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VERÓNICA ANAYA∗, DAVID MORA† , CARLOS REALES‡ , AND RICARDO RUIZ-BAIER§
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Abstract. This paper is devoted to the numerical analysis of an augmented finite element approximation of
the axisymmetric Brinkman equations. Stabilization of the variational formulation is achieved by adding suitable
Galerkin least-squares terms, allowing us to transform the problem into a convenient formulation. The sought
quantities (here velocity, vorticity, and pressure) are approximated by Raviart-Thomas elements of any order k ≥ 0,
piecewise continuous polynomials of degree k + 1, and piecewise polynomials of degree k, respectively. The well-
posedness of the resulting continuous and discrete variational problems is rigorously derived by virtue of the classical
Babuška–Brezzi theory. We further establish a priori error estimates in the natural norms, and we provide a few
numerical tests illustrating the behavior of the proposed augmented scheme and confirming our theoretical findings
regarding optimal convergence of the approximate solutions.
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1. Introduction. Cylindrical symmetry of both the data and the domain, very often allows
transforming the original three-dimensional flow problem into a two-dimensional one, typically
implying a substantial reduction in computational complexity. Apart from the advantages of con-
sidering an intrinsically axisymmetric problem in its natural configuration, such a reduction is
particularly appealing in case of mixed approximations where additional unknowns are considered
to accurately recover additional fields of physical interest. The attached difficulty usually resides
in the analysis and derivation of proper schemes to discretize axisymmetric formulations, due to
the presence of singularities associated to weighted functional spaces and their respective finite di-
mensional counterparts, which can eventually translate into numerical singularity near the rotation
axis (considered as (r = 0, z)), since a factor of 1/r appears in all volume integrals.

The main purpose here is to propose and analyze an augmented mixed finite element method
for the accurate discretization of the axisymmetric Brinkman problem in its vorticity-velocity-
pressure formulation, which stands as prototype model for the study of Stokes and Darcy flow
regimes and that can be employed to study semidiscretizations of transient Stokes problems. In
addition, the vorticity (which is a scalar field in the axisymmetric case) is obtained directly from the
formulation, without resorting to numerical postprocessing (prone to accuracy loss). Augmentation
of the variational formulation with penalized residual-based terms, typically allows to recast the
saddle point problem as a strongly elliptic system, and it also provides a way of bypassing the
so-called kernel property, or to yield inf-sup stable continuous and discrete formulations (see for
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instance, [21]). Our choice for the discretization of the governing equations is Raviart-Thomas
elements of order k for the velocity field, piecewise continuous polynomials of degree k+ 1 for the
vorticity, and piecewise discontinuous polynomials of degree k for the pressure field, for k ≥ 0.

Related work and specifics of this contribution. There exist several references dealing
with the mathematical and numerical analysis of axisymmetric problems. For instance, the stra-
tegy of reducing the dimension in finite element methods was used for the axisymmetric Laplace
problem in the early work [32]. Later, several studies have been dedicated to different axisymmetric
formulations of the Stokes equations employing finite differences [25, 31], and spectral, Mortar,
Taylor-Hood, and stabilized finite elements (see [17, 8, 5, 11, 12, 13, 29, 30, 34]). Raviart-Thomas
and Brezzi-Douglas-Marini mixed approximations for axisymmetric Darcy, and Stokes-Darcy flows
were analyzed in [19, 20] using a generalization of the Stenberg criterion. Contributions focusing
on numerical methods for axisymmetric formulations of flow and transport coupled problems can
be found in e.g. [16, 26]. On the other hand, time-dependent and static Maxwell equations in
axisymmetric singular domains were studied in [6, 7] by introducing a method based on a splitting of
the space of solutions into a regular subspace and a singular one. In [28], a method was introduced
to solve a time-harmonic Maxwell equation in axisymmetric domain using a Fourier decomposition.
Such a technique was also employed in [32] for the axisymmetric Laplace equation. Up to our
knowledge, the numerical analysis of finite element approximations of the generalized Stokes (or
Brinkman) problem for the axisymmetric case has not been carried out yet. Nevertheless, in the
Cartesian setting, there exist several methods including fully mixed, augmented, and stabilized
formulations [9, 10, 23], whereas only a few recent contributions include formulations in terms of
velocity, vorticity and pressure [3, 4, 36].

In this regard, we stress that the present study represents an extension to the vorticity-based
Stokes problem analyzed in [2] in the sense that here we include the zeroth-order velocity component
and introduce its axisymmetric formulation. On the other hand, the vorticity-based formulations
for Brinkman equations analyzed in [3, 4, 36] are restricted to Cartesian two-dimensional domains,
and therefore many practical applications remain out of reach. An axisymmetric flow model
was derived from a three-dimensional scenario in [1], and the proposed numerical method was
based on spectral finite elements. Here, we have chosen a different discretization since spectral
approximations may exhibit some disadvantages in terms of accuracy in complex domains and in
the presence of discontinuous coefficients, and their analysis typically requires higher regularity
assumptions. These issues are no longer present in the scheme proposed herein.

Our analysis of existence and uniqueness of solution to the continuous axisymmetric problem
is carried out by introducing an augmented formulation that arises from including penalized least-
squares terms to the original variational formulation. We point out that this step is not necessary
in the continuous case, but (as we will address in full detail) the presence of the term 1/r in the
volume integrals requires some sort of stabilizing terms in the discrete formulation that would
further allow us to relax constraints related to e.g. discrete inf-sup conditions. Thus, we opt for
augmenting both continuous and discrete problems so that the same arguments can be applied for
their solvability analysis. The tools employed to establish the convergence of our scheme consist in
combining a Céa estimate with properties of the global Raviart-Thomas and Lagrange interpolation
operators.

Outline. We have structured the contents of this paper as follows. The remainder of this Sec-
tion introduces the classical Brinkman problem in Cartesian coordinates, along with its reduction
to the axisymmetric case. We also present a mixed formulation for this problem, and summarize
some preliminary results needed for its analysis. Section 2, is devoted to the statement of a least-
squares-based augmented formulation to the axisymmetric generalized Stokes problem, and we
perform the solvability analysis employing standard arguments from the Babuška-Brezzi theory.
The mixed finite element formulation is presented in Section 3, where we also rigorously derive
the stability analysis and optimal error estimates. We continue with a few illustrative numerical
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examples collected in Section 4, which confirm the robustness and expected convergence properties
of the proposed stabilized method, and we finally summarize the main aspects of this contribution
in Section 5.

Cartesian Linear Brinkman equations. The linear Brinkman equations governing the
motion of an incompressible fluid can be written as the following boundary value problem:

σŭ − ν∆ŭ+∇p̆ = f̆ in Ω̆, (1.1a)

div ŭ = 0 in Ω̆, (1.1b)

ŭ · n̆ = 0 on ∂Ω̆, (1.1c)

curl ŭ ∧ n̆ = 0 on ∂Ω̆, (1.1d)

where Ω̆ ⊂ R
3 is a given spatial domain. In this formulation, the sought quantities are the

local volume-average velocity ŭ and the pressure field p̆. The above system is also known as the
generalized Stokes equations, and it allows in particular, to study spatial properties of the solutions
to the time-dependent Stokes problem. In fact, the transient Stokes equations read

∂tŭ− 1

Re
∆ŭ+∇p̆ = f̆ in Ω̆, (1.2a)

div ŭ = 0 in Ω̆, (1.2b)

which, after applying a backward Euler time discretization of the acceleration term, yield to the
following system

1

∆t
ŭ
n+1 − 1

Re
∆ŭ

n+1 +∇p̆n+1 = f̆
n+1

+
1

∆t
ŭ
n in Ω̆, (1.3a)

div ŭn+1 = 0 in Ω̆. (1.3b)

That is, the solution of (1.2) requires to solve (1.3) at each time step.

When the data are axisymmetric, system (1.1a)-(1.1d) can be recast as two uncoupled problems
in the so-called meridional domain Ω (see Figure 1.1): a problem involving only the unknown uθ,
and a problem with unknowns ur, uz and p. Here, we focus on the second case.

Preliminaries and axisymmetric formulation. In this section, we define appropriate
weighted Sobolev spaces that will be used in the sequel and establish some of their properties; the
corresponding proofs can be found in [11, 24, 32, 27]. More general results about weighted Sobolev
spaces can be found in the last reference.

For an integer ℓ ≥ 0 and a real 1 ≤ q ≤ ∞, Lq(Ω) is the set of measurable functions ϕ such that
(
∫
Ω ϕq dx )1/q < ∞ and W ℓ,q(Ω) denotes the usual Sobolev space of functions whose derivatives up

to order ℓ are in Lq(Ω). Unless otherwise specified, we denote vector variables and spaces in bold.

In general, we will denote with ·̆ a quantity associated to the three-dimensional domain Ω̆,
whereas vector fields associated to the axisymmetric restriction will be denoted by v = (vr, vz).
Let us also recall that the axisymmetric counterparts of the usual differential operators acting on
vectors and scalars read

diva v := ∂zvz +
1

r
∂r(rvr) = ∂rvr + r−1vr + ∂zvz, rotv := ∂rvz − ∂zvr,

∇ϕ := (∂rϕ, ∂zϕ)
T , curla ϕ := (∂zϕ,−r−1∂r(rϕ))

T .

After introducing the (scalar) vorticity field ω = rotu, we notice that system (1.1a)-(1.1d) is
equivalent to

σu + ν curla ω +∇p = f in Ω, (1.4a)
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Fig. 1.1. Sketch of a full three dimensional domain Ω̆ with boundary Γ̆ and the axisymmetric meridional
domain Ω with boundary Γ (left and right, respectively). Here Γs stands for the symmetry axis.

ω − rotu = 0 in Ω, (1.4b)

diva u = 0 in Ω, (1.4c)

u · n = 0 on Γ, (1.4d)

ω = 0 on Γ. (1.4e)

At times, we will need appropriate weighted Sobolev spaces which we introduce in what follows,
along with some of their main properties; the corresponding proofs and further general results about
weighted Sobolev spaces can be found in e.g. [11, 32, 27]. To alleviate the notation, we will denote
the partial derivatives by ∂r and ∂z .

Let Lp
α(Ω) denote the weighted Lebesgue space of all measurable functions ϕ defined in Ω for

which

‖ϕ‖Lp
α(Ω) :=

∫

Ω

|ϕ|p rα drdz < ∞.

The subspace L2
1,0(Ω) of L

2
1(Ω) contains functions q with zero weighted integral:

∫

Ω

qr drdz = 0.

The weighted Sobolev space Hk
r (Ω) consists of all functions in L2

1(Ω) whose derivatives up to order
k are also in L2

1(Ω). This space is provided with norms and semi-norms defined in the standard
way; in particular,

|ϕ|2H1
1
(Ω) :=

∫

Ω

(
|∂rϕ|2 + |∂zϕ|2

)
r drdz ,

and H̃1
1(Ω) := H1

1(Ω) ∩ L2
−1(Ω) endowed with the norm

‖ϕ‖H̃1
1
(Ω) :=

(
|ϕ|2H1

1
(Ω) + ‖ϕ‖2L2

−1
(Ω)

)1/2

,

is a Hilbert space. We will also require the following weighted spaces:

H1
1,⋄(Ω) :=

{
ϕ ∈ H1

1(Ω);ϕ = 0 on Γ
}
,
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H̃1
1,⋄(Ω) :=

{
ϕ ∈ H̃1

1(Ω);ϕ = 0 on Γ
}
,

H(diva,Ω) :=
{
v ∈ L2

1(Ω)
2; diva v ∈ L2

1(Ω)
}
,

H0(diva,Ω) :=
{
v ∈ L2

1(Ω)
2; diva v = 0 in Ω

}
,

H⋄(diva,Ω) := {v ∈ H(diva,Ω);v · n = 0 on Γ} ,
H(curla,Ω) :=

{
ϕ ∈ L2

1(Ω); curla ϕ ∈ L2
1(Ω)

2
}
,

H(rot,Ω) :=
{
v ∈ L2

1(Ω)
2; rotv ∈ L2

1(Ω)
}
.

The spaces H(diva,Ω) and H(curla,Ω) are endowed respectively by the norms:

‖v‖H(diva,Ω) :=
(
‖v‖2L2

1
(Ω)2 + ‖ diva v‖2L2

1
(Ω)

)1/2

,

‖ϕ‖H(curla,Ω) :=
(
‖ϕ‖2L2

1
(Ω) + ‖ curla ϕ‖2L2

1
(Ω)2

)1/2

.

In addition, notice that the norms ‖ · ‖H(curla,Ω) and ‖·‖H̃1
1
(Ω) are equivalent, and for any ϕ ∈

H̃1
1(Ω),v ∈ H(diva,Ω) they verify the following relations:

‖ curla ϕ‖L2
1
(Ω)2 ≤

√
2 ‖ϕ‖H̃1

1
(Ω) , (1.5)

‖ϕ‖H̃1
1
(Ω) ≤ ‖ϕ‖H(curla,Ω) ≤

√
3 ‖ϕ‖H̃1

1
(Ω) , (1.6)

‖v‖2H(diva,Ω) ≤ 2
(
‖vr‖H̃1

1
(Ω) + ‖vz‖H1

1
(Ω)

)2

. (1.7)

We now collect some useful results to be employed in the sequel (see [1]).

Lemma 1.1. Let H
1/2
1 (Γ) be the trace space of functions in H1

1(Ω). The normal trace operator

on Γ is defined by v 7→ v ·n|Γ, and it is continuous from H(diva,Ω) into the dual space of H
1/2
1 (Γ).

Lemma 1.2. For any v ∈ H(diva,Ω) and q ∈ H1
1(Ω)

∫

Ω

diva vqr drdz +

∫

Ω

v · ∇qr drdz =

∫

Γ

v · nq ds .

Lemma 1.3. For any v ∈ H(rot,Ω) and ϕ ∈ H̃1
1(Ω)

∫

Ω

v · curla ϕr drdz −
∫

Ω

ϕ rot vr drdz =

∫

Γ

v · tϕ ds .

Let us now test system (1.4a)-(1.4e) against functions v ∈ H⋄(diva,Ω), ϕ ∈ H̃1
1,⋄(Ω) and q ∈

L2
1,0(Ω):

σ

∫

Ω

u · vr drdz + ν

∫

Ω

curla ω · vr drdz +

∫

Ω

∇p · vr drdz =

∫

Ω

f · vr drdz ,
∫

Ω

ωϕr drdz −
∫

Ω

rotuϕr drdz = 0,

∫

Ω

diva uqr drdz = 0.

Combining Lemmas 1.2 and 1.3 with a direct application of the boundary conditions yields

σ

∫

Ω

u · vr drdz + ν

∫

Ω

curla ω · vr drdz −
∫

Ω

diva vpr drdz =

∫

Ω

fvr drdz ,
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∫

Ω

ωϕr drdz −
∫

Ω

u · curla ϕr drdz = 0,

∫

Ω

diva uqr drdz = 0.

This variational problem can be rewritten as follows: Find (u, ω, p) ∈ H⋄(diva,Ω) × H̃1
1,⋄(Ω) ×

L2
1,0(Ω) such that

a(u,v)+b(v, ω)+c(v, p) = F (v) ∀v ∈ H⋄(diva,Ω),

b(u, ϕ)−d(ω, ϕ) = 0 ∀ϕ ∈ H̃1
1,⋄(Ω), (1.8)

c(u, q) = 0 ∀q ∈ L2
1,0(Ω),

where the involved bilinear forms and linear functionals are defined as follows

a(u,v) := σ

∫

Ω

u · vr drdz , b(v, ω) := ν

∫

Ω

curla ω · vr drdz ,

c(v, p) := −
∫

Ω

diva vpr drdz , d(ω, ϕ) := ν

∫

Ω

ωϕr drdz , F (v) :=

∫

Ω

f · vr drdz .

2. A stabilized mixed formulation for the axisymmetric Brinkman problem. In
this section, we will introduce and analyze a mixed variational formulation of the problem. We
will propose an augmented dual-mixed variational formulation which will permit us to analyze the
problem directly under the classical Babuška-Brezzi theory [15, 21].

2.1. Problem statement and preliminary results. Here, we propose an augmented dual-
mixed variational formulation of system (1.4a)-(1.4e). Our strategy is to enrich the mixed varia-
tional formulation (1.8) with a residual arising from the equations (1.4a) and (1.4c).

More precisely, we add to the variational problem (1.8) the following Galerkin least-squares
terms:

κ1

∫

Ω

(σu + ν curla ω +∇p− f) · curla ϕr drdz = 0 ∀ϕ ∈ H̃1
1,⋄(Ω), (2.1)

κ2

∫

Ω

diva udiva vr drdz = 0 ∀v ∈ H⋄(diva,Ω), (2.2)

where κ1 and κ2 are positive parameters to be specified later. From Lemma 1.3, the fact that
rot(∇p) = 0, and the boundary condition given in (1.4e), we may rewrite (2.1) equivalently as
follows:

κ1σ

∫

Ω

u · curla ϕr drdz + κ1ν

∫

Ω

curla ω · curla ϕr drdz = κ1

∫

Ω

f · curla ϕr drdz ,

for all ϕ ∈ H̃1
1,⋄(Ω). In this way, and in addition to (1.8), we propose the following augmented

variational formulation:

Find ((u, ω), p) ∈ (H⋄(diva,Ω)× H̃1
1,⋄(Ω))× L2

1,0(Ω) such that

A((u, ω), (v, ϕ)) +B((v, ϕ), p) = G(v, ϕ) ∀(v, ϕ) ∈ H⋄(diva,Ω)× H̃1
1,⋄(Ω),

B((u, ω), q) = 0 ∀q ∈ L2
1,0(Ω),

(2.3)

where the bilinear forms and the linear functional are defined by

A((u, ω), (v, ϕ)) := σ

∫

Ω

u · vr drdz + ν

∫

Ω

curla ω · vr drdz − ν

∫

Ω

curla ϕ · ur drdz (2.4)
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+ ν

∫

Ω

ωϕr drdz + κ1σ

∫

Ω

u · curla ϕr drdz

+ κ1ν

∫

Ω

curla ω · curla ϕr drdz + κ2

∫

Ω

diva u diva vr drdz ,

B((v, ϕ), q) := −
∫

Ω

q diva vr drdz , (2.5)

and

G(v, ϕ) := κ1

∫

Ω

f · curla ϕr drdz +

∫

Ω

f · vr drdz ,

for all (u, ω), (v, ϕ) ∈ H⋄(diva,Ω)× H̃1
1,⋄(Ω), and q ∈ L2

1,0(Ω).

2.2. Unique solvability of the stabilized formulation. Next, we will prove that our
stabilized variational formulation (2.3) satisfies the hypotheses of the Babuška-Brezzi theory, which
yields the unique solvability and continuous dependence on the data of this variational formulation.

First, we observe that the bilinear forms A and B, and the linear functional G are bounded.
More precisely, there exist C1, C2, C3 > 0 such that

|A((u, ω), (v, ϕ))| ≤C1‖(u, ω)‖H(diva,Ω)×H̃1
1
(Ω)‖(v, ϕ)‖H(diva,Ω)×H̃1

1
(Ω),

|B((v, ϕ), q)| ≤C2‖(v, ϕ)‖H(diva,Ω)×H̃1
1
(Ω)‖q‖L2

1
(Ω),

|G(v, θ)| ≤C3‖(v, ϕ)‖H(diva,Ω)×H̃1
1
(Ω).

The following lemma shows that the bilinear formA is elliptic over the whole space H⋄(diva,Ω)×
H̃1

1,⋄(Ω), provided that the stabilization parameters κ1 and κ2 are chosen adequately.

Lemma 2.1. Suppose that κ1 ∈ (0, 2ν
σ ) and κ2 > 0. Therefore, there exists α > 0, such that

A((v, ϕ), (v, ϕ)) ≥ α‖(v, ϕ)‖2
H(diva,Ω)×H̃1

1
(Ω)

∀(v, ϕ) ∈ H⋄(diva,Ω)× H̃1
1,⋄(Ω).

Proof. Given (v, ϕ) ∈ H⋄(diva,Ω) × H̃1
1,⋄(Ω), a combination of (2.4) with Cauchy-Schwarz

inequality readily gives

A((v, ϕ), (v, ϕ)) =σ‖v‖2L2
1
(Ω)2 + ν‖ϕ‖2L2

1
(Ω) + κ1σ

∫

Ω

v · curla ϕr drdz

+ κ1ν‖ curla ϕ‖2L2
1
(Ω)2 + κ2‖ diva v‖2L2

1
(Ω),

≥σ‖v‖2L2
1
(Ω)2 + ν‖ϕ‖2L2

1
(Ω) − κ1σ‖v‖L2

1
(Ω)2‖ curla ϕ‖L2

1
(Ω)2

+ κ1ν‖ curla ϕ‖2L2
1
(Ω)2 + κ2‖ diva v‖2L2

1
(Ω),

≥σ‖v‖2L2
1
(Ω)2 + ν‖ϕ‖2L2

1
(Ω) −

σ

2
‖v‖2L2

1
(Ω)2 −

κ2
1σ

2
‖ curla ϕ‖2L2

1
(Ω)2

+ κ1ν‖ curla ϕ‖2L2
1
(Ω)2 + κ2‖ diva v‖2L2

1
(Ω),

=
σ

2
‖v‖2L2

1
(Ω)2 + κ2‖ diva v‖2L2

1
(Ω) + ν‖ϕ‖2L2

1
(Ω)

+ κ1

(
ν − κ1σ

2

)
‖ curla ϕ‖2L2

1
(Ω)2 ,

≥min{σ
2
, κ2}‖v‖2H(diva,Ω) +min{ν, κ1

(
ν − κ1σ

2

)
}‖ϕ‖2H(curla,Ω),

≥α‖(v, ϕ)‖2
H(diva,Ω)×H̃1

1
(Ω)

,
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where we have also employed (1.5). These steps complete the proof.

The following result establishes the corresponding inf-sup condition for the bilinear form B (see
(2.5)). Its proof is a direct consequence of the three-dimensional corresponding inf-sup condition
(see [14, Lemma IX.1]) and estimate (1.7). For more details we refer to e.g. [1, Lemma 2.6].

Lemma 2.2. There exists β > 0, such that the following holds

sup
(v,ϕ)∈H⋄(diva,Ω)×H̃1

1,⋄(Ω)

(v,ϕ) 6=0

|B((v, ϕ), q)|
‖(v, ϕ)‖H(diva,Ω)×H̃1

1
(Ω)

≥ β‖q‖L2
1
(Ω) ∀q ∈ L2

1,0(Ω).

We are now in a position to state the main result of this section which yields the solvability of
the continuous formulation (2.3).

Theorem 2.3. There exists a unique solution ((u, ω), p) ∈ (H⋄(diva,Ω) × H̃1
1,⋄(Ω)) × L2

1,0(Ω)
to problem (2.3) and there exists a positive constant C > 0 such that the following continuous
dependence result holds:

‖((u, ω), p)‖(H(diva,Ω)×H̃1
1
(Ω))×L2

1
(Ω) ≤ C‖f‖L2

1
(Ω)2 .

Proof. By virtue of Lemmas 2.1 and 2.2, the proof follows from a straightforward application
of [15, Theorem II.1.1].

3. Mixed finite element approximation. In this section, we construct a finite element
scheme associated to (2.3), define explicit finite element subspaces yielding the unique solvability
of the discrete scheme, derive the a priori error estimates, and provide the rate of convergence of
the method.

3.1. Statement of the discrete scheme. Let {Th}h>0 be a regular family of triangulations

of Ω by triangles T with mesh size h. For S ⊂ Ω̄, we denote by Pk(S) and P̃k(S), k ∈ N ∪ {0},
the set of polynomials of degree ≤ k, and the set of homogeneous polynomials of degree k on
S, respectively. We begin by introducing some notation and basic definitions presented in [19].
First, we recall the definition of the two-dimensional Raviart-Thomas spaces, next we focus on the
axisymmetric case. Let Eh be the set of all edges of the triangulation Th, and given T ∈ Th, let
E(T ) be the set of its edges, and we define the space

Rk(∂T ) := {φ ∈ L2(∂T ) : φ|e ∈ Pk(e), e ∈ E(T )}.
For Ω ⊂ R

2, T ∈ Th, let us denote by RTk(T ) the Raviart-Thomas space, which is defined by

RTk(T ) := Pk(T )
2 +

[
r
z

]
P̃k(T ),

where, for v ∈ RTk(T ), nT the unit outer normal on ∂T , the degrees of freedom are given by
∫

E(T )

v · nTφ ∀φ ∈ Rk(∂T ),

for k ≥ 0, and
∫

T

v · φ ∀φ ∈ Pk−1(T )
2,

for k ≥ 1. Regarding the axisymmetric case, we define Ea(T ) as the set of edges in the triangulation
Th contained in T , but which do not lie along the symmetry axis Γs. Additionally, we introduce
the set

Ea(Th) := ∪T∈Th
Ea(T ),
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and define

RTa
k(T ) := {v ∈ RTk(T ) : v · n|Γs

= 0}

=

{[
vr
vz

]
∈ RTk(T ) : vr|Γs

= 0

}
,

where the degrees of freedom (for k ≥ 0) are given by

∫

E(T )

v · nTφr drdz ∀φ ∈ Rk(∂T ),

and for k ≥ 1, by

∫

T

v · φr drdz ∀φ ∈ Pk−1(T )
2.

Let us now make precise the choice of finite element subspaces, for any k ≥ 0:

Hh := {vh ∈ H⋄(diva,Ω) vh|T ∈ RTa
k(T ) ∀T ∈ Th} , (3.1)

Zh :=
{
ϕh ∈ H̃1

1,⋄(Ω) : ϕh|T ∈ Pk+1(T ) ∀T ∈ Th
}
, (3.2)

Qh :=
{
qh ∈ L2

1,0(Ω) : qh|T ∈ Pk(T ) ∀T ∈ Th
}
. (3.3)

Then, the Galerkin scheme associated with the continuous variational formulation (2.3) reads as
follows:

Find ((uh, ωh), ph) ∈ (Hh × Zh)×Qh such that

A((uh, ωh), (vh, ϕh)) +B((vh, ϕh), ph) = G(vh, ϕh) ∀(vh, ϕh) ∈ Hh × Zh,

B((uh, ωh), qh) = 0 ∀qh ∈ Qh.
(3.4)

Remark 3.1. Notice that the well-posedness of the continuous variational formulation (1.8)
can be readily established using, for instance, the recent results from [22] related to a generalization
of the Babuška-Brezzi theory (see also our Theorem 2.3). However, the discrete problem (3.4) does
not lie in such a framework since the axisymmetric divergence of any vh ∈ Hh does not belong to
Qh.

3.2. Solvability and stability of the stabilized discrete formulation. In view of Re-
mark 3.1, we now devote ourselves to provide discrete counterparts of Lemmas 2.1 and 2.2, which
will eventually conclude the solvability and stability of problem (3.4). With this aim, we first state
the following result, which is a direct consequence of Lemma 2.1.

Lemma 3.1. Assuming that κ1 ∈ (0, 2ν
σ ) and κ2 > 0, then there exists α > 0, such that

A((vh, ϕh), (vh, ϕh)) ≥ α‖(vh, ϕh)‖2H(diva,Ω)×H̃1
1
(Ω)

∀(vh, ϕh) ∈ Hh × Zh.

We continue with the following discrete analogue to Lemma 2.2.

Lemma 3.2. There exists β̃ > 0, such that

sup
(vh,ϕh)∈Hh×Zh

(vh,ϕh) 6=0

|B((vh, ϕh), qh)|
‖(vh, ϕh)‖H(diva,Ω)×H̃1

1
(Ω)

≥ β̃‖qh‖L2
1
(Ω) ∀qh ∈ Qh.
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Proof. Let k ≥ 0 and qh ∈ Qh. From Theorem 3.4 and Corollary 3.6 in [19], we know that
there exist vh ∈ Hh and β̃ > 0 such that,

∫
Ω
qh diva vhr drdz

‖vh‖H(diva,Ω)
≥ β̃‖qh‖L2

1
(Ω).

Therefore, from this inequality we have

sup
(vh,ϕh)∈Hh×Zh

(vh,ϕh) 6=0

|B((vh, ϕh), qh)|
‖(vh, ϕh)‖H(diva,Ω)×H̃1

1
(Ω)

≥ |B((vh, 0), qh)|
‖(vh, 0)‖H(diva,Ω)×H̃1

1
(Ω)

=

∫
Ω qh diva vhr drdz

‖vh‖H(diva,Ω)

≥ β̃‖qh‖L2
1
(Ω),

which completes the proof.

We are now in a position to state the main result of this section which yields the solvability of
the discrete formulation (3.4).

Theorem 3.3. Let k be a non-negative integer and let Hh, Zh and Qh be given by (3.1),
(3.2), and (3.3), respectively. Then, there exists a unique solution ((uh, ωh), ph) ∈ (Hh ×Zh)×Qh

to problem (3.4) and there exists a positive constant C > 0 such that the following continuous
dependence result holds:

‖((uh, ωh), ph)‖(H(diva,Ω)×H̃1
1
(Ω))×L2

1
(Ω) ≤ C‖f‖L2

1
(Ω)2 .

Moreover, there exists a constant Ĉ > 0 such that

‖u− uh‖H(diva,Ω) + ‖ω − ωh‖H̃1
1
(Ω) + ‖p− ph‖L2

1
(Ω)

≤ Ĉ

{
inf

vh∈Hh

‖u− vh‖H(diva,Ω) + inf
ϕh∈Zh

‖ω − ϕh‖H̃1
1
(Ω) + inf

qh∈Qh

‖p− qh‖L2
1
(Ω)

}
,

(3.5)

where ((u, ω), p) ∈ (H⋄(diva,Ω)× H̃1
1,⋄(Ω))× L2

1,0(Ω) is the unique solution to problem (2.3).

Proof. By virtue of Lemmas 3.1 and 3.2, the proof follows from a straightforward application
of [15, Theorem II.1.1].

3.3. Convergence analysis. According to the theorem above, there only remains to prove
that u, ω and p can be conveniently approximated by functions in Hh,Zh and Qh respectively. With
this purpose, we introduce the Raviart-Thomas global interpolation operator Rh : H1

1(Ω) → Hh

(see [19, Appendix]).

For this operator, we review some properties to be used in the sequel. The corresponding proofs
can be found in [19, Corollary A.6]:

Lemma 3.4. For all v ∈ Hk+1
1 (Ω)2, with diva v ∈ Hk+1

1 (Ω), and
(∑

T∈Th
| diva Rhv|2Hk+1

1
(T )

)1/2
<

c̃, there exists C > 0, independent of h, such that

‖v −Rhv‖H(diva,Ω) ≤ Chk+1.

Let Ph be the orthogonal projection from L2
1(Ω) onto the finite element subspace Qh. We have

that Ph satisfies the following error estimate (see [18]):

Lemma 3.5. There exists C > 0, independent of h, such that for all q ∈ Hk+1
1 (Ω) :

‖q − Phq‖L2
1
(Ω) ≤ Chk+1‖q‖Hk+1

1
(Ω).
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Fig. 3.1. Approximate radial and longitudinal velocities, vorticity and pressure, obtained with lowest order
Raviart-Thomas, piecewise linear, and piecewise constant elements, respectively. Errors with respect to the exact
solutions in (4.1) are presented in Table 4.1.

On the other hand, when the solution ϕ is sufficiently smooth, we are able to use the Lagrange
interpolation operator Πh : H̃1

1(Ω) ∩ H2
1(Ω) → Zh. Moreover, there holds the following error

estimate, whose proof can be found in [32, Lemma 6.3].

Lemma 3.6. There exists C > 0, independent of h, such that for all ϕ ∈ Hk+2
1 (Ω) :

‖ϕ−Πhϕ‖H̃1
1
(Ω) ≤ Chk+1 ‖ϕ‖Hk+2

1
(Ω) .

We are now in a position to establish the convergence properties of the discrete problem (3.4).

Theorem 3.7. Let k be a non-negative integer and let Hh, Zh and Qh be given by (3.1), (3.2),

and (3.3), respectively. Let ((u, ω), p) ∈ (H⋄(diva,Ω) × H̃1
1,⋄(Ω)) × L2

1,0(Ω) and ((uh, ωh), ph) ∈
(Hh × Zh) × Qh be the unique solutions to the continuous and discrete problems (2.3) and (3.4),

respectively. Assume that u ∈ Hk+1
1 (Ω), diva u ∈ Hk+1

1 (Ω),
(∑

T∈Th
| diva Rhu|2Hk+1

1
(T )

)1/2
< c̃,

ω ∈ Hk+2
1 (Ω), and p ∈ Hk+1

1 (Ω). Then, the following error estimate holds true

‖u− uh‖H(diva,Ω) + ‖ω − ωh‖H̃1
1
(Ω) + ‖p− ph‖L2

1
(Ω) ≤ Chk+1.

Proof. The proof follows from (3.5) and error estimates from Lemmas 3.4, 3.5 and 3.6.

Finally, we stress that our developed framework could be easily adapted to analyze other
families of finite elements. For instance, considering BDM finite elements.

4. Numerical tests. In what follows, we present three numerical examples illustrating the
performance of the FE method described in Section 3, and which confirm the theoretical error
bounds.

4.1. Experimental convergence. We start by studying the accuracy of the proposed aug-
mented formulation. This is carried out by computing errors in different norms, between the finite
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d.o.f. h e(ωh)H̃1
1
(Ω) rate e(uh)H(diva,Ω) rate e(ph)L2

1
(Ω) rate

Augmented RTa
0 − P1 − P0 finite elements

19 1.414210 9.313142 − 2.196498 − 0.622498 −
61 0.707107 6.127531 0.643253 1.157689 0.887292 0.300841 1.049070
217 0.353553 3.230720 0.923452 0.606053 0.880587 0.157296 0.935521
817 0.176777 1.693433 0.931909 0.335337 0.879051 0.079495 0.984533

3169 0.088388 0.849415 0.995402 0.161066 0.947074 0.039855 0.996094
12481 0.044194 0.422061 1.009021 0.074841 1.105752 0.019941 0.998999
49537 0.022097 0.210592 1.003270 0.025636 1.054566 0.009972 0.999744

197377 0.011048 0.105225 1.000982 0.008879 1.052966 0.004986 0.999933
787969 0.005524 0.052590 1.000627 0.003592 1.130545 0.002493 0.999954

Augmented RTa
1 − P2 − P1 finite elements

47 1.414210 5.297575 − 5.771840 − 0.084158 −
152 0.707107 1.219981 2.118470 3.250071 0.954072 0.023349 1.849700
542 0.353553 0.387030 1.656351 0.738229 2.138333 0.005878 1.989971

2042 0.176777 0.102159 1.921632 0.122852 2.107151 0.001478 1.990832
7922 0.088388 0.025443 2.005452 0.018691 2.176473 0.000391 1.988041
31202 0.044194 0.006326 2.007954 0.002739 2.170384 9.950e-5 1.975634

123842 0.022097 0.001580 2.001371 0.000392 2.184897 2.310e-5 2.016722
493442 0.011048 0.000394 2.000989 6.098e-5 2.184340 6.177e-6 1.890525
1969922 0.005524 0.000179 2.000281 1.483e-5 2.098736 1.594e-6 1.975001

Table 4.1

Experimental convergence of the augmented RT
a

k
− Pk+1 − Pk FE approximation (k = 0, top rows, and k = 1

bottom rows) of the steady axisymmetric Brinkman flow with respect to exact solutions.

element approximation on successively refined non-uniform partitions Th of Ω and the following
exact solution to (1.4):

u(r, z) =

(
r3(r − 1)z(3z − 4)

−r2(5r − 4)z2(z − 2)

)
,

ω(r, z) = −z2(z − 2)r(15r − 8)− r3(r − 1)(6z − 4), p(r, z) = r2 + z2 − 3,

(4.1)

defined on the rectangular meridional domain Ω = (0, 1)× (0, 2), and satisfying u ·n = 0 on Γ∪Γs

and ω = 0 on Γs. In this case, we impose a non-homogeneous Dirichlet condition for the vorticity
on Γ, and the model and stabilization parameters are set as σ = 0.1, ν = 0.01, κ1 = 0.5ν/σ,
κ2 = 0.001. The approximate solutions computed with the augmented formulation on a mesh with
263680 triangular elements are presented in Figure 3.1. We also compute rates of convergence
from one refinement level (associated to a partition of size h) to the next one (with a mesh of size

ĥ < h) as

rateh =
log(errorh/errorĥ)

log(h/ĥ)
.

These values are displayed in Table 4.1, where we observe a convergence of order hk+1 for all fields
in the relevant norms.

4.2. Axisymmetric Brinkman flow on a settling tank. In our next example, we simulate
a common scenario in wastewater treatment processes, that is a settling tank, where the accurate
rendering of flow is of interest. The geometry depicted in Figure 4.1 (see also [2, 16]) represents
a half cross-section of a cylindrical vessel with the following types of boundaries: inlet Γin, outlet
Γout, symmetry axis Γs, overflow Γc, and walls (the remainder of ∂Ω).
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Γin

Γs

Γc

Γout

r

z

Ω

Fig. 4.1. Sketch of a half cross section of a settling tank of maximum radius 8m, total height of 5m, inlet disk
of 1.5m of radius, overflow annulus of 0.5m of edge, and outlet disk with a radius of 0.5m.

Fig. 4.2. Approximate solutions of the Brinkman axisymmetric problem on a settling tank. The used mesh
consists of 107882 elements.

Boundary conditions assume the following configuration. On walls and symmetry axis we allow
a slip velocity, that is u · n = 0; normal velocities are imposed on the inlet, outlet and overflow

as qin = 1
8 (

4r2

9 − 1), qout = 0.01125, qc = 0.00125, respectively. Zero vorticity is imposed on the
walls, symmetry axis, outlet and overflow, whereas on the inlet we set win = r

9 . The external force
is assumed to be zero.

An unstructured mesh of 107882 triangles and 54420 nodes was constructed, and we employed
the following model and stabilization parameters: σ = 0.1, ν = 0.01, κ1 = ν/σ, κ2 = 0.01.
Approximate radial and vertical components of the velocity, pressure and vorticity are displayed
in Figure 4.2.

4.3. Blood flow through an axisymmetric stenosed artery. Next, we present the si-
mulation of a simplified model of arterial blood flow in the presence of a symmetric stenotic region
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Fig. 4.3. Sketch of a half cross section of an idealized artery with symmetric stenosis (left) and a cylindrical
filter with sudden contraction (right).

on the vessel wall (see e.g. [33, 35]). We are only interested in the laminar regime, so (1.1) (with
a simple Newtonian model for the blood) will suffice to describe the main components of the flow.
The computational domain consists on a half cross-section of a vessel segment of length 5cm and
maximum radius 1cm (see a sketch in Figure 4.3, left). The boundaries are the inlet Γin (z = 2,
r ∈ [0, 1]) outlet Γout (z = −3, r ∈ [0, 1]), symmetry axis Γs (z ∈ [−3, 2], r = 0), and arterial
wall (z ∈ [−3, 2], r = 1 + δ exp(−sz2)(z + 3)(z + 2)/6), with δ = 0.4 and s = 0.8. Boundary data
are set in the following manner: on Γin we impose a Poiseuille flow of maximum normal velocity
with norm Re= 1/ν, and a consistent vorticity w = 2r/ν. On symmetry axis and arterial wall
we set zero normal velocity and vorticity, whereas on the outlet we use u · t = 0 and p = 0. The
conditions on Γout were not covered in our analysis, but we stress that they can be also treated
following e.g. [2, 3]. The flow regime is characterized by the parameters ν = 0.01, and we set
σ = 0.01, κ1 = ν/σ, κ2 = 0.1. An unstructured mesh of 43712 elements and 21857 nodes was
built to discretize the axisymmetric domain Ω. Figure 4.4 displays approximate solutions using
Raviart-Thomas elements for velocity, piecewise linear and continuous elements for vorticity and
piecewise constant elements for pressure. For visualization purposes, we also depict a rotational
extrusion of 290 degrees of these solutions in Figure 4.5.

4.4. Flow in a contracting cylinder with porous obstacle. We close this section with a
simulation relevant in the modeling of oil filters. We consider a cylindrical domain with a annular
porous obstacle, whose half cross-section is depicted in the right panel of Figure 4.3, and assume
that the permeability inside the obstacle Ωobstcl is much lower than that of the rest of the domain.
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Fig. 4.4. Augmented mixed finite element approximation of the Brinkman axisymmetric problem on a stenosed
artery. Solutions on the half cross-section discretized with 43712 triangular elements.

This assumption is accounted for by setting

σ = σ(r, θ) =

{
σ0 = 100 in Ωobstcl,

σ1 = 0.001 otherwise.

As in the previous test case, we here impose the Poiseuille normal velocity inflow u · n =
2/75r(r − 3/2) and the compatible vorticity ω = 2/75(r − 3/2) on Γin, on Γs and Γwall we
set zero normal velocity and vorticity, and on the outlet we do not constraint flow nor pressure.
Other model parameters are chosen as ν = 0.01, κ1 = 3/2νσ0/σ

2
1 , κ2 = 0.1, and f = 0. The

axisymmetric domain was discretized with an unstructured mesh of 122303 triangular elements
and 61021 vertices.

The approximate solutions obtained with the proposed augmented finite element method are
displayed in Figure 5.1. As expected (see a similar study for the Cartesian case in [3]), we can
observe velocity patterns avoiding the annular porous obstacle and concentrating on the symmetry
axis, and pressure profiles with high gradients near the obstacle boundary.

5. Conclusions. In this work, we have presented a new stabilized mixed finite element
method for the discretization of the a vorticity-velocity-pressure formulation of the Brinkman
problem in axisymmetric coordinates. A rigorous solvability analysis of both continuous and dis-
crete problems was carried out using tools from the Babuška-Brezzi theory, and we derived optimal
convergence rates in the natural norms for the particular case of Raviart-Thomas approximations
of order k of velocities, and piecewise polynomials of degrees k+1 and k approximating the scalar
vorticity and pressure, respectively. We provided a few numerical tests confirming our theoretical
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Fig. 4.5. Augmented mixed finite element approximation of the Brinkman axisymmetric problem on a stenosed
artery. Rotational extrusion to the full three-dimensional domain.

findings regarding optimal convergence of the approximate solutions and showing that our frame-
work can be successfully applied in a wide range of interesting applications as wastewater treatment
processes, the simulation of arterial blood flow, and the modeling of oil filters. Possible extensions
of this work include the study of vorticity-based formulations of axisymmetric time-dependent
Navier-Stokes equations, the incorporation of a larger class of boundary conditions, and the use of
the developed theory in the coupling of flow equations and nonlinear transport problems.
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


