
div,ΩD

≤
∥∥vS,h −ΠS,h(vS)

∥∥
1,ΩS

+
∥∥vD −ΠD,h(vD)

∥∥
div,ΩD

+
∥∥Lh(ΠD,h(vD) · n−Πh(ΠS,h(vS) · n))

∥∥
div,ΩD

≤
∥∥vS,h −ΠS,h(vS)

∥∥
1,ΩS

+
∥∥vD −ΠD,h(vD)

∥∥
div,ΩD

+ C
∥∥ΠD,h(vD) · n−Πh(ΠS,h(vS) · n)

∥∥
−1/2,00,Σ

.

Now, since vS · n = vD · n on Σ, using the normal trace theorem in H(div; ΩD) we get∥∥ΠD,h(vD) · n−Πh(ΠS,h(vS) · n)
∥∥
−1/2,00,Σ

≤
∥∥vD · n−ΠD,h(vD) · n

∥∥
−1/2,00,Σ

+
∥∥vS · n−Πh(vS,h · n)

∥∥
−1/2,00,Σ

≤ C
∥∥vD −ΠD,h(vD)

∥∥
div,ΩD

+
∥∥vS · n−Πh(vS,h · n)

∥∥
−1/2,00,Σ

,

whence, adding and substracting appropiate terms, employing the estimate (3.11) twice, and applying
the trace theorem in H1(ΩS), we find that∥∥vS · n−Πh(ΠS,h(vS) · n)

∥∥
−1/2,00,Σ

≤
∥∥(I−Πh)(vS · n−Πh(vS · n))

∥∥
−1/2,00,Σ

+
∥∥(I−Πh)(vS · n− vS,h · n)

∥∥
−1/2,00,Σ

+
∥∥vS · n− vS,h · n

∥∥
−1/2,00,Σ

≤ Ch1/2
{∥∥vS · n−Πh(vS · n)

∥∥
0,Σ

+
∥∥vS · n− vS,h · n

∥∥
0,Σ

}
+
∥∥vS · n− vS,h · n

∥∥
−1/2,00,Σ

≤ C̃
{∥∥vS − vS,h

∥∥
1,ΩS

+ h1/2
∥∥vS −Πh(vS · n)

∥∥
0,Σ

}
,

which completes the proof.

We now summarize the unique solvability and the Strang-type a priori error estimate for the
nonconforming discrete scheme (3.10) in the following theorem.
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Theorem 3.3. There exists a unique (uh, ph) ∈ Hh ×Qh,0 solution of (3.10), and there holds

∥∥(u− uh, p− ph)
∥∥
H×Q ≤ C

{
infvS,h∈HS,h

∥∥uS − vS,h

∥∥
1,ΩS

+ infvD,h∈HD,h

∥∥uD − vD,h

∥∥
div,ΩD

+ infqh∈Qh,0

∥∥p− qh∥∥Q
+ h1/2

(∥∥pD −Πh(pD)
∥∥

0,Σ
+
∥∥uS · n−Πh(uS · n)

∥∥
0,Σ

)}
,

(3.15)

where C > 0 is a constant independent of h.

Proof. The proof follows from a straightforward application of Lemmas 3.5, 3.6 and 3.7.

3.3 Particular choices of finite element subspaces

In this section we specify concrete 2D examples of finite element subspaces of H1
ΓS

(ΩS), HΓD
(div,ΩD)

and L2
0(Ω) satisfying (H.7)-(H.10). Given T ∈ TS, we first define the local Bernardi-Raugel space (see

[6]), denoted by BR(T ), as

BR(T ) := P1(T )⊕ span
{
η2η3n1, η1η3n2, η1η2n3

}
, (3.16)

where η1, η2 and η3 are the baricentric coordinates of the triangle T , and n1,n2 and n3 are the three
unit normal components to the opposite sides of its corresponding vertices, which point outwards on
∂T . In turn, given T ∈ TD, we let RT (T ) be the local Raviart-Thomas space of lowest order, that is

RT0(T ) := P0(T )⊕ P0(T )x. (3.17)

where x denotes a generic vector of R2. Also, we consider the local Brezzi-Douglas-Marini space of
order one, which is given by

BDM1(T ) := P1(T ). (3.18)

In what follows, we describe two different examples of finite element subspaces for the Stokes and Darcy
domains in terms of the local spaces defined in (3.16), (3.17) and (3.18), with their corresponding finite
element subspaces approximating the pressure field in Ω.

3.3.1 Bernadi-Raugel + Raviart-Thomas

The subspaces HS,h, HD,h, Hh (cf. (3.9)), and Qh,0 of H1
ΓS

(ΩS), HΓD
(div; ΩD), H̃, and L2

0(Ω),
respectively, are defined as

HS,h :=
{

vS,h ∈ [C(ΩS)]2 : vS,h|T ∈ BR(T ) ∀T ∈ TS

}
∩H1

ΓS
(ΩS),

HD,h :=
{

vD,h ∈ H(div; ΩD) : vD,h|T ∈ RT0(T ) ∀T ∈ TD

}
∩HΓD

(div; ΩD),

Hh :=
{

vh := (vS,h,vD,h) ∈ HS,h ×HD,h : Πh(vS,h · n− vD,h · n) = 0 on Σ
}
, (3.19)

and

Qh,0 :=
{
qh ∈ L2(Ω) : qh|T ∈ P0(T ) ∀T ∈ Th

}
∩ L2

0(Ω). (3.20)
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From these particular choices of finite element subspaces, and taking into account the definition of the
local spaces BR and RT (cf. (3.16) and (3.17), respectively), we observe that the discrete spaces ΦS,h

and ΦD,h become

ΦS,h :=
{
φS,h ∈ C(Σh) : φS,h|e ∈ P1(e) ∀e ∈ Σh

}
and

ΦD,h :=
{
φD,h : Σh → R : φD,h|e ∈ P0(e) ∀e ∈ Σh

}
,

that is, ΦS,h is the space of continuous piecewise linear functions defined on Σh while ΦD,h is the space
of piecewise constant functions defined on Σh. Note that the discrete space ΦS,h is not contained in
ΦD,h, which means that the discrete scheme (3.10) is nonconforming in this case. In turn, it is clear
that (H.7) and (H.9) are satisfied. In addition, (H.10) has been shown in the 2D case (see [30])
without any requeriment on the meshes for both the Raviart-Thomas subspace of lowest order (cf.
(3.17)) and the Brezzi-Douglas-Marini subspaces for any nonnegative integer l ≥ 1. Finally, in order
to verify (H.8) we proceed similarly as in [19]. To this end, we let ΠS : H1

ΓS
(ΩS) → HS,h be the

Bernadi-Raugel interpolation operator (cf. [6], [23]), which is linear and bounded with respect to the
H1(ΩS)-norm. More precisely, given vS ∈ H1

ΓS
(ΩS), this interpolation operator is characterized by the

following identities: ∫
e
ΠS(vS) · ne =

∫
e
vS · ne, for each edge e of TS, (3.21)

and

ΠS(vS(a)) = Ih(vS(a)) for each node a of TS,

where Ih is the Clément regularization operator defined in [23, Appendix A, A.3]. Note that, as a
consequence of (3.21), there holds∫

ΩS

qhdivΠS(vS) =

∫
ΩS

qhdivvS ∀qh in the restriction of Qh to ΩS. (3.22)

Equivalently, if PS denotes the L2(ΩS)−orthogonal projection onto the restriction of Qh to ΩS, then
the relation (3.22) can be rewritten as

PS(div(ΠS(vS))) = PS(divvS) ∀vS ∈ H1
ΓS

(ΩS). (3.23)

In turn, we let ΠD : H1
ΓD

(ΩD)→ HD,h be the Raviart-Thomas interpolation operator of lowest order,

which, given vD ∈ H1
ΓD

(ΩD), is characterized by:∫
e
ΠD(vD) · ne =

∫
e
vD · ne, for each edge e of TD. (3.24)

Similarly as for ΠS, we find that (3.24) yields∫
ΩD

qhdivΠD(vD) =

∫
ΩD

qhdivvD ∀qh in the restriction of Qh to ΩD. (3.25)

Equivalently, if PD denotes the L2(ΩD)−orthogonal projection onto the restriction of Qh to ΩD, then
the relation (3.25) can be rewritten as

div(ΠD(vD)) = PD(divvD) ∀vD ∈ H1
ΓD

(ΩD). (3.26)
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In addition, we know that the Raviart-Thomas interpolation operator ΠD satisfies the following ap-
proximation property: For any vD ∈ H1(ΩD), there exists C > 0, independent of h, such that∥∥vD −ΠD(vD)

∥∥
0,ΩD

≤ ChD

∥∥vD

∥∥
1,ΩD

. (3.27)

The next result shows that (H.8) also holds.

Lemma 3.8. There exists β1 > 0, independent of h, such that

sup
vh∈Hh
vh 6=0

[
B(vh), qh

]
Q′×Q∥∥vh∥∥H ≥ β1

∥∥qh∥∥Q ∀qh ∈ Qh,0.

Proof. Given qh ∈ Qh,0, a well-known result (see, e.g. [23]) implies the existence of z ∈ H1
0(Ω) such

that −divz = qh in Ω and
∥∥z∥∥

1,Ω
≤ C

∥∥qh∥∥0,Ω
. We define

wS,h := ΠS(wS) ∈ HS,h and wD,h := ΠD(wD) ∈ HD,h,

where wS := z|ΩS
and wD := w|ΩD

. It is clear that w := (wS,wD) belongs to H. This fact together
with (3.21) and (3.24) yield∫

e
wS,h · ne =

∫
e
wS · ne =

∫
e
wD · ne =

∫
e
wD,h · ne ∀e ∈ Σh. (3.28)

Now, since Πh : L2(Σ) → ΦD,h is the orthogonal projector and ΦD,h becomes the piecewise constant
functions, we obtain that ∫

e

{
ξ −Πh(ξ)

}
= 0 ∀ξ ∈ L2(Σ), ∀e edge of Σ.

Then (3.28) and the foregoing identity applied to ξ = wS,h · n ∈ L2(Σ) imply that∫
e

Πh(wS,h · n) =

∫
e
wS,h · n =

∫
e
wD,h · n ∀e edge of Σ,

and combining this last relation with the fact that Πh(wS,h · n)−wD,h · n ∈ P0(Σh), we deduce that
Πh(wS,h ·n) = wD,h ·n on Σ, that is the pair wh := (wS,h,wD,h) belongs to Hh. Further, (3.23) yields

PS

(
divwS,h

)
= PS

(
divwS

)
= PS(−qh) = −qh in ΩS,

and (3.26) implies that

divwD,h = PD

(
divwD

)
= PD(−qh) = −qh in ΩD.

It follows that [
B(wh), qh

]
Q′×Q =

∥∥qh∥∥2

Q
. (3.29)

On the other hand, since the operator ΠS is bounded, there holds∥∥wS,h

∥∥
1,ΩS
≤ C

∥∥wS

∥∥
1,ΩS
≤ C

∥∥z∥∥
1,Ω
≤ c1

∥∥qh∥∥0,Ω
,

and applying (3.27) we have that∥∥wD,h

∥∥
div,ΩD

=
∥∥wD,h

∥∥
0,ΩD

+
∥∥divwD,h

∥∥
0,ΩD

≤ Ch
∥∥wD

∥∥
1,ΩD

+
∥∥wD

∥∥
0,ΩD

+
∥∥qh∥∥0,Ω

≤ c2

∥∥qh∥∥0,Ω
,
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where we used here, from the previous estimate, that
∥∥wD

∥∥
1,ΩD

≤
∥∥z∥∥

1,Ω
≤ C

∥∥qh∥∥0,Ω
. Therefore,

we have that
∥∥wh

∥∥
H
≤ c3

∥∥qh∥∥0,Ω
, and using (3.29) we conclude that

sup
vh∈Hh
vh 6=0

[
B(vh), qh

]
Q′×Q∥∥vh∥∥H ≥

[
B(wh), qh

]
Q′×Q∥∥wh

∥∥
H

≥ 1

c3

∥∥qh∥∥0,Ω
,

with c3 > 0 a constant independent of h.

Finally, we recall from [23] (see also [6]) an approximation property for the Bernadi-Raugel inter-
polation operator ΠS, that is: for each vS ∈ H2(ΩS), there exists C > 0, independent of hS, such
that ∥∥vS −ΠS(vS)

∥∥
1,ΩS
≤ ChS

∥∥vS

∥∥
2,ΩS

. (3.30)

We are now in a position to establish the main result of this section.

Theorem 3.4. Let Hh and Qh,0 be the finite element subspaces defined by (3.19) and (3.20), respec-
tively. Then the nonconforming discrete scheme (3.10) has a unique solution (uh, ph) ∈ Hh × Qh,0

and there exists c1 > 0, independent of h, such that∥∥(uh, ph)
∥∥
H×Q ≤ c1

{∥∥Fh∥∥H′ + ∥∥Gh∥∥Q′},
where Fh := F |Hh

and Gh := G|Qh,0
. In addition, assume that the unique solution (u, p) ∈ H×Q of

the primal-mixed formulation (2.14) is such that uS ∈ H2(ΩS), uS · n|Σ ∈ H1/2(Σ), uD ∈ H1(ΩD),
div wD ∈ H1(ΩD), and p ∈ H1(Ω). Then there exists c2 > 0, independent of h, such that∥∥(u−uh, p− ph)

∥∥
H×Q ≤ c2

{
hS

∣∣uS

∣∣
2,ΩS

+ hD

(∣∣uD

∣∣
1,ΩD

+
∣∣divuD

∣∣
1,ΩD

)
+ h
∣∣p∣∣

1,Ω
+ h ‖uS ·n‖1/2,Σ

}
.

Proof. The proof follows from a straightforward application of Theorem 3.3 and the approximation
properties of the subspaces and projectors involved. In particular, (3.12) allows to estimate the
expressions

∥∥pD −Πh(pD)
∥∥

0,Σ
and

∥∥uS · n−Πh(uS · n)
∥∥

0,Σ
in (3.15).

3.3.2 Bernadi-Raugel + Brezzi-Douglas-Marini

The specific subspaces HS,h,HD,h, Hh (cf. (3.9)), and Qh,0 of H1
ΓS

(ΩS), HΓD
(div; ΩD), H̃, and L2

0(Ω),
respectively, are

HS,h :=
{

vS,h ∈
[
C(ΩS)

]2
: vS,h|T ∈ BR(T ) ∀T ∈ TS

}
∩H1

ΓS
(ΩS),

HD,h :=
{

vD,h ∈ H(div; ΩD) : vD,h|T ∈ BDM1(T ) ∀T ∈ TD

}
∩HΓD

(div; ΩD),

Hh :=
{

vh := (vS,h,vD,h) ∈ HS,h ×HD,h : Πh(vS,h · n− vD,h · n) = 0 on Σ
}
, (3.31)

and

Qh,0 :=
{
qh ∈ L2(Ω) : qh|T ∈ P0(T ) ∀T ∈ Th

}
∩ L2

0(Ω). (3.32)

We observe that the discrete space ΦS,h is formed by continuous piecewise quadratic functions while the
discrete space ΦD,h becomes the piecewise linear functions. Therefore, the discrete mixed formulation
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(3.10) is nonconforming as well. In turn, (H.7) holds because P0(Σh) ⊆ P1(Σh) = ΦD,h. Further, it
is clear that (H.9) is satisfied. Also, we know from [30, Appendix] that (H.10) is satisfied in the 2D
case with no requeriment on the meshes around Σ for the Raviart-Thomas subspace of lowest order
(cf. (3.17)) and for the Brezzi-Douglas-Marini subspace of any nonnegative integer order.

On the other hand, in order to prove the discrete inf-sup condition for the linear operator B (cf.
(H.8)), we introduce the BDM interpolation operator ΠD,h : H1

ΓD
(ΩD)→ HD,h (cf. [8]) which, given

vD ∈ H1
ΓD

(ΩD), is characterized by the following indentity:∫
e
(vD −ΠD,h(vD)) · ne p = 0 ∀p ∈ P1(e) ∀e edge of TD. (3.33)

Moreover, if we denote by PD the L2(ΩD)-orthogonal onto the restriction of Qh to ΩD, (3.33) implies
that

divΠD,h(vD) = PD(divvD) ∀vD ∈ H1
ΓD

(ΩD). (3.34)

We now recall from [9] an approximation property of the interpolation operator ΠD,h: there exists
C > 0, independent of h, such that for each vD ∈ H1(ΩD) there holds∥∥vD −ΠD,h(vD)

∥∥
0,ΩD

≤ ChD

∥∥vD

∥∥
1,ΩD

. (3.35)

In addition, we recall from [30, Appendix] the following result summarizing the properties of a stable
lifting.

Lemma 3.9. There exists an operator Lh : HD,h → ΦD,h with the properties indicated in (H.10) (cf.
Section 3.2). In addition, there holds

divL(φh) =
1

|Σ|

∫
Σ
φh ∀φh ∈ ΦD,h. (3.36)

Proof. See [30, Appendix].

The hypothesis (H.8) is proved next.

Lemma 3.10. There exists β2 > 0, independent of h, such that

sup
vh∈Hh
vh 6=0

[
B(vh), qh

]
Q′×Q∥∥vh∥∥H ≥ β2

∥∥qh∥∥Q ∀qh ∈ Qh,0.

Proof. Let qh ∈ L2
0(Ω). We know that there exists z ∈ H1

0(Ω) such that

−divz = qh in Ω and
∥∥z∥∥

1,Ω
≤ C

∥∥qh∥∥0,Ω
. (3.37)

We let wS := z|ΩS
, wD := z|ΩD

, and then we define

wS,h := ΠS(wS) ∈ HS,h and wD,h := ΠD,h(wD) + Lh
(
ΠhwS,h · n−ΠD,h(wD) · n

)
∈ HD,h.

It is clear that w := (wS,wD) ∈ H, and (H.10) implies that the pair wh := (wS,h,wD,h) belongs to
Hh. In addition, (3.23) and (3.34) yield

PS

(
divwS,h

)
= PS

(
divΠS(wS)

)
= PS

(
divwS

)
= PS(−qh) = −qh in ΩS,
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and

divΠD,h(wD) = PD(divwD) = PD(−qh) = −qh in ΩD.

Next, [
B(wh), qh

]
Q′×Q =

∥∥qh∥∥2

0,Ω
−
(
qh, divLh

(
ΠhwS,h · n−ΠD,h(wD) · n

))
0,ΩD

. (3.38)

Moreover, from (3.36) (cf. Lemma 3.9) we get

divLh
(
ΠhwS,h · n−ΠD,h(wD) · n

)
=

1

|Σ|

∫
Σ

{
ΠhwS,h · n−ΠD,h(wD) · n

}
,

whence, using (3.21), (3.33) and the fact that w := (wS,wD) belongs to H, we find for each e edge of
Σ that ∫

e
ΠhwS,h · n =

∫
e
wS,h · n =

∫
e
wS · n =

∫
e
wD · n =

∫
e
ΠD,h(wD) · n,

which proves that

divLh
(
ΠhwS,h · n−ΠD,h(wD) · n

)
= 0.

The foregoing relation and (3.38) lead to[
B(wh), qh

]
Q′×Q =

∥∥qh∥∥2

0,Ω
. (3.39)

On the other hand, the boundedness of the interpolation operator ΠS and (3.37) imply that∥∥wS,h

∥∥
1,ΩS
≤ C

∥∥wS

∥∥
1,ΩS
≤ C

∥∥z∥∥
1,Ω
≤ c1

∥∥qh∥∥0,Ω
. (3.40)

In turn, since divwD = divΠD,h(wD) = −qh we have that∥∥wD −ΠD,h(wD)
∥∥

div,ΩD
=
∥∥wD −ΠD,h(wD)

∥∥
0,ΩD

,

so that the above relation, the uniform boundedness of Lh (cf. (H.10)), (3.35) and (3.37) lead to∥∥wD,h

∥∥
div,Ω

≤
∥∥wD −ΠD,h(wD)

∥∥
div,ΩD

+
∥∥wD

∥∥
div,ΩD

+
∥∥Lh (ΠhΠS(wS) · n−ΠD,h(wD) · n)

∥∥
div,ΩD

≤
∥∥wD −ΠD,h(wD)

∥∥
0,ΩD

+
∥∥wD

∥∥
1,ΩD

+ C̃
∥∥ΠhΠS(wS) · n−ΠD,h(wD) · n

∥∥
−1/2,00,Σ

≤ ChD

∥∥wD

∥∥
1,Ω

+
∥∥wD

∥∥
1,ΩD

+ C̃
∥∥ΠhΠS(wS) · n−ΠD,h(wD) · n

∥∥
−1/2,00,Σ

≤ ChD

∥∥z∥∥
1,Ω

+
∥∥z∥∥

1,Ω
+ C̃

∥∥ΠhΠS(wS) · n−ΠD,h(wD) · n
∥∥
−1/2,00,Σ

≤ c2

∥∥qh∥∥Q + C̃
∥∥ΠhΠS(wS) · n−ΠD,h(wD) · n

∥∥
−1/2,00,Σ

,

that is ∥∥wD,h

∥∥
div,ΩD

≤ c2

∥∥qh∥∥Q + C̃
∥∥ΠhΠS(wS) · n−ΠD,h(wD) · n

∥∥
−1/2,00,Σ

. (3.41)

Now, the trace theorems on H1(ΩS) and on H(div; ΩD), the boundedness of Πh and ΠS, and the
estimates (3.35) and (3.37) imply that the second term on the right hand side of (3.41) can be
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bounded as follows∥∥ΠhΠS(wS) · n−ΠD,h(wD) · n
∥∥
−1/2,00,Σ

≤C
∥∥ΠhΠS(wS) · n

∥∥
0,Σ

+
∥∥ΠD,h(wD) · n

∥∥
−1/2,00,Σ

≤C
∥∥ΠS(wS)

∥∥
0,Σ

+ C2

∥∥ΠD(wD)
∥∥

div,ΩD

≤C1

∥∥ΠS(wS)
∥∥

1,ΩS
+ C2

∥∥ΠD(wD)
∥∥

div,ΩD

≤ C̃1

∥∥wS

∥∥
1,Ω

+ C2

∥∥wD −ΠD(wD)
∥∥

0,ΩD
+ C2

∥∥wD

∥∥
div,ΩD

≤ C̃1

∥∥wS

∥∥
1,Ω

+ C̃2hD

∥∥wD

∥∥
1,ΩD

+ C2

∥∥wD

∥∥
1,ΩD

≤C3

∥∥z∥∥
1,Ω
≤ c3

∥∥qh∥∥0,Ω
,

i.e., ∥∥ΠhΠS(wS) · n−ΠD(wD) · n
∥∥
−1/2,00,Σ

≤c3

∥∥qh∥∥0,Ω
.

Replacing this last inequality back into (3.41) and combining the resulting estimate with (3.40) we
can deduce that ∥∥wh

∥∥
H
≤
∥∥wS,h

∥∥
1,ΩS

+
∥∥wD,h

∥∥
div,Ω

≤ c4

∥∥qh∥∥0,Ω
. (3.42)

Thus, from (3.39) and (3.42) we conclude that

sup
vh∈Hh
vh 6=0

[
B(vh), qh

]
Q′×Q∥∥vh∥∥H ≥

[
B(wh), qh

]
Q′×Q∥∥wh

∥∥
H

≥ 1

c4

∥∥qh∥∥Q,
with c4 > 0 a constant independent of h.

Then, by applying again Theorem 3.3 and the approximation properties of the subspaces and
projectors involved, we arrive at the following main result.

Theorem 3.5. Let Hh and Qh,0 be the finite element subspaces defined by (3.31) and (3.32), respec-
tively. Then, the nonconforming Galerkin scheme (3.10) has a unique solution (uh, ph) ∈ Hh ×Qh,0,
and there exists c3 > 0, independent of h, such that∥∥(uh, ph)

∥∥
H×Q ≤ c3

{∥∥Fh∥∥H′ + ∥∥Gh∥∥Q′},
where Fh := F |Hh

and Gh := G|Qh,0
. In addition, assume that the unique solution (u, p) ∈ H×Q of

the primal-mixed formulation (2.14) is such that uS ∈ H2(ΩS), uS · n|Σ ∈ H1/2(Σ), uD ∈ H1(ΩD),
div uD ∈ H1(ΩD), and p ∈ H1(Ω). Then, there exists c4 > 0, independent of h, such that∥∥(u− uh, p− ph)

∥∥
H×Q ≤ c4

{
hS

∥∥uS

∥∥
2,Ω

+ hD

(∣∣uD

∣∣
1,ΩD

+
∣∣divuD

∣∣
1,ΩD

)
+ h
∣∣p∣∣

1,Ω
+ h‖uS · n‖1/2,Σ

}
.

3.3.3 A general Approach

Irrespective of the previous analysis in Sections 3.3.1 and 3.3.2, we remark that the results in [30] can
be extended to the present situation in such a way that (H.8) is simplified as follows:

(H.11) there exists β̃ > 0, independent of h, such that

sup
vh∈H̄h
v 6=0

[
B(vh), qh

]
Q′×Q∥∥vh∥∥H ≥ β̃

∥∥qh∥∥Q ∀qh ∈ Q̄h,
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Stokes Velocity Press. Darcy Vel. Press. Order

MINI P1+bubbles Pcont
1 BDM1 P1 P0 h

Taylor-Hood, k ≥ 2 Pk Pcont
k−1 BDMk Pk Pk−1 hk

Conf Crouzeix-Raviart P2+bubbles P1 BDM2 P2 P1 h2

Bernardi-Raugel P1+face bubbles P0 BDM1 P1 P0 h

Table 3.1: Coupling of Stokes elements with BDM elements. The superscript cont refers to the demand
of continuity for the discrete pressure space. The bubbles are used for velocities in the MINI and
conformal Crouzeix-Raviart elements: an internal Pd+1(T ) bubble is added to the velocity space on
each element. For the Bernardi-Raugel element, face bubbles are included on all internal faces, but no
bubbles are added on faces lying on Σ. When these bubbles (not needed for stability) are added, the
method stops being a particular case of this class.

Stokes Velocity Press. Darcy Vel. Press. Order

MINI P1+bubbles Pcont
1 RT0 RT0 P0 h

Taylor-Hood, k ≥ 2 Pk Pcont
k−1 RTk−1 RTk−1 Pk−1 hk

Bernardi-Raugel P1+face bubbles P0 RT0 RT0 P0 h

P2-iso-P1 P1(T h/2S ) Pcont
1 BDM1 P1 P0 h

Table 3.2: Coupling of Stokes elements with BDM and RT elements and their order of convergence.
The superscript cont refers to the demand of continuity for the discrete pressure space. The bubbles

are used for velocities in the MINI element. The triangulation T h/2S is a one level refinement of T hS
and P1(T h/2S ) is the space of piecewise linear functions with respect to T h/2S . For the Bernardi-Raugel
element, face bubbles are only included on the internal faces. Adding them to faces on Σ does not
change the convergence order. In that case Bernardi-Raugel can be coupled with BDM1 as well.

where

H̄h :=
[
HS,h ∩H1

0(ΩS)
]
×
[
HD,h ∩H0(div; ΩD)

]
and

Q̄h :=
{
qh ∈ Qh :

∫
ΩS

qh = 0,

∫
ΩD

qh = 0
}
.

Indeed, it was shown in [30] that one can combine either the RT-element or the BDM-element of order
k, with any stable FEM for Stokes of the same order, to obtain a global (conforming as in Table 3.1
or nonconforming as in Table 3.2) coupled scheme of order of convergence k. In particular, when the
BR elements are employed in the fluid, the corresponding face bubbles do not need to be considered
on the faces lying on Σ, which yields a conforming scheme (see [30, Proposition 3.1] for the respective
proof). Note also that, in spite of the foregoing modification, the associated approximation property
remains unaltered.
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4 Numerical Results

In this section we present numerical examples in 2D illustrating the good performance of the discrete
scheme (3.10) on a set of uniform triangulations of the domains ΩS and ΩD. We begin by introducing
additional notations. In what follows, N stands for the number of degree of freedom defining the
corresponding finite element subspaces Hh and Qh,0. Then, given the unique solutions (u, p) :=
((uS,uD), p) ∈ H×Q and (uh, ph) := ((uS,h,uD,h), ph) ∈ Hh ×Qh,0 of the primal-mixed formulation
(2.14) and the discrete scheme (3.10), respectively, the corresponding individual and global errors are
denoted by

e(uS) :=
∥∥uS − uS,h

∥∥
1,ΩS

, e(uD) :=
∥∥uD − uD,h

∥∥
div,ΩD

, and e(p) :=
∥∥p− ph∥∥0,Ω

,

and

e(uS,uD, p) :=
{

e(uS)2 + e(uD)2 + e(p)2
}1/2

.

Also, we let r(uS), r(uD) and r(p) be the experimental rates of convergence given by

r(uS) :=
log(e(uS)/e′(uS))

log(h/h′)
, r(uD) :=

log(e(uD)/e′(uD))

log(h/h′)

and

r(p) :=
log(e(p)/e′(p))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e′, respectively. Further, we let
r(uS,uD, p) be the experimental rate for the total error defined by

r(uS,uD, p) :=
log(e(uS,uD, p)/e

′(uS,uD, p))

log(h/h′)

In the following two sections we present several numerical examples for the nonconforming and con-
forming versions of the discrete scheme (3.10). For both cases, we choose κ = 1, K = I, and consider
the nonlinear function µ : R+ → R+ given by a particular case of the Carreau law for viscoplastic
flows, that is

µ(t) := µ0 + µ1(1 + t2)(β−2)/2 ∀t ∈ R+,

with µ0 = µ1 = 0.5 and β = 1.5. It is easy to check in this case that the assumptions (2.6) and (2.7)
are satisfied with

γ0 = µ0 + µ1

{
|β − 2|

2
+ 1

}
and α0 = µ0.

4.1 A nonconforming case

Here we consider the pair of finite element subspaces Hh and Qh,0 given in Section 3.3.1 (cf. (3.19),
(3.20)), which yields a nonconforming discrete scheme (3.10). In what follows we set

curl q :=

(
∂q

∂x2
,− ∂q

∂x1

)t

.
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In Example 1 we set the regions ΩS := (−1, 1)2\[0, 1)2 and ΩD := (0, 1)2 of R2, and choose the
data fS and fD so that the exact solution is given by the smooth functions

uS(x) := curl
(

3(x2
1 + x2

2)13/3(x2
1 − 1)2(x2

2 − 1)2
)
,

and

p(x) :=


−π

4
cos
(πx1

2

){
x2 +

1

2
− 2 cos2

[
π

2

(
x2 +

1

2

)]}
on ΩS

(x1 − 1)2 sin3 (2π(x2 + 0.5)) on ΩD .

Next, in Example 2 we consider the regions ΩS := (−1, 1)2 \ (−1, 0]2 and ΩD := (−1, 0)2 of R2,
and choose the data fS and fD so that the exact solutions is given by

uS(x) := curl
(

3(x2
1 + x2

2)2/3(x2
1 − 1)2(x2

2 − 1)2
)
,

and

p(x) :=


exp(x1 + x2)x1x2 on ΩS

(x1 + 1)2 sin3 (2π(x2 + 0.5)) on ΩD .

Note that in this example uS becomes singular at the origin.
The numerical results shown below were obtained using a MATLAB code. In Tables 4.1 and 4.2 we

summarize the convergence history of the discrete primal-mixed scheme (3.10) as applied to Examples
1 and 2, for sequences of quasi-uniform triangulations of the domains. We observe in Table 4.1, looking
at the corresponding experimental rates of convergence, that the O(h) predicted by Theorem 3.4 is
attained by all the unknowns in Example 1. In addition, we notice that the dominant error is given
by e(uD). The behavior of the experimental rates of convergence can be also checked from Figure 4.1,
where we display the mesh size h and the errors e(uS), e(uD) and e(p) versus the degrees of freedom
N . In particular, we realize there that e(p) is quite below the other individual errors and that, in spite
of its convergence slower than O(h) at the beginning, it rapidly stabilizes around that order later on.
Concerning Example 2, we note on the contrary in Table 4.2 that r(uS) lies around 1/2 whereas r(p)
shows large oscillations, which is certainly due to the singular behaviour of the corresponding exact
solution. However, r(uD) does not seem to be affected by the lack of regularity of uS since it behaves
always as O(h). The foregoing facts are also observed in Figure 4.4, where we display the mesh size h
and the errors e(uS), e(uD) and e(p) versus the degrees of freedom N . This example is certainly very
suitable to explore in the future the application of an adaptive algorith based on a posteriori error
estimates. Indeed, one would expect that by means of this procedure the optimal rates of convergence
would be recovered by all the unknowns. On the other hand, in Figures 4.2, 4.3, 4.5, and 4.6, we
show some components of the approximate (left) and exact (right) solutions. We notice from Figures
4.2 and 4.3 that the piecewise constant functions approximate quite well the pressure in the Darcy
domain ΩD and the interior of the Stokes region ΩS, whereas this approximation deteriorates a bit
near by ∂ΩS\Σ. In turn, in Figures 4.5 and 4.6 we see that the Bernardi-Raugel subspace provides a
quite good approximation of the velocity in the Stokes domain ΩS.

4.2 A conforming case

We now consider the pair of finite element subspaces Hh and Qh,0 given in Section 3.3.2 (cf. (3.31),
(3.32)), but with the modification explained at the end of Section 3.3.3 so that the resulting scheme
(3.10) becomes conforming. Then, for the Example 3 we set the regions ΩS := (−1, 1) × (−1, 0) and
ΩD := (−1, 1)× (0, 1) of R2, and choose the data fS and fD so that the exact solution is given by the
smooth functions

uS(x) := curl
(
sin(πx2 + π/4) sin2(2πx1)(1 + x2)2

)
,
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h N e(uS) r(uS) e(uD) r(uD) e(p) r(p) e(uS,uD, p) r(uS,uD, p)
1/17 12828 3.989E−00 − 5.612E−00 − 2.806E−01 − 6.891E−00 − (5)
1/19 16114 3.509E−00 1.153 5.040E−00 0.967 2.741E−01 0.209 6.147E−00 1.027 (5)
1/21 19882 3.178E−00 0.990 4.491E−00 1.152 2.573E−01 0.635 5.508E−00 1.097 (5)
1/25 28121 2.718E−00 0.896 3.787E−00 0.978 2.003E−01 1.436 4.666E−00 0.951 (5)
1/35 54222 1.915E−00 1.040 2.763E−00 0.937 1.331E−01 1.216 3.365E−00 0.971 (5)
1/45 91170 1.482E−00 1.022 2.072E−00 1.145 1.007E−01 1.109 2.550E−00 1.104 (5)
1/55 135720 1.201E−00 1.049 1.721E−00 0.925 8.112E−02 1.077 2.100E−00 0.966 (5)
1/65 190019 1.017E−00 0.991 1.461E−00 0.982 7.188E−02 0.724 1.782E−00 0.984 (5)
1/75 254402 8.851E−01 0.974 1.244E−00 1.123 6.147E−02 1.093 1.528E−00 1.073 (5)
1/85 325129 7.754E−01 1.057 1.101E−00 0.973 5.173E−02 1.378 1.348E−00 1.001 (5)
1/95 403178 6.953E−01 0.981 9.951E−01 0.913 4.445E−02 1.364 1.215E−00 0.936 (5)
1/105 493751 6.296E−01 0.991 9.021E−01 0.980 4.114E−02 0.773 1.101E−00 0.984 (5)
1/115 592931 5.691E−01 1.111 8.196E−01 1.054 3.650E−02 1.315 9.985E−01 1.073 (5)
1/125 705036 5.246E−01 0.976 7.469E−01 1.113 3.416E−02 0.796 9.134E−01 1.068 (5)

Table 4.1: Example 1, convergence history

h N e(uS) r(uS) e(uD) r(uD) e(p) r(p) e(uS,uD, p) r(uS,uD, p)
1/17 12853 2.856E−00 − 5.560E−00 − 5.160E−01 − 6.272E−00 − (5)
1/19 16108 2.671E−00 0.602 5.059E−00 0.848 4.950E−01 0.372 5.743E−00 0.793 (5)
1/21 19671 2.577E−00 0.359 4.596E−00 0.959 4.854E−01 0.196 5.292E−00 0.817 (5)
1/25 28444 2.313E−00 0.622 3.761E−00 1.151 4.365E−01 0.609 4.437E−00 1.011 (5)
1/35 54513 2.144E−00 0.225 2.774E−00 0.904 5.668E−01 − 3.552E−00 0.661 (5)
1/45 91225 1.767E−00 0.769 2.090E−00 1.127 3.214E−01 2.257 2.756E−00 1.010 (5)
1/55 136347 1.704E−00 0.182 1.724E−00 0.960 3.269E−01 − 2.446E−00 0.595 (5)
1/65 190171 1.597E−00 0.388 1.463E−00 0.982 3.012E−01 0.489 2.187E−00 0.670 (5)
1/75 254577 1.493E−00 0.469 1.257E−00 1.063 3.224E−01 − 1.978E−00 0.701 (5)
1/85 324355 1.427E−00 0.360 1.109E−00 0.997 2.650E−01 1.567 1.827E−00 0.635 (4)
1/95 403975 1.457E−00 − 9.954E−01 0.973 3.119E−01 − 1.792E−00 0.173 (4)
1/105 496126 1.359E−00 0.698 9.007E−01 0.998 2.800E−01 1.079 1.654E−00 0.800 (4)
1/115 595622 1.331E−00 0.229 8.211E−01 1.018 2.895E−01 − 1.590E−00 0.432 (4)
1/125 707479 1.262E−00 0.634 7.532E−01 1.034 2.328E−01 2.614 1.488E−00 0.795 (4)

Table 4.2: Example 2, convergence history

and

p(x) :=


exp(x1 + x2)x1x2 on ΩS

3π

(
1− x2 −

1

π
sin(πx2)

)
sin2(πx1) cos(πx1) on ΩD .

The numerical results shown below were also obtained using a MATLAB code. In Table 4.3 we
summarize the convergence history of the discrete primal-mixed scheme (3.10) as applied to Example
3, for sequences of quasi-uniform triangulations of the domains. Similarly as for Example 1, we observe
there, looking at the corresponding experimental rates of convergence, that the order O(h) predicted
by Theorem 3.5 is attained by all the unknowns. In addition, the individual errors e(uS) and e(uD)
are the dominant ones in this example. This fact is even more clear in Figure 4.7 where one sees that
e(uS) and e(uD) are quite above e(p). Moreover, we observe there that e(p) seems to converge a bit
faster than O(h) at the beginning but then it rapidly stabilizes around that order. Finally, in Figures
4.8 and 4.9 we show some components of the approximate (left) and exact (right) solutions for this
example. In particular, we remark that the Raviart-Thomas subspace reconstructs quite accurately
the velocity in the porous medium ΩD.
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Figure 4.1: Example 1, h and errors versus degree of freedom N

Figure 4.2: Example 1, Stokes pressure with N = 54222
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Figure 4.3: Example 1, Darcy pressure with N = 54222
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Figure 4.4: Example 2, h and errors versus degree of freedom N
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Figure 4.5: Example 2, first component of the Stokes velocity with N = 54513

Figure 4.6: Example 2, second component of the Stokes velocity with N = 54513
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h N e(uS) r(uS) e(uD) r(uD) e(p) r(p) e(uS,uD, p) r(uS,uD, p)
1/32 7923 6.372E−00 − 1.260E+01 − 6.352E−01 − 1.413E+01 − (6)
1/64 31203 3.188E−00 0.999 6.319E−00 0.996 2.411E−01 1.398 7.082E−00 0.997 (5)
1/96 69843 2.124E−00 1.002 4.215E−00 0.999 1.472E−01 1.216 4.722E−00 0.999 (5)
1/128 123843 1.592E−00 1.001 3.162E−00 0.999 1.062E−01 1.136 3.542E−00 1.000 (5)
1/160 193203 1.274E−00 1.001 2.530E−00 1.000 8.292E−02 1.107 2.833E−00 1.000 (5)
1/192 277923 1.061E−00 1.001 2.108E−00 1.000 6.813E−02 1.077 2.361E−00 1.000 (5)
1/224 378003 9.094E−01 1.001 1.807E−00 1.000 5.776E−02 1.071 2.024E−00 1.000 (5)
1/256 493443 7.956E−01 1.001 1.581E−00 1.000 5.017E−02 1.056 1.771E−00 1.000 (5)
1/288 624243 7.072E−01 1.001 1.406E−00 1.000 4.433E−02 1.050 1.574E−00 1.000 (5)
1/320 770403 6.364E−01 1.001 1.265E−00 1.000 3.973E−02 1.041 1.417E−00 1.000 (5)
1/352 931923 5.785E−01 1.001 1.150E−00 1.000 3.597E−02 1.042 1.288E−00 1.000 (5)
1/384 1108803 5.303E−01 1.001 1.054E−00 1.000 3.288E−02 1.034 1.180E−00 1.000 (4)

Table 4.3: Example 3, convergence history
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Figure 4.7: Example 3, h and errors versus degree of freedom N
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Figure 4.8: Example 3, first component of the Darcy velocity with N = 31203

Figure 4.9: Example 3, second component of the Darcy velocity with N = 31203
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[21] G.N. Gatica, R. Oyarzúa and F.-J. Sayas, Convergence of a family of Galerkin discretiza-
tions for the Stokes-Darcy coupled problem. Numerical Methods for Partial Differential Equations,
vol. 27, 3, pp. 721-748, (2011).
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2

MA)

PRE-PUBLICACIONES 2014 - 2015

2014-25 Raimund Bürger, Sarvesh Kumar, Ricardo Ruiz-Baier: Discontinuous finite
volume element discretization for coupled flow-transport problems arising in models of
sedimentation

2014-26 Greg Barber, Muhammad Faryad, Akhlesh Lakhtakia, Thomas Mallouk,
Peter Monk, Manuel Solano: Buffer layer between a planar optical concentrator
and a solar cell

2014-27 David Mora, Gonzalo Rivera, Rodolfo Rodŕıguez: A virtual element method
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