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A PRIORI AND A POSTERIORI ERROR ANALYSIS FOR A VORTICITY-BASED

MIXED FORMULATION OF THE GENERALIZED STOKES EQUATIONS

VERÓNICA ANAYA⋆, DAVID MORA⋆,†, RICARDO OYARZÚA⋆,†, AND RICARDO RUIZ-BAIER‡

Abstract. This paper deals with the analysis of new mixed finite element methods for the generalized
Stokes problem formulated in terms of velocity, vorticity and pressure, with non-standard boundary
conditions. By employing an extension of the Babuška-Brezzi theory, it is proved that the resulting
continuous and discrete variational formulations are well-posed. In particular, on the one hand we show
that Raviart-Thomas elements of order k ≥ 0 for the approximation of the velocity field, piecewise
continuous polynomials of degree k + 1 for the vorticity, and piecewise polynomials of degree k for the
pressure, yield unique solvability of the discrete problem. On the other hand, we also show that families
of finite elements based on Brezzi-Douglas-Marini elements of order k + 1 for the approximation of
velocity, piecewise continuous polynomials of degree k + 2 for the vorticity, and piecewise polynomials
of degree k for the pressure ensure the well-posedness of the associated Galerkin scheme. We note
that these families provide exactly divergence-free approximations of the velocity field. We establish a
priori error estimates in the natural norms and we carry out the reliability and efficiency analysis of a
residual-based a posteriori error estimator. Finally, we report several numerical experiments illustrating
the behavior of the proposed schemes and confirming our theoretical results on unstructured meshes.
Additional examples of cases not covered by our theory are also presented.

1. Introduction

This paper is concerned with the numerical study of the generalized Stokes problem, also known as the
linear Brinkman problem, differing from the classical Stokes system in the presence of a zeroth order term
for the velocity in the momentum equation, and which is usually encountered after time discretizations
of transient Stokes, or when considering a fluid in a mixture of porous and viscous regions and therefore
ranging from Stokes to Darcy regimes. Our focus will be on the velocity–vorticity–pressure formulation
of the mentioned problem.

There exist a great deal of numerical techniques to solve these equations, each one of them with diverse
features and, in general, being tested for many fundamental problems and industrial applications including
for instance, filtering modeling, subsurface water treatment, oil recovery, and several others. Here, we
concentrate on the development of mixed finite element formulations, as e.g. the variational problem
in [14], which is recast as a twofold saddle point problem and it is analyzed based on the introduction
of the flux and the tensor gradient of the velocity as further unknowns. In that contribution the flux
is approximated by lowest order Raviart–Thomas elements, whereas the velocity and pressure fields
are approximated by piecewise constant functions. In [31], the pseudostress and the trace-free velocity
gradient are introduced as auxiliary unknowns and a pseudostress-velocity formulation is considered,
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existence, uniqueness, and error estimates are proposed. In addition, a mixed method associated to a
pseudostress based formulation for the Brinkman problem has been introduced and analyzed in [25], in
which the main unknown is given by the pseudostress, whereas the velocity and pressure fields are easily
recovered through a simple postprocessing procedure.

Special interest lies in the case where the vorticity is introduced as an independent unknown (which
is a key field in several applications), since no numerical differentiation of the velocity is needed to com-
pute the additional field, boundary conditions for external flows can be treated in a natural way, and
non-inertial effects can be readily included by simply modifying initial and boundary data [36]. Several
numerical methods exploit these properties, as for instance, different formulations based on least-squares,
stabilization techniques, mixed finite elements, spectral discretizations, and hybridizable discontinuous
Galerkin methods (see for instance [2, 3, 7, 10, 12, 21, 16, 17, 19, 20, 24, 33, 34, 35], and the refer-
ences therein). In this article, we propose a new finite element approximation of the generalized Stokes
equations, written in terms of the vorticity, velocity, and pressure fields. A further goal of the present
approach is to build different inf-sup stable families of finite elements to approximate the model prob-
lem, allowing a direct approximation of the vorticity with optimal accuracy, and without the need of
postprocessing. This appears to be quite difficult in mixed methods written only in terms of vector
potential-vorticity [20, 29, 30]. In addition, the proposed method exhibits an exactly divergence-free
approximation of the velocity, and thus, it exactly preserves an essential constraint of the governing
equations.

On the other hand, adaptive mesh refinement strategies based on a posteriori error indicators play
a relevant role in the numerical solution of flow problems, and partial differential equations in a general
sense. For instance, they guarantee the convergence of finite element solutions, specially in the presence
of complex geometries that could eventually lead to spurious solutions [38], and they provide substantial
improvements in the accuracy of the approximations for given computational burden [1]. With this in
mind, we also introduce a reliable and efficient residual-based a posteriori error estimator for the mixed
problem, which can be computed locally, and hence, at a relatively low computational cost.

A priori error estimates have been recently derived for augmented mixed formulations based on
vorticity-velocity-pressure variables of the Brinkman equations, including also the axisymmetric case
[5, 6]. Moreover, a dual mixed formulation has been introduced and analyzed in [37] for the Brinkman
problem. The well-posedness of the continuous and discrete formulations have been carried out using the
Babuška theory, and optimal error estimates are proved. In contrast, the proposed variational formulation
is analyzed using standard tools in the realm of mixed problems and an a posteriori error estimator has
been developed. To do this, we restrict our problem to the space of divergence-free velocities, and apply
results from [13],[23],[26], and [27], to prove that the equivalent resulting saddle-point problem is well-
posed. For the numerical approximation, we consider first the family of finite elements RTk −Pk+1 −Pk,
k ≥ 0, i.e., Raviart-Thomas elements of order k for the velocity field, piecewise continuous polynomials of
degree k+1 for the vorticity, and piecewise polynomials of degree k for the pressure. Since the proposed
method provides an exactly divergence-free approximation of the velocity, we prove unique solvability of
the discrete problem by adapting the same tools utilized for the continuous problem. In addition, the re-
sulting finite element discretization turns to be convergent with optimal rate of convergence whenever the
exact solution of the problem is regular enough. Next, we develop a reliable and efficient residual-based
a posteriori error estimator for the proposed formulation. The proof of reliability makes use of the global
continuous inf-sup condition of the variational formulation restricted to the space of divergence-free veloc-
ities, and the local approximation properties of the Clément and Raviart-Thomas operators, whereas for
the efficiency we utilize inverse inequalities, and the localization technique based on element-bubble and
edge-bubble functions. Moreover, numerical experiments with the family of finite elements considered in
this paper perform satisfactorily for a variety of boundary conditions. We also introduce and comment
the applicability of the present framework using other families of finite elements, as for instance Brezzi-
Douglas-Marini elements of order k+ 1 for the velocity field, piecewise continuous polynomials of degree
k+2 for the vorticity, and piecewise polynomials of degree k for the pressure. Finally, we stress that the
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proposed methodology can be used to analyze the extension to the three-dimensional case, and to study
a larger class of problems, including the coupling with Darcy flows or with transport phenomena.

Outline. The remainder of the paper has been structured as follows. In what is left from this section,
we introduce some standard notation, required functional spaces, and we describe the boundary value
problem of interest. Section 2 presents the associate variational formulation, it provides an abstract
framework where our formulation lies, and then we prove its unique solvability along with some stability
properties. In Section 3, we present two mixed finite element schemes and we provide a stability result
and obtain error estimates for the proposed methods. The derivation and analysis of a reliable and
efficient residual-based a posteriori error estimator for this problem is carried out in Section 4. Several
numerical results illustrating the convergence behavior predicted by the theory and allowing us to assess
the performance of the methods are collected in Section 5, and we close with some final remarks in
Section 6.

Preliminaries. We will denote a simply connected polygonal Lipschitz bounded domain of R2 by Ω
and n = (ni)1≤i≤2 is the outward unit normal vector to the boundary ∂Ω. The vector t = (ti)1≤i≤2 is
the unit tangent to ∂Ω oriented such that t1 = −n2, t2 = n1. Moreover, we assume that ∂Ω admits a
disjoint partition ∂Ω = Γ∪Σ. For the sake of simplicity, we also assume that both Γ and Σ have positive
measure. For any s ≥ 0, the notation ‖·‖s,Ω stands for the norm of the Hilbertian Sobolev spaces Hs(Ω)

or Hs(Ω)2, with the usual convention H0(Ω) := L2(Ω). For s ≥ 0, we recall the definition of the Hilbert
space

Hs(div; Ω) := {v ∈ Hs(Ω)n : div v ∈ Hs(Ω)} ,

endowed with the norm ‖v‖
2
Hs(div;Ω) := ‖v‖

2
s,Ω + ‖div v‖

2
s,Ω. We will denote H(div; Ω) := H0(div; Ω).

Moreover, c and C, with or without subscripts, tildes, or hats, will represent a generic constant
independent of the mesh parameter h, assuming different values in different occurrences. In addition, for
any vector field v = (vi)i=1,2 and any scalar field θ we recall the differential operators:

div v := ∂1v1 + ∂2v2, rotv := ∂1v2 − ∂2v1, ∇θ :=

(

∂1θ
∂2θ

)

, curl θ :=

(

∂2θ
−∂1θ

)

.

The model problem. We are interested in the generalized Stokes problem [30], formulated in terms of
the velocity u, the vorticity ω and the pressure p of an incompressible viscous fluid: Given a force density
f , vector fields a and b, and scalar fields p0 and ω0, we seek a vector field u, a scalar field ω, and a scalar
field p such that

σu+ ν curlω +∇p = f in Ω,

ω − rotu = 0 in Ω,

divu = 0 in Ω,

u · t = a · t on Σ, (1.1)

p = p0 on Σ,

u · n = b · n on Γ,

ω = ω0 on Γ,

where u · t and u · n stand for the normal and the tangential components of the velocity, respectively.
In the model, ν > 0 is the kinematic viscosity of the fluid and σ > 0 is a parameter proportional to the
inverse of the time-step.

In addition, we assume that a boundary compatibility condition holds, i.e., there exists a velocity field
w ∈ L2(Ω)2 satisfying divw = 0 a.e. in Ω, w · t = a · t on Σ, and w · n = b · n on Γ. For a detailed
study on different types of standard and non-standard boundary conditions for incompressible flows, we
refer to [11]. We observe that the boundary conditions considered here are relevant in the context of e.g.
geophysical fluids and shallow water models [32].
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For the sake of simplicity, we will work with homogeneous boundary conditions for the normal velocity
and, subsequently, for the vorticity, i.e., b = 0 and ω0 = 0 on Γ. Nevertheless, these restrictions do not
affect the generality of the forthcoming analysis.

2. A mixed velocity-vorticity-pressure formulation

2.1. Variational formulation and preliminary results. In this section, we propose a mixed varia-
tional formulation of system (1.1). First, we need to introduce the following spaces that we will consider
in the sequel:

H := {v ∈ H(div; Ω) : v · n = 0 on Γ}, Z := {θ ∈ H1(Ω) : θ = 0 on Γ}, and Q := L2(Ω).

We endow each space with its natural norm. Moreover, the symbol 〈·, ·〉Σ will denote the duality pairing
between H−1/2(Σ) and H1/2(Σ) with respect to the L2(Σ)-inner product.

Now, by testing system (1.1) with adequate functions and imposing the boundary conditions, we end
up with the following mixed variational formulation:

Find (u, ω, p) ∈ H× Z×Q such that

σ

∫

Ω

u · v + ν

∫

Ω

curlω · v −

∫

Ω

p div v =

∫

Ω

f · v − 〈v · n, p0〉Σ ∀v ∈ H,

ν

∫

Ω

curl θ · u− ν

∫

Ω

ωθ = −ν〈a · t, θ〉Σ ∀θ ∈ Z,

−

∫

Ω

q divu = 0 ∀q ∈ Q.

This variational problem can be rewritten as follows: Find (u, ω, p) ∈ H× Z×Q such that

a(u,v) + b1(v, ω)+ b2(v, p) = G(v) ∀v ∈ H,

b1(u, θ)− d(ω, θ) = F (θ) ∀θ ∈ Z, (2.1)

b2(u, q) = 0 ∀q ∈ Q,

where the bilinear forms a : H×H → R, b1 : H× Z → R, d : Z× Z → R, b2 : H×Q → R, and the linear
functionals G : H → R, and F : Z → R are defined by

a(u,v) := σ

∫

Ω

u · v, b1(v, θ) := ν

∫

Ω

curl θ · v,

d(ω, θ) := ν

∫

Ω

ωθ, b2(v, q) := −

∫

Ω

q div v,

G(v) :=

∫

Ω

f · v − 〈v · n, p0〉Σ, F (θ) := −ν〈a · t, θ〉Σ,

for all u,v ∈ H, ω, θ ∈ Z, and q ∈ Q.

In order to analyze the variational formulation (2.1), let us consider the Kernel of b2(·, ·)

X := {v ∈ H : b2(v, q) = 0, ∀ q ∈ Q} = {v ∈ H : div v = 0},

and let us recall that the bilinear form b2 satisfies the inf-sup condition:

sup
v∈H
v 6=0

|b2(v, q)|

‖v‖H(div;Ω)
≥ β2‖q‖0,Ω ∀q ∈ Q, (2.2)

with an inf-sup constant β2 > 0 only depending on Ω; see [23], for instance.
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A proof of the following auxiliary abstract result can be found in [27, Lemma 3.4] (see also [26, Lemma
2.1] for a nonlinear version of it).

Lemma 2.1. Let (X , 〈·, ·〉X ) and (Y, 〈·, ·〉Y) be Hilbert spaces. Let A : X ×X → R, B : X ×Y → R, and
D : Y × Y → R be bounded bilinear forms, and let G : X → R and F : Y → R be bounded functionals.
Assume that

i) there exists ᾱ > 0 such that A(x, x) ≥ ᾱ ‖x‖2X ∀x ∈ X ,

ii) there exists β̄ > 0 such that sup
x∈X
x 6=0

B(x, y)

‖x‖X
≥ β̄ ‖y‖Y ∀ y ∈ Y,

iii) D(y, y) ≥ 0 ∀ y ∈ Y.

Then, there exists a unique (x, y) ∈ X×Y, such that

A(x, r) + B(r, y) = G(r) ∀ r ∈ X ,

B(x, v)−D(y, v) = F(v) ∀ v ∈ Y.
(2.3)

Moreover, there exists C > 0, independent of the solution, such that

‖x‖X + ‖y‖Y ≤ C(‖G‖X ′ + ‖F‖Y′).

2.2. Analysis of the continuous formulation. In this section, we prove that the continuous variational
formulation (2.1) is well-posed. To that end, it is enough to study the reduced counterpart of (2.1) defined
on X× Z: Find (u, ω) ∈ X× Z such that

a(u,v) + b1(v, ω)= G(v) ∀v ∈ X,

b1(u, θ)− d(ω, θ) = F (θ) ∀θ ∈ Z. (2.4)

In fact, the following result establishes the equivalence between (2.1) and (2.4).

Lemma 2.2. If (u, ω, p) ∈ H × Z × Q is a solution of (2.1), then u ∈ X, and (u, ω) ∈ X × Z is also a
solution of (2.4). Conversely, if (u, ω) ∈ X×Z is a solution of (2.4), then there exists a unique pressure
p ∈ Q such that (u, ω, p) ∈ H× Z×Q is a solution of (2.1).

Proof. The proof follows basically from the inf-sup condition (2.2). We omit further details and refer to
[30]. �

According to the above, we will now turn to prove that the continuous variational formulation (2.4)
is well-posed.

Theorem 2.1. The variational problem (2.4) admits a unique solution (u, ω) ∈ X× Z. Moreover, there
exists C > 0 such that

‖u‖H(div;Ω) + ‖ω‖1,Ω ≤ C(‖f‖0,Ω + ‖p0‖1/2,Σ + ‖a · t‖−1/2,Σ). (2.5)

Proof. It suffices to verify the hypotheses of Lemma 2.1. First, we note that the bilinear forms a(·, ·),
b1(·, ·), and d(·, ·) are bounded. Furthermore, it is easy to see that the bilinear forms a and d satisfy i)
and iii), respectively.

The next step consists in proving that the bilinear form b1(·, ·) satisfies hypothesis ii). In fact, given
θ ∈ Z, we let ṽ := curl θ, hence ṽ ∈ X. Then, using the Poincaré inequality, we obtain

sup
v∈X
v 6=0

b1(v, θ)

‖v‖H(div;Ω)
≥
b1(ṽ, θ)

‖ṽ‖0,Ω
= |θ|1,Ω ≥ C‖θ‖1,Ω ∀θ ∈ Z,

which finishes the proof. �

The following result establishes the corresponding stability estimate for the pressure.
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Corollary 2.1. Let (u, ω) ∈ X × Z, be the unique solution of (2.4), with u and ω satisfying (2.5). In
addition, let p ∈ Q be the unique pressure provided by Lemma 2.2, so that (u, ω, p) ∈ H × Z × Q is the
unique solution of (2.1). Then, there exits C > 0, independent of the solution, such that

‖p‖0,Ω ≤ C(‖f‖0,Ω + ‖p0‖1/2,Σ + ‖a · t‖−1/2,Σ).

Proof. From the inf-sup condition (2.2), and the first equation of (2.1), we obtain

‖p‖0,Ω ≤
1

β2
sup
v∈H
v 6=0

|b2(v, p)|

‖v‖H(div;Ω)
=

1

β2
sup
v∈H
v 6=0

|G(v)− a(u,v)− b1(v, ω)|

‖v‖H(div;Ω)
,

which together to (2.5), and the boundedness of G, a and b1, complete the proof. �

We end this section with the converse derivation of problem (2.1). More precisely, the following
theorem establishes that the unique solution of (2.1) solves the original problem described in (1.1). This
result will be used later on in Section 4.2 to prove the efficiency of our a posteriori error estimator.

Theorem 2.2. Let (u, ω, p) ∈ H × Z × Q the unique solution of (2.1). Then σu + ν curl ω +∇p = f

in Ω, ω − rotu = 0 in Ω, divu = 0 in Ω, u ∈ H1(Ω)2, p ∈ H1(Ω), and u, ω, and p satisfy the boundary
conditions described in (1.1).

Proof. It basically follows by applying integration by parts backwardly in (2.1) and using suitable test
functions. Further details are omitted. �

3. Mixed finite element schemes

In this section, we will construct two mixed finite element schemes associated to (2.1), we define
explicit finite element subspaces yielding the unique solvability of the discrete schemes, derive the a
priori error estimates, and provide the rate of convergence of the methods.

Let Th be a regular family of triangulations of the polygonal region Ω̄ by triangles T of diameter hT
with mesh size h := max{hT : T ∈ Th}, and such that there holds Ω̄ = ∪{T : T ∈ Th}. In addition, given
an integer k ≥ 0 and a subset S of R2, we denote by Pk(S) the space of polynomials in two variables
defined in S of total degree at most k.

Let us introduce the local Raviart-Thomas space of order k

RTk(T ) := Pk(T )
2 ⊕ Pk(T )x,

where x is a generic vector of R2, and let us define the following finite element subspaces:

Hh := {vh ∈ H : vh|T ∈ RTk(T ), ∀T ∈ Th}, (3.1)

Zh := {θh ∈ Z : θh|T ∈ Pk+1(T ), ∀T ∈ Th} , (3.2)

Qh := {qh ∈ Q : qh|T ∈ Pk(T ), ∀T ∈ Th}. (3.3)

Then, the Galerkin scheme associated with the continuous variational formulation (2.1) reads as follows:
Find (uh, ωh, ph) ∈ Hh × Zh ×Qh such that

a(uh,vh) + b1(vh, ωh)+ b2(vh, ph) = G(vh) ∀vh ∈ Hh,

b1(uh, θh)− d(ωh, θh) = F (θh) ∀θh ∈ Zh, (3.4)

b2(uh, qh) = 0 ∀qh ∈ Qh.

One of the key features of the scheme proposed in (3.4), besides the direct approximation of the
vorticity, is that the approximate velocity uh is exactly divergence-free in Ω. To discuss this property,
we introduce the discrete kernel of b2:

Xh := {vh ∈ Hh : b2(vh, qh) = 0, ∀ q ∈ Qh}.
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Since div Hh ⊆ Qh, it can be readily seen that

Xh := {vh ∈ Hh : div vh ≡ 0 in Ω}. (3.5)

Let us observe now that, similarly to the continuous case, the bilinear form b2 satisfies the discrete
inf-sup condition

sup
vh∈Hh

vh 6=0

b2(vh, qh)

‖vh‖H(div;Ω)
≥ β̃2‖qh‖0,Ω ∀qh ∈ Qh, (3.6)

with the inf-sup constant β̃2 independent of discretization parameter h; see [23] for instance.

Throughout the rest of this section, we will show that the discrete variational formulation (3.4) is
well-posed and that it satisfies the corresponding Céa estimate. In order to do this, we proceed as in
Section 2.2, and introduce the following reduced version of (3.4) on the product space Xh × Zh: Find
(uh, ωh) ∈ Xh × Zh such that

a(uh,vh) + b1(vh, ωh)= G(vh) ∀vh ∈ Xh,

b1(uh, θh)− d(ωh, θh) = F (θh) ∀ θh ∈ Zh. (3.7)

The following result establishes the equivalence between (3.4) and (3.7), which is a direct consequence of
the inf-sup condition (3.6).

Lemma 3.1. If (uh, ωh, ph) ∈ Hh×Zh×Qh is a solution of (3.4), then uh ∈ Xh, and (uh, ωh) ∈ Xh×Zh

is also a solution of (3.7). Conversely, if (uh, ωh) ∈ Xh × Zh is a solution of (3.7), then there exists a
unique pressure ph ∈ Qh such that (uh, ωh, ph) ∈ Hh × Zh ×Qh is a solution of (3.4).

According to the above, in what follows we will focus on analyzing problem (3.7). To this end, let us
first collect some previous results and notations to be used in the sequel. We start by introducing the
discrete version of Lemma 2.1.

Lemma 3.2. Let (X , 〈·, ·〉X ) and (Y, 〈·, ·〉Y) be Hilbert spaces and let {Xh}h>0 and {Yh}h>0 be a sequence
of finite-dimensional subspaces of X and Y, respectively. Let A : X × X → R, B : X × Y → R, and
D : Y × Y → R be bounded bilinear forms, and let G : X → R and F : Y → R be bounded functionals.
Assume that A and D satisfy i) and iii) in Lemma 2.1, respectively. In addition, assume that there exists
β̄h > 0, independent of the discretization parameter h, such that

sup
xh∈Xh

xh 6=0

B(xh, yh)

‖xh‖X
≥ β̄h ‖yh‖Y ∀ yh ∈ Yh.

Then, there exists a unique (xh, yh) ∈ Xh × Yh, such that

A(xh, rh) + B(rh, yh) = G(rh) ∀ rh ∈ Xh,

B(xh, vh)−D(yh, vh) = F(vh) ∀ vh ∈ Yh.
(3.8)

Moreover, there exist positive constants C1, C2 > 0, independent of the discretization parameter h, such
that

‖xh‖X + ‖yh‖Y ≤ C1(‖G|Xh
‖X ′

h
+ ‖F|Yh

‖Y′

h
),

and

‖x− xh‖X + ‖y − yh‖Y ≤ C2 inf
(zh,sh)∈Xh×Yh

(‖x− zh‖X + ‖y − sh‖Y),

where (x, y) ∈ X × Y is the unique solution of problem (2.3).

Proof. Unique solvability and stability of (3.8) follow analogously to the continuous case (see again [26]
for details), whereas the corresponding Céa’s estimate follows by applying standard arguments such as
the Galerkin orthogonality property. We omit further details and refer to [23] and [13]. �
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We now introduce the Raviart-Thomas interpolation operator [13] R : Hs(Ω)2∩H → Hh for all s > 0,
for which we review some properties to be used in the sequel: There exists C > 0, independent of h, such
that for all s ∈ (0, k + 1]:

‖v −Rv‖H(div;Ω) ≤ Chs‖v‖Hs(div;Ω) ∀v ∈ Hs(div; Ω) ∩ H. (3.9)

Now, for all s > 0, let Π : H1+s(Ω) → Zh be the usual Lagrange interpolant. This operator satisfies
the following error estimate: There exists C > 0, independent of h, such that for all s ∈ (0, k + 1]:

‖θ −Πθ‖1,Ω ≤ Chs‖θ‖1+s,Ω ∀θ ∈ H1+s(Ω). (3.10)

Let P be the orthogonal projection from L2(Ω) onto the finite element subspace Qh. We have that P
satisfies the following error estimate for all s ∈ (0, k + 1]:

‖q − Pq‖0,Ω ≤ Chs‖q‖s,Ω ∀q ∈ Hs(Ω). (3.11)

Moreover, the following commuting diagram property holds true:

divRv = P(div v) ∀v ∈ Hs(Ω)2 ∩ H(div; Ω).

We are now in a position of establishing the unique solvability and convergence of the reduced discrete
problem (3.7).

Theorem 3.1. Let k be a non-negative integer and let Xh and Zh be given by (3.5) and (3.2), respectively.
Then, there exists a unique (uh, ωh) ∈ Xh × Zh solution of the Galerkin scheme (3.7). Moreover, there

exist positive constants Ĉ1, Ĉ2 > 0 independent of h such that

‖uh‖H(div;Ω) + ‖ωh‖1,Ω ≤ Ĉ1(‖f‖0,Ω + ‖p0‖1/2,Σ + ‖a · t‖−1/2,Σ), (3.12)

and

‖u− uh‖H(div;Ω) + ‖ω − ωh‖1,Ω ≤ Ĉ2 inf
(vh,θh)∈Xh×Zh

(‖u− vh‖H(div;Ω) + ‖ω − θh‖1,Ω), (3.13)

where (u, ω) ∈ X× Z is the unique solution to variational problem (2.4).

Proof. It is enough to verify hypotheses of Lemma 3.2. In fact, since our method is conforming, the
bilinear forms a(·, ·) and c(·, ·) satisfy hypotheses i) and iii) in Lemma 2.1. Next, given θh ∈ Zh, we let
ṽh := curl θh, and proceed as in the proof of Theorem 2.1 to obtain

sup
vh∈Xh

vh 6=0

b1(vh, θh)

‖vh‖H(div;Ω)
≥
b1(ṽh, θh)

‖ṽh‖0,Ω
= |θh|1,Ω ≥ C‖θh‖1,Ω ∀θh ∈ Zh,

which completes the proof. �

We now establish the corresponding stability estimate for the discrete pressure and its approximation
property.

Corollary 3.1. Let (uh, ωh) ∈ Xh×Zh, be the unique solution of (3.7), with uh and ωh satisfying (3.12).
In addition, let ph ∈ Qh be the unique discrete pressure provided by Lemma 3.1, so that (uh, ωh, ph) ∈
Hh×Zh×Qh is the unique solution of (3.4). Then, there exist positive constants C̄1, C̄2 > 0, independent
of h, such that

‖ph‖0,Ω ≤ C̄1(‖f‖0,Ω + ‖p0‖1/2,Σ + ‖a · t‖−1/2,Σ), (3.14)

and

‖p− ph‖0,Ω ≤ C̄2 inf
(vh,θh,qh)∈Hh×Zh×Qh

(‖u− vh‖H(div;Ω) + ‖ω − θh‖1,Ω + ‖p− qh‖0,Ω). (3.15)
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Proof. Proceeding as in the proof of Corollary 3.1, we observe that from the inf-sup condition (3.6), and
the first equation of (3.4), there holds

‖ph‖0,Ω ≤
1

β̃2
sup

vh∈Hh

vh 6=0

|b2(vh, ph)|

‖vh‖H(div;Ω)
=

1

β̃2
sup

vh∈Hh

vh 6=0

|G(vh)− a(uh,vh)− b1(vh, ωh)|

‖vh‖H(div;Ω)
,

which together to (3.12), and the boundedness of G, a and b1, yield (3.14).

Next, given qh ∈ Qh, from the first equation of (3.4) and the Galerkin orthogonality result, it follows
that

b2(vh, ph − qh) = a(u− uh,vh) + b1(vh, ω − ωh) + b2(vh, p− qh) ∀vh ∈ Hh.

Then, applying again the inf-sup condition (3.6) and the boundedness of a, b1 and b2, we obtain

‖ph − qh‖0,Ω ≤
1

β̃2
sup

vh∈Hh

vh 6=0

|b2(vh, ph − qh)|

‖vh‖H(div;Ω)
=

1

β̃2
sup

vh∈Hh

vh 6=0

|a(u− uh,vh) + b1(vh, ω − ωh) + b2(vh, p− qh)|

‖vh‖H(div;Ω)
,

≤ C(‖u− uh‖H(div;Ω) + ‖ω − ωh‖1,Ω + ‖p− qh‖0,Ω).

Therefore, estimate (3.15) is a direct consequence of (3.13), the previous estimate and the triangle
inequality. �

The following theorem provides the rate of convergence of our mixed finite element scheme (3.4).

Theorem 3.2. Let k be a non-negative integer and let Hh,Zh and Qh be given by (3.1), (3.2), and (3.3).
Let (u, ω, p) ∈ H× Z×Q and (uh, ωh, ph) ∈ Hh × Zh ×Qh be the unique solutions to the continuous and
discrete problems (2.1) and (3.4), respectively. Assume that u ∈ Hs(Ω)2, divu ∈ Hs(Ω), ω ∈ H1+s(Ω)

and p ∈ Hs(Ω), for some s ∈ (0, k + 1]. Then, there exists Ĉ > 0 independent of h such that

‖u− uh‖H(div;Ω) + ‖ω − ωh‖1,Ω + ‖p− ph‖0,Ω ≤ Ĉhs(‖u‖Hs(div;Ω) + ‖ω‖1+s,Ω + ‖p‖s,Ω).

Proof. The proof follows from (3.13), (3.15), and standard error estimates for the operators R, Π and P
(see (3.9), (3.10) and (3.11), respectively). �

Remark 3.1. As stated in the introduction, the present analysis can be easily adapted to introduce other
families of mixed finite elements to solve problem (2.1). To this end, given an integer k ≥ 0, we recall
definitions of finite element subspaces based on piecewise continuous polynomials of degree k + 2 for the
vorticity, Brezzi–Douglas–Marini finite elements of order k+1 for the velocity, and piecewise polynomials
of degree k for the pressure.

We introduce the following finite element subspaces:

Hh := {vh ∈ H : vh|T ∈ Pk+1(T )
2, ∀T ∈ Th}, (3.16)

Zh := {θh ∈ Z : θh|T ∈ Pk+2(T ), ∀T ∈ Th} , (3.17)

Qh := {qh ∈ Q : qh|T ∈ Pk(T ), ∀T ∈ Th}. (3.18)

Associated to these spaces we state the following Galerkin scheme, counterpart of the continuous varia-
tional formulation (2.1): Find (uh, ωh, ph) ∈ Hh ×Zh ×Qh such that

a(uh,vh) + b1(vh, ωh)+ b2(vh, ph) = G(vh) ∀vh ∈ Hh,

b1(uh, θh)− d(ωh, θh) = F (θh) ∀θh ∈ Zh, (3.19)

b2(uh, qh) = 0 ∀qh ∈ Qh.

We further recall the Brezzi–Douglas–Marini interpolation operator R̃ : Hs(Ω)2 ∩ H → Hh for all

s > 0 (see [13]). An error estimate, similar to (3.9), is valid for the operator R̃.

Using the arguments considered in this section, it is straightforward to prove the following result
regarding existence and uniqueness of solution, and convergence of the discrete scheme (3.19).
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Theorem 3.3. Let k be a non-negative integer and let Hh × Zh and Qh be given by (3.16), (3.17), and
(3.18). Then there exists a unique (uh, ωh, ph) ∈ Hh ×Zh ×Qh solution of the Galerkin scheme (3.19).
Assume further that the exact solution (u, ω, p) satisfies u ∈ Hs(Ω)2, divu ∈ Hs(Ω), ω ∈ H1+s(Ω) and

p ∈ Hs(Ω), for some s ∈ (0, k + 1]. Then, there exists Ĉ > 0 independent of h such that

‖u− uh‖H(div;Ω) + ‖ω − ωh‖1,Ω + ‖p− ph‖0,Ω ≤ Ĉhs(‖u‖Hs(div;Ω) + ‖ω‖1+s,Ω + ‖p‖s,Ω),

where (u, ω, p) ∈ H× Z×Q is the unique solution to variational problem (2.1).

4. A posteriori error analysis

In this section, we propose a residual-based a posteriori error estimator and we prove its reliability
and efficiency. For sake of clarity we restrict our analysis to only one kind of boundary conditions, those
defined in Γ = ∂Ω. Therefore, the spaces to be consider in the sequel are the following:

H := {v ∈ H(div; Ω) : v · n = 0 on ∂Ω}, Z := H1
0(Ω), and Q := L2

0(Ω).

For each T ∈ Th we let E(T ) the set of edges of T , and we denote by Eh the set of all edges of Th, that
is

Eh = Eh(Ω) ∪ Eh(Γ),

where Eh(Ω) := {e ∈ Eh : e ⊂ Ω}, and Eh(Γ) := {e ∈ Eh : e ⊂ Γ}. In what follows, he stands for the
diameter of a given edge e ∈ Eh, te = (−n2, n1), where ne = (n1, n2) is a fix unit normal vector of e.
Now, let q ∈ L2(Ω) such that q|T ∈ C(T ) for each T ∈ Th, then, given e ∈ Eh(Ω), we denote by [q] the
jump of q across e, that is [q] := (q|T ′)|e − (q|T ′′)|e, where T

′ and T ′′ are the triangles of Th sharing the
edge e. Moreover, let v ∈ L2(Ω)2 such that v|T ∈ C(T )2 for each T ∈ Th. Then, given e ∈ Eh(Ω), we
denote by [v · t] the tangential jump of v across e, that is, [v · t] := ((v|T ′)|e − (v|T ′′)|e) · te, where T

′

and T ′′ are the triangles of Th sharing the edge e.

Next, let k be a non-negative integer and let Hh,Zh and Qh be given by (3.1), (3.2), and (3.3). Let
(u, ω, p) ∈ H × Z × Q and (uh, ωh, ph) ∈ Hh × Zh × Qh be the unique solutions to the continuous and
discrete problems (2.1) and (3.4) with data satisfying f ∈ L2(Ω)2 and rotf ∈ L2(T ) for each T ∈ Th. We
define for each T ∈ Th the a posteriori error indicator

θ2
T :=h2T ‖ rot(f − σuh − ν curlωh)‖

2
0,T + h2T ‖f − σuh − ν curlωh −∇ph‖

2
0,T + h2T ‖ rotuh − ωh‖

2
0,T

+
∑

e∈E(T )∩Eh(Ω)

he‖[uh · t]‖20,e +
∑

e∈E(T )∩Eh(Ω)

he‖[(f − σuh − ν curlωh) · t]‖
2
0,e,

and we introduce the global a posteriori error estimator:

θ :=

{

∑

T∈Th

θ
2
T

}1/2

. (4.1)

4.1. Reliability of the a posteriori error estimator. The main result of this section is stated as
follows.

Theorem 4.1. There exists Crel > 0, independent of h, such that

‖u− uh‖H(div;Ω) + ‖ω − ωh‖1,Ω + ‖p− ph‖0,Ω ≤ Crelθ. (4.2)

We begin the derivation of (4.2) by recalling that the continuous dependence result given by (2.5) is
equivalent to the global inf-sup condition for the continuous reduced formulation (2.4). Then, applying
this estimate to the total error (u− uh, ω − ωh) ∈ X× Z, we obtain

‖u− uh‖H(div;Ω) + ‖ω − ωh‖1,Ω ≤ C sup
(v,θ)∈X×Z
(v,θ) 6=0

|R(v, θ)|

‖(v, θ)‖
, (4.3)
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where R : X× Z → R is the residual operator defined by

R(v, θ) := a(u− uh,v) + b1(v, ω − ωh) + b1(u− uh, θ)− d(ω − ωh, θ)

for all (v, θ) ∈ X× Z. Moreover, we have that

R(v, θ) := R1(v) +R2(θ),

where

R1(v) :=

∫

Ω

f · v − σ

∫

Ω

uh · v − ν

∫

Ω

curlωh · v, R2(θ) := −ν

∫

Ω

curl θ · uh + ν

∫

Ω

ωhθ.

Hence, the supremum in (4.3) can be bounded in terms of Ri, i ∈ {1, 2}, which yields

‖u− uh‖H(div;Ω) + ‖ω − ωh‖1,Ω ≤ C






sup
v∈X
v 6=0

|R1(v)|

‖v‖H(div;Ω)
+ sup

θ∈Z
θ 6=0

|R2(θ)|

‖θ‖1,Ω






. (4.4)

In what follows, we provide suitable upper bounds for each term on the right hand side of (4.4).
Before doing this, we first need to introduce some previous results.

In the sequel, we will utilize the Clément interpolation operator Ih : H1(Ω) → Yh, where

Yh := {θh ∈ H1(Ω) : θh|T ∈ P1(T ), ∀T ∈ Th}.

The following lemma establishes the local approximation properties of Ih. See [18] for details.

Lemma 4.1. There exist positive constants c̃ and ĉ such that for all θ ∈ H1(Ω) there hold

‖θ − Ihθ‖0,T ≤ c̃hT ‖θ‖1,∆(T ) ∀T ∈ Th,

‖θ − Ihθ‖0,e ≤ ĉh1/2e ‖θ‖1,∆(e) ∀e ∈ Eh,

where ∆(T ) := ∪{T ′ ∈ Th : T ′ ∩ T 6= 0} and ∆(e) := ∪{T ′ ∈ Th : T ′ ∩ e 6= 0}.

The following lemma establishes the corresponding upper bound for R1.

Lemma 4.2. There exists C1 > 0, independent of h, such that

sup
v∈X
v 6=0

|R1(v)|

‖v‖H(div;Ω)
≤C1

{

∑

T∈Th

hT ‖ rot(f − σuh − ν curlωh)‖0,T

+
∑

e∈Eh(Ω)

h1/2e ‖[(f − σuh − ν curl ωh) · t]‖0,e

}1/2

.

Proof. Given v ∈ X we know that div v = 0 in Ω and v · n = 0 on Γ. Then, applying [30, Theorem 3.1],
we can assert that there exists a unique φ ∈ H1

0(Ω), such that v = curlφ in Ω, and

‖φ‖1,Ω ≤ C‖v‖H(div;Ω).

Hence, since R1(vh) = 0 ∀vh ∈ Xh, which follows from the first equation of the Galerkin scheme (3.7),
we obtain

R1(v) = R1(curl(φ)) = R1(curl(φ− Ihφ)) =

∫

Ω

(f − σuh − ν curlωh) · curl(φ− Ihφ),

and integrating by parts we easily get

R1(curl(φ− Ihφ)) =
∑

T∈Th

[∫

T

rot(f − σuh − ν curlωh)(φ − Ihφ)

−

∫

∂T

(φ− Ihφ)(f − σuh − ν curlωh) · t

]
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=
∑

T∈Th

∫

T

rot(f − σuh − ν curlωh)(φ − Ihφ)

−
∑

e∈Eh(Ω)

∫

e

(φ− Ihφ)[(f − σuh − ν curl ωh) · t].

Therefore, the proof follows from the Cauchy-Schwarz inequality, the approximation properties of the
operator Ih (see Lemma 4.1), and the fact that the number of triangles in ∆(T ) and ∆(e) is bounded.

�

Now we establish the upper bound for R2.

Lemma 4.3. There exists C2 > 0, independent of h, such that

sup
θ∈Z
θ 6=0

|R2(θ)|

‖θ‖1,Ω
≤ C2







∑

T∈Th

hT ‖ rotuh − ωh‖0,T +
∑

e∈Eh(Ω)

h1/2e ‖[uh · t]‖0,e







1/2

.

Proof. We first observe that R2(θh) = 0 ∀θh ∈ Zh, which follows from the second equation in the
Galerkin scheme (3.7). Then, for all θ ∈ H1

0(Ω) it follows that

R2(θ) = R2(θ − Ihθ) = ν

∫

Ω

ωh(θ − Ihθ)− ν

∫

Ω

curl(θ − Ihθ) · uh,

and integrating by parts, we obtain

R2(θ − Ihθ) = ν
∑

T∈Th

∫

T

ωh(θ − Ihθ)− ν
∑

T∈Th

(
∫

T

(θ − Ihθ) rotuh −

∫

∂T

(θ − Ihθ)(uh · t)

)

,

= ν
∑

T∈Th

∫

T

(ωh − rotuh)(θ − Ihθ) + ν
∑

e∈Eh(Ω)

∫

e

(θ − Ihθ)[uh · t].

Then, the proof readily follows by the Cauchy-Schwarz inequality, the approximation properties of the
operator Ih (see Lemma 4.1), and the fact that the number of triangles in ∆(T ) and ∆(e) is bounded. �

To conclude the derivation of (4.2) we need to estimate the error ‖p − ph‖0,Ω. To this end we will
need the following result.

Lemma 4.4. Let (u, ω, p) ∈ H×Z×Q and (uh, ωh, ph) ∈ Hh ×Zh ×Qh be the unique solutions of (2.1)
and (3.4), respectively. Then for all v ∈ H and for all vh ∈ Hh, there holds

b2(v, p− ph) = −a(u− uh,v)− b1(v, ω − ωh) + L(v − vh), (4.5)

with

L(v − vh) =

∫

Ω

f · (v − vh)− a(uh,v − vh)− b1(v − vh, ωh)− b2(v − vh, ph).

Proof. Let v ∈ H and vh ∈ Hh. From the first equations of (2.1) and (3.4), respectively, we deduce that

b2(v, p− ph) =

∫

Ω

f · v − a(u,v)− b1(v, ω)− b2(v, ph), (4.6)

and

b2(vh, ph) =

∫

Ω

f · vh − a(uh,vh)− b1(vh, ωh). (4.7)

Then, adding and subtracting a(uh,v), b1(v, ωh) and b2(vh, ph) in the right hand side of (4.6), we obtain

b2(v, p− ph) =

∫

Ω

f · v − a(u− uh,v)− b1(v, ω − ωh)− a(uh,v)

−b1(v, ωh)− b2(v − vh, ph)− b2(vh, ph).
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Therefore, it suffices to replace b2(vh, ph) by (4.7) in the last identity to conclude. �

We now recall the local approximation properties of the Raviart-Thomas interpolator R : H1(Ω)2 →
Hh (see [13]): there exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω)2, there hold

‖v −Rv‖0,T ≤ c1 hT ‖v‖1,T ∀T ∈ Th ,

and

‖v · n−Rv · n‖0,e ≤ c2 h
1/2
e ‖v‖1,Te

∀ edge e of Th ,

where Te is a triangle of T containing e on its boundary.

We are now in position of establishing the upper bound for ‖p− ph‖0,Ω.

Lemma 4.5. There exists C3 > 0, independent of h, such that

‖p− ph‖0,Ω ≤ C3

(

‖u− uh‖H(div;Ω) + ‖ω − ωh‖1,Ω +

{

∑

T∈Th

h2T ‖f − σuh − ν curlωh −∇ph‖
2
0,T

}1/2)

.

Proof. First, let us notice that from the inf-sup condition (2.2), we have

‖p− ph‖0,Ω ≤
1

β2
sup
v∈H
v 6=0

|b2(v, p− ph)|

‖v‖H(div;Ω)
. (4.8)

Then, it remains to bound the right hand side of (4.8) to conclude.

Let v ∈ H. Since v ·n = 0 on Γ, it follows that div v ∈ L2
0(Ω), and then, applying [30, Corollary 2.4],

we conclude that there exists a unique z ∈ H1
0(Ω)

2, such that

div z = div v in Ω, and ‖z‖1,Ω ≤ C‖v‖H(div;Ω). (4.9)

Hence, we define zh = R(z) ∈ Hh, and apply identity (4.5) to obtain

b2(v, p− ph) = b2(z, p− ph) = −a(u− uh, z)− b1(z, ω − ωh) + L(z − zh). (4.10)

Now, recalling the definition of L, a, b1 and b2, we integrate by part on each triangle, to obtain

L(z − zh) =

∫

Ω

f · (z − zh)− σ

∫

Ω

uh · (z − zh)− ν

∫

Ω

curlωh · (z − zh) +

∫

Ω

ph div(z − zh),

=
∑

T∈Th

∫

T

(f − σuh − ν curlωh −∇ph) · (z − zh).

(4.11)
In this way, from (4.10), (4.11), the definition of a, b1, the local approximation properties of the interpo-
lation operator R, and the Cauchy-Schwarz inequality, we get

|b2(v, p− ph)| ≤ σ‖u− uh‖H(div;Ω)‖z‖1,Ω + ν‖ω − ωh‖1,Ω‖z‖1,Ω

+
∑

T∈Th

‖f − σuh − curlωh −∇ph‖0,T ‖z − zh‖0,T

≤
(

σ‖u− uh‖H(div;Ω) + ν‖ω − ωh‖1,Ω
)

‖z‖1,Ω

+C

{

∑

T∈Th

h2T ‖f − σuh − ν curlωh −∇ph‖
2
0,T

}1/2

‖z‖1,Ω.

(4.12)

Therefore, the result follows from (4.8), (4.12) and the upper bound of z in (4.9). �

We end this section by observing that the reliability estimate (4.2) (cf. Theorem 4.1) is a direct
consequence of Lemmas 4.2, 4.3 and 4.5.
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4.2. Efficiency of the a posteriori error estimator. The main result of this section is stated next.

Theorem 4.2. There exists Ceff > 0, independent of h, such that

Ceffθ ≤ ‖u− uh‖H(div;Ω) + ‖ω − ωh‖1,Ω + ‖p− ph‖0,Ω + h.o.t.,

where h.o.t. stands, eventually, for one or several terms of higher order.

In order to proof the efficiency of the a posteriori error estimator, in what follows we bound each term
defining θT (cf. (4.1)) in terms of local errors. To do this, we proceed similarly to [28] (see also [8]),
using known results, mainly from [15], and applying inverse inequalities and the localization technique
based on element-bubble and edge-bubble functions. To this end, we now introduce some notations and
further preliminary results.

Given Th, T ∈ Th, and e ∈ E(T ), we introduce ψT and ψe be the usual triangle-bubble and edge-bubble
functions, respectively (see (1.5) and (1.6) in [38]). In particular, ψT satisfies ψT ∈ P3(T ), supp(ψT ) ⊆ T ,
ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T . Similarly, ψe|T ∈ P2(T ), supp(ψe) ⊆ ωe := ∪{T ′ ∈ Th : e ∈ E(T ′)},
ψe = 0 on ∂T \ e, and 0 ≤ ψe ≤ 1 in ωe. We recall (also from [38]) that, given k ∈ N ∪ {0}, there exists
an extension operator L : C(e) → C(T ) that satisfies L(q) ∈ Pk(T ) and L(q)|e = q ∀q ∈ Pk(e). A
corresponding vectorial version of L, that is the component-wise application of L, will be also considered.

Additional properties of ψT , ψe and L are collected in the following lemma (see [38]).

Lemma 4.6. Given k ∈ N ∪ {0}, there exist positive constants c1, c2 and c3, depending only on k and
the shape regularity of the triangulations (minimum angle condition), such that for each triangle T and
e ∈ E(T ), there hold

‖q‖20,T ≤ c1‖ψ
1/2
T q‖20,T ∀q ∈ Pk(T )

‖q‖20,e ≤ c2‖ψ
1/2
e q‖20,e ∀q ∈ Pk(e).

and

‖ψ1/2
e L(q)‖20,T ≤ c3he‖q‖

2
0,e ∀q ∈ Pk(e).

The following classical result which states an inverse estimate will also be used.

Lemma 4.7. Let k, l,m ∈ N ∪ {0} such that l ≤ m. Then, there exists c4 > 0, depending only on k, l,m
and the shape regularity of the triangulations, such that for each triangle T there holds

|q|m,T ≤ c4h
l−m
T |q|l,T ∀q ∈ Pk(T ).

The following lemmas provide the corresponding upper bounds for each term defining θT .

Lemma 4.8. There exists C > 0, independent of h, such that for each T ∈ Th there holds

h2T ‖ rotuh − ωh‖
2
0,T ≤ C(‖u− uh‖

2
0,T + h2T ‖ω − ωh‖

2
0,T ).

Proof. First, from Lemma 4.6 and then, using that rotu− ω = 0 in Ω (see Theorem 2.2), integration by
parts and the Cauchy-Schwarz inequality, we get

‖ rotuh − ωh‖
2
0,T ≤‖ψ

1/2
T (rotuh − ωh)‖

2
0,T

=

(∫

T

ψT (rotuh − ωh) rot(uh − u) +

∫

T

ψT (rotuh − ωh)(ω − ωh)

)

=

(∫

T

curl(ψT (rotuh − ωh)) · (uh − u) +

∫

T

ψT (rotuh − ωh)(ω − ωh)

)

≤‖ curl(ψT (rotuh − ωh))‖0,T ‖u− uh‖0,T + ‖ψT (rotuh − ωh)‖0,T ‖ω − ωh‖0,T .

Since ψT (rotuh − ωh) is a polynomial on each T ∈ Th, from Lemma 4.7 we have

|ψT (rotuh − ωh)|1,T ≤ c4h
−1
T ‖ψT (rotuh − ωh)‖0,T ,
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which completes the proof. �

Lemma 4.9. There exists C > 0, independent of h, such that for each T ∈ Th there holds

he‖[uh · t]‖20,e ≤ C
∑

T∈ωe

(‖u− uh‖
2
0,T + ‖ω − ωh‖

2
0,T ).

Proof. The estimate follows repeating the arguments used in the proof of [15, Lemma 6.2], and using
Lemma 4.8. �

Lemma 4.10. There exists C > 0, independent of h, such that for each T ∈ Th there holds

h2T ‖ rot(f − σuh − ν curlωh)‖
2
0,T ≤ C(‖u− uh‖

2
0,T + |ω − ωh|

2
1,T + h2T ‖ rotf − P l

T (rotf )‖
2
0,T ),

where P l
T is the L2(T )2-orthogonal projection onto Pl(T )

2 where l ≥ k, with respect to the inner product
(f , g)0,T :=

∫

T
ψTf · g for each f , g ∈ L2(T )2.

Proof. First, adding and subtracting the term P l
T (rotf ), and then using the triangle inequality we obtain

‖ rot(f − σuh − ν curlωh)‖
2
0,T ≤2

(

‖ rotf − P l
T (rotf)‖

2
0,T + ‖P l

T (rotf )− rot(σuh − ν curlωh)‖
2
0,T

)

=2
(

‖ rotf − P l
T (rotf)‖

2
0,T + ‖P l

T (rot(f − σuh − ν curlωh))‖
2
0,T

)

.

Now, from Lemma 4.6, we get

‖P l
T (rot(f − σuh − ν curlωh))‖

2
0,T ≤‖ψ

1/2
T P l

T (rot(f − σuh − ν curlωh))‖
2
0,T

=

∫

T

ψTP
l
T (rot(f −σuh −ν curlωh))P

l
T (rot(f −σuh −ν curlωh))

=

∫

T

ψTP
l
T (rot(f − σuh −ν curlωh)) rot(f − σuh − ν curlωh),

where we have used the fact that P l
T is the L2(T )2-orthogonal projection onto Pl(T )

2. Then, since
rot(f − σu − ν curlω) = 0 in Ω (see Theorem 2.2), the proof follows by an integration by parts, the
Cauchy-Schwarz inequality and Lemma 4.7. �

Lemma 4.11. There exists C > 0, independent of h, such that for each T ∈ Th there holds

h2T ‖f−σuh−ν curlωh−∇ph‖
2
0,T ≤ C

(

h2T ‖u−uh‖
2
0,T +h2T |ω−ωh|

2
1,T +‖p−ph‖

2
0,T +h2T ‖f−P l

T (f )‖
2
0,T

)

,

where P l
T is the L2(T )2-orthogonal projection onto Pl(T )

2 where l ≥ k, with respect to the inner product
(f , g)0,T :=

∫

T ψTf · g for each f , g ∈ L2(T )2.

Proof. The estimate follows after combining the arguments used in the proof of [15, Lemma 6.3] and the
proof of Lemma 4.10. �

Lemma 4.12. There exists C > 0, independent of h, such that for each T ∈ Th there holds

he‖[(f − σuh − ν curl ωh) · t]‖
2
0,e ≤

C
∑

T∈ωe

(

‖u− uh‖
2
0,T + |ω − ωh|

2
1,T + ‖f − P̃ l

T (f)‖
2
0,T + h2T |f − P̃ l(f)|21,T

)

,

where P̃ l
T is the L2(T )2-orthogonal projection onto Pl(T )

2 with l ≥ k.

Proof. Adding and subtracting P̃ l(f ), followed by a use of triangle inequality yields.

h1/2e ‖[(f − σuh − ν curlωh) · t]‖0,e ≤

h1/2e ‖[(f − P̃ l(f)) · t]‖0,e + h1/2e ‖[P̃ l(f − σuh − ν curl ωh) · t]‖0,e.
(4.13)
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The first term in the right hand side can be bound using the local trace inequality as follows:

h1/2e ‖[(f − P̃ l(f)) · t]‖0,e ≤ h1/2e

(

h−1/2
e

∑

T∈ωe

‖f − P̃ l(f)‖0,T + h1/2e

∑

T∈ωe

|f − P̃ l(f )|1,T

)

. (4.14)

Now, we denote ξh := f − σuh − ν curlωh. From Lemma 4.6, integration by parts, and the fact that
∇p = f − σu − ν curlω := ξ (see Theorem 2.2), we bound the second term in the right hand side of
(4.13), as follows

‖[P̃ l
T (ξh) · t]‖

2
0,e ≤‖ψ1/2

e [P̃ l
T (ξh) · t]‖

2
0,e =

∫

e

ψeL([P̃
l
T (ξh) · t])[P̃

l
T (ξh) · t]

=
∑

T∈ωe

(
∫

T

P̃ l
T (ξh) · curl(ψeL([P̃

l
T (ξh) · t])) +

∫

T

ψeL([P̃
l
T (ξh) · t]) rot P̃

l
T (ξh)

)

=
∑

T∈ωe

(

∫

T

(P̃ l
T (ξh)− ξ) · curl(ψeL([P̃

l
T (ξh) · t])) +

∫

T

ψeL([P̃
l
T (ξh) · t]) rot P̃

l
T (ξh)

)

,

where we have also used that ∇p ∈ H(rot; Ω). Therefore, a direct application of Cauchy-Schwarz inequal-
ity and Lemma 4.7 implies that

‖[P̃ l
T (ξh) · t]‖

2
0,e ≤

∑

T∈ωe

(

h−1
T ‖P̃ l

T (ξh)− ξ)‖0,T + ‖ rot P̃ l
T (ξh)‖0,T

)

‖ψeL([P̃
l
T (ξh) · t])‖0,T .

Using that 0 ≤ ψe ≤ 1 and applying the third estimate of Lemma 4.6, we get

‖ψeL([P̃
l
T (ξh) · t])‖0,T ≤ ‖ψ1/2

e L([P̃ l
T (ξh) · t])‖0,T ≤ Ch1/2e ‖[P̃ l

T (ξh) · t]‖0,T ,

and hence, we obtain that

‖[P̃ l
T (ξh) · t]‖0,e ≤h

1/2
e

∑

T∈ωe

(

h−1
T ‖P̃ l

T (ξh)− ξ‖0,T + ‖ rot P̃ l
T (ξh)‖0,T

)

.

Therefore, using the fact that he ≤ hT , we deduce that

h1/2e ‖[P̃ l
T (ξh) · t]‖0,e ≤

∑

T∈ωe

(

‖P̃ l
T (ξh)− ξ‖0,T + hT ‖ rot P̃

l
T (ξh)‖0,T

)

.

Now, repeating the arguments used in the proof of Lemma 4.10 allows us to prove that

‖ rot P̃ l
T (ξh)‖0,T ≤ h−1

T ‖P̃ l
T (ξh)− ξ‖0,T .

From the above inequality and the Cauchy-Schwarz inequality, we obtain that

h1/2e ‖[P̃ l
T (ξh) · t]‖0,e ≤ C

∑

T∈ωe

(

‖f − P̃ l
T (f)‖0,T + ‖u− uh‖0,T + |ω − ωh|1,T

)

. (4.15)

Thus, the proof follows combining (4.13), (4.14), and (4.15). �

We end this section by observing that the required efficiency of the a posteriori error estimator θ

follows straightforwardly from Lemmas 4.8–4.12. In fact, from the estimates previously proved, we have
that there exists C > 0, independent of h, such that

θ
2 ≤C

(

‖u− uh‖
2
H(div;Ω) + ‖ω − ωh‖

2
1,Ω + ‖p− ph‖

2
0,Ω

+
∑

T∈Th

‖f − P l
T (f )‖

2
0,T + h2T |f − P l

T (f )|
2
1,T + ‖f − P̃ l

T (f )‖
2
0,T + h2T |f − P̃ l

T (f )|
2
1,T

)

.
(4.16)

In particular, if f ∈ Hk+2(T ) and P l
T is the L2(T )2-orthogonal projection onto Pk+2(T )

2 with respect to

the inner product (f , g)0,T :=
∫

T ψTf · g, and P̃ l
T is the L2(T )2-orthogonal projection onto Pk+2(T )

2,
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d.o.f. h E0(ω) r0(ω) E1(ω) r1(ω) Ediv(u) rdiv(u) E0(p) r0(p) ‖divuh‖∞,Ω

Error history for RT0 − P1 − P0 approximations (k = 0)

11 1.414210 11.71581 − 79.36864 − 2.805273 − 0.123333 − 5.1102e-27
33 0.707107 9.079022 0.567814 49.24973 0.722211 1.469431 0.867701 0.076084 1.075232 2.2131e-15

125 0.372678 4.895721 1.805791 36.23610 0.824171 1.020322 0.947812 0.042443 1.052781 6.7533e-15
195 0.306413 2.874370 2.028712 20.53772 1.038167 0.797743 0.985694 0.032645 1.034051 1.5987e-14
377 0.209106 1.254812 2.169230 13.68914 1.061382 0.545218 0.996092 0.022321 0.994946 4.8650e-14
885 0.150804 0.483292 2.191278 11.45945 1.037985 0.348818 1.036646 0.015658 1.084620 1.4766e-13

2639 0.082321 0.140461 2.041215 8.882926 0.976387 0.198771 0.992038 0.008948 0.984372 7.6457e-13
8787 0.047282 0.040224 2.055271 6.447363 1.102680 0.107771 1.103972 0.004926 1.076262 1.5495e-12

31541 0.024338 0.010076 2.084392 3.246562 1.033130 0.056278 0.978352 0.002623 0.984965 5.4851e-12
122475 0.013753 0.002831 2.022390 1.727322 1.105581 0.028899 1.016772 0.001545 0.972096 9.6870e-12
476513 0.007763 0.000713 2.041003 0.868747 1.201732 0.014508 1.020494 0.002599 0.988879 4.9247e-11

Error history for RT1 − P2 − P1(discontinuous) approximations (k = 1)

29 1.414210 10.71021 − 55.46051 − 2.037612 − 0.044486 − 3.6134e-28
97 0.707107 2.376331 3.188072 32.19202 2.080623 0.895791 1.966108 0.020398 1.988557 3.5235e-17

393 0.372678 0.712077 3.387651 16.12852 1.928753 0.411085 1.924872 0.010371 2.087680 2.8592e-16
621 0.306413 0.155729 3.144132 6.016351 2.039671 0.153451 2.038251 0.003096 2.049997 5.6619e-16

1217 0.209106 0.052192 2.976262 2.901182 1.981934 0.072364 1.828472 0.001408 2.061082 2.1497e-15
2889 0.150804 0.017405 3.098324 1.429783 2.049258 0.033341 2.076681 0.000688 2.067212 1.7752e-14
8693 0.082321 0.002683 2.961543 0.430254 1.982384 0.010482 1.970886 0.000191 1.985533 5.2005e-14

29101 0.047282 0.000471 3.026058 0.139511 2.016524 0.003289 2.024584 0.000093 2.015291 1.4202e-13
104777 0.024338 7.0612e-5 2.986333 0.035421 1.952289 0.000863 2.014372 0.000047 2.021748 6.4270e-13
407549 0.013753 9.7511e-6 3.052339 0.009493 2.030695 0.000239 2.024462 0.000024 2.186360 1.7082e-12

1586993 0.007763 2.4283e-6 2.997468 0.002379 2.019762 0.000062 2.017938 0.000017 2.038975 3.9629e-12

Table 1. Test 1: Convergence history for the mixed RT0 − P1 − P0 (top rows) and
RT1−P2−P1 (bottom rows) FE approximations of velocity-vorticity-pressure according
to the Bercovier-Engelman test, on a sequence of non-uniformly refined triangulations of
the unit square.

for each T ∈ Th, we obtain
∑

T∈Th

‖f−Pk+2
T (f )‖20,T+h

2
T |f−Pk+2

T (f)|21,T +‖f−P̃ l
T (f )‖

2
0,T +h

2
T |f−P̃ l

T (f)|
2
1,T ≤ Ch2(k+2)

∑

T∈Th

‖f‖2k+2,T ,

which corresponds to a higher order term. This inequality and (4.16) complete the proof of Theorem 4.2.

5. Numerical results

In what follows, we present four numerical examples illustrating the performance of the FE methods
described in Section 3, and which confirm the theoretical error bounds. Individual errors are denoted by

E0(ω) := ‖ω − ωh‖0,Ω, E1(ω) := ‖ω − ωh‖1,Ω, Ediv(u) := ‖u− uh‖H(div;Ω), E0(p) := ‖p− ph‖0,Ω.

In the numerical tests, we study the accuracy of the discretization by observing these errors on successively
refined non-uniform partitions of Ω. Convergence rates are defined as usual

r(·) :=
log(E(·)/Ê(·))

log(h/ĥ)
, (5.1)

where E and Ê denote errors associated to two consecutive meshes of sizes h and ĥ. The linear systems
arising from the discrete formulations (3.4),(3.19) have been solved using the multifrontal massively
parallel sparse direct solver MUMPS [4].
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Figure 1. Test 1: Approximated velocity field and velocity magnitude (top), vorticity
(bottom left), and computed pressure (bottom right) with a RT1−P2−P1 family for the
Bercovier-Engelman solutions to the generalized Stokes problem with σ = 0.1, computed
on an unstructured mesh of 134162 elements and 67700 vertices.

5.1. Test 1: Mesh convergence with respect to the Bercovier-Engelman solutions. As numer-
ical validation of the convergence properties of our method, we first consider Ω = (0, 1)2, and Γ = ∂Ω,
ν = 0.01, σ = 0.1, and choose the data f , b, ω0 so that the solution of the problem is given by the
Bercovier-Engelman functions [9]

ω(x, y) = 256[x2(x− 1)2(6y2 − 6y + 1) + y2(y − 1)2(6x2 − 6x+ 1)],

u(x, y) =

(

−256x2(x− 1)2y(y − 1)(2y − 1)
256y2(y − 1)2x(x − 1)(2x− 1)

)

, p(x, y) = (x− 1/2)(y − 1/2),

which are smooth in Ω. Table 1 summarizes the convergence behavior of two mixed finite element families
corresponding to k = 0 and k = 1. Both mixed methods associated to different polynomial degrees
attain optimal rates of convergence of order O(hk+1) for vorticity in the H1(Ω)−norm, for velocity in the
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Γbot(0, 0)

(L,H)Γtop
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Γcirc

Ω

(xc, yc)

Figure 2. Test 2: Sketch of the geometry employed in the simulation of steady flow
past a cylinder.

H(div; Ω)−norm, and for pressure in the L2(Ω)−norm as predicted by the theory. In addition, we observe
that the vorticity ωh converges with order O(hk+2) to ω in the L2(Ω)-norm. The last column of Table 1
illustrates that the velocity is practically divergence free for all refinement steps, and for both k = 0 and
k = 1. Approximate solutions computed with a RT1 − P2 − P1 family on a mesh of 134162 elements and
67700 vertices are provided in Figure 1.

5.2. Test 2: Flow past a cylinder. Our next example focuses on the simulation of steady channel
flow around a cylinder and confined between two parallel plates. The radius of the cylinder is R = 0.1,
and the length and height of the channel are L = 0.82, H = 0.41, respectively. The geometry and setting
of the problem allows to consider the two-dimensional domain Ω = (0, L) × (0, H) \ BR(xc, yc), where
BR(xc, yc) is the disk of radius R centered in (xc, yc) = (0.2, 0.2) (see Figure 2). There we also sketch
the boundaries, where we specify the following data. On Γ (left, top, bottom and “cylinder surface”
boundaries) we set normal velocities and vorticity as

u · n = b · n, with b(x, y) =







0 on Γcirc,
(

4umaxy(H − y)
H2 , 0

)t

on Γtop,Γbot,Γleft,

ω = ω0(x, y) = rotb =







0 on Γcirc,
−4umax(H − 2y)

H2 on Γtop,Γbot,Γleft,

and on Σ (right boundary) we set zero tangential velocities and zero pressure

u · t = a · t = 0, with a(x, y) =

(

4umaxy(H − y)

H2
, 0

)t

, p = p0(x, y) = 0.

We choose umax = 1.5, ν = 1e − 4, σ = 0.01 and the approximate solutions obtained on a triangular
mesh of 157798 elements and 79499 vertices (representing 474594 degrees of freedom for the lowest order
RT0 −P1 −P0 family of finite elements) are presented in Figure 3. In the lack of a known exact solution,
we compute the L∞−norm of the velocity, and errors in different norms and on successively refined grids,
with respect to a reference solution obtained on a highly refined mesh. These are reported in Table 2.

5.3. Test 3: The lid-driven cavity flow. In this example, we perform the classical lid-driven cavity
test where we model the steady flow of an immiscible fluid in a box. The domain is again the unit square
Ω = (0, 1)2 and we consider an unstructured mesh with 81738 elements. We first fix σ = 1e−4, ν = 0.001,
and take Γ as the bottom, right, and left boundaries, and Σ is the top lid of the domain. In this test the
boundary conditions are not covered by the present analysis: on Γ we set u · n = 0, whereas on Σ we
set u · t = 1, however the approximate velocities, pressure and vorticity (displayed in Figure 4) remain
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Figure 3. Test 2: Approximated velocity field and velocity magnitude (top), vorticity
(bottom left), and computed pressure (bottom right) with a RT0 − P1 − P0 family for
the steady flow past a cylinder.

d.o.f. h E0(ωref) r0(ωref) E1(ωref) r1(ωref) Ediv(uref) rdiv(uref) E0(pref) r0(pref) ‖divuh‖∞,Ω

102 0.412471 2.534604 − 90.8724 − 0.150189 − 0.004289 − 7.8515e-16
378 0.205287 1.172105 1.10578 46.6781 0.88291 0.082220 0.86979 0.002362 0.96363 2.0680e-15

1248 0.109821 0.429278 1.65721 30.2369 0.75982 0.045807 0.93719 0.000772 1.79086 3.3116e-15
4836 0.067933 0.113782 2.61802 15.6170 1.21681 0.023889 1.35533 0.000369 1.53259 6.5773e-15

19200 0.036926 0.032748 2.09970 7.98976 1.04287 0.012533 1.05819 0.000181 1.17699 1.3601e-14
76050 0.019449 0.007355 2.18462 4.25320 0.95921 0.006385 1.05183 9.2412e-5 1.02422 2.6869e-14

302298 0.009285 0.001519 2.13157 2.67387 0.82396 0.003643 0.75879 5.1767e-5 0.77454 5.3728e-14

Table 2. Test 2: Experimental convergence of the mixed RT0 − P1 − P0 FE ap-
proximation of the steady flow around a cylinder with respect to a reference solution
(uref , ωref , pref) computed on a highly refined grid.

stable and corner singularities are well resolved. Moreover, to assess the robustness of the method with
respect to the choice of σ, we run several tests keeping fixed ν = 0.001 and varying σ over several orders
of magnitude. Plots of streamlines for each case are depicted in Figure 5, confirming the stability of the
approximations in all cases.

5.4. Test 4: Flow into a backwards facing step. Another classical benchmark test for Stokes and
Navier-Stokes problems is the backwards facing step. In this example, the geometry consists on a channel
of total height 2H and length 9H , with a backwards facing step of height is H = 1, where the reentrant
corner is located at (H,H). No external forces are applied, whereas boundary data are set as follows: At
the inlet region (left boundary) we impose a Poiseuille inflow (normal) velocity u ·n = umax−

1
2 (y−

3
2H)2

and a compatible vorticity ω0 = y− 3
2H , where the maximum speed of the inflow is umax = 0.125. At the
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Figure 4. Test 3: Approximated velocity components (top), vorticity (bottom left),
and computed pressure (bottom right) with a RT0 − P1 − P0 family for the lid-driven
cavity test.

outlet (right face) we apply a constant pressure p0 = 0, and on the remaining segments conforming ∂Ω
we impose slip velocity conditions (u · n = 0) and zero vorticity ω0 = 0. We generate an unstructured
mesh consisting of 226462 triangles and 113202 vertices, and the model parameters are chosen to be
σ = ν = 0.0001. Approximate solutions obtained with a BDM1−P2−P0 family are reported in Figure 6,
where some expected phenomena well-documented in the literature (including corner singularities, fluid
recirculation zone, and vortex generation), can be observed.

5.5. Test 5: A posteriori error estimation. We close this section by numerically testing the efficiency
of the a posteriori error estimator (4.1) and applying mesh refinement according to the local value of the
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Figure 5. Test 3: Computed streamlines for different values of σ, obtained with a
RT0 − P1 − P0 approximation of the lid-driven cavity test.

indicator. In this case the convergence rates are no longer defined as in (5.1), but we consider instead

r(·) :=
log(E(·)/Ê(·))

− 1
2 log(N/N̂)

,

where N and N̂ denote the corresponding degrees of freedom at each triangulation. We recall the
definition of the so-called effectivity index as the ratio between the total error and the global error
estimator, i.e.,

e :=
{

[Ediv(u)]
2 + [E1(ω)]

2 + [E0(p)]
2
}1/2

, r :=
log(e/ê)

− 1
2 log(N/N̂)

, eff :=
e

θ
.

Here we employ RT0 approximations for velocities, piecewise linear elements for vorticity, and piecewise
constant approximations for the pressure field. The computational domain is the nonconvex L-shaped
domain Ω = (−1, 1)2 \ (0, 1)2, where problem (1.1) admits the following exact solution

u(x, y) =

(

−π sin(πx) cos(πy)
π cos(πx) sin(πy)

)

, ω(x, y) = −2π2 sin(πy) sin(πx),

p(x, y) =
1− x2 − y2

(x− c)2 + (y − c)2
−

∫

Ω

1− x2 − y2

(x− c)2 + (y − c)2
dxdy,

satisfying u · n = 0 and ω = ω0 = 0 on Γ = ∂Ω (and therefore falling into the framework where the a
posteriori error analysis of Section 4 is valid). Model parameters are set to σ = 0.1, ν = 0.01, c = 0.05 and
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Figure 6. Test 4: Velocity components (top panels), velocity vectors (middle left),
zoomed velocity streamlines on the left bottom part of the channel (middle right
panel), vorticity (bottom left) and pressure distribution (bottom right), computed with
a BDM1 − P2 − P0 approximation for a generalized Stokes flow into a backwards facing
step.

we notice that the pressure is singular near the reentrant corner of the domain and so we expect hindered
convergence of the approximations when a uniform (or quasi-uniform) mesh refinement is applied. Such
a degeneracy of the optimal convergence rates is indeed observed from the first rows in Table 3. In
contrast, if we apply a classical adaptive mesh refinement procedure (here based on an equi-distribution
of the discrete error indicators, where the diameter of each element in Thi+1

, which is contained in a
generic element T ∈ Thi

in the new step of the algorithm, is proportional to the diameter of T times the

ratio θ̂T /θT , where θ̂T is the mean value of the estimator over Th, see also [1, 22, 38]) from the bottom
rows of Table 3 we observe a recovering of the optimal convergence rates as predicted by the theory and
a more stable effectivity index associated to the global error indicator. The resulting meshes after a few
adaptation steps are reported in Figure 7. We observe intensive refinement near the reentrant corner of
the domain and a slight refinement near the zones of high vorticity and velocity gradients. Approximate
solutions rendered on a fine mesh of 45789 triangles and 28765 vertices are presented in Figure 8, where
we can observe well-resolved profiles for all fields.

6. Concluding remarks

In this work, we have presented a new mixed finite element method for the discretization of the
vorticity-velocity-pressure formulation of the generalized Stokes equations. The key features of the pro-
posed method are the liberty to choose different inf-sup stable finite element families, the direct and
accurate access to vorticity without invoking any kind of postprocessing, the exactly divergence-free
approximation of the velocity field, and a natural analysis in the framework of a generalized Babuška-
Brezzi theory. We consider these capabilities as of great interest and foresee the application of the same
framework in the study of several extensions, including the three-dimensional case and the coupling with
Darcy flow and with transport phenomena. An a posteriori error analysis has been carried out, and some
numerical tests have been presented to confirm the theoretically predicted decay of the error, and to
illustrate the robustness, reliability and efficiency of the proposed method.
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N h E0(ω) r0(ω) Ediv(u) rdiv(u) E0(p) r0(p) ‖ divuh‖∞,Ω e r eff

Quasi-uniform refinement

27 1.414210 74.91495 − 9.468466 − 19.26487 − 1.2860e-13 95.57550 − 0.031999
89 0.750102 71.11422 0.130916 7.180972 0.282924 15.14127 0.823585 1.6506e-12 91.15603 0.229817 0.234602

345 0.400195 67.17051 0.106407 6.307011 0.545829 13.43716 0.176243 6.3785e-12 87.65119 0.165055 0.205222
1385 0.190086 45.11124 0.444451 2.331924 1.431725 11.37382 0.239883 1.2310e-11 75.44525 0.244415 0.200572
5319 0.102545 18.27292 2.551982 0.339012 2.866262 7.373953 0.644122 1.8359e-11 39.57076 1.410870 0.015233

20939 0.050658 3.296340 2.499561 0.155864 1.134111 3.769263 0.979438 2.7667e-11 15.00973 0.899889 0.004698
83439 0.027321 1.847672 0.789376 0.078403 0.994027 2.208534 0.773316 3.2138e-11 3.697965 0.895531 0.002178

333761 0.013899 1.070631 0.800598 0.039041 1.005880 1.594542 0.621276 3.5752e-11 2.339175 0.701805 0.001120

Adaptive refinement

27 1.414210 74.91491 − 9.468466 − 19.26488 − 1.2881e-13 95.57551 − 0.858014
101 0.719555 65.14843 0.703912 6.459844 1.074953 16.02282 0.830424 1.2702e-12 86.17032 0.693521 0.906312
299 0.578902 47.02231 0.461757 4.725962 1.083581 11.42728 0.622914 1.0250e-11 73.12423 0.464138 0.916647
539 0.500000 31.10482 1.501281 1.430722 2.055545 7.787812 1.301350 1.9323e-11 41.71467 1.463174 0.896883

1109 0.362583 19.28521 1.701442 0.985249 1.034061 3.758322 2.019651 2.8919e-11 19.67272 1.679176 0.887776
4375 0.179643 9.346472 1.055548 0.474551 1.064565 1.814664 1.060982 3.5205e-11 9.532834 1.055768 0.913295

25953 0.111922 3.748725 1.026291 0.189981 1.028372 0.690889 1.084839 3.7586e-11 3.816574 1.028315 0.902185
180903 0.042313 1.400535 1.014143 0.070955 1.014457 0.269499 0.969693 4.8971e-11 1.427993 1.012623 0.903122

Table 3. Test 5: Convergence history for the mixed RT0 − P1 − P0 FE approximations
of velocity-vorticity-pressure computed on a sequence of quasi-uniformly (top rows) and
adaptively (bottom rows) refined triangulations of the L-shaped domain.
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ICYT (Chile). R. Oyarzúa was partially supported by CONICYT-Chile through FONDECYT project
No.1121347, by DIUBB through project 120808 GI/EF, and Anillo ANANUM, ACT1118, CONICYT
(Chile). This work was advanced during a visit of V. Anaya and D. Mora to the Institut des Sciences de
la Terre, University of Lausanne.

References

[1] M. Ainsworth and J. Oden, A posteriori error estimation in finite element analysis. Pure and Applied Mathematics.
Wiley, New York (2000).

[2] M. Amara, D. Capatina-Papaghiuc, and D. Trujillo, Stabilized finite element method for Navier-Stokes equations
with physical boundary conditions. Math. Comp., 76(259) (2007) 1195–1217.

[3] M. Amara, E. Chacón Vera, and D. Trujillo, Vorticity–velocity–pressure formulation for Stokes problem. Math.
Comp., 73(248) (2004) 1673–1697.

[4] P.R. Amestoy, I.S. Duff, and J.Y. l’Excellent, Multifrontal parallel distributed symmetric and unsymmetric
solvers. Comput. Methods Appl. Mech. Engrg., 184(2-4) (2000) 501–520.

[5] V. Anaya, D. Mora, G.N. Gatica, and R. Ruiz-Baier, An augmented velocity-vorticity-

pressure formulation for the Brinkman problem. CI2MA preprint 2014-11, available from
http://www.ci2ma.udec.cl/publicaciones/prepublicaciones.

[6] V. Anaya, D. Mora, C. Reales, and R. Ruiz-Baier, Stabilized mixed finite element
approximation of axisymmetric Brinkman flows. CI2MA preprint 2014-19, available from
http://www.ci2ma.udec.cl/publicaciones/prepublicaciones.

[7] V. Anaya, D. Mora, and R. Ruiz-Baier, An augmented mixed finite element method for the vorticity-velocity-pressure
formulation of the Stokes equations. Comput. Methods Appl. Mech. Engrg., 267 (2013) 261–274.



MFEM FOR A VORTICITY-BASED GENERALIZED STOKES PROBLEM 25

Figure 7. Test 5: Snapshots of four grids adaptively refined according to the a posteriori
error indicator defined in (4.1).
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