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Abstract

In this paper we introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for
numerically solving a class of nonlinear Stokes models arising in quasi-Newtonian fluids. Similarly as
in previous papers dealing with the application of mixed finite element methods to these nonlinear
models, we use the incompressibility condition to eliminate the pressure, and set the velocity
gradient as an auxiliary unknown. In addition, we enrich the HDG formulation with two suitable
augmented equations, which allows us to apply known results from nonlinear functional analysis,
namely a nonlinear version of Babuška-Brezzi theory and the classical Banach fixed-point theorem,
to prove that the discrete scheme is well-posed and derive the corresponding a priori error estimates.
Then we discuss some general aspects concerning the computational implementation of the method,
which show a significant reduction of the size of the linear systems involved in the Newton iterations.
Finally, we provide several numerical results illustrating the good performance of the proposed
scheme and confirming the optimal order of convergence provided by the HDG approximation.

Key words: nonlinear Stokes model, mixed finite element method, hybridized discontinuous Galerkin
method, augmented formulation

1 Introduction

The devising of suitable numerical methods for solving the linear and nonlinear Stokes and related
problems has become a very active research area during the last decade. In particular, a mixed finite
element method and a suitable augmented version of the latter for a nonlinear Stokes flow problem
involving a non-Newtonian fluid, are introduced and analized in [19]. In addition, the velocity-pressure-
stress formulation for incompressible flows has gained considerable attention in recent years due to
its natural applicability to non-Newtonian flows, where the corresponding constitutive equations are
nonlinear. In general, an interesting feature of the mixed methods is given by the fact that, besides
the original unknowns, they yield direct approximations of several other quantities of physical interest.
For instance, an accurate direct calculation of the stresses is very desirable for flow problems involving
interaction with solid structures.

On the other hand, the hybridizable discontinuous Galerkin (HDG) method, introduced in [10]
for diffusion problems, is one of the several high-order discretization schemes that benefit from the
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hybridization technique originally applied in [14] to the local discontinuous Galerkin (LDG) method
for time dependent convection-diffusion problems. The main advantages of HDG methods include
a substantial reduction of the globally coupled degrees of freedom, which was a criticism for the
discontinuous Galerkin (DG) methods for elliptic problems during the last decade, and the fact that
convergence is obtained even for a polynomial degree k = 0. Additionally, the approximate flux
converges with order k+ 1 for k ≥ 0, and an element-by-element computation of a new approximation
of the scalar variable is possible, which converges with order k + 2 for k ≥ 1 (see e.g. [9, 12, 11]). In
the context of the linear Stokes equation, the hybridization for DG methods was initially introduced in
[5] and then analyzed in [28, 11]. Lately, an overview of the recent work by Cockburn and co-workers
on the devising of hybridizable discontinuous Galerkin (HDG) methods for the Stokes equations of
incompressible flow was provided in [13].

Now, the utilization of DG methods to numerically solve nonlinear boundary value problems has
been first considered in [3] and [22]. Indeed, the application of the local discontinuous Galerkin (LDG)
method to a class of nonlinear diffusion problems was developed in [3], whereas the extension of the
interior penalty hp DG method to quasilinear elliptic equations was studied in [22]. The results from
[3] were generalized in [4], where the a-priori and a-posteriori error analyses of the LDG method as
applied to certain type of nonlinear Stokes models (whose kinematic viscosities are nonlinear monotone
functions of the gradient of the velocity) were derived. The approach in [4] is based on the introduction
of the flux and the tensor gradient of the velocity as further unknowns. A suitable Lagrange multiplier
is also needed to ensure that the corresponding discrete variational formulation is well-posed. A two-
fold saddle point operator equation is obtained as the resulting LDG mixed formulation, which is then
reduced to a dual mixed formulation. A nonlinear version of the well known Babuška-Brezzi theory is
applied to prove that the discrete formulation is well-posed and derive the corresponding a priori error
analysis. In turn, the analysis from [22] was extended in [15], where the a priori and a posteriori error
analysis, with respect to a mesh-dependent energy norm, of a class of interior penalty hp DGFEM for
the numerical approximation of basically the same quasi-Newtonian fluid flow problems studied in [4],
were provided. Furthermore, an HDG approach was employed in [27] for the numerical solution of
steady and time-dependent nonlinear convection-diffusion equations. In fact, the approximate scalar
variable and corresponding flux are first expressed in [27] in terms of an approximate trace of the scalar
variable, and then the jump condition of the numerical fluxes are explicitly enforced across the element
boundaries. As a consequence, a global equation system solely in terms of the approximate trace of the
scalar variable is obtained at every Newton iteration. At the end, and similarly as in previous papers
on HDG, an element-by-element postprocessing scheme is applied to obtain new approximations of the
flux and the scalar variable, which converge with order k + 1 and k + 2, respectively, in the L2-norm.
Nevertheless, and up to our knowledge, there is still no contribution in the literature concerning HDG
for nonlinear Stokes systems.

According to the above discussion, we are interested in this paper in applying the HDG approach
to the class of quasi-Newtonian Stokes flows studied in [4, 17, 15] (see also [19, 23]). To this end,
we plan to employ the same velocity-pseudostress formulation from [19]. In what follows, given any
Hilbert space U , U := Un and U := Un×n denote, respectively, the space of vector and square matrices
of order n, n ∈ {2, 3}, with entries in U . In order to define the boundary value problem of interest,
we now let Ω be a bounded and simply connected polygonal domain in Rn with boundary Γ. As in
[19], our goal is to determine the velocity u, the pseudostress tensor σ, and the pressure p of a steady
flow occupying the region Ω, under the action of external forces. More precisely, given a volume force
f ∈ L2(Ω) and g ∈ H1/2(Γ), we seek a tensor field σ, a vector field u, and a scalar field p such that

σ = µ(|∇u|)∇u− pI in Ω, div(σ) = −f in Ω ,

div(u) = 0 in Ω , u = g on Γ ,

∫
Ω
p = 0 ,

(1.1)
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where µ : R+ → R+ is the nonlinear kinematic velocity function of the fluids, div stands for the usual
divergence operator div acting along each row of tensor, ∇u is the tensor gradient of u, | · | is the
euclidean norm of Rn×n, and I is the identity matrix of Rn×n. As required by the incompressibility
condition, we assume from now on that the datum g satisfies the compatibility condition

∫
Γ g · ν = 0,

where ν stands for the unit outward normal at Γ. The kind of nonlinear Stokes problem given by (1.1)
appears in the modeling of a large class of non-Newtonian fluids (see, e.g. [1, 25, 26, 30]). In particular,
the Ladyzhenskaya law, is given by µ(t) := µ0 +µ1t

β−2 ∀ t ∈ R+, with µ0 ≥ 0, µ1 > 0, and β > 1, and
the Carreau law for viscoplastic flows (see, e.g. [26, 30]) reads µ(t) := µ0 +µ1(1 + t2)(β−2)/2 ∀ t ∈ R+,
with µ0 ≥ 0, µ1 > 0, and β ≥ 1.

The rest of the work is organized as follows. In Section 2 we introduce the augmented hybridizable
discontinuous Galerkin formulation involving the velocity, the pseudostress, the velocity gradient and
the trace of the velocity, as unknowns. In Section 3 we show the unique solvability of the augmented
HDG scheme by considering an equivalent formulation and then applying a nonlinear version of the
Babuška-Brezzi theory and the classical Banach fixed-point Theorem. The corresponding a priori error
estimates are derived in Section 4. Next, in Section 5 we discuss some general aspects concerning the
computational implementation of the HDG method. Finally, several numerical experiments validating
the good performance of the method and confirming the rates of convergence derived are reported in
Section 6. We end the present section with further notations to be used below. Given τ := (τij),
ζ := (ζij) ∈ Rn×n, we write as usual

tr (τ ) :=

n∑
i=1

τii, τ d := τ − 1

n
tr (τ ) I, and τ : ζ :=

n∑
i,j=1

τijζij .

Also, in what follows we utilize the standard terminology for Sobolev spaces and norms, employ 0 to
denote a generic null vector, null tensor or null operator, and use C, with or without subscripts, bars,
tildes or hats, to denote generic constants independent of the discretization parameters, which may
take different values at different places.

2 The augmented HDG method

2.1 The hybridizable discontinuous Galerkin method

We begin by eliminating the pressure. Indeed, we know from [19, Section 2.1] that the pair given by
the first and third equations in (1.1) is equivalent to

σ = µ(|∇u|)∇u− pI in Ω and p = − 1

n
tr (σ) in Ω. (2.1)

In what follows we let ψij : Rn×n → R be the mapping given by ψij(r) := µ(|r|)rij for all r := (rij) ∈
Rn×n, for all i, j ∈ {1, . . . , n}. Then, throughout this paper we assume that µ is of class C1 and that
there exist γ0, α0 > 0 such that for all r := (rij), s := (sij) ∈ Rn×n, there holds

|ψij(r)| ≤ γ0‖r‖Rn×n ,

∣∣∣∣ ∂

∂rkl
ψij(r)

∣∣∣∣ ≤ γ0, ∀ i, j, k, l ∈ {1, . . . , n}, (2.2)

and
n∑

i,j,k,l=1

∂

∂rkl
ψij(r)sijskl ≥ α0‖s‖2Rn×n . (2.3)

It is easy to check that the Carreau law satisfies (2.2) and (2.3) for all µ0 > 0, and for all β ∈ [1, 2].
In particular, with β = 2 we recover the usual linear Stokes model.
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Observe that we can rewrite (2.1) as

σ = ψ(∇u)− pI in Ω and p = − 1

n
tr (σ) in Ω,

where ψ : Rn×n → Rn×n is given by ψ(r) := (ψij(r)) for all r := (rij) ∈ Rn×n. Hence, replacing p
by − 1

ntr (σ) in the first equation of (1.1), and introducing the gradient t := ∇u in Ω as an auxiliary
unknown, we arrive at the system

ψ(t)− σd = 0 in Ω , t−∇u = 0 in Ω ,

−div(σ) = f in Ω , tr (t) = 0 in Ω ,

u = g on Γ ,

∫
Ω

tr (σ) = 0 .

(2.4)

We recall here that a well-posed continuous formulation of (2.4) has been proposed in [19, Section 2],
which reads: Find (t,σ,u) ∈ X1 ×M1 × L2(Ω) such that∫

Ω
ψ(t) : s−

∫
Ω
σd : s = 0 ∀ s ∈ X1,

−
∫

Ω
t : τ d −

∫
Ω
u · div(τ ) = −〈τν,g〉Γ ∀ τ ∈M1, (2.5)

−
∫

Ω
v · div(σ) =

∫
Ω
f · v ∀ v ∈ L2(Ω),

where X1 := {s ∈ L2(Ω) : tr (s) = 0} and M1 =
{
τ ∈ H(div; Ω) :

∫
Ω tr (τ ) = 0

}
. The purpose of

reminding here (2.5) will become clear in the a priori error analysis given below in Section 4.

Next, in order to introduce the HDG method for the system (2.4), we first need some preliminary
notations. Let Th be a shape-regular triangulation of Ω̄ without the presence of hanging nodes, and
let Eh be the set of faces F of Th. Then, we set

∂Th := ∪{∂T : T ∈ Th} ,

and introduce the inner products:

(u,v)Th :=
∑
T∈Th

∫
T
u · v ∀ u,v ∈ L2(Th),

(σ, τ )Th :=
∑
T∈Th

∫
T
σ : τ ∀ σ, τ ∈ L2(Th),

〈u,v〉∂Th :=
∑
T∈Th

∫
∂T

u · v ∀ u,v ∈ L2(∂Th),

〈u,v〉∂Th\Γ :=
∑
T∈Th

∑
F∈∂T\Γ

∫
F
u · v ∀ u,v ∈ L2(∂Th),

with the induced norm
‖v‖Th := (v,v)

1/2
Th ∀ v ∈ L2(Th).

In addition, we let Pk(U) be the space of polynomials of total degree at most k defined on the domain
U , and denote by E ih and E∂h the set of interior and boundary faces, respectively, of Eh.

On the other hand, let ν+ and ν− be the outward unit normal vectors on the boundaries of two
neighboring elements T+ and T−, respectively. We use (τ±,v±) to denote the traces of (τ ,v) on
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F := ∂T+ ∩ ∂T− from the interior of T±, where τ and v are second-order tensorial and vectorial
functions, respectively. Then, we define the means {{·}} and jumps [[·]] for F ∈ E ih, as follows

{{τ}} :=
1

2

(
τ+ + τ−

)
, {{v}} :=

1

2

(
v+ + v−

)
,

[[τ ]] := τ+ν+ + τ−ν−, [[v]] := v+ ⊗ ν+ + v− ⊗ ν−,

where ⊗ denotes the usual dyadic or tensor product. Next, given k ≥ 1, the finite dimensional
discontinuous subspaces are given by

Sh :=
{
s ∈ L2(Ω) : s|T ∈ Pk(T ) ∀ T ∈ Th

}
,

Σh :=

{
τ ∈ L2(Ω) : τ |T ∈ Pk(T ) ∀ T ∈ Th, and

∫
Ω

tr (τ ) = 0

}
,

Vh :=
{
v ∈ L2(Ω) : v|T ∈ Pk−1(T ) ∀ T ∈ Th

}
,

Mh :=
{
µ ∈ L2(E ih) : µ|F ∈ Pk(F ) ∀ F ∈ E ih

}
.

In this way, proceeding as in [11], the HDG formulation of (2.4) reduces to: Find (th,σh,uh,λh) ∈
Sh × Σh × Vh ×Mh, such that

(ψ(th), sh)Th − (sh,σ
d
h)Th = 0 ∀ sh ∈ Sh, (2.6a)

(th, τ
d
h)Th + (uh,div(τ h))Th − 〈τ hν, ûh〉∂Th = 0 ∀ τ h ∈ Σh, (2.6b)

(σh,∇vh)Th − 〈σ̂hν,vh〉∂Th = (f,vh)Th ∀ vh ∈ Vh, (2.6c)

〈σ̂hν,µh〉∂Th\Γ = 0 ∀ µh ∈Mh, (2.6d)

where, letting ΠΓ be the L2(Γ) projection onto the space of piecewise polynomials of degree ≤ k on
E∂h , we define the numerical fluxes ûh and σ̂hν as

ûh :=

{
ΠΓ(g) on E∂h ,
λh on E ih,

and σ̂hν := σhν − S(uh − ûh) on ∂Th, (2.6e)

where S is a stabilization operator to be defined below. Note that the condition ûh = ΠΓ(g) on E∂h
is usually imposed in the equivalent way 〈ûh,µh〉Γ = 〈g,µh〉Γ ∀ µh ∈ P(Eh), which is employed to
perform the solvability analysis of (2.6). In this sense, note first that problem (2.6) can be reformulated
as

(ψ(th), sh)Th − (sh,σ
d
h)Th = 0,

(th, τ
d
h)Th + (uh,div(τ h))Th − 〈τ hν,λh〉∂Th\Γ = 〈τ hν,g〉Γ ,

−(vh,div(σh))Th + 〈S(uh − λh),vh〉∂Th\Γ + 〈Suh,vh〉Γ = (f,vh)Th + 〈Sg,vh〉Γ ,

〈σhν,µh〉∂Th\Γ − 〈S(uh − λh),µh〉∂Th\Γ = 0,

for all (sh, τ h,vh,µh) ∈ Sh × Σh × Vh ×Mh, where (2.6c) has been rewritten using that

(σh,∇vh)Th =
∑
T∈Th

∫
T
σh : ∇vh =

∑
T∈Th

{
−
∫
T
div(σh) · vh +

∫
∂T
σhν · vh

}
,

= −(vh,div(σh))Th + 〈σhν,vh〉∂Th .
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We complete the definition of the HDG method by describing the stabilization tensor S. In [11],
general conditions for S were proposed, where in particular S+ does not necessarily match S− for each
F ∈ E ih. Here, we consider the special case in which S+ = S− in each F ∈ E ih, that is, S has only one
value on each F ∈ Eh. More precisely, given F ∈ Eh, the tensor S satisfies the following conditions:

S|F is constant, and S|F is symmetric and positive definite.

Observe that S−1 is well defined and symmetric and positive definite as well on each F ∈ Eh. In (3.5)
below, we select a particular choice for tensor S in order to establish the well-posedness of (2.9).

2.2 The augmented HDG formulation

In order to establish the unique solvability of the nonlinear problem (2.9), we now enrich the HDG
formulation with two augmented equations arising from the constitutive and equilibrium equations,
that is

κ1(σd
h −ψ(th), τ d

h)Th = 0 ∀ τ h ∈ Σh, (2.7)

and

κ2(div(σh),div(τ h))Th = −κ2(f,div(τ h))Th ∀ τ h ∈ Σh, (2.8)

where κ1, κ2 > 0 are parameters to be determined later on. In this way, our problem becomes: Find
(th,σh,uh,λh) ∈ Sh × Σh × Vh ×Mh such that

(ψ(th), sh)Th − (sh,σ
d
h)Th = 0 , (2.9a)

(th, τ
d
h)Th + (uh,div(τ h))Th − 〈τ hν,λh〉∂Th\Γ = 〈τ hν,g〉Γ , (2.9b)

−(vh,div(σh))Th + 〈S(uh − λh),vh〉∂Th\Γ + 〈Suh,vh〉Γ = (f,vh)Th + 〈Sg,vh〉Γ , (2.9c)

〈σhν,µh〉∂Th\Γ − 〈S(uh − λh),µh〉∂Th\Γ = 0 , (2.9d)

κ1(σd
h −ψ(th), τ d

h)Th = 0 , (2.9e)

κ2(div(σh),div(τ h))Th = −κ2(f,div(τ h))Th , (2.9f)

for all (sh, τ h,vh,µh) ∈ Sh × Σh × Vh × Mh. Hence, in what follows we proceed as in [3, 4] and
derive an equivalent formulation to (2.9) (see (2.11) below), for which we prove its unique solvability.
In addition, the a priori error estimates for (2.9) will also be based on the analysis of (2.11). We
emphasize, however, that the introduction of this equivalent formulation is just for theoretical purposes
and by no means for the explicit computation of the solution of (2.9), which is solved directly as we
explain below in Section 5.

First, we consider equation (2.9d) and note that

0 = 〈σhν,µh〉∂Th\Γ − 〈Suh,µh〉∂Th\Γ + 〈Sλh,µh〉∂Th\Γ

=
∑
T∈Th

∑
F∈∂T\Γ

∫
F
σhν · µh −

∑
T∈Th

∑
F∈∂T\Γ

∫
F
Suh · µh +

∑
T∈Th

∑
F∈∂T\Γ

∫
F
Sλh · µh

=
∑
F∈Eih

∫
F

[[σh ]] · µh − 2
∑
F∈Eih

∫
F

(
S{{uh}} · µh − Sλh · µh

)
=

∫
Eih

(
[[σh ]]− 2S{{uh}}+ 2Sλh

)
· µh ∀ µh ∈Mh.
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Hence, using that [[σh ]]− 2S{{uh}}+ 2Sλh ∈Mh, we find that

[[σh ]]− 2S{{uh}}+ 2Sλh = 0 on E ih,

which yields

λh = {{uh}} −
1

2
S−1[[σh ]] on E ih. (2.10)

Observe that (2.10) coincides with the expression for ûh given in [11]. We now replace λh from (2.10)
in (2.9b) and (2.9c). For this purpose, we first observe that

−〈τ hν,λh〉∂Th\Γ = −
∑
T∈Th

∑
F∈∂T\Γ

τ hν · λh = −
∫
Eih

[[τ h ]] · λh,

=
1

2

∫
Eih

S−1[[σh ]] · [[τ h ]] −
∫
Eih
{{uh}} · [[τ h ]],

and

−〈Sλh,vh〉∂Th\Γ = −〈Svh,λh〉∂Th\Γ = −
∑
T∈Th

∑
F∈∂T\Γ

Svh · λh,

= −2

∫
Eih

S{{vh}} · λh =

∫
Eih
{{vh}} · [[σh ]] − 2

∫
Eih

S{{uh}} · {{vh}}.

In this way, the foregoing equations together with (2.9a), (2.9b), (2.9c), (2.9e) and (2.9f) lead to the
problem: Find ((th,σh),uh) ∈ Hh × Vh such that

[Ah(th,σh), (sh, τ h)] + [Bh(sh, τ h),uh] = [Fh, (sh, τ h)] ∀ (sh, τ h) ∈ Hh,

[Bh(th,σh),vh] − [Sh(uh),vh] = [Gh,vh] + [Ch(uh),vh] ∀ vh ∈ Vh,
(2.11)

where Hh := Sh×Σh, and the operators Ah : Hh → H ′h, Bh : Hh → V ′h, Sh : Vh → V ′h and Ch : Vh → V ′h,
and the functionals Fh : Hh → R and Gh : Vh → R, are defined by

[Ah(th,σh), (sh, τ h)] := (ψ(th), sh)Th − (sh,σ
d
h)Th + (th, τ

d
h)Th +

1

2

∫
Eih

S−1[[σh ]] · [[τ h ]]

+ κ1(σd
h −ψ(th), τ d

h)Th + κ2(div(σh),div(τ h))Th , (2.12)

[Bh(sh, τ h),vh] := (vh,div(τ h))Th −
∫
Eih
{{vh}} · [[τ h ]], (2.13)

[Sh(uh),vh] := 〈Suh,vh〉∂Th , (2.14)

[Ch(uh),vh] := −2

∫
Eih

S{{uh}} · {{vh}},

[Fh, (sh, τ h)] := 〈τ hν,g〉Γ − κ2(f,div(τ h))Th ,

[Gh,vh] := −(f,vh)Th − 〈Sg,vh〉Γ ,

where [·, ·] stands in each case for the duality pairing induced by the corresponding operators and
functionals. Note, for purposes that will become clear below, that one of the unknowns terms, namely
[Ch(uh),vh], has been placed on the right-hand side of the second equation in (2.11).
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3 Solvability analysis

In this section, we establish the unique solvability of the nonlinear problem (2.11). To this end, and
following [3, 4], we let h ∈ L∞(Eh) be the function related to the local meshsizes, that is

h(x) :=

{
min{hT1 , hT2} if x ∈ int(∂T1 ∩ ∂T2),

hT if x ∈ int(∂T ∩ Γ),

and assume that the meshsize is bounded, that is, that there exists a constant h0 > 0 such that

h := max
T∈Th
{hT } ≤ h0. (3.1)

The main idea of our analysis consist of redefining (2.11) as a fixed point problem.

3.1 Preliminaries

The analysis below requires the following preliminary results.

Lemma 3.1 (Discrete trace’s inequality). There exists Ctr > 0, depending only on the shape regularity
of the mesh, such that for each T ∈ Th and F ∈ ∂T there holds

‖z‖20,F ≤ Ctr

{
h−1
T ‖z‖

2
0,T + hT |z|21,T

}
∀ z ∈ H1(T ). (3.2)

Proof. The proof uses a trace theorem and a scaling argument (see [8] for details).

Lemma 3.2. There exists c0 > 0, independent of h, such that for all z ∈ H1(Ω) there holds

‖h1/2z‖0,Eih ≤ c0‖z‖1,Ω. (3.3)

Proof. Given z ∈ H1(Ω), we have

‖h1/2z‖20,Eih =

∫
Eih

h|z|2 =
1

2

∫
Eih

h
(
|z+|2 + |z−|2

)
≤ 1

2

∑
T∈Th

∫
∂T

h|z|2 ≤ C
∑
T∈Th

hT ‖z‖20,∂T ,

where C depends on the regularity of Th. Next, using (3.2) and (3.1), we deduce from the foregoing
inequalities that

‖h1/2z‖20,Eih ≤ CCtr

∑
T∈Th

hT

{
h−1
T ‖z‖

2
0,T + hT |z|21,T

}
≤ CCtr(1 + h2)

∑
T∈Th

‖z‖21,T ≤ c2
0‖z‖21,Ω,

with c0 := (CCtr(1 + h0))1/2, which completes the proof.

Lemma 3.3. There exists a constant c1 > 0, independent of h, such that

‖τ h‖20,Ω ≤ c1

{
‖τ d

h‖20,Ω + ‖div(τ h)‖2Th + ‖h−1/2[[τ h ]]‖20,Eih

}
∀ τ h ∈ Σh.

Proof. We follow similarly as in the proof of [2, Proposition 3.1, Chapter IV]. Indeed, given τ h ∈ Σh,
we know from [20, Corollary 2.4 in Chapter I] that there is a unique z ∈ H1

0(Ω) such that div(z) =
tr (τ h) and

‖z‖1,Ω ≤ C‖tr (τ h) ‖0,Ω. (3.4)
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Now, utilizing that z ∈ H1
0(Ω), we have that

‖tr (τ h) ‖20,Ω =

∫
Ω

tr (τ h) div(z) =

∫
Ω
τ h : {tr (∇z) I} ,

= n

∫
Ω
τ h : (∇z− (∇z)d) = n

∫
Ω
τ h : ∇z− n

∫
Ω
τ d
h : ∇z,

= n
∑
T∈Th

{
−
∫
T
z · div(τ h) +

∫
∂T
τ hν · z

}
− n

∫
Ω
τ d
h : ∇z,

= −n(z,div(τ h))Th + n

∫
Eih

[[τ h ]] · z− n
∫

Ω
τ d
h : ∇z.

Next, applying Cauchy-Schwarz inequality, and then (3.3) and (3.4), we find that

‖tr (τ h) ‖20,Ω ≤ n‖z‖0,Ω‖div(τ h)‖Th + n‖h−1/2[[τ h ]]‖0,Eih‖h
1/2z‖0,Eih + n‖τ d

h‖0,Ω|z|1,Ω
≤ n‖z‖0,Ω‖div(τ h)‖Th + nc0‖h−1/2[[τ h ]]‖0,Eih‖z‖1,Ω + n‖τ d

h‖0,Ω|z|1,Ω

≤ C‖z‖1,Ω
{
‖τ d

h‖20,Ω + ‖div(τ h)‖2Th + ‖h−1/2[[τ h ]]‖20,Eih

}1/2

≤ C‖tr (τ h) ‖0,Ω
{
‖τ d

h‖20,Ω + ‖div(τ h)‖2Th + ‖h−1/2[[τ h ]]‖20,Eih

}1/2
,

which gives

‖tr (τ h) ‖20,Ω ≤ C
{
‖τ d

h‖20,Ω + ‖div(τ h)‖2Th + ‖h−1/2[[τ h ]]‖20,Eih

}
.

This inequality and the fact that ‖τ h‖20,Ω = ‖τ d
h‖20,Ω + 1

n‖tr (τ h) ‖20,Ω, complete the proof.

We now realize, thanks to the previous lemma, that for convenience of further analysis, we need to
establish a particular choice of the stabilization tensor S. For this purpose, we let τ > 0 be a constant
and set the tensor S as follows

S|F := τ h I ∀ F ∈ Eh, (3.5)

which certainly yields

S−1|F := (τh)−1I ∀ F ∈ Eh. (3.6)

In addition, we consider the following definition of a norm onto Σh

‖τ h‖2Σh
:= ‖τ d

h‖20,Ω + ‖div(τ h)‖2Th + ‖(τh)−1/2[[τ h ]]‖20,Eih ∀ τ h ∈ Σh

which, according to Lemma 3.3, satisfies

‖τ h‖0,Ω ≤ c2‖τ h‖Σh
∀ τ h ∈ Σh, (3.7)

where c2 > 0 depends on c1 and τ , but is independent of h. Note that the above suggests the following
norm on Hh := Sh × Σh

‖(sh, τ h)‖Hh
:=

{
‖sh‖20,Ω + ‖τ h‖2Σh

}1/2
∀ (sh, τ h) ∈ Hh.

On the other hand, we define the nonlinear operator A : Sh → S′h by

[A(th), sh] := (ψ(th), sh)Th ∀ th, sh ∈ Sh.

Then, we have the following result.

9



Lemma 3.4. Let γ0 and α0 be the constants from (2.2) and (2.3), respectively. Then, for all th, sh ∈ Sh
there hold

‖A(th)−A(sh)‖S′h ≤ γ0‖th − sh‖0,Ω (3.8)

and

[A(th)−A(sh), th − sh] ≥ α0‖th − sh‖20,Ω. (3.9)

Proof. See [19, Lemma 2.1] or [4, Section 3].

We are now ready to establish that the nonlinear operator Ah defining the problem (2.11) is also
Lipschitz-continuous and strongly monotone. In particular, the second property will depend on a
suitable choice of the parameter κ1.

Lemma 3.5. Let Ah be the nonlinear operator defined by (2.12). Then, there exists a constant
CLC > 0, independent of h and τ , such that

‖Ah(th,σh)−Ah(sh, τ h)‖H′h ≤ CLC ‖(th,σh)− (sh, τ h)‖Hh
∀ (th,σh), (sh, τ h) ∈ Hh.

Proof. Given (th,σh), (sh, τ h) and (rh,ρh) ∈ Hh, we obtain from the definition of A and (3.6) that

[Ah(th,σh)−Ah(sh, τ h), (rh,ρh)] = [A(th)−A(sh), rh]− κ1[A(th)−A(sh),ρd
h]

− (rh, (σh − τ h)d)Th + (th − sh,ρ
d
h)Th +

1

2

∑
F∈Eih

∫
F

(τh)−1/2[[(σh − τ h)]] · (τh)−1/2[[ρh ]]

+ κ1((σh − τ h)d,ρd
h)Th + κ2(div(σh − τ h),div(ρh))Th , (3.10)

from which, applying Cauchy-Schwarz inequality and (3.8), it follows that

[A(th,σh)−A(sh, τ h), (rh,ρh)] ≤ ‖A(th)−A(sh)‖S′h‖rh‖0,Ω + κ1‖A(th)−A(sh)‖S′h ‖ρ
d
h‖0,Ω

+ ‖rh‖0,Ω ‖(σh − τ h)d‖0,Ω + ‖th − sh‖0,Ω ‖ρd
h‖0,Ω

+
1

2
‖(τh)−1/2[[(σh − τ h)]]‖0,Eih ‖(τh)−1/2[[ρh ]]‖0,Eih + κ1‖(σh − τ h)d‖0,Ω ‖ρd

h‖0,Ω
+ κ2‖div(σh − τ h)‖Th ‖div(ρh)‖Th ,

≤ γ0‖th − sh‖0,Ω ‖rh‖0,Ω + γ0κ1‖th − sh‖0,Ω ‖ρd
h‖0,Ω

+ ‖rh‖0,Ω ‖(σh − τ h)d‖0,Ω + ‖th − sh‖0,Ω ‖ρd
h‖0,Ω

+
1

2
‖(τh)−1/2[[(σh − τ h)]]‖0,Eih ‖(τh)−1/2[[ρh ]]‖0,Eih + κ1‖(σh − τ h)d‖0,Ω ‖ρd

h‖0,Ω
+ κ2‖div(σh − τ h)‖Th ‖div(ρh)‖Th .

In this way, setting
CLC := 3 max {1, γ0, κ1, γ0κ1, κ2} ,

we conclude that

[A(th,σh)−A(sh, τ h), (rh,ρh)] ≤ CLC ‖(th,σh)− (sh, τ h)‖Hh
‖(rh,ρh)‖Hh

,

which ends the proof.
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Lemma 3.6. Let Ah be the nonlinear operator defined by (2.12), and assume that the parameter κ1

lies in
(

0, 2α0

γ2
0

)
, where α0 and γ0 are the positive constants from (2.2) and (2.3). Then, there exists a

constant CSM > 0, independent of h and τ , such that

[Ah(th,σh)−Ah(sh, τ h), (th,σh)− (sh, τ h)] ≥ CSM ‖(th,σh)− (sh, τ h)‖2Hh
,

for all (th,σh), (sh, τ h) ∈ Hh.

Proof. Given (th,σh) and (sh, τ h) ∈ Hh, we take (rh,ρh) = (th,σh)− (sh, τ h) in (3.10), to obtain

[Ah(th,σh)−Ah(sh, τ h), (th,σh)− (sh, τ h)] = [A(th)−A(sh), th − sh]

− κ1[A(th)−A(sh), (σh − τ h)d] +
1

2
‖(τh)−1/2[[σh − τ h ]]‖20,Eih

+ κ1‖(σh − τ h)d‖20,Ω + κ2‖div(σh − τ h)‖2Th ,

which, according to (3.8) and (3.9), implies that

[Ah(th,σh)−Ah(sh, τ h), (th,σh)− (sh, τ h)]

≥ α0 ‖th − sh‖20,Ω − γ0κ1 ‖th − sh‖0,Ω ‖(σh − τ h)d‖0,Ω +
1

2
‖(τh)−1/2[[σh − τ h ]]‖20,Eih

+ κ1 ‖(σh − τ h)d‖20,Ω + κ2 ‖div(σh − τ h)‖2Th ,

≥ α0 ‖th − sh‖20,Ω − γ0κ1

{
‖th − sh‖20,Ω

2δ
+

δ ‖(σh − τ h)d‖20,Ω
2

}
+

1

2
‖(τh)−1/2[[σh − τ h ]]‖20,Eih + κ1 ‖(σh − τ h)d‖20,Ω + κ2 ‖div(σh − τ h)‖2Th ,

=
(
α0 −

γ0κ1

2δ

)
‖th − sh‖20,Ω + κ1

(
1− γ0δ

2

)
‖(σh − τ h)d‖20,Ω

+ κ2 ‖div(σh − τ h)‖2Th +
1

2
‖(τh)−1/2[[σh − τ h ]]‖20,Eih ∀ δ > 0.

It follows that the constants multiplying the norms above become positive if δ ∈
(

0, 2
γ0

)
and κ1 ∈(

0, 2α0δ
γ0

)
. In particular, for δ = 1

γ0
we require κ1 ∈

(
0, 2α0

γ2
0

)
, whence we find that

[Ah(th,σh)−Ah(sh, τ h), (th,σh)− (sh, τ h)]

≥
(
α0 −

γ2
0κ1

2

)
‖th − sh‖20,Ω +

κ1

2
‖(σh − τ h)d‖20,Ω

+ κ2 ‖div(σh − τ h)‖2Th +
1

2
‖(τh)−1/2[[σh − τ h ]]‖20,Eih

≥ CSM‖(th,σh)− (sh, τ h)‖2Hh
,

with CSM := min
{
α0 −

γ2
0κ1

2 , κ1
2 , κ2,

1
2

}
, thus completing the proof of the lemma.

Our next goal is to show the discrete inf-sup condition for the linear operator Bh. More precisely,
we have the following result.

Lemma 3.7. There exists a constant Cinf > 0, independent of h and τ , such that

sup
(sh,τh)∈Hh
(sh,τh)6=0

[Bh(sh, τ h),vh]

‖(sh, τ h)‖Hh

≥ Cinf ‖vh‖0,Ω ∀ vh ∈ Vh.
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Proof. We begin by recalling from (2.13) that Bh does not depend on sh, and hence it suffices to
show the existence of Cinf > 0 such that

sup
τh∈Σh
τh 6=0

∫
Ω
vh · div(τ h)−

∫
Eih
{{vh}} · [[τ h ]]

‖τ h‖Σh

≥ Cinf ‖vh‖0,Ω ∀ vh ∈ Vh.

To this end we let RTk−1(Ω) be the global Raviart-Thomas space of degree k − 1, which is clearly
contained in Sh, and note that

sup
τh∈Σh
τh 6=0

∫
Ω
vh · div(τ h)−

∫
Eih
{{vh}} · [[τ h ]]

‖τ h‖Σh

≥ sup
τh∈RTk−1(Ω)\{0}∫

Ω tr(τh)=0

∫
Ω
vh · div(τ h)

‖τ h‖Σh

.

In this way, and observing that ‖τ h‖Σh
is equivalent to ‖τ h‖div,Ω ∀ τ h ∈ RTk−1(Ω) such that∫

Ω tr (τ h) = 0, with constants independent of h and τ , the rest of the proof follows from classical
results from mixed finite element methods (see, e.g. [16, Section 4.2 and Lemma 2.6]).

The following three lemmas establish the positive semidefiniteness of Sh and some discrete trace,
inverse, and boundedness inequalities to be employed later on.

Lemma 3.8. The operator Sh : Vh → V ′h, defined by (2.14) is positive semidefinite, that is,

[Sh(vh),vh] ≥ 0 ∀ vh ∈ Vh.

Proof. It is clear from (2.14) that

[Sh(vh),vh] =
∑
T∈Th

∑
F∈∂T

∫
F
Svh · vh ∀ vh ∈ Vh,

which, thanks to the fact that S is a positive definite tensor on Eh, completes the proof.

Lemma 3.9 (Discrete trace’s inequality + inverse’s inequality). There exists Cinv > 0, depending
only on k and the shape regularity of the mesh, such that

‖v‖20,∂T ≤ Cinv h
−1
T ‖v‖

2
0,T ∀ v ∈ Pk(T ), ∀ T ∈ Th, (3.11)

and

‖τ‖20,∂T ≤ Cinv h
−1
T ‖τ‖

2
0,T ∀ τ ∈ Pk(T ), ∀ T ∈ Th. (3.12)

Proof. The proof uses the discrete trace inequality from Lemma 3.1 and an inverse inequality. See
also [3, Lemma 3.2].

Lemma 3.10. There exist constants Ĉ1, Ĉ2, Ĉ3 > 0, independent of h and τ , such that

i) ‖h1/2{{vh}}‖0,Eih ≤ Ĉ1‖vh‖0,Ω ∀ vh ∈ Vh.

ii) ‖h1/2vh‖0,E∂h ≤ Ĉ2‖vh‖0,Ω ∀ vh ∈ Vh.

iii) ‖h1/2τ hν‖0,E∂h ≤ Ĉ3‖τ h‖0,Ω ∀ τ h ∈ Σh.
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Proof. Given vh ∈ Vh, we use (3.11) to deduce that

‖h1/2{{vh}}‖20,Eih =
1

4

∫
Eih

h|v+
h + v−h |

2 ≤ 1

2

∫
Eih

h
(
|v+
h |

2 + |v−h |
2
)
≤ 1

2

∑
T∈Th

∫
∂T

h|vh|2

≤ C1

∑
T∈Th

hT ‖vh‖20,∂T ≤ C1Cinv

∑
T∈Th

‖vh‖20,T = C1Cinv‖vh‖20,Ω,

which shows i) with Ĉ1 := (C1Cinv)1/2 > 0. Next, using that h = hT on E∂h , and applying again (3.11),
we find that

‖h1/2vh‖20,E∂h =

∫
E∂h

h|vh|2 ≤
∑
T∈Th

hT ‖vh‖20,∂T ≤ Cinv‖vh‖20,Ω,

which proves ii) with Ĉ2 := (Cinv)1/2. Finally, the proof of iii) follows from (3.12).

Using Lemma 3.10, the definition of tensor S given in (3.5), and the Cauchy-Schwarz inequality,
it is easy to check that the operators Bh, Sh and Ch, and the functionals Fh and Gh, are all bounded
with respect to the corresponding norms. More precisely, the corresponding bounds are established in
the following lemma.

Lemma 3.11. Let sh ∈ Sh, τ h ∈ Σh and uh,vh ∈ Vh. Then there hold

|[Bh(sh, τ h),vh]| ≤ (1 + τĈ1) ‖(sh, τ h)‖Hh
‖vh‖0,Ω

|[Sh(uh),vh]| ≤ τĈ1 ‖uh‖0,Ω ‖vh‖0,Ω

|[Ch(uh),vh]| ≤ 2τĈ2
1 ‖uh‖0,Ω ‖vh‖0,Ω (3.13)

|[Fh, (sh, τ h)]| ≤
(
κ2 + c2Ĉ3

)
B(f,g) ‖(sh, τ h)‖Hh

|[Gh,vh]| ≤
(

1 + τh0Ĉ2

)
B(f,g) ‖vh‖0,Ω

where
B(f,g) := ‖f‖0,Ω + ‖h−1/2g‖0,E∂h .

Proof. The proof uses Lemma 3.10 and the definitions of each operator and functional. We omit
further details and refer to [3, Lemma 4.4].

We end this section, by recalling from [18] the following abstract theorem.

Theorem 3.1. Let X, M be Hilbert spaces and assume that

i) the operator A : X → X ′ is Lipschitz continuous and strongly monotonic, that is, there exist γ,
α > 0 such that

‖A(s1)−A(s2)‖X′ ≤ γ ‖s1 − s2‖X ∀ s1, s2 ∈ X

and
[A(s1)−A(s2), s1 − s2] ≥ α ‖s1 − s2‖2X ∀ s1, s2 ∈ X;

ii) the linear operator S is positive semidefinite on M , that is

[S(τ ), τ ] ≥ 0 ∀ τ ∈M ;
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iii) the linear operator B satisfies an inf-sup condition on X ×M , that is, there exists β > 0 such
that

sup
s∈X
s 6=0

[B(s), τ ]

‖s‖X
≥ β ‖τ‖M ∀ τ ∈M.

Then, given F ∈ X ′ and G ∈M ′, there exists a unique solution (t,σ) ∈ X ×M of

[A(t), s] + [B∗(σ), s] = [F , s] ∀ s ∈ X,

[B(t), τ ]− [S(σ), τ ] = [G, τ ] ∀ τ ∈M.

In addition, the following estimates hold

‖t‖X ≤ C1

{
‖F‖X′ + ‖G‖M ′ + ‖A(0)‖X′

}
,

‖σ‖M ≤ C2

{
‖F‖X′ + ‖G‖M ′ + ‖A(0)‖X′

}
,

where

C1 :=
1

α
+
‖B‖
α
C2 and C2 :=

γ2

αβ2

(
1 +
‖B‖
α

)
.

Proof. See [18, Lemma 2.1], where it is easy to show the last estimates from expressions (2.8) and
(2.9) in [18].

3.2 Main result

In order to prove existence and uniqueness of solution of (2.11), we now introduce the nonlinear
mapping Th : Hh × Vh → Hh × Vh that, given ((rh,ρh),wh) ∈ Hh × Vh, defines Th((rh,ρh),wh) :=
((th,σh),uh) ∈ Hh × Vh as the unique solution of the problem

[Ah(th,σh), (sh, τ h)] + [Bh(sh, τ h),uh] = [Fh, (sh, τ h)] ∀ (sh, τ h) ∈ Hh,

[Bh(th,σh),vh] − [Sh(uh),vh] = [Gh,vh] + [Ch(wh),vh] ∀ vh ∈ Vh.

Note that actually Th((rh,ρh),wh) depends only on the third component wh ∈ Vh. In addition,
bearing in mind Lemmas 3.5, 3.6, 3.7 and 3.8, it follows from Theorem 3.1 that Th is well-defined and
there holds

‖(th,σh)‖Hh
≤ ĈaC̃ B(f,g) + 2Ĉ2

1 Ĉaτ ‖wh‖0,Ω, (3.14)

and

‖uh‖0,Ω ≤ ĈbC̃ B(f,g) + 2Ĉ2
1 Ĉbτ ‖wh‖0,Ω, (3.15)

where

C̃ := 1 + κ2 + τh0Ĉ2 + c
1/2
1 Ĉ3(1 + τ)1/2,

Ĉa :=
1

CSM

(
1 + (1 + τĈ1)Ĉb

)
,

Ĉb :=
C2

LC

CSMC2
inf

(
1 +

1 + τĈ1

CSM

)
,
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and the constants Ĉ1, Ĉ2, and Ĉ3 are those from Lemma 3.10. Observe here that the identity
Ah(0,0) = (0,0) and Lemma 3.11 have been employed to establish the estimates (3.14) and (3.15).
Also, we remark that the relevance of the introduction of Th has to do with the fact that any even-
tual solution of (2.11) becomes a fixed point of Th and conversely. Moreover, the following lemma
establishes that Th is indeed a contraction mapping and hence, thanks to the Banach Fixed-Point
Theorem, it has a unique fixed point in Hh × Vh.

Lemma 3.12. Assume that the parameter τ lies in
(
0, 1

θ

)
, where

θ :=

(
2Ĉ2

1

CSM

)(
CLC

Cinf

)(
1 +

CLC

Cinf

)
> 0.

Then, Th is a contraction.

Proof. Given ((th,σh),uh), ((t̃h, σ̃h), ũh), ((rh,ρh),wh), and ((r̃h, ρ̃h), w̃h) in Hh × Vh such that

Th((rh,ρh),wh) = ((th,σh),uh) and Th((r̃h, ρ̃h), w̃h) = ((t̃h, σ̃h), ũh),

we know from the definition of Th that

[Ah(th,σh)−Ah(t̃h, σ̃h), (sh, τ h)] + [Bh(sh, τ h),uh − ũh] = 0, (3.16a)

[Bh(th − t̃h,σh − σ̃h),vh] − [Sh(uh − ũh),vh] = [Ch(wh − w̃h),vh], (3.16b)

for all ((sh, τ h),vh) ∈ Hh × Vh. Next, taking (sh, τ h) = (th − t̃h,σh − σ̃h) and vh = uh − ũh, we
obtain from (3.16) that

[Ah(th,σh)−Ah(t̃h, σ̃h), (th,σh)− (t̃h, σ̃h)]

+ [Sh(uh − ũh),uh − ũh] = −[Ch(wh − w̃h),uh − ũh]. (3.17)

Then, using the strong monotonicity of Ah, the fact that Sh is positive semidefinite, and the bound-
edness of Ch (cf. (3.13)), we deduce from (3.17) that

‖(th,σh)− (t̃h, σ̃h)‖2Hh
≤ 2τĈ2

1

CSM
‖wh − w̃h‖0,Ω ‖uh − ũh‖0,Ω. (3.18)

On the other hand, employing the inf-sup condition for Bh (cf. Lemma 3.7), (3.16a), and the Lipschitz-
continuity of Ah (cf. Lemma 3.6), we find that

‖uh − ũh‖0,Ω ≤ 1

Cinf
sup

(sh,τh)∈Hh
(sh,τh)6=0

|[Bh(sh, τ h),uh − ũh]|
‖(sh, τ h)‖Hh

,

=
1

Cinf
sup

(sh,τh)∈Hh
(sh,τh)6=0

| − [Ah(th,σh)−Ah(t̃h, σ̃h), (sh, τ h)]|
‖(sh, τ h)‖Hh

,

≤ CLC

Cinf
‖(th,σh)− (t̃h, σ̃h)‖Hh

,

which, together with (3.18), implies that

‖(th,σh)− (t̃h, σ̃h)‖Hh
≤

(
2τĈ2

1

CSM

)(
CLC

Cinf

)
‖wh − w̃h‖0,Ω
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and

‖uh − ũh‖0,Ω ≤

(
2τĈ2

1

CSM

)(
CLC

Cinf

)2

‖wh − w̃h‖0,Ω.

In this way, we conclude that

‖Th((rh,ρh),wh)−Th((r̃h, ρ̃h), w̃h)‖Hh×Vh ≤ L ‖((rh,ρh),wh)− ((r̃h, ρ̃h), w̃h)‖Hh×Vh ,

with L := τθ. Finally, since Cinf , CLC, and CSM, are independent of τ > 0, we can choose τ ∈
(
0, 1

θ

)
,

which insures that Th is a contraction and completes the proof.

Now we are ready to establish the main result of this section.

Theorem 3.2. Assume that

0 < τ < min

{
1

θ
,

1

2

(
CSM

(1 + CSM)θ + Ĉ1

)}
.

Then, there exists a unique ((th,σh),uh) ∈ Hh × Vh solution of (2.11). Moreover, there holds

‖(th,σh)‖Σh
≤ Ca B(f,g) and ‖uh‖0,Ω ≤ Cb B(f,g),

where
Ca := Ĉa (C̃ + 2Ĉ2

1Cbτ) and Cb := 2ĈbC̃.

Proof. The unique solvability of (2.11) follows straightforwardly from its equivalence with the fixed-
point equation forTh, the corresponding Banach Theorem, and the fact thatTh becomes a contraction
when τ < 1

θ (cf. Lemma 3.12). Then, denoting by ((th,σh),uh) ∈ Hh × Vh the unique solution of
(2.11), we have from (3.14) and (3.15) that

‖(th,σh)‖Hh
≤ ĈaC̃ B(f,g) + 2Ĉ2

1 Ĉaτ ‖uh‖0,Ω (3.19)

and

‖uh‖0,Ω ≤ ĈbC̃ B(f,g) + 2Ĉ2
1 Ĉbτ ‖uh‖0,Ω. (3.20)

It remain to handle the second term on the right-hand side of (3.20). For this purpose, we now note
that

2Ĉ2
1 Ĉbτ = 2Ĉ2

1

C2
LC

CSMC2
inf

(
1 +

1 + τĈ1

CSM

)
τ

=

(
2Ĉ2

1

CSM

)(
CLC

Cinf

)(
CLC

Cinf

)(
1 +

1 + τĈ1

CSM

)
τ

≤ θ

(
1 +

1 + τĈ1

CSM

)
τ =

(
θ +

θ + (θτ)Ĉ1

CSM

)
τ

which, using the assumption on τ , gives

2Ĉ2
1 Ĉbτ <

(
θ +

θ + Ĉ1

CSM

)
τ =

(
(1 + CSM)θ + Ĉ1

CSM

)
τ <

1

2
.

In this way, replacing the foregoing inequality back into (3.20), we deduce that

‖uh‖0,Ω ≤ 2ĈbC̃ B(f,g) = Cb B(f,g),

which, together with (3.19), yields

‖(th,σh)‖Hh
≤

(
ĈaC̃ + 2Ĉ2

1 ĈaCbτ
)
B(f,g) = Ca B(f,g),

thus completing the proof of the theorem.
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4 A-priori error analysis

We now aim to derive the a priori error estimates for the augmented HDG scheme (2.11). We
begin by remarking that the eventual extension to the present nonlinear case of the projection-based
error analysis developed in [11] (see also [13]) does not seem straightforward, precisely because of the
nonlinearity, and hence in what follows we adopt a more classical approach. Next, since u ∈ L2(Ω) and
∇u = t ∈ L2(Ω) (cf. (2.4)), we observe that actually u ∈ H1(Ω), which guarantees that the jump [[u]]
vanish on any interior face of Th and there holds {{u}} = u. In addition, since σ = ψ(∇u)−pI ∈ L2(Ω)
and div(σ) = −f in Ω, with f ∈ L2(Ω), we conclude that σ ∈ H(div; Ω), whence [[σ ]] = 0 on each
F ∈ E ih. Then, it is easy to check that (t,σ,u) satisfies the equations of (2.11), and then we obtain
the error equations

[Ah(t,σ)−Ah(th,σh), (sh, τ h)] + [Bh(sh, τ h),u− uh] = 0 ∀ (sh, τ h) ∈ Hh, (4.1a)

[Bh((t,σ)− (th,σh)),vh]− [Sh(u− uh),vh]− [Ch(u− uh),vh] = 0 ∀ vh ∈ Vh. (4.1b)

The following result establishes the Céa estimate for (2.5) and (2.11).

Lemma 4.1. Assume that

0 < τ < min

{
1

θ
,

1

2

(
CSM

(1 + CSM)θ + Ĉ1

)
,

1

ϑ

}
,

with θ > 0 defined in Lemma 3.12 and

ϑ := 2

(
1 +

CLC

CSM

)(
CLC

Cinf

)(
Ĉ1 + 2Ĉ2

2

Cinf

)
> 0.

Let ((t,σ),u) ∈ L2(Ω) × H(div; Ω) × L2(Ω) and ((th,σh),uh) ∈ Hh × Vh be the unique solutions of
(2.5) and (2.11), respectively. Then, there hold the Céa error estimates

‖(t,σ)− (th,σh)‖Hh
≤ 2

(
1 +

CLC

CSM

)(
1 +
‖Bh‖
Cinf

)
inf

(sh,τh)∈Hh

‖(t,σ)− (sh, τ h)‖Hh

+

{
‖Bh‖
CSM

+

{
1 +

(
1 +

CLC

CSM

)
‖Bh‖
Cinf

}(
Cinf

CLC

)}
inf

vh∈Vh
‖u− vh‖0,Ω, (4.2)

and

‖u− uh‖0,Ω ≤ 2

(
1 +

CLC

CSM

)(
CLC

Cinf

)(
1 +
‖Bh‖
Cinf

)
inf

(sh,τh)∈Hh

‖(t,σ)− (sh, τ h)‖Hh

+ 2

{
1 +

(
1 +

CLC

CSM

)
‖Bh‖
Cinf

}
inf

vh∈Vh
‖u− vh‖0,Ω. (4.3)

Proof. We proceed as in [31, Proposition 4.1]. In fact, we first set Hh = H̃h ⊕ H̃⊥h , with H̃h being

the kernel of Bh. Hence, given (sh, τ h) ∈ Hh, we let (rh,ρh) ∈ H̃⊥h be the unique solution of

[Bh(rh,ρh),vh] = [Bh((t,σ)− (sh, τ h))− Sh(u− uh)− Ch(u− uh),vh] ∀ vh ∈ Vh,

which there exists thanks to the discrete inf-sup condition and the continuity of Bh. Then, there holds

Cinf ‖(rh,ρh)‖Hh
≤ sup

vh∈Vh
vh 6=0

[Bh(rh,ρh),vh]

‖vh‖0,Ω

= sup
vh∈Vh
vh 6=0

[Bh((t,σ)− (sh, τ h))− Sh(u− uh)− Ch(u− uh),vh]

‖vh‖0,Ω

≤ ‖Bh‖ ‖(t,σ)− (sh, τ h)‖Hh
+ { ‖Sh‖+ ‖Ch‖ } ‖u− uh‖0,Ω
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that is

‖(rh,ρh)‖Hh
≤ ‖Bh‖

Cinf
‖(t,σ)− (sh, τ h)‖Hh

+

{
‖Sh‖+ ‖Ch‖

Cinf

}
‖u− uh‖0,Ω. (4.4)

Also, note by construction of (rh,ρh) ∈ H̃⊥h and (4.1b) that there holds

[Bh((sh, τ h) + (rh,ρh)− (th,σh)),vh] = 0 ∀ vh ∈ Vh. (4.5)

Next, applying the strong monotonicity of Ah and (4.1a), we get

CSM ‖(sh, τ h) + (rh,ρh)− (th,σh)‖2Hh

≤ [Ah((sh, τ h) + (rh,ρh))−Ah(th,σh), (sh, τ h) + (rh,ρh)− (th,σh)]

= [Ah((sh, τ h) + (rh,ρh))−Ah(t,σ), (sh, τ h) + (rh,ρh)− (th,σh)]

+ [Ah(t,σ)−Ah(th,σh), (sh, τ h) + (rh,ρh)− (th,σh)]

= [Ah((sh, τ h) + (rh,ρh))−Ah(t,σ), (sh, τ h) + (rh,ρh)− (th,σh)]

− [Bh((sh, τ h) + (rh,ρh)− (th,σh)),u− uh].

In turn, it follows from (4.5) that we can replace uh by vh ∈ Vh in the foregoing expression involving
Bh, and hence we obtain

CSM ‖(sh, τ h) + (rh,ρh)− (th,σh)‖2Hh

≤ [Ah((sh, τ h) + (rh,ρh))−Ah(t,σ), (sh, τ h) + (rh,ρh)− (th,σh)]

− [Bh((sh, τ h) + (rh,ρh)− (th,σh)),u− vh]

≤ CLC ‖(sh, τ h) + (rh,ρh)− (t,σ)‖Hh
‖(sh + rh, τ h + ρh)− (th,σh)‖Hh

+ ‖Bh‖ ‖(sh, τ h) + (rh,ρh)− (th,σh)‖Hh
‖u− vh‖0,Ω,

which yields

‖(sh, τ h) + (rh,ρh)− (th,σh)‖Hh
≤ CLC

CSM
‖(t,σ)− (sh, τ h)− (rh,ρh)‖Hh

+
‖Bh‖
CSM

‖u− vh‖0,Ω.

Thus, by triangle inequality we deduce that

‖(t,σ)− (th,σh)‖Hh
≤ ‖(t,σ)− (sh, τ h)− (rh,ρh)‖Hh

+ ‖(sh, τ h) + (rh,ρh)− (th,σh)‖Hh

≤
(

1 +
CLC

CSM

)
‖(t,σ)− (sh, τ h)− (rh,ρh)‖Hh

+
‖Bh‖
CSM

‖u− vh‖0,Ω

≤
(

1 +
CLC

CSM

)
‖(t,σ)− (sh, τ h)‖Hh

+

(
1 +

CLC

CSM

)
‖(rh,ρh)‖Hh

+
‖Bh‖
CSM

‖u− vh‖0,Ω,

which, together with (4.4) and the fact that (sh, τ h) ∈ Hh and vh ∈ Vh are arbitrary, imply

‖(t,σ)− (th,σh)‖Hh
≤
(

1 +
CLC

CSM

)(
1 +
‖Bh‖
Cinf

)
inf

(sh,τh)∈Hh

‖(t,σ)− (sh, τ h)‖Hh

+
‖Bh‖
CSM

inf
vh∈Vh

‖u− vh‖0,Ω +

(
1 +

CLC

CSM

)(
‖Sh‖+ ‖Ch‖

Cinf

)
‖u− uh‖0,Ω. (4.6)

On the other hand, using the inf-sup condition for Bh, (4.1a), and the Lipschitz-continuity of Ah, we
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find that for each vh ∈ Vh there holds

Cinf ‖vh − uh‖0,Ω ≤ sup
(sh,τh)∈Hh
(sh,τh)6=0

[Bh(sh, τ h),vh − uh]

‖(sh, τ h)‖Hh

= sup
(sh,τh)∈Hh
(sh,τh)6=0

[Bh(sh, τ h),vh − u] + [Bh(sh, τ h),u− uh]

‖(sh, τ h)‖Hh

= sup
(sh,τh)∈Hh
(sh,τh)6=0

[Bh(sh, τ h),vh − u] − [Ah(t,σ)−Ah(th,σh), (sh, τ h)]

‖(sh, τ h)‖Hh

≤ ‖Bh‖ ‖u− vh‖0,Ω + CLC ‖(t,σ)− (th,σh)‖Hh
,

which, together with an application of the triangle inequality, gives

‖u− uh‖0,Ω ≤
(

1 +
‖Bh‖
Cinf

)
inf

vh∈Vh
‖u− vh‖0,Ω +

CLC

Cinf
‖(t,σ)− (th,σh)‖Hh

. (4.7)

Next, by substituting (4.6) into (4.7), we arrive at

‖u− uh‖0,Ω ≤
(

1 +
CLC

CSM

)(
CLC

Cinf

)(
1 +
‖Bh‖
Cinf

)
inf

(sh,τh)∈Hh

‖(t,σ)− (sh, τ h)‖Hh

+

{
1 +

(
1 +

CLC

CSM

)
‖Bh‖
Cinf

}
inf

vh∈Vh
‖u− vh‖0,Ω

+

(
1 +

CLC

CSM

)(
CLC

Cinf

)(
‖Sh‖+ ‖Ch‖

Cinf

)
‖u− uh‖0,Ω.

In turn, we know from Lemma 3.11 that ‖Sh‖ ≤ τĈ1 and ‖Ch‖ ≤ 2τĈ2
1 , and hence, recalling that

τ < 1
ϑ , we deduce that(

1 +
CLC

CSM

)(
CLC

Cinf

)(
‖Sh‖+ ‖Ch‖

Cinf

)
≤

(
1 +

CLC

CSM

)(
CLC

Cinf

)(
Ĉ1 + 2Ĉ2

1

Cinf

)
τ <

1

2
,

which allows to conclude from the previous inequality that

‖u− uh‖0,Ω ≤ 2

(
1 +

CLC

CSM

)(
CLC

Cinf

)(
1 +
‖Bh‖
Cinf

)
inf

(sh,τh)∈Hh

‖(t,σ)− (sh, τ h)‖Hh

+ 2

{
1 +

(
1 +

CLC

CSM

)
‖Bh‖
Cinf

}
inf

vh∈Vh
‖u− vh‖0,Ω. (4.8)

Finally, it is easy to see that (4.6) and (4.8) provide (4.2) and (4.3), thus finishing the proof.

Next, in order to provide the rate of convergence of the discontinuous Galerkin scheme (2.11), we
need the approximation properties of the finite element subspaces involved. For this purpose, given
T ∈ Th, we let Pk

T : L2(T ) → Pk(T ) and Pk−1
T : L2(T ) → Pk−1(T ) be the L2(T ) and L2(T ) −

orthogonal projectors, respectively. It is well known (see, e.g. [7, 16]) that for each s ∈ H`(T ) and
v ∈ H`+1(T ) there holds

‖s−Pk
T (s)‖0,T ≤ Ch

min{`,k+1}
T |s|`,T ∀ T ∈ Th, (4.9)

and

‖v− Pk−1
T (v)‖0,T ≤ Ch

min{`+1,k}
T |v|`+1,T ∀ T ∈ Th. (4.10)
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On the other hand, let Πk−1
T : H1(T ) → Pk(T ) be the Raviart-Thomas interpolation operator (see

[2, 16, 29]), which satisfies the approximation property

‖τ −Πk−1
T (τ )‖div,T ≤ Ch

min{`,k}
T

{
|τ |`,T + |div(τ )|`,T

}
∀ T ∈ Th, (4.11)

and for each τ ∈ H`(T ) such that div(τ ) ∈ H`(T ), with ` ≥ 1. Moreover, the interpolation operator
Πk−1
T can also be defined as a bounded linear operator from the larger space H`(T ) ∩ H(div;T ) into

Pk(T ) for all ` ∈ (0, 1] (see, e.g. [21, Theorem 3.16]). In this case there holds the following interpolation
error estimate (see [16, Lemma 3.19])

‖τ −Πk−1
T (τ )‖0,T ≤ Ch`T

{
|τ |`,T + ‖div(τ )‖0,T

}
∀ T ∈ Th,

which, together with (4.11), implies for ` > 0 that

‖τ −Πk−1
T (τ )‖div,T ≤ Ch

min{`,k}
T

{
|τ |`,T + ‖div(τ )‖`,T

}
∀ T ∈ Th.

On the other hand, observe that, given Z := {τ ∈ L2(Ω) : τ |T ∈ H`(T ) ∀ T ∈ Th}, we can define
ΠΣh

: H(div; Ω) ∩ Z → Σh by

ΠΣh
(τ )|T := Πk−1

T (τ |T ) + d I ∀ T ∈ Th,

with d := − 1
n|Ω|

∑
T∈Th

∫
T tr

(
Πk−1
T (τ |T )

)
∈ R. Then, it is easy to prove that

‖τ −ΠΣh
(τ )‖2Σh

≤
∑
T∈Th

‖τ −Πk−1
T (τ )‖2div,T ∀ τ ∈ H(div; Ω) ∩ Z,

and hence

‖τ −ΠΣh
(τ )‖Σh

≤ C
∑
T∈Th

h
min{`,k}
T

{
|τ |`,T + ‖div(τ )‖`,T

}
. (4.12)

In this way, as a consequence of (4.9), (4.10), (4.12), and the usual interpolation estimates, we find
that Sh, Σh and Vh satisfy the following approximation properties:

(APt
h) For each ` ≥ 0 and for each s ∈ H`(Ω) there exists sh ∈ Sh such that

‖s− sh‖0,Ω ≤ C
∑
T∈Th

h
min{`,k+1}
T |s|`,T .

(APσ
h ) For each ` > 0 and for each τ ∈ H`(Ω) with div(τ ) ∈ H`(Ω) there exists τ h ∈ Σh such that

‖τ − τ h‖Σh
≤ C

∑
T∈Th

h
min{`,k}
T

{
|τ |`,T + ‖div(τ )‖`,T

}
.

(APu
h) For each ` ≥ 0 and for each v ∈ H`(Ω) there exists vh ∈ Vh such that

‖v− vh‖0,Ω ≤ C
∑
T∈Th

h
min{`+1,k}
T |v|`+1,T .

The following theorem establishes the theoretical rates of convergence of the discrete scheme (2.11),
under suitable regularity assumptions on the exact solution.
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Theorem 4.1. Assume the same hypotheses of Lemma 4.1. In addition, suppose that there exists an
integer ` > 0 such that t|T ∈ H`(T ), σ|T ∈ H`(T ), div(σ|T ) ∈ H`(T ) and u|T ∈ H`+1(T ), for all
T ∈ Th. Then, there exists C > 0, independent of h and the polynomial approximation degree k, such
that

‖t− th‖0,Ω + ‖σ − σh‖Σh
+ ‖u− uh‖0,Ω

≤ C
∑
T∈Th

h
min{`,k}
T

{
|t|`,T + |σ|`,T + ‖div(σ)‖`,T + |u|`+1,T

}
.

Proof. It follows from the Céa estimate (cf. Lemma 4.1) and the approximation properties (APt
h),

(APσ
h ) and (APu

h).

Note from the previous theorem and (3.7) that we can also conclude that

‖σ − σh‖0,Ω ≤ C
∑
T∈Th

h
min{`,k}
T

{
|t|`,T + |σ|`,T + ‖div(σ)‖`,T + |u|`+1,T

}
. (4.13)

Furthermore, we know from (2.1) that p = − 1
ntr (σ), which suggests to define the following postpro-

cessed approximation of the pressure:

ph := − 1

n
tr (σh) in Ω ,

and therefore

‖p− ph‖0,Ω =
1

n
‖tr (σ − σh) ‖0,Ω ≤

1

n
‖σ − σh‖0,Ω, (4.14)

which, thanks to (4.13), gives the a priori error estimate for the pressure.

Now, as in [11], we measure the errors of quantities defined on ∂Th with the seminorm:

‖µ‖h :=

∑
T∈Th

hT ‖µ‖20,∂T


1/2

,

and we let ΠEh : L2(Eh)→ P(Eh) be the orthogonal projection onto the space of piecewise polynomials
of degree ≤ k on Eh. Next, we end this section with the a priori error estimate for the trace of the
velocity unknown, which is established next.

Theorem 4.2. Assume the same hypotheses of Theorem 4.1. Then, there exists C > 0, independent
of h and the polynomial approximation degree k, such that

‖ΠEh(u)− ûh‖h ≤ C
∑
T∈Th

h
min{`,k}
T

{
|t|`,T + |σ|`,T + ‖div(σ)‖`,T + |u|`+1,T

}
.

Proof. Since ΠEh(u) = ΠΓ(g) = ûh on E∂h , we only need to compute the error for each F ∈ E ih. In
fact, we have

‖ΠEh(u)− ûh‖2h =
∑
T∈Th

∑
F∈∂T\Γ

hT ‖ΠEh(u)− λh‖20,F

≤ C̃
∑
T∈Th

∑
F∈∂T\Γ

h‖ΠEh(u)− λh‖20,F = 2C̃
∑
F∈Eih

h‖ΠEh(u)− λh‖20,F ,
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with C̃ ≥ 1 depending only on the shape regularity of the mesh. Then, according to (2.10), (3.6) and
the fact that {{u}} = u and [[σ ]] = 0 on E ih, we obtain that

‖ΠEh(u)− ûh‖2h ≤ 2C̃
∑
F∈Eih

h

∥∥∥∥ΠEh(u)− {{uh}}+
1

2
(τh)−1[[σh ]]

∥∥∥∥2

0,F

≤ C
∑
F∈Eih

{
‖h1/2{{ΠEh(u)− uh}}‖20,F +

1

4τ
‖(τh)−1/2[[σ − σh ]]‖20,F

}
≤ C

{
‖h1/2{{ΠEh(u)− uh}}‖20,Eih + ‖σ − σh‖2Σh

}
. (4.15)

Next, it is easy to check that ΠEh(u)|F = Pkh(u)|F = for each F ∈ Eh, where Pkh : L2(Ω)→ Pk(Th) is
the orthogonal projector, which satisfies

‖v− Pkh(v)‖0,Ω ≤ C
∑
T∈Th

h
min{`+1,k+1}
T |v|`+1,T ∀ v ∈ H`(T ), ∀ T ∈ Th. (4.16)

Consequently, using the analogue of the part i) of Lemma 3.10 with Pk(Th) instead of Vh, we deduce
from (4.15) that

‖ΠEh(u)− ûh‖h ≤ C
{
‖Pkh(u)− uh‖0,Ω + ‖σ − σh‖Σh

}
≤ C

{
‖u− Pkh(u)‖0,Ω + ‖u− uh‖0,Ω + ‖σ − σh‖Σh

}
,

which, together with (4.16) and Theorem 4.1, complete the proof.

5 Implementation considerations

In this section we describe some general aspects on the computational implementation of the discrete
scheme proposed in Section 2. We remark that we refer to the original HDG system (2.9) since, as
explained before, the equivalent reduced scheme given by (2.11) was introduced just for sake of the
analysis. We begin by considering again problem (2.9) in a single element T ∈ Th with Dirichlet’s
datum g = 0 (as is usual, the boundary condition can be imposed later), that is∫

T
ψ(th) : sh −

∫
T
sh : σd

h = 0,∫
T

{
th − κ1ψ(th)

}
: τ d

h +

{
κ1

∫
T
σd
h : τ d

h + κ2

∫
T
div(σh) · div(τ h)

}
+

∫
T
uh · div(τ h)−

∫
∂T
τ hν · λh = −κ2

∫
T
f · div(τ h),

−
∫
T
vh · div(σh) +

∫
∂T

Suh · vh −
∫
∂T

Sλh · vh =

∫
T
f · vh,

−
∫
∂T
σhν · µh +

∫
∂T

Suh · µh −
∫
∂T

Sλh · µh = 0 ,

for all (sh, τ h,vh,µh) ∈ Pk(T )× Pk(T )×Pk−1(T )×Pk(∂T ).

Note that, because of the null mean value condition of the trace of σh, that is
∫

Ω tr (σh) = 0, we
can not establish the value of σh|T only with the information from T (as it is natural in discontin-
uous Galerkin schemes). For that reason, and in order to rewrite the above local contribution in an
equivalent form, we now define the local space

Σh,0(T ) :=

{
τ ∈ Pk(T ) :

∫
T

tr (τ ) = 0

}
,
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for which there holds Pk(T ) = Σh,0(T )⊕ P0(T )I, where I ∈ Rn×n is the identity matrix. Next, given
σh, τ h ∈ Sh, we consider the local decomposition

σh|T = σ̃h|T + ρh|T I and τ h|T = τ̃ h|T + ζh|T I ∀T ∈ Th ,

where σ̃h|T , τ̃ h|T ∈ Σh,0(T ), ρh|T , ζh|T ∈ P0(T ), and rewrite the above local contribution as∫
T
ψ(th) : sh −

∫
T
sh : σ̃d

h = 0,∫
T

{
th − κ1ψ(th)

}
: τ̃ d

h +

{
κ1

∫
T
σ̃d
h : τ̃ d

h + κ2

∫
T
div(σ̃h) · div(τ̃ h)

}
+

∫
T
uh · div(τ̃ h)−

∫
∂T
τ̃ hν · λh = −κ2

∫
T
f · div(τ̃ h),

−
∫
T
vh · div(σ̃h) +

∫
∂T

Suh · vh −
∫
∂T

Sλh · vh =

∫
T
f · vh,

−
∫
∂T
σ̃hν · µh +

∫
∂T

Suh · µh −
∫
∂T

Sλh · µh −
∫
∂T
ρhµh · ν = 0,

−
∫
∂T
ζhλh · ν = 0 ,

for all (sh, τ̃ h,vh,µh, ζh) ∈ Pk(T ) × Σh,0(T ) × Pk−1(T ) × Pk(∂T ) × P0(T ). In addition, it is easy to
see that the aforementioned condition on the trace of σh becomes∑

T∈Th

ρh|T |T | = 0 .

Then, applying the Newton-Raphson’s method to the global nonlinear system, we translate the local
contribution for the Newton’s linear system in the mth iteration into the form

DA1(tmh ) B 0 0 0

−BT −DA2(tmh ) H C −E 0

0 −CT K −F 0

0 −ET FT −D G

0 0 0 GT 0





δtmh
δσ̃mh

δumh
δλmh
δρmh

 =



bm1

bm2

bm3
bm4

bm5

 ,

where δtmh corresponds to the mth update for the th variable, that is tm+1
h = tmh +δtmh , and similarly for

the other variables. The discrete operators DAi(r), i ∈ {1, 2}, are the respective Gâteaux derivatives,
given by

[DA1(r)t, s] :=

∫
T

n∑
i,j,k,l=1

∂

∂rkl
ψij(r)tklsij =

∫
T

µ′(|r|)
|r|

(r : t)(r : s) +

∫
T
µ(|r|)t : s,

and

[DA2(r)t, s] := κ1[DA1(r)t, sd],

for all r, t, s ∈ L2(T ), with |r| = ‖r‖Rn×n 6= 0. All the above discrete operators can be calculated
similarly as in [6]. It is important to note here that the local submatrix DA1(tmh ) B 0

−BT −DA2(tmh ) H C

0 −CT K

 ∈ R(n2dq+(n2dq−1)+ndu)×(n2dq+(n2dq−1)+ndu),
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with dq := dimPk(T ) and du := dimPk−1(T ), is invertible when µ > 0 and |tmh | 6= 0. Then, as it
is usual in the HDG methods, we can obtain the values of δtmh |T , δσ̃mh |T and δumh |T as functions of
δλmh |T and δρmh |T (actually, they only depend on δλmh |T ). In other words, we can reduce the stencil
of the global linear system on each iteration of the Newton’s method.

Finally, we let

Ntotal := (n2dq + n2dq + ndu + dq)× (# of element in Th)

+ (ndl)× (# of faces in Th),

with dl := dimPk(F ), F ∈ ∂T , be the total number of degrees of freedom including those for the
pressure. In other words, Ntotal is the total number of unknowns defining th, σh, uh, λh and ph. On
the other hand, we let

Ncomp := (ndl)× (# of faces in Th) + (# of element in Th)

be the number of degrees of freedom effectively employed in the computations, i.e, the total number
of unknowns defining λh and ρh.

6 Numerical results

In this section we present several numerical experiments illustrating the performance of the augmented
HDG method introduced in Section 2. We set τ = 10−2 for each one of the 4 examples to be reported,
which, as shown below, works fine in all the cases. An a priori verification of the hypotheses on τ
in Lemma 4.1 would certainly require the explicit knowledge of all the constants involved, which,
however, is rarely possible. On the other hand, we take the stabilization parameter κ1 = α0

γ2
0

, which

obviously satisfies the assumption κ1 ∈
(

0, 2α0

γ2
0

)
in Lemma 3.6, and then, as suggested by the value

of the strong monotonicity constant CSM at the end of its proof, we simply choose κ2 = κ1
2 . The

corresponding nonlinear algebraic system arising from (2.9) is solved by the Newton method with a
tolerance of 10−6 and taking as initial iteration the solution of the associated linear Stokes problem
(four iterations were required to achieve the given tolerance in each example). Now, according to the
definitions given in Section 5, we recall that Ntotal is the total number of degrees of freedom, and
Ncomp is the number of degrees of freedom involved in the implementation of the Newton’s method.
The numerical results presented below were obtained using a C++code, which was developed following
the same techniques from [6]. In turn, the linear systems are solved using the conjugate gradient
method with a relative tolerance of 10−6.

In Example 1 we follow [28, 11] and consider the linear Stokes problem given by the flow uncovered
by Kovaszany [24]. This means that Ω := (−0.5, 1.5)× (0, 2), µ = 0.1, and the data f and g are chosen
so that the exact solution is given by

u(x) =

(
1− exp(λx1) cos(2πx2),

λ

2π
exp(λx1) sin(2πx2)

)
,

p(x) =
1

2
exp(2λx1)− 1

8λ

{
exp(3λ)− exp(−λ)

}
,

for all x := (x1, x2)t ∈ Ω, where λ := Re
2 −

√
Re2

4 + 4π2 and Re := µ−1 = 10 is the Reynolds number.

It is easy to see in this linear case that α0 = γ0 = µ. Concerning the triangulations employed in our
computations, we first consider seven meshes that are Cartesian refinements of a domain defined in
terms of squares, and then we split each square into four congruent triangles.
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In Example 2 we deal with the nonlinear version of Example 1. More precisely, we consider
instead of µ = 0.1 the kinematic viscosity function µ : R+ → R+ given by the Carreau law, that is
µ(t) := µ0 + µ1(1 + t2)(β−2)/2 ∀ t ∈ R+, with µ0 = µ1 = 0.5 and β = 1.5. It is easy to check in
this case that the assumptions (2.2) and (2.3) are satisfied with

γ0 = µ0 + µ1

{
|β − 2|

2
+ 1

}
and α0 = µ0 .

Then, we let again Ω := (−0.5, 1.5)× (0, 2), and choose the data f and g so that the exact solution is
the same from Example 1. The set of triangulations utilized is also as in Example 1.

Next, in Example 3 we use the same nonlinearity µ from Example 2, consider the L-shaped domain
Ω := (−1, 1)2 \ [0, 1]2, and choose the data f and g so that the exact solution is given by

u(x) =
(
r2/3 sin(θ), −r2/3 cos(θ)

)
,

p(x) = cos(x1) cos(x2)− sin2(1) ,

for all x := (x1, x2)t ∈ Ω, where r := |x| =
√
x2

1 + x2
2 and θ := arctan

(
x2
x1

)
. We remark that ∇u is

singular at the origin, and hence lower rates of convergence are expected in our computations. The
meshes are generated analogously to the previous examples.

Finally, in Example 4 we consider the three dimensional domain Ω := (0, 1)3, and assume the same
kinematic viscosity function µ from Examples 2 and 3. In addition, the data f and g are chosen so
that the exact solution is given by

u(x) =
(
x1(sin(2πx3)− sin(2πx2)), x2(sin(2πx1)− sin(2πx3)), x3(sin(2πx2)− sin(2πx1))

)
,

p(x) = x1x2x3 sin(2πx1) sin(2πx2) sin(2πx3) +
1

8π3
,

for all x := (x1, x2, x3)t ∈ Ω.

It is easy to check that u is divergence free and

∫
Ω
p = 0 for each one of the aforedescribed examples.

In Tables 6.1−6.4 we summarize the convergence history of the augmented HDG method (2.9) as
applied to Examples 1 and 2 for the polynomial degrees k ∈

{
1, 2, 3, 4

}
. We observe there, looking at

the experimental rates of convergence, that the orders predicted for each k by Theorems 4.1 and 4.2,
and estimates (4.13) and (4.14), are attained in all the unknowns for these smooth examples. Actually,
the errors ‖σ − σh‖Σh

and ‖u − uh‖0,Ω behave exactly as proved, whereas the remaining ones show
higher orders of convergence. In particular, ‖ΠEh(u)− ûh‖h presents a superconvergence phenomenon
with two additional powers of h. In addition, it is interesting to notice that these numerical results
provide the same rates of convergence obtained for the linear case in [11], and hence they might
constitute numerical evidences supporting the conjecture that the a priori error estimates derived in
the present paper are not sharp. We plan to address this issue in a separate work. Nevertheless, as
already mentioned at the beginning of Section 4, whether the projection-based error analysis developed
in [11] will work or not in this nonlinear case is still an open problem.

Furthermore, in Tables 6.5−6.6 we summarize the convergence history of the augmented HDG
method (2.9) as applied to Example 3 for the polynomial degrees k ∈

{
1, 2, 3, 4

}
. In this case, and

because of the singularity at the origin of the exact solution, the theoretical orders of convergence
are far to be attained. In fact, similarly as obtained in [6], ‖u − uh‖0,Ω behaves as O(hmin{k,4/3}),
whereas ‖t− th‖0,Ω = O(h2/3). Also, ‖σ − σh‖0,Ω = O(h2/3), ‖ΠEh(u)− ûh‖h = O(hmin{k,4/3}), and
thanks to (4.14), ‖p− ph‖0,Ω = O(h2/3) as well. Moreover, the behaviour of ‖σ − σh‖Σh

in Table 6.5

25



k h Ntotal Ncomp
‖t− th‖0,Ω ‖σ − σh‖0,Ω ‖σ − σh‖Σh

error order error order error order

0.2000 14080 2881 1.13e-0 −− 2.96e-1 −− 5.08e-0 −−
0.1333 31620 6421 5.17e-1 1.92 1.37e-1 1.90 3.48e-0 0.93
0.1000 56160 11361 2.95e-1 1.95 7.81e-2 1.95 2.64e-0 0.96

1 0.0800 87700 17701 1.90e-1 1.97 5.04e-2 1.97 2.12e-0 0.98
0.0667 126240 25441 1.32e-1 1.98 3.51e-2 1.98 1.77e-0 0.99
0.0571 171780 34581 9.75e-2 1.98 2.59e-2 1.98 1.52e-0 0.99
0.0500 224320 45121 7.47e-2 1.99 1.98e-2 1.99 1.33e-0 0.99

0.2000 27720 4121 8.88e-2 −− 1.88e-2 −− 5.86e-1 −−
0.1333 62280 9181 2.77e-2 2.88 5.86e-3 2.87 2.71e-1 1.90
0.1000 110640 16241 1.19e-2 2.92 2.53e-3 2.93 1.55e-1 1.95

2 0.0800 172800 25301 6.20e-3 2.94 1.31e-3 2.95 9.96e-2 1.97
0.0667 248760 36361 3.62e-3 2.95 7.62e-4 2.96 6.94e-2 1.98
0.0571 338520 49421 2.29e-3 2.96 4.82e-4 2.97 5.11e-2 1.99
0.0500 442080 64481 1.54e-3 2.97 3.24e-4 2.98 3.92e-2 1.99

0.2000 45760 5361 5.59e-3 −− 1.18e-3 −− 4.98e-2 −−
0.1333 102840 11941 1.15e-3 3.90 2.46e-4 3.87 1.54e-2 2.89
0.1000 182720 21121 3.69e-4 3.95 7.93e-5 3.93 6.62e-3 2.94

3 0.0800 285400 32901 1.52e-4 3.97 3.28e-5 3.96 3.41e-3 2.96
0.0667 410880 47281 7.38e-5 3.98 1.59e-5 3.97 1.98e-3 2.98
0.0571 559160 64261 3.99e-5 3.98 8.62e-6 3.98 1.25e-3 2.98
0.0500 730240 83841 2.34e-5 3.99 5.06e-6 3.98 8.41e-4 2.99

0.2000 68200 6601 2.97e-4 −− 6.42e-5 −− 3.35e-3 −−
0.1333 153300 14701 4.06e-5 4.91 8.92e-6 4.87 6.94e-4 3.88
0.1000 272400 26001 9.79e-6 4.95 2.16e-6 4.93 2.23e-4 3.94

4 0.0800 425500 40501 3.23e-6 4.96 7.14e-7 4.96 9.22e-5 3.96
0.0667 612600 58201 1.31e-6 4.97 2.89e-7 4.97 4.47e-5 3.98
0.0571 833700 79101 6.11e-7 4.93 1.34e-7 4.96 2.42e-5 3.98
0.0500 1088800 103201 3.16e-7 4.93 6.93e-8 4.96 1.42e-5 3.98

Table 6.1: History of convergence for Example 1 (Part 1).

is explained by the fact that the a priori estimate for ‖σ−σh‖Σh
depends on the regularity of div(σ),

which can be shown to belong precisely to H−1/3(Ω). A classical way of circumventing this drawback
is the incorporation of an adaptive scheme based on a posteriori error estimates. This issue will also
be addressed in a forthcoming paper.

On the other hand, in Tables 6.7−6.8 we present the convergence history of the augmented HDG
method (2.9) as applied to Example 4 for the polynomial degrees k ∈

{
1, 2
}

. The remarks in this case
are exactly the same given above for Examples 1 and 2.

Finally, some components of the approximate and exact solutions for Examples 2, 3, and 4 are
displayed in Figures 6.1−6.8. They all correspond to those obtained with the fourth mesh and for
the polynomial degree k indicated in each case. Here we use the notations th = (th,ij)i,j=1,n, σh =
(σh,ij)i,j=1,n, and uh = (uh,i)i=1,n.

26



k h Ntotal Ncomp
‖u− uh‖0,Ω ‖ΠEh(u)− ûh‖h ‖p− ph‖0,Ω
error order error order error order

0.2000 14080 2881 4.75e-1 −− 7.89e-2 −− 1.93e-1 −−
0.1333 31620 6421 3.17e-1 0.99 2.76e-2 2.59 8.95e-2 1.90
0.1000 56160 11361 2.38e-1 1.00 1.36e-2 2.47 5.12e-2 1.95

1 0.0800 87700 17701 1.91e-1 1.00 8.00e-3 2.37 3.30e-2 1.97
0.0667 126240 25441 1.59e-1 1.00 5.27e-3 2.28 2.30e-2 1.98
0.0571 171780 34581 1.36e-1 1.00 3.74e-3 2.22 1.69e-2 1.98
0.0500 224320 45121 1.19e-1 1.00 2.80e-3 2.18 1.30e-2 1.99

0.2000 27720 4121 6.02e-2 −− 5.88e-3 −− 1.17e-2 −−
0.1333 62280 9181 2.67e-2 2.00 1.26e-3 3.79 3.65e-3 2.87
0.1000 110640 16241 1.50e-2 2.00 4.16e-4 3.86 1.57e-3 2.93

2 0.0800 172800 25301 9.61e-3 2.00 1.75e-4 3.89 8.14e-4 2.95
0.0667 248760 36361 6.67e-3 2.00 8.55e-5 3.91 4.74e-4 2.97
0.0571 338520 49421 4.90e-3 2.00 4.67e-5 3.93 3.00e-4 2.98
0.0500 442080 64481 3.75e-3 2.00 2.76e-5 3.94 2.01e-4 2.98

0.2000 45760 5361 5.51e-3 −− 2.31e-4 −− 7.37e-4 −−
0.1333 102840 11941 1.62e-3 3.01 3.23e-5 4.85 1.54e-4 3.86
0.1000 182720 21121 6.83e-4 3.01 7.86e-6 4.91 4.97e-5 3.93

3 0.0800 285400 32901 3.49e-4 3.00 2.61e-6 4.94 2.05e-5 3.96
0.0667 410880 47281 2.02e-4 3.00 1.06e-6 4.96 9.97e-6 3.97
0.0571 559160 64261 1.27e-4 3.00 4.91e-7 4.97 5.40e-6 3.98
0.0500 730240 83841 8.52e-5 3.00 2.53e-7 4.97 3.17e-6 3.98

0.2000 68200 6601 3.96e-4 −− 8.83e-6 −− 4.03e-5 −−
0.1333 153300 14701 7.75e-5 4.02 8.24e-7 5.85 5.61e-6 4.86
0.1000 272400 26001 2.44e-5 4.01 1.51e-7 5.91 1.36e-6 4.93

4 0.0800 425500 40501 1.00e-5 4.01 4.01e-8 5.93 4.50e-7 4.95
0.0667 612600 58201 4.82e-6 4.00 1.36e-8 5.93 1.82e-7 4.97
0.0571 833700 79101 2.60e-6 4.00 5.42e-9 5.96 8.47e-8 4.97
0.0500 1088800 103201 1.52e-6 4.00 2.45e-9 5.96 4.36e-8 4.97

Table 6.2: History of convergence for Example 1 (Part 2).
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k h Ntotal Ncomp
‖t− th‖0,Ω ‖σ − σh‖0,Ω ‖σ − σh‖Σh

error order error order error order

0.2000 14080 2881 5.46e-1 −− 5.69e-1 −− 1.04e+1 −−
0.1333 31620 6421 2.45e-1 1.97 2.57e-1 1.96 7.00e-0 0.98
0.1000 56160 11361 1.39e-1 1.98 1.45e-1 1.98 5.27e-0 0.99

1 0.0800 87700 17701 8.90e-2 1.99 9.33e-2 1.99 4.22e-0 0.99
0.0667 126240 25441 6.19e-2 1.99 6.49e-2 1.99 3.52e-0 0.99
0.0571 171780 34581 4.56e-2 1.99 4.77e-2 1.99 3.02e-0 1.00
0.0500 224320 45121 3.49e-2 1.99 3.66e-2 1.99 2.64e-0 1.00

0.2000 27720 4121 4.68e-2 −− 3.96e-2 −− 1.31e-0 −−
0.1333 62280 9181 1.41e-2 2.97 1.19e-2 2.96 5.89e-1 1.97
0.1000 110640 16241 5.96e-3 2.98 5.04e-3 2.98 3.29e-1 2.02

2 0.0800 172800 25301 3.08e-3 2.97 2.61e-3 2.95 2.14e-1 1.93
0.0667 248760 36361 1.79e-3 2.98 1.52e-3 2.98 1.49e-1 1.99
0.0571 338520 49421 1.13e-3 2.98 9.57e-4 2.99 1.09e-1 1.99
0.0500 442080 64481 7.57e-4 2.99 6.42e-4 2.99 8.38e-2 2.00

0.2000 45760 5361 3.52e-3 −− 3.19e-3 −− 1.47e-1 −−
0.1333 102840 11941 7.18e-4 3.92 6.84e-4 3.80 4.87e-2 2.72
0.1000 182720 21121 2.36e-4 3.87 2.26e-4 3.85 2.28e-2 2.64

3 0.0800 285400 32901 9.64e-5 4.01 9.26e-5 4.00 1.10e-2 3.28
0.0667 410880 47281 4.69e-5 3.95 4.50e-5 3.96 6.41e-3 2.96
0.0571 559160 64261 2.55e-5 3.96 2.44e-5 3.97 4.06e-3 2.97
0.0500 730240 83841 1.50e-5 3.95 1.44e-5 3.97 2.74e-3 2.95

0.2000 68200 6601 4.03e-4 −− 5.40e-4 −− 3.70e-2 −−
0.1333 153300 14701 6.70e-5 4.42 8.21e-5 4.65 7.71e-3 3.87
0.1000 272400 26001 1.62e-5 4.95 1.89e-5 5.11 2.03e-3 4.64

4 0.0800 425500 40501 5.87e-6 4.54 7.10e-6 4.38 9.96e-4 3.19
0.0667 612600 58201 2.41e-6 4.88 2.91e-6 4.89 5.46e-4 3.30
0.0571 833700 79101 1.13e-6 4.91 1.37e-6 4.92 2.98e-4 3.92
0.0500 1088800 103201 5.81e-7 5.00 7.03e-7 4.98 1.72e-4 4.13

Table 6.3: History of convergence for Example 2 (Part 1).
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k h Ntotal Ncomp
‖u− uh‖0,Ω ‖ΠEh(u)− ûh‖h ‖p− ph‖0,Ω
error order error order error order

0.2000 14080 2881 4.75e-1 −− 5.28e-2 −− 3.25e-1 −−
0.1333 31620 6421 3.17e-1 0.99 2.21e-2 2.15 1.47e-1 1.96
0.1000 56160 11361 2.38e-1 1.00 1.21e-2 2.08 8.34e-2 1.98

1 0.0800 87700 17701 1.91e-1 1.00 7.66e-3 2.07 5.35e-2 1.99
0.0667 126240 25441 1.59e-1 1.00 5.28e-3 2.04 3.72e-2 1.99
0.0571 171780 34581 1.36e-1 1.00 3.86e-3 2.03 2.74e-2 1.99
0.0500 224320 45121 1.19e-1 1.00 2.95e-3 2.02 2.10e-2 1.99

0.2000 27720 4121 5.91e-2 −− 2.43e-3 −− 1.86e-2 −−
0.1333 62280 9181 2.62e-2 2.00 5.24e-4 3.78 5.58e-3 2.97
0.1000 110640 16241 1.47e-2 2.00 1.71e-4 3.90 2.37e-3 2.98

2 0.0800 172800 25301 9.44e-3 2.00 7.35e-5 3.77 1.22e-3 2.96
0.0667 248760 36361 6.55e-3 2.00 3.61e-5 3.90 7.10e-4 2.98
0.0571 338520 49421 4.81e-3 2.00 1.97e-5 3.92 4.48e-4 2.99
0.0500 442080 64481 3.69e-3 2.00 1.17e-5 3.93 3.01e-4 2.99

0.2000 45760 5361 5.24e-3 −− 1.27e-4 −− 1.32e-3 −−
0.1333 102840 11941 1.54e-3 3.01 2.01e-5 4.55 2.88e-4 3.76
0.1000 182720 21121 6.50e-4 3.01 5.88e-6 4.27 9.41e-5 3.89

3 0.0800 285400 32901 3.32e-4 3.00 1.74e-6 5.46 3.87e-5 3.98
0.0667 410880 47281 1.92e-4 3.00 7.18e-7 4.85 1.87e-5 3.98
0.0571 559160 64261 1.21e-4 3.00 3.39e-7 4.87 1.01e-5 4.00
0.0500 730240 83841 8.10e-5 3.00 1.78e-7 4.84 5.92e-6 4.01

0.2000 68200 6601 3.65e-4 −− 2.01e-5 −− 2.02e-4 −−
0.1333 153300 14701 7.15e-5 4.02 1.99e-6 5.70 3.02e-5 4.68
0.1000 272400 26001 2.25e-5 4.01 3.03e-7 6.55 6.88e-6 5.14

4 0.0800 425500 40501 9.22e-6 4.01 1.10e-7 4.54 2.62e-6 4.34
0.0667 612600 58201 4.44e-6 4.01 3.80e-8 5.84 1.07e-6 4.88
0.0571 833700 79101 2.40e-6 4.00 1.53e-8 5.89 5.05e-7 4.90
0.0500 1088800 103201 1.40e-6 4.00 6.72e-9 6.17 2.61e-7 4.95

Table 6.4: History of convergence for Example 2 (Part 2).
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k h Ntotal Ncomp
‖t− th‖0,Ω ‖σ − σh‖0,Ω ‖σ − σh‖Σh

error order error order error order

0.1667 15216 3121 8.56e-2 −− 9.98e-2 −− 7.65e-0 −−
0.1111 34164 6949 6.60e-2 0.64 7.05e-2 0.86 8.62e-0 -0.30
0.0833 60672 12289 5.48e-2 0.65 5.52e-2 0.85 9.39e-0 -0.30

1 0.0667 94740 19141 4.74e-2 0.65 4.57e-2 0.84 1.00e+1 -0.30
0.0556 136368 27505 4.21e-2 0.65 3.93e-2 0.83 1.06e+1 -0.30
0.0455 203632 41009 3.69e-2 0.65 3.34e-2 0.81 1.13e+1 -0.30
0.0400 262900 52901 3.39e-2 0.65 3.02e-2 0.80 1.17e+1 -0.30

0.1667 29952 4465 6.10e-2 −− 5.33e-2 −− 6.84e-0 −−
0.1111 67284 9937 4.67e-2 0.66 3.92e-2 0.76 7.72e-0 -0.30
0.0833 119520 17569 3.87e-2 0.66 3.16e-2 0.74 8.41e-0 -0.30

2 0.0667 186660 27361 3.34e-2 0.66 2.69e-2 0.73 8.99e-0 -0.30
0.0556 268704 39313 2.96e-2 0.66 2.36e-2 0.72 9.50e-0 -0.30
0.0455 401280 58609 2.60e-2 0.66 2.04e-2 0.72 1.01e+1 -0.30
0.0400 518100 75601 2.39e-2 0.66 1.86e-2 0.72 1.05e+1 -0.30

0.1667 49440 5809 4.48e-2 −− 3.65e-2 −− 5.99e-0 −−
0.1111 111096 12925 3.43e-2 0.66 2.73e-2 0.72 6.76e-0 -0.30
0.0833 197376 22849 2.84e-2 0.66 2.22e-2 0.71 7.37e-0 -0.30

3 0.0667 308280 35581 2.45e-2 0.66 1.90e-2 0.71 7.89e-0 -0.30
0.0556 443808 51121 2.17e-2 0.66 1.67e-2 0.71 8.33e-0 -0.30
0.0455 662816 76209 1.91e-2 0.66 1.45e-2 0.70 8.85e-0 -0.30
0.0400 855800 98301 1.75e-2 0.66 1.32e-2 0.70 9.20e-0 -0.30

0.1667 73680 7153 3.40e-2 −− 2.70e-2 −− 5.13e-0 −−
0.1111 165600 15913 2.60e-2 0.66 2.03e-2 0.71 5.79e-0 -0.30
0.0833 294240 28129 2.15e-2 0.66 1.66e-2 0.70 6.31e-0 -0.30

4 0.0667 459600 43801 1.86e-2 0.66 1.42e-2 0.70 6.75e-0 -0.30
0.0556 661680 62929 1.65e-2 0.66 1.25e-2 0.70 7.13e-0 -0.30
0.0455 988240 93809 1.45e-2 0.66 1.08e-2 0.70 7.58e-0 -0.30
0.0400 1276000 121001 1.33e-2 0.66 9.89e-3 0.70 7.88e-0 -0.30

Table 6.5: History of convergence for Example 3 (Part 1).
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k h Ntotal Ncomp
‖u− uh‖0,Ω ‖ΠEh(u)− ûh‖h ‖p− ph‖0,Ω
error order error order error order

0.1667 15216 3121 6.75e-2 −− 1.04e-2 −− 5.65e-2 −−
0.1111 34164 6949 4.51e-2 0.99 7.18e-3 0.92 3.81e-2 0.97
0.0833 60672 12289 3.39e-2 1.00 5.44e-3 0.97 2.88e-2 0.98

1 0.0667 94740 19141 2.71e-2 1.00 4.35e-3 1.00 2.32e-2 0.97
0.0556 136368 27505 2.26e-2 1.00 3.61e-3 1.03 1.95e-2 0.96
0.0455 203632 41009 1.85e-2 1.00 2.92e-3 1.05 1.61e-2 0.95
0.0400 262900 52901 1.63e-2 1.00 2.55e-3 1.07 1.43e-2 0.93

0.1667 29952 4465 2.51e-3 −− 5.48e-3 −− 2.23e-2 −−
0.1111 67284 9937 1.36e-3 1.51 3.10e-3 1.41 1.57e-2 0.88
0.0833 119520 17569 8.84e-4 1.50 2.07e-3 1.40 1.23e-2 0.83

2 0.0667 186660 27361 6.35e-4 1.49 1.52e-3 1.38 1.03e-2 0.80
0.0556 268704 39313 4.85e-4 1.47 1.19e-3 1.37 8.96e-3 0.78
0.0455 401280 58609 3.62e-4 1.46 9.03e-4 1.36 7.68e-3 0.77
0.0400 518100 75601 3.00e-4 1.45 7.60e-4 1.35 6.97e-3 0.76

0.1667 49440 5809 7.85e-4 −− 2.36e-3 −− 1.30e-2 −−
0.1111 111096 12925 4.25e-4 1.52 1.29e-3 1.50 9.57e-3 0.76
0.0833 197376 22849 2.77e-4 1.48 8.45e-4 1.47 7.73e-3 0.74

3 0.0667 308280 35581 2.00e-4 1.46 6.12e-4 1.45 6.57e-3 0.73
0.0556 443808 51121 1.54e-4 1.44 4.71e-4 1.43 5.75e-3 0.73
0.0455 662816 76209 1.16e-4 1.42 3.55e-4 1.41 4.98e-3 0.72
0.0400 855800 98301 9.67e-5 1.41 2.97e-4 1.40 4.54e-3 0.72

0.1667 73680 7153 3.52e-4 −− 1.29e-3 −− 8.93e-3 −−
0.1111 165600 15913 1.89e-4 1.53 6.86e-4 1.56 6.66e-3 0.72
0.0833 294240 28129 1.23e-4 1.50 4.41e-4 1.53 5.42e-3 0.72

4 0.0667 459600 43801 8.86e-5 1.47 3.14e-4 1.52 4.62e-3 0.71
0.0556 661680 62929 6.79e-5 1.46 2.39e-4 1.50 4.06e-3 0.71
0.0455 988240 93809 5.09e-5 1.44 1.78e-4 1.48 3.52e-3 0.71
0.0400 1276000 121001 4.24e-5 1.42 1.47e-4 1.47 3.22e-3 0.71

Table 6.6: History of convergence for Example 3 (Part 2).
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k h Ntotal Ncomp
‖t− th‖0,Ω ‖σ − σh‖0,Ω ‖σ − σh‖Σh

error order error order error order

0.3464 74100 15601 4.05e-1 −− 4.00e-1 −− 7.19e-0 −−
0.2474 202272 41749 2.09e-1 1.97 2.11e-1 1.90 5.18e-0 0.98
0.1925 428652 87481 1.27e-1 1.98 1.30e-1 1.92 4.04e-0 0.98

1 0.1732 587400 119401 1.03e-1 2.01 1.06e-1 1.98 3.63e-0 1.01
0.1332 1287780 259585 6.11e-2 1.98 6.34e-2 1.95 2.81e-0 0.98
0.1083 2397696 480769 4.05e-2 1.99 4.20e-2 1.98 2.29e-0 0.99
0.0962 3411720 682345 3.20e-2 2.00 3.32e-2 1.99 2.03e-0 1.00
0.0912 4011432 801421 2.87e-2 1.99 2.99e-2 1.98 1.92e-0 0.99

0.3464 181200 30451 4.14e-2 −− 3.63e-2 −− 1.15e-0 −−
0.2474 495096 81439 1.58e-2 2.86 1.38e-2 2.87 6.15e-1 1.86
0.1925 1049760 170587 7.59e-3 2.93 6.64e-3 2.92 3.76e-1 1.96

2 0.1732 1438800 232801 5.74e-3 2.65 5.17e-3 2.38 3.26e-1 1.34
0.1332 3155568 505987 2.59e-3 3.03 2.29e-3 3.10 1.85e-1 2.16
0.1083 5876736 936961 1.40e-3 2.97 1.22e-3 3.01 1.21e-1 2.07
0.0962 8363088 1329697 1.00e-3 2.83 9.08e-4 2.54 1.01e-1 1.51
0.0912 9833640 1561687 8.47e-4 3.09 7.57e-4 3.36 8.86e-2 2.40

Table 6.7: History of convergence for Example 4 (Part 1).

k h Ntotal Ncomp
‖u− uh‖0,Ω ‖ΠEh(u)− ûh‖h ‖p− ph‖0,Ω
error order error order error order

0.3464 74100 15601 2.63e-1 −− 1.49e-1 −− 1.67e-1 −−
0.2474 202272 41749 1.89e-1 0.98 7.65e-2 1.99 9.02e-2 1.84
0.1925 428652 87481 1.47e-1 0.99 4.63e-2 1.99 5.63e-2 1.88

1 0.1732 587400 119401 1.33e-1 0.99 3.75e-2 2.01 4.58e-2 1.95
0.1332 1287780 259585 1.02e-1 1.00 2.22e-2 1.99 2.75e-2 1.94
0.1083 2397696 480769 8.31e-2 1.00 1.47e-2 2.00 1.83e-2 1.97
0.0962 3411720 682345 7.39e-2 1.00 1.16e-2 2.00 1.45e-2 1.98
0.0912 4011432 801421 7.00e-2 1.00 1.04e-2 2.00 1.30e-2 1.98
0.3464 181200 30451 3.96e-2 −− 5.23e-3 −− 1.17e-2 −−
0.2474 495096 81439 2.04e-2 1.97 1.52e-3 3.67 4.11e-3 3.12
0.1925 1049760 170587 1.24e-2 1.99 5.81e-4 3.83 1.91e-3 3.04

2 0.1732 1438800 232801 1.00e-2 1.99 4.19e-4 3.10 1.45e-3 2.64
0.1332 3155568 505987 5.94e-3 1.99 1.43e-4 4.11 6.29e-4 3.18
0.1083 5876736 936961 3.92e-3 2.00 6.22e-5 4.00 3.31e-4 3.09
0.0962 8363088 1329697 3.10e-3 2.00 4.16e-5 3.40 2.42e-4 2.64
0.0912 9833640 1561687 2.78e-3 2.00 3.28e-5 4.40 2.03e-4 3.31

Table 6.8: History of convergence for Example 4 (Part 2).
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Figure 6.1: Example 2, uh,1 for k = 2 (top-left), for k = 3 (top-right), and its exact value (bottom).
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priori and a posteriori error analysis for a vorticity-based mixed formulation of the
generalized Stokes equations

2014-21 Salim Meddahi, David Mora: Nonconforming mixed finite element approximation
of a fluid-structure interaction spectral problem
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