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Abstract: We investigate the connection between two classical models of
phase transition phenomena, the (discrete size) stochastic Becker-Déring
equations and the (continuous size) deterministic Lifshitz-Slyozov equation.
For general coefficients and initial data, we introduce a scaling parameter
and show that the empirical measure associated to the stochastic Becker-
Déring system converges in law to the weak solution of the Lifshitz-Slyozov
equation when the parameter goes to 0. Contrary to previous studies, we
use a weak topology that includes the boundary of the state space allowing
us to rigorously derive a boundary value for the Lifshitz-Slyozov model in
the case of incoming characteristics. It is the main novelty of this work and
it answers to a question that has been conjectured or suggested by both
mathematicians and physicists. We emphasize that the boundary value de-
pends on a particular scaling (as opposed to a modeling choice) and is the
result of a separation of time scale and an averaging of fast (fluctuating)
variables.
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Summary

We deal with the convergence in law of the stochastic Becker-Doring process to
the Lifschitz-Slyozov partial differential equation, up to a small scaling parame-
ter. The former is a probabilistic model for the lengthening/shrinking dynamics
of a finite number and discrete size clusters, while the latter is seen as its infinite
number and continuous size extension. In the Becker-Doring model, the clusters
are assumed to increase or decrease their size (number of particles in a cluster)
by addition or subtraction of only one single particle at a time (stepwise coagu-
lation and fragmentation) without regarding the space structure. More precisely,
in this model, the transitions are assumed to be Markovian and actually related
to some random Poisson point measures. The lengthening rates depend on the
size, the number of clusters of this size and the number of free particles throught
a Law of Mass Action. The fragmentation rates depend on the size and the num-
ber of clusters of this size, through a spontaneous shricking (exponential law).
The evolution of the configuration of the system is then described thanks to its
empirical measure. It starts with a finite number of clusters and particles. So
that, the state space of the model is finite (but possibly large) and bounded by
the number of particles and clusters of all possible sizes up to the maximal one
(given by the total number of particles in the system).

Under an appropriate scaling of the rates parameters, the number of mono-
mers and the sizes of clusters, we construct a rescaled measure-valued stochastic
process from the empirical measure of the Becker-Doring model. We prove the
convergence in law of this process towards a measure solution of the Lifschitz-
Slyozov equation. This equation is of transport type with a nonlinear flux cou-
pling the particle variable. The necessity of prescribing a boundary value at the
minimal size naturally appears in the case of incoming characteristics. The value
of the latter is still an open-debated question for this continuous model. The
probabilistic approach of this work allows us to rigorously derive a boundary
value as a result of a particular scaling (as opposed to a modeling choice) of the
original discrete model. The proof of this result is mainly based on an adiabatic
procedure, the boundary condition being the result of a separation of time scale
and an averaging of a fast (fluctuating) variable.

but possibly large), bounded by the number of particles and clusters of all
possible sizes up to the maximal one (given by the total number of particles in
the system).
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1. Introduction

The self-assembly of macromolecules and particles is a fundamental process in
many physical and chemical systems. Although particle nucleation and assembly
have been studied for many decades, the interest in this field has been recently
intensified due to engineering, biotechnological and imaging advances at the
nanoscale level. Hence, this area of research is still very active [51]. Applica-
tions range from industrial material design, physics, chemistry to biology. In
particular, the understanding of a large class of biological phenomena, such as
the rare protein assembly in neuro-degenerative diseases, requires to develop
stochastic self-assembly model. The interested reader is referred to [39, 48], the
introduction in [61] and references therein.

The mathematical study of theoretical models for self-assembly have a long
story. Often, these models consider the mean-field concentrations of clusters for
each possible discrete size (number of particles in a cluster) and describe their
evolution using the so-called Law of Mass-Action. Probably one of the most
common model used is the celebrated Becker-Doring model in its deterministic
version. The well-posedness theory and long-time behaviour have been exten-
sively studied, see e.g. [3, 4, 11, 53, 60]. For a review of these results, we refer to
[46], while in [15, 59] the reader will find connection to other mass-action deter-
ministic coagulation-fragmentation models. Nevertheless many open-questions
still remain, particularly on the long-time behaviour, as the computation of the
rate of convergence towards equilibrium [13, 30] or the precise and rigorous
description of the transient metastability phenomena [8, 14, 22, 23, 32, 44, 55].

Probabilistic approaches have been also investigated as general finite-particle
stochastic coagulation models introduced in [37, 38] or the stochastic counter-
part of the Becker-Doring model, by which we start. But, for instance, the latter
has received much less attention than their deterministic analogues. Initial anal-
yses, numerical simulations and interesting open-questions have been raised in
[6, 52] on this model. More recently, stationary states and first passage times
have been partly characterized in [20, 61], emphasizing striking finite-size ef-
fects that arise in the stochastic the Becker-Déring model. We also mention an
interesting work in [47] which relates stochastic modeling to metastability.

On the other side, instead of a discrete size, the clusters can be described by
a continuous size (radius, length, etc). In this case an equivalent of the Becker-
Doring model would be the celebrated too Lifschitz-Slyozov model. Theoretical
analyses of this equation have also been extensively developed. Particularly,
the well-posedness has been laid down in [28, 34, 35, 43], while the long-time
behaviour has been analyzed theoretically in [16, 17] and numerically in [12, 56].
We finally mention a review [42] on the Lifschitz-Slyozov theory together with
open-questions.

An interesting problem is to link mathematically the stochastic and deter-
ministic models and/or the discrete with the continuous-size models. This leads
to many questions, particularly on the domain of validity of each model, the
scaling law between them, etc. Some of them found rigorous answers, here, we
intent to go further in this direction.



J. Deschamps, et al./Stochastic Becker-Déring to Lifschitz-Slyozov 5

The link between stochastic and deterministic coagulation models is stud-
ied since the review [1]. The seminal work [31] consists of deriving a law of
large number (mean-field limit) for discrete-size general stochastic coagulation-
fragmentation models, including the stochastic Becker-Déring model as a par-
ticular case. This approach is useful to derive results on existence of solutions
of the deterministic model, and on explosion (gelation) times. Since then, to the
best of our knowledge, much of the works related to stochastic models focus on
the pure coagulation model, e.g. [25, 26].

Discrete and continuous-size models have been linked and studied within
the context of deterministic models. Two main approaches are used. The first
considers the large time behaviour of the Becker-Déring model, and relates the
dynamics of large clusters to solutions of various version of Lifschitz-Slyozov
equations. It is the so-called theory of Ostwald ripening, see [40, 41, 45, 54,
57, 58]. A second approach considers an initial condition with a large excess
of particles. Then, an appropriate re-scaling of the initial condition and the
rate functions leads to solutions “closed” to the Lifschitz-Slyozov dynamics, see
[18, 21, 36].

Here, we will follow the latter approach, but with a stochastic model. Indeed,
our approach is intended to define a general scaling between the stochastic
Becker-Déring and the deterministic Lifschitz-Slyozov. It seems it is the first
time a rigorous link from discrete-stochastic to continuous-deterministic is pro-
posed. Our method recovers similar results known yet in the pure deterministic
case [18, 36] and a general existence result for a large class of rates. The novelty
of our result is that we rigorously identify, for general scaling, a boundary-value
in the Lifschitz-Slyozov equation. It was conjectured e.g. in [18, 48] but never
proved. Historically, there was no need of boundary-value in Lifschitz-Slyozov
since the problem was wellposed under physical assumptions (when small clus-
ters tend to fragment). But, recent applications in Biology have raised this prob-
lem to include nucleation in this equation, for instance in [29, 48]. The originality
of the work resides in the proof too in order to identify the boundary. Indeed,
we carefully introduce particular measure spaces and their topology. We adapt
to our context the tools developed in [33] about averaging to obtain the limit of
some fast (fluctuating) variables. Our results are illustrated by simulations at
the ends.

Finally, note that such links between the discrete-size and continuous-size
models may also have interest for numerical schemes to solve the latter model
(see [5]). We also believe that our study may be helpful to understand large
deviation phenomena on the stochastic Becker-Doring model.

Organization of the paper We start by introducing the stochastic Becker-
Doring model in the next Section 2. Then Section 3 is devoted to a measure-
valued formulation of the model known as the empirical measure. We introduce
a definition of the scaling law and the statement of our two main results: con-
vergence to vague and weak solution (with boundary value). The martingale
problem of both the original and the rescaled problem are highlighted in Section
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4. Technical results on moment estimates and tightness properties are grouped
in Section 5 in order to prepare the proof of the main results. We emphasize
in this section the introduction of a particular (occupation) measure containing
the information on the boundary value. In Section 6 are the two most important
theorems which yield the main results. First an identification of the limit equa-
tion in its general form with abstract boundary value, second we identify the
boundary value to the stationary measure of a modified (deterministic) Becker-
Doring system. We then conclude by numerical illustration of the theoritical
results in Section 7 and a discussion which relates other scaling in Section 8.

2. The stochastic Becker-Doring process

We consider a finite stochastic version of the Becker-Déring model. As previously
introduced in [6, 20, 52, 61], we can define such process as a Markov chain on a
finite subset of a lattice. Choose an integer iy > 2 and a (possibly random, but
almost surely finite) parameter M € N, where N := {i € N:7 > j} for any
j > 1, that gives the total mass of the system. The state space of the process is
given by

&= (Piien;,, CN: ZiPZ- <M

i>ig
For each configuration (P;)icn;, € £, the number P; represents the quantity of
clusters consisting of ¢ particles, while C' = M — Z@io 1P;, is the number of free
particles. This quantity is non-negative by virtue of the definition of the state
space &£. In the Becker-Doring model, clusters can increase or decrease their
size one-by-one, by capturing (aggregation process) or shedding (fragmentation
process) one particle. The set of kinetics reactions that we consider can be
resumed by

ko (C
ioC # P, .
lo(P»;O)
_ (1)
ao(Z)CPi . .
O+Pz Pi+17 ZZZO'
bo(i+1)Pi+1

The first reaction is the formation/destruction of an cluster of the minimal
size ig. The second reaction occurs for any ¢ > iy and is the aggregation-
fragmentation process between clusters of two successive sizes. This set of kinet-
ics reactions (1) completely defines a Markov chain on €. Let us briefly explain
how we build the transition matrix from the reaction (1). For the forward ag-
gregation reaction, the transition is

(Cu‘Piof"u‘Piu‘Pi-i-lu"')H(C_lapiou"' 7‘Pi_17Pi+1+17"'>7

and occurs with a rate given by ao(i)C'P; while for the backward fragmentation
reaction, the transition is

(CaP’Lov"' ;P’i;P'L+1;"') = (C+17P1m ;P’i+17Pi+1_1a"')a
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at a rate given by bg(i + 1)P;11. Equivalently, for the formation of an cluster
with minimal size, the transitions is

(Ovpioa"' 7Pi7Pi+17"') = (O_ZOaP’Lo+17 aP’iaP’i+la"')7

occuring at a rate k(C) and for the destruction of such an cluster, the transition
is
(Capiou"' 7Pi7Pi+17"') — (C+i07‘Pio _17 7‘Pi7‘Pi+17"')7

and occurs at a rate lo(FP;, ).

The Markov chain is well-defined as long as the sum of all rates is finite,
and up to the minimal explosion time (the limit of the transition times). The
well-posedness of the model is then guaranteed by

Assumption 1. We suppose that the formation and destruction rates vanish
when there are not enough reactants, i.e.

ko(C) =0, Ve<ig.
lo(0) = 0.

Moreover, all aggregation and fragmentation rates are non-negative, i.e. for any
i > o,
ap(i) >0, bo(i+1)>0.

Indeed, with such conditions, and when (P;(0))ien;, € &, it is then trivial
to see that for any time ¢ > 0 up to the minimal explosion time, (P;i(t))ien;,
belongs to €. But, (P;(t))icn;, can be re-written as a Markov chain in a finite
state space (Card(€) < o0), for which existence for all times is guaranteed (no
explosion in finite time). A crucial property of this model is also to preserve
the mass balance property (because each transition preserves it together with
Assumption 1)

> iPi(t) + C(t) = M. (2)

i>ig
On the set of kinetics reactions (1), we emphasize that we have chosen a Law
of Mass-Action for the aggregation and fragmentation of clusters of size larger
than ig. The non-negative functions ag and by, defined on N;, and N, 1, stand
respectively for the aggregation and fragmentation constant reaction rates (that
may depend on the size of the cluster). For the formation and destruction rate of
an cluster of the minimal size iy, we choose a generalized law, given by arbitrary
functions C' +— ko(C') and P;, + lo(P;,) that satisfy Assumption 1. This choice
is motivated by the fact that these two latter reactions will be re-scaled further
differently from the others.
Remark 1. If ig = 2 with ko(z) = ag(1)a(z — 1) and lo(z) = by(2)z we recover
the stochastic Becker-Doring model with the Law of Mass-Action up to the first
size. See the discussion in Section 8 for corresponding results in this case.
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3. Scaling law and main results

Notations For the remainder we introduce few classical notations we will use
for sake of clarity. First, C denotes the space of continuous functions. Similarly,
Cp, C. and Cy are the spaces of continuous functions which are, respectively,
bounded, supportly compact and vanishing at boundary (seen as a closure of C..).
We denote by C* the functions having k continuous derivatives (up to k = oc).
Similarly for the other spaces the k derivatives have the same regularity.

For a Polish space E, we denote by M(FE) the set of non-negative Radon
measures on E, My(FE) the set of non-negative and finite Radon measures on
E and P(E) the probability measures. For any v € M,(E) and ¢ a real-valued
measurable function on E, we write

v, o) = /E o(x)v(dz)

When no doubt remains on the measurable space E, we will simply write (v, @)
instead of (v, p)g.

3.1. The measure-valued stochastic Becker-Doring process

The model described in Section 2 can be studied using classical tools from
Markov chains, such as stochastic equations, Chapman-Kolmogorov equations,
first-passage time analysis, etc. As our objective is in particular to investigate
the limit as M — oo in (2) (large numbers) and to recover a weak form of
a deterministic partial differential equation, it is preferable to use a measure-
valued stochastic process approach. The advantage is to get a fixed state space
while performing the limit M — oo. To that, we consider the set

Ms(N,) = {2511 :n >0, (z1,...,2,) E/\/Zﬁ} C My([ig, +00)) .
i=1

We represent the population of clusters, with the following measure at time
t>0

= 3" Pit)o; € Ms(Niy). (3)
i>io

where (P;(t))ien;, is the Markov chain described in Section 2 by the set of
kinetics reactions (1), with finite mass initial condition given by (P;(0))ien;, €
E. The solution P;(t) represents the number of clusters of size i at time ¢ > 0,
and may be given now by P;(t) = (i, 1;) where y — 1,;(y) is the function equals
to 1 for y =4 and 0 elsewhere. This point of view defines (1;):>0 as a measure-
valued stochastic process that entirely contains the information of the system.
We define below, first the probabilistic objects we use and then the stochastic
differential equation satisfied by the empirical measure (3)
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Definition 1 (Probabilistic objects). Let ig € N* and (2, F,P) a sufficiently
large probability space. E[-] denotes the expectation. We define on this space
four independent random Poisson point measures

i) The nucleation Poisson point measure Q1 (dt, du) on Ry x R4 with inten-
sity
E [Q1(dt, du)] = dtdu .
ii) The de-nucleation Poisson point measure Q2(dt,du) on Ry x Ry with

intensity
E[Q2(dt, du)] = dtdu .

iii) The aggregation Poisson point measure Q3(dt, du, di) on Ry X Ry x A,
with intensity
E [Qs(dt, du, di)] = dtdu #i,(di) .

iv) The fragmentation Poisson point measure Q4(dt,du,di) on Ry x Ry x
Ny 1 with intensity

E [Qu(dt, du, di)] = dtdu #i,41(di) .

where dt and du are Lebesgue measures on RY, and #;(di) is the counting
measure on Nj. Moreover, we define two more independent (from the above)
random elements

v) The initial distribution i is a My([io, +-00))-valued random variable such
that a.s. i, belongs to Ms(N;,) and (p;p,Id) is finite, where Id is the
identity function.

vi) The initial quantity of particles C;;, is a R -valued random variable (a.s. fi-
nite).

Finally, we define the canonical filtration (F3);>¢ associated to the Poisson point
measure such that u;, and Cj, are Fj-measurable.

Now we give a definition of measure formulation of the Becker-Doring model.

Definition 2 (Measure-valued stochastic Becker-Déring process). Assume the
probabilistic objects of Definition 1 are given, and that the rate functions satisfy
Assumption 1. A measure-valued stochastic Becker-Déring process (abbreviated
by SBD process) is a My ([ig, +00))-valued stochastic process p = (p¢)i>0 that
satisfies a.s. and for all ¢ > 0

t
Wt = Hin —I—/Ot /ﬂh 61'01{”90(037)} Q1 (ds, du)
_/Ot [ B0 fucto, - g0} @2l )
+/ / (51 1 _51)1 u<ao(t ) Q3(d8,du,di)
0o Jexn, {ugao()C, - (u,- 10}

t
- 51 - 51'7 1 w i ) Q dS, du, di 5
/0 /]R+><Ni0+1( 1) { <bo( )<“s*’11>} 4( )

(4)
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with the balance law given, a.s. for all t > 0, we have C; > 0 and
Ci + <:uta Id> =M, (5)
where C; > 0.

Remark 2. The total mass M is a random element defined by M := Cj, +
(fin, Id) and is a.s. finite. A solution p satisfies p; € Ms(N;,) a.s. and for all
t>0.

The existence result and the martingale problem associated to this process
is described in Proposition 1 in Section 4.1. We emphasize that this stochastic
process is still evolving in a finite state space that is a subset of Mgs(Nj, ), for

which all properties on non-explosion, generator and martingale properties are
trivial.

3.2. Definition of the scaling and the associate process

We introduce a (small) parameter € > 0 in the system and we make explicit the
dependence of the other parameters on €. We consider the sequences (indexed
by € > 0) of parameters {a§}, {b§}, {k§} and {i5}, all satisfying Assumption 1
for each £ > 0. Also, we introduce a sequence {i§}.

For each € > 0, in Definition 1, we replace iy by 75 and we consider a sequence
of a.s. finite initial quantity of particles {C’fn} and a sequence of initial distri-
bution {f§,} that are My ([i§, +00))-valued random variables and such that for
all e > 0, (fi5,,Id) is a.s. finite. We associate the canonical filtration (F¢);>o as
in Definition 1. Then, we may apply an obvious e-version of Definition 2. Thus,
for all e > 0, we denote by [i° a measure-valued SBD process, in the sense of
Definition 2, associated to this set of parameters that belongs to the state space

ME = {I/ € Ms(Nig) = (v,1d) < ME} )

where M¢ := Cg, + (ji5,, Id).
Given that solution fi°, we perform a general scaling with respect to the
number, the size, and the time by

Wy = Z e (1St 1i)0esy, (6)

i>ig
for some a, 3,y > 0 (to be specified latter). This scaling yields the two relations:
(i, 1esi) = €%(fizry; 1i) , and, (ug,1d) = 5a+6</~éw Id) .
Moreover, we allow a specific scaling of the particle variable, given by
s =eCe,,
for some 6 > 0. It is then natural to define

Me = e>tBppe = 50‘“3_905“ + (5, 1d) .
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Then, we define the following rescaled functions

a(e’i) = etaf(i), Vi€ N,

b (ePi) = EPbi(i), Vie Nigqa, -
kf(e%) = eFkS(c), VeeN,

Fep) = e'5p), YpeEN,

for some A, B, K, L not necessarly non-negative (to be specified latter). Finally,
we define the rescaled minimal size

for some xg > 0.

The aim of this work being the study of the process p° in the limit € goes to
0, we need to embed the rescaled measure (6) in a measure space independent
of €. The natural choice is

X([zo, +0)) := {V € My([xg, +00)) : (v, 1d) < —i—oo}.

When no doubt remains we drop the explicit dependence on [z, +00). Clearly,
for each ¢ > 0 and ¢t > 0, we have ui € X. The evolution equation on p° is
postponed in Section 4.2. Finally, for each € > 0, we always denote (u)i>0 by

€

LE.

3.3. Convergence towards the Lifschitz-Slyozov equation

Before stating the main results of this work, we introduce the assumptions
required to obtain the convergence of {u®}, the sequence of measure-valued
SBD processes constructed by (6), towards a measure solution of the Lifschitz-
Slyozov equation (including a boundary value).

Assumption 2 (Convergence of the parameters). We assume that

{z§} converges towards xy > 0. (H1)

{MF®} converges a.s. to a deterministic value m > 0. (H2)

Assumption 3 (Convergence of the rate functions). Assume that there exist
two functions k and | from Ry to Ry, and two continuous functions a and b
from [xg,+00) to Ry. In addition, we assume that k is locally bounded. Then,
we suppose that
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{k®} converges uniformly on any compact set of [0, +00) towards k.  (H3)

{l*} converges uniformly on any compact set of [0,+00) towards I and
3K, > 0 s.t. I°(z) < Kz, Va € [xg, +00) and Ve > 0. (H4)

{a®} converges uniformly on any compact set of [xo,+00) towards a and
K, >0 s.t. o (z) < K (1 + 2), Va € [z, +o0) and Ve > 0.  (H5)

{b°} converges uniformly on any compact set of [xq, +00) towards b and

Ky, > 0 s.t. b°(z) < Kp(l 4+ ), Va € [z, +00) and Ve > 0. (H6)

Remark 3. First, we will widely use a direct consequence of (H3). That is, from
the convergence of k° toward a locally bounded function k, it entails

dKj >0, s.t. sup sup |k%(z)| < K. (8)
>0 z€[0,2m)]

Remark that (H4) to (H6) entail for all z > 0, I(z) < Kz, and for all x > x,
a(z) < Kq(14 ), b(x) < Kp(1 + 2).

From now on and for the remainder, we will use some notations on the scaling
exponents, to be more readable, that are:

A =a+v— K, N=a+vy—1L,
Aa:FY_Fﬂ_A_ev Ab:7+ﬁ_Ba (9)
Ae=0—a—-p

Assumption 4 (Scaling hypothesis). We assume that the scaling exponents (9)
satisfy

Aa=X=Ap=N\=»X=0. (HT7)

The method we use here to prove the convergence needs a uniform control on
superlinear moments of . To that, let us introduce the set U; of nonnegative
functions ®, convex and belonging to C'([0, +00)) N W2 ((0, +-00)) such that
®(0) =0, ¢’ is concave and ®’(0) > 0 and the set Us, of nonnegative increasing

convex functions ® such that

lim ()

r— 400 xX

= +00.

We denote by Ui oo := Ui NUx. These functions have remarkable properties
when conjugate to the structure of the SBD equation and provide important
estimates as in the deterministic case, see for instance [35].
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Remark 4. Any function z — 27 with 5 € (0, 1) belongs to the set U . The
functions ® are morally a moment slightly greater than 1.

Assumption 5 (Initial measure). We assume that

supE [(u5,,1)] < +oo. (HB)
e>0

Moreover, there exist ®1 and Py belonging to Ui  such that

sup E [(uf,, 1)) < +o0, (H9)
e>0

and
sup E [®2((15,, 1))] < +o0. (H10)
e>0

We are now ready to present the first result giving the tightness of the process
{pc} and that any accumulation point is a measure solution to the Lifshitz-
Slyozov equation in a sense called vague.

Theorem 1. Let pu® constructed thanks to (6) for each ¢ > 0. Assume that
Assumptions 2 to 5 hold and that i, converges in P(w — X) towards a deter-
ministic pin. Then, {u€} converges along an appropriate subsequence to p in
P(D(Ry,w—X)) as e — 0. The limit p belongs to C(Ry,w—X) and is a vague
solution of the Lifshitz-Slyozov equation, that is a.s. for all ¢ € CL((zg,+00))
andt >0

(b 0) = (pimr 9) + / | ¢ @late, — s, (10

where ¢, = m — (uy, Id) > 0.

Remark 5. Here, w — X (or alternatively (X, w) in the remainder) denotes the
space X equipped with the weak topology (in fact a weak — ) of the conver-
gence (v°, (1 + Id)p) — (v, (1 + Id)y) for all ¢ € Cp([xo, +0)), as described
in Appendix A.l. Since (X, w) is a Polish space, see Lemma A.1l, we consider
the space D(Ry,w — X) of right-continuous functions from Ry to X having a
left limit at each time (cadlag) equipped with the Skorohod topology which is a
Polish space too (see [24] for more details). Thus the space P(D(R;,w — X)) is
the space of probability measures on the space D(R,w — X). The convergence
of {1} has to be understood as the classical convergence in law or distribution
of random variables, see [7].

This result will be a direct consequence of Theorem 3 stated further in Section
6. This equation is known to be well-posed (uniqueness) in the case of “outgoing
characteristics”. Indeed, this theorem is limited by the fact the test functions do
not account for the boundary value in xy. Thanks to the result given by Collet
and Goudon in [17, Theorem 3] it readily follows:
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Corollary 1. In addition to the hypotheses of Theorem 1, assume that a and b
belong to C([zg,+00)). For any T > 0 such that the limit c satisfy

a(0) sup ¢ —b(0) <0,
t€[0,T]

the equation (10) has a unique solution p in C([0,T],w — X), hence the whole
sequence {u®} converges in P(D([0,T],w — X)) to u.

This corollary does not include cases where a and b behave as a power law
(x — a") with v in (0,1), as it is usual. Note a better result of uniqueness is
disponible in [34] for density solution.

Of course, we are interested in the case of “incoming characteristics” when a
boundary condition is necessary for the well-posedness. To treat the boundary
term we will need more information on the behavior of the rate functions a and
b near xy. More precisely, we suppose that: the limit functions a and b behave
as a power-law function near xg, that the functions a® and b° evolve in a similar
way close to xg, and that the convergence of zf towards x is sufficiently fast.

Assumption 6 (Behavi_or of the rate functions near xg). We suppose there
exist rq, 75 > 0, and @, b > 0 such that
a(zg +x) ~ az"™ and b(xo+ x) ~ ba"™ (H11)
—

r—0 x
and that
af(x§ + ePn) — a(x§ + ePn) =0
{-:ﬁTa es0
be (2 Bn) — b(xE B
(2§ 4 €"n) — bag +en) 0.
gﬂrb e—0

(H12)

Moreover, we suppose there exists z§ > 0 such that
x5 = xo + ePxy 4 o(eP),. (H13)
Remark 6. The two last hypotheses are trivial in the case a® = a, b* = b and

Before stating the second theorem we introduce a critical threshold which
will be debated below, namely

p:= lim —= €[0,4+ocq]. (11)

The result reads:

Theorem 2. In addition to the hypotheses of Theorem 1, assume that Assump-
tion 6 holds with min(rq,ry) < 1. Then, on any time interval [to,t1] such that
ct > p for all t € [to,t1], the limit p is a weak solution of the Lifschitz-Slyozov
equation, that is a.s. for all ¢ € C}([wo,+o0)) and t € [to,t1]
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<%@—Wm@+[/m¢@@@%—WMMMW

+/¢m%@m&<u>

to
where ¢z = m — (g, Id) > p.

Let us do a sort of zoology of our condition. If 0 < r, < r, < 1, the ag-
gregation term is stronger than the fragmentation and clusters of critical size
can growth for all time since p = 0. If 0 < r, = r, < 1, it is a limit case and
p = b/@. The nucleation occurs when enough particles is supplied. Note in the
case p > m, we are always in the case ¢; < m < p. While if 0 < r, < r, < 1, the
fragmentation is stronger than the aggregation in 0 and Theorem 2 is nothing
compared to Theorem 1 since p = +o0. The case r, and 7, greater than 1 is re-
lated, either an outgoing case or a case where no boundary condition is needed.
The latter corresponds to the case clusters of critical size cannot growth in finite
time, see Proposition 10.

The uniqueness of this latter theorem is left. The measure formulation to-
gether with the regularity of the coeflicients near z(y make the problem difficult
to treat. But we believe, at least for power law our result contain all the “incom-
ing characteristic” cases. If yes, the Lipshitz-Slyozov equation is well-defined on
R4 just by combining the vague solution on the interval where ¢; < p and weak
when ¢; > p. It remains to treat the case where ¢; = p, by continuity it should
works if it occurs a countable number of times.

Finally, we mention the boundary condition can be interpreted as a flux
condition in the case of a density solution, that is pu; = f(t, z)dx. The problem
formally reads,

O f + 0x[(a(z)er — b(2)) f(t,2)] =0, on [0,T] x [xg,+00),
limg o (a(x)e: — b(x)) f(t, 2) = k(ct), on [0,7].

The reader interested in this problem and its uniqueness should probably refer
to the works by Boyer [10]. Clearly, our condition differs from [16] where it was
conjectured a boundary given by

(a(0)cr +0(0)) f(2,0) = k(er)

when ¢; > b(0)/a(0).

4. Equations and martingale properties

In this section, we detail the generator and the martingale problem associated
to the original measure-valued stochastic process and its rescaled version.
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4.1. The original process

Proposition 1 (Existence of the measure-valued SBD process). Assume the
probabilistic objects of Definition 1 are given, and that the rate functions are
consistent i.e. Assumption 1 holds. Then, there exists a unique measured-valued
stochastic Becker-Doring process p in the sense of Definition 2 on Ry (for any
time). In particular, a.s. for all t > 0, u; belongs to the state space

M:={ve MsWN;,) : (ir,1d) < M},

and we have

M
sup </Lta 1> < =

—,  Qa.S.
teR L 20

Moreover, i is a Markov process whose infinitesimal generator L is given, for all
v € Mg and for all locally bounded measurable function v from My([ig, +00))
to R, by

LyWw) = [+ i) = $(v)] ko(C)
+ (v = i) = )] (v, Lig))
+ ) W+ 8ip = 8:) = ()] an (D) O, 1)
+ D =8+ 0i0) v (@)] bo(i) (1)

where C' = M — (v,1d). Finally p is also an X-valued stochastic process which
has a.s. sample paths in DR, w — X).

Proof. Note that if p is a measure-valued SBD process in the sense of Definition
2, then for all measurable locally bounded function ¢ : My ([ig, +00)) — R and
all t > 0,

Y(pe) = Y(pin) + Y ¥(is) = ps-)

s<t

where the sum is finite over the stopping time. We deduce from the above
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relation, that, a.s. and for all t > 0,
w(ﬂt) = ’Q/J(/Lm)
t

<[/ Wl +80) =00 e,y Qaliss

" / / Wt — b10) — (s )]
X 1{u§lo(<#s— 711'0))} Qg(ds, du)

t o (13)
+~/O ~/]R+></\/¢0 [w(M57 +5l+1 51) w(ﬂs*)]

X Lfu<ao()o, (w10} Qs(ds, du, di)

¢
+/ / [W(ps— — 0; + 0i—1) — ¥(ps-)]
0 R+><Ni0+1
X 1{u§b0(i)<us—7li>} Q4(ds, du, di),

which allow us to identify the infinitesimal generator. Moreover, note that for
M a.s. bounded, the sums in the infinitesimal generator are finite sums (up to
i = M for the first one and i = M — 1 for the second), and u; stays in a finite
state space. Then the integrability of the martingale is trivial for any measurable
function. O

Corollary 2. Under the assumptions of Proposition 1, for all ¢ measurable
and locally bounded on [ig, +00), the measure-valued stochastic Becker-Doring
process [ satisfies

</1’t7 90> = <Min7 90> + Vf + Of )
where Vf is the finite variation defined by

Vf = / (i) (Fo(Cu) — To({pe, 11 ))ds
0

+ /0 S (00 + 1) — (1) (a0(i)Ca s 18) — bo(i + 1) (s, 1i51))ds,

i>io

and OF is a L? — (F;)¢>0 martingale starting from 0 with (predictable) quadratic
variation

(%), = / (i) (ko(Cs) + lo((prer 1) )ds

+ /0 Z (p(i + 1) — (3))* (ao(i)Cs (s, 1) + bo(i + 1) {ps, 1i41))ds .

i>ig

Proof. 1t is a direct consequence of Proposition 1 using the function ¥(v) :=
(v, ) and by identification of the martingale term thanks to It6 formula. O
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4.2. The rescaled process

From Equations (4)-(5) satisfied by i and the scaling properties (6) to (7), we
immediatly derive the equation on u®: a.s. for all t > 0,

t
pe = #iiﬂ‘// e%0znig Ly cpe ooy jerc) @Q1(7ds, du)
o I, |
_ a . 2l
/Ot /Rf Octis L fucte (ue_ 1,0, /en ) 92708, d0)
+/ / g* (5551'4-55 - 5551')
0 R+><Ni6

(14)
X Husar @002 (ue_1,5,)/ervero} Q7 ds, du, di)
t
- / / e* (5551' - 5551'755)
0 JRy xNgq1
X 1{u§b€(85i)(us, )155i>/€B+Q}Q4(Evd8, du, dl) y

such that a.s., for all t > 0, we have C7 > 0 and

e NCE + (i, Td) = M°. (15)

The next proposition and its corollary readily follows as in the previous sec-
tion.

Proposition 2. Let u° constructed thanks to (6) for each € > 0. Then, u is
an X -valued stochastic process which has a.s. sample paths in D(Ri,w — X).
Moreover, for each € > 0, a.s. and for all t > 0, pi belongs to the state space

ME = {VEX : V:ZEQ(Saﬁyia (ylv'-'ayn)ej\/'iﬁv <H571d>§ME}7

i=1

and we have .
R M

sup (5, 1) <~y a.s.
teR 4 Ty

s is also a Markov proces whose infinitesimal generator L is given, for all
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ve X and 1 locally bounded on X to R, by

o B+ 260) = 0(0)

Ea

LEP(v) = k= (C)

YV —e%epie) — Y(v)

1= ((v, 185i5>)

+ E)\a /Jroo 1/’(” + Eadw—i—aﬁ - Eaam) B 1/}(1/) aE(I)CV(d{E)

ca+pB

£
0

o /+oo ¢(u — &%, + 50‘51755) — w(u) bg(x)u(dx) 7

s+ef €a+ﬁ

where C' = e*e(M? — (v,1d)). For such 1), the process

1#(/% Mmf / Ea /145

is a L' — (F§)i>0 martingale starting from 0.

Remark 7. The filtration (F¥)¢>o for each € > 0 can be easily deduce from the
construction of the rescaled measure (6).

Proof. Let us only remark that, similarly to (13), we have for all ) measurable
locally bounded from X to R,

Y (pn)

/ /]R+ (H5- +e¢ 5857, ) — Y(ug- )]l{ugks(czi)/é.x}Q1(Evd8,du)

+/0 /]R+ (1o — £%0amie) — (S )]

X 1{u<l5(< ne s, 5 /5L}Q2(87d8,du)
/ / RO(E- + % 8angipny — %02m1) — (1S )] (16)
R+ XNE

X fucar(@oi)oe_ (e 1 enseo) Qo(€7ds, du, di)
t
oy RO(HE — €%6us + bangiry) — D))
0 R+ XN5+1
X Llughe B0y (us_ 15, /em+o} Qa(€7ds, du, di) .

O

We apply this result to the functions (-, ), from X to R with ¢ measurable
and bounded from [zg,+00) to R which will be usefull to identify the limit
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equation (the convergence towards the Lifschitz-Slyozov equation). With such
test fonctions, we obtain:

Corollary 3. Let u® construct thanks to (6) for each € > 0 and ¢ a bounded
measurable real-valued function on [xg,+00). Then, a.s. and for all t > 0

(g, o) = (U5, ©) + V¥ + 097, (17)

where V;°% is the finite-variation part of (1, ) given by

t
VEe = / o(5) [EMkE(CSE) _ EAZZE(<,U§7 15‘”5»} ds
0
t o0
[ [ e ado @zt ds
0 Jax§

t +o0
- / / Por A () (@) ()us (dr) ds . (18)

s+ef

where T is the £°-translation, T.f = f(- — P), and A.(p) is the °-discrete
derivative of ¢ given by

x 86 — X
Ag((p):w( + E; pla)

Moreover, O7% is a L* — (F§)i>0 martingale starting from 0 with (predictable)
quadratic variation :

<O€,<P>t:ga/0 (,0(55'8)2 [EAkkE(Ci)+8>\lla(</1/§7165i6>)i| ds
t “+o00
atp Aa o) af (2)C 1 (d) ds
te // (A () (@) 0 (@) O (d) d

t +oo
eot? / [ Ao @) F @i ds (19

§+ef

We attempt to pass to the limit in (17) when enough compactness is avail-
able. We want the finite variation (18) to converge to the weak form of the
Lifshitz-Slyozov operator (including boundary value) and the martingale (19)
to vanish (its quadratic variation) to recover a weak formulation of the deter-
ministic problem at the limit in (17). For that, we need moment estimates and
tightness properties to obtain the compactness in the approp