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Abstract

Recently, the concepts of second order asymptotic directions and
functions have been introduced and applied to global and vector op-
timization problems. In this work, we establish some new properties
for these two concepts. In particular, in case of a convex set, a com-
plete characterization of the second order asymptotic cone is given.
Also, formulas that permit the easy computation of the second order
asymptotic function of a convex function are established. It is shown
that the second order asymptotic function provides a finer description
of the behavior of functions at infinity, than the first order asymptotic
function.
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second order asymptotic cone; second order asymptotic function.

1 Introduction

The concept of asymptotic (or recession) directions of a set has been intro-
duced almost 100 years ago [14], and then it was rediscovered by Debreu
[2], where its use concerns the closedness of the sum of any two closed sets.
Such a notion may be conceived as a main tool to describe the asymptotic
behaviour of the set at infinity along these particular directions, so it is of

∗This research, for the first author, was partially supported by CONICYT-Chile
through FONDECYT 112-0980 and BASAL projects, CMM, Universidad de Chile. This
work was completed while the second author was visiting the Departamento de Inge-
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2 Second order asymptotic analysis

primary importance for dealing with unbounded sets, as it gives rise to the
“asymptotic analysis” approach. A vector u 6= 0, say with ‖u‖ = 1, is by
definition an asymptotic direction of a set K if its direction is the limit of
directions of a sequence of vectors {xk}k∈N in K such that ‖xk‖ → +∞;
equivalently, if there exists a sequence {xk} in K such that ‖xk‖ → +∞
and

xk
‖xk‖

→ u. In many interesting cases, the vectors xk do not approach

the line Ru containing u; actually, their distance from it converges to +∞.
How exactly do the directions of xk approach the direction of u? One way
to answer this question, is to consider the projections 〈xk, u〉u of xk onto
u, and the differences xk − 〈xk, u〉u. Then, if ‖xk − 〈xk, u〉u‖ → +∞, one
can find the limit, if any, of the directions of the latter vectors. These are
exactly the canonic (second order) directions, which are orthogonal to u.
From this line of reasoning, and in order to have a finer tool in the study of
the behavior of sets and functions at infinity, very recently the authors in
[8] introduced, more generally, the notion of second order direction for sets,
as the limit of directions of a sequence of vectors xk − αku with αk → +∞,
xk
‖xk‖ →

u
‖u‖ and ‖xk − αku‖ → +∞, which show how the vector xk is “seen”

from a vector αku. The precise definition for sets (and functions) will be
given in the two following sections.

We point out that (first order) asymptotic cones in infinite dimensional
spaces were considered in [4, 5], see also [10]; whereas in spaces of finite
dimension, we refer to [1, 13]. More recent applications may be found in
[3, 6, 7, 11] and references therein.

A related concept which is motivated mainly by minimization problems,
is the concept of asymptotic function. A careful analysis of the behaviour
of the asymptotic function (associated to objective) along the asymptotic
directions of the feasible set is crucial for a study of the existence of minima.
Similarly to the first order case, a second order asymptotic function can be
defined.

We believe that in the same way as the first-order asymptotic analysis
proved to be a powerful in the study of sets and functions at infinity, the
second-order approach will yield finer results in optimization, economics,
engineering, etc. Indeed, it was shown in [8] that these second order notions
may be used to establish necessary or sufficient conditions for optimality,
characterize the efficient points in vector optimization, or provide criteria for
the closedness of the sum of closed sets, in cases where the results using the
first order asymptotic notions are not adequate. It is worthwhile mentioning
that in [8], mainly the general non convex case was treated, and no formula
was provided for the convex case. This latter situation will be discussed in
detail in the present paper, so we will see that there are very simple and
attractive formulas that provide the corresponding asymptotic notions for
sets and functions.

We also must mention that the meaning of our concept of asymptotic
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cone is different from that considered, for instance, in [9]. For us the term
asymptotic means far away, in contrast to the mentioned in that paper,
compare (3) and (4) in [9, Definition 2.1] and our Proposition 3.4(c).

One of the main results of the present paper is a characterization of
the second order asymptotic cone in the case of a convex set. Based on
this characterization, we will show several properties of such cones, and
give formulas for the second order asymptotic function, that permit an easy
computation.

The structure of the paper is as follows. The basic definitions and no-
tations are given in the next section. Section 3 contains some preliminary
results on the properties of second order asymptotic cones, and also their
relation to the so-called canonic directions. In addition, the convex case
is discussed in details. For example, it is known that for a closed convex
set K ⊆ Rn, its asymptotic cone K∞ is the set of vectors u ∈ Rn such that
x0+tu ∈ K for every x0 ∈ K and t > 0. As we shall see, given a convex (not
necessarily closed) set K and an element x0 of its relative interior riK, the
second order asymptotic cone of K with respect to u, which will be denoted
by K∞2[u], is the set of all v ∈ Rn such that for every s > 0, x0+tu+sv ∈ K
for all t sufficiently large (Proposition 3.4); actually, this property implies
both u ∈ K∞ and v ∈ K∞2[u]. In the special case of polyhedral sets, we
may have x0 ∈ K instead of x0 ∈ riK, and K∞2[u] has a simple expression
(Remark 3.8 and Proposition 3.10).

The above characterization, together with some other similar ones, will
be used to obtain information about the structure of the second order asymp-
totic cone, as well as several of its properties. Section 4 is devoted to the
second order asymptotic function. Using the characterizations found in Sec-
tion 3, we obtain formulas which permit an easy calculation of this function
in case the original function is (not necessarily lower semicontinuus) convex,
as we show with some examples.

It should be noted that the notation differs with respect to the ones
introduced in [8]. Also, the definition of second order asymptotic function
(which in [8] was called lower second order asymptotic function) is different,
even if it is proven to be equivalent to the one in [8]. The changes were
deemed useful in order to approach the more usual notation and definitions
of the corresponding first order notions. Similar changes affect the canonic
directions.

2 Basic definitions

We denote the duality pairing between two elements of Rn by 〈·, ·〉. The
subspace generated by a vector u ∈ Rn is denoted by Ru; the subspace
orthogonal to it, u⊥. Given K ⊆ Rn, its closure is denoted by K, its
boundary by bd K, its topological interior by int K, its relative interior
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by riK, and its convex hull by co(K). We set cone(K) =
⋃
t≥0 tK and

cone(K) =
⋃
t≥0 tK.

For K ⊆ Rn, its first order asymptotic cone (or just asymptotic cone) is
defined by

K∞ = {u ∈ Rn : ∃ tk → +∞, ∃ xk ∈ K,
xk
tk
→ u}.

In case K is a closed convex set it is known that

K∞ = {u ∈ Rn : x0 + λu ∈ K, ∀ λ ≥ 0} for any x0 ∈ K. (1)

If K is convex without being necessarily closed, then there is a similar char-
acterization of K∞ by using elements of riK:

K∞ = {u ∈ Rn : x0 + λu ∈ riK, ∀ λ ≥ 0} for any x0 ∈ riK; (2)

see for instance Proposition 2.1.8 in [1].
A function f is called proper if f(x) > −∞ for all x ∈ Rn and dom f 6= ∅,

where dom f
.
= {x ∈ Rn : f(x) < +∞}. Given any proper function

f : Rn → R∪{+∞}, the asymptotic function of f is defined as the function
f∞ : Rn → R ∪ {±∞} satisfying

epi f∞ = (epi f)∞, (3)

where epi f = {(x, t) ∈ Rn × R : f(x) ≤ t} is the epigraph of f . Con-
sequently, when f is a convex and lower semicontinuous function, we have
∀x0 ∈ f−1(R),

f∞(u) = lim
t→+∞

f(x0 + tu)− f(x0)

t
= sup

t>0

f(x0 + tu)− f(x0)

t
(4)

and
f∞(u) = sup

x∈dom f
(f(x+ u)− f(x)) . (5)

From (3), we obtain the following formula for f∞ in the general case,
given u ∈ Rn,

f∞(u) = inf
{

lim inf
k→∞

f(xk)

tk
: xk ∈ dom f, tk → +∞, xk

tk
→ u

}
.

If f : K ⊆ Rn → R, f∞ denotes the asymptotic function of f , where
we extend f to the whole Rn by setting f(x) = +∞ if x ∈ Rn \K. More
detailed information on asymptotic sets and functions may be found in [13].

Definition 2.1 Given a nonempty set K ⊆ Rn and u ∈ Rn, we say that
v ∈ Rn is a second order asymptotic direction of K at u if there are sequences
xk ∈ K, sk and tk ∈ R, with sk, tk → +∞ such that,

v = lim
k→+∞

(
xk
sk
− tku

)
. (6)

The set of all such elements v is denoted by K∞2[u].
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Equivalently, v ∈ K∞2[u] if for each k ∈ N there exist sk > k and tk > k
such that ∣∣∣∣xksk − tku− v

∣∣∣∣ < 1

k
. (7)

Note that if (6) holds for sk, tk, xk as in the definition, then

lim
k→+∞

xk
sktk

= u.

Consequently, one has necessarily u ∈ K∞.

The set K∞2[u] is a cone, termed the second order asymptotic cone of
K at u. It is nonempty exactly when u ∈ K∞ [8]. K∞2[u] is always closed,
and if u = 0 then K∞2[0] = K∞.

Let us fix a direction u ∈ Rn for which f∞(u) is finite; then u ∈ (dom f)∞

and (u, f∞(u)) ∈ (epi f)∞. Set A = (epi f)∞2 [(u, f∞(u))]. Then (v, α) ∈ A
iff there exist sequences (xk, αk) ∈ epi f and sk, tk → +∞ such that

(xk, αk)

sk
− tk (u, f∞ (u))→ (v, α) . (8)

In this case, for every h > 0, (xk, αk + skh) ∈ epi f and

(xk, αk + skh)

sk
− tk (u, f∞ (u))→ (v, α+ h) .

Thus, (v, α+ h) ∈ A for every h > 0. Since A is a closed cone, this
means that A is the epigraph of some lsc, positively homogeneous function.
We call this function second order asymptotic function of f at u and we
denote its value at v by f∞2(u; v), that is,

epi f∞2(u; ·) = (epi f)∞2[(u, f∞(u))]. (9)

This yields the following straightforward result.

Proposition 2.2 For u ∈ Rn satisfying f∞(u) ∈ R, the function f∞2(u; ·) :
Rn → R ∪ {±∞}, defined as in (9), is lsc and positively homogeneous; it
satisfies f∞2(u; 0) = 0 or −∞, while f∞2(u; 0) = 0 if and only if f∞2(u; ·)
is proper.

3 Second order asymptotic cones

We start by establishing various properties for the second order asymptotic
cone of any set, including its link to canonic directions. Then we provide
some characterizations of the second order asymptotic cone in case the set
is convex.
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3.1 Preliminary results

Next proposition collects some basic properties of the second order asymp-
totic cone for any set, although they partly already appear in [8].

Proposition 3.1 Let ∅ 6= K ⊆ Rn. The following assertions hold.

(a) If K0 ⊆ K, then K∞2
0 [u] ⊆ K∞2[u] for all u ∈ Rn.

(b) K∞2[u] + Ru = K∞2[u] for all u ∈ K∞.

(c) K∞2[u] = K
∞2

[u] for all u ∈ K∞.

(d) For all u ∈ K∞, (K∞2[u])∞ = K∞2[u] and K∞2[u] = (K∞2[u])∞2[u].

(e) If u ∈ K∞, then K∞2[u] ⊆ R+K − R+u.

(f) If u ∈ ri K∞, then aff K∞ = K∞ −K∞ ⊆ K∞2[u].

(g) Let A,B ⊆ Rn, with u1 ∈ A∞, u2 ∈ B∞, then

(A×B)∞2[(u1, u2)] = A∞2[u1]×B∞2[u2].

(h) Let {Ki}i∈I ⊆ Rn be a family of sets and u ∈ Rn. Then⋃
i∈I

K∞2
i [u] ⊆ (

⋃
i∈I

Ki)
∞2

[u].

Equality holds when |I| < +∞.

(i) Let {Ki}i∈I ⊆ Rn be a family of sets satisfying
⋂
i∈I Ki 6= ∅ and u ∈

Rn. Then
(
⋂
i∈I

Ki)
∞2

[u] ⊆
⋂
i∈I
K∞2
i [u].

Proof.
(a) and (b) were proved in Proposition 2.2 [8]. (c), (e) and (g) are

straightfoward.
(d): The first equality is obvious since K∞2[u] is a closed cone. To show

inclusion (⊇) in the second equality, let w ∈ (K∞2[u])∞2[u]. In view of
(7), for each k ∈ N there exist wk ∈ K∞2[u] and sk > k, tk > k such that∣∣∣wk
sk
− tku− w

∣∣∣ < 1
k ; moreover, there exist w′k ∈ K and s′k > k, t′k > k such

that
∣∣∣w′ks′k − t′ku− wk∣∣∣ < 1

k . Dividing the second inequality by sk and adding

the to first we deduce that∣∣∣∣ w′ks′ksk
−
(
tk +

t′k
sk

)
− w

∣∣∣∣ < 1

k
+

1

ksk
≤ 1

2k
.
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Since s′ksk > k and tk +
t′k
sk
> k, we infer that w ∈ K∞2[u].

(⊆) Let w ∈ K∞2[u]. For every sequence tk → +∞, we have w + tku ∈
K∞2[u]+Ru = K∞2[u] by property (b), so tkw+t2ku ∈ K∞2[u] since K∞2[u]
is a cone. From

w = lim
k→+∞

(
tkw + t2ku

tk
− tku)

it then follows that w ∈ (K∞2[u])∞2[u].

(f) Given v ∈ aff K∞, we have that for all k ∈ N large enough, u+ 1
kv ∈

K∞. Since K∞ is a cone, ku+ v ∈ K∞. Consequently one can find xk ∈ K
and tk > k such that

∣∣∣xktk − ku− v∣∣∣ < 1
k . In view of (7), this implies that

v ∈ K∞2[u].

(h): (⊆) is an obvious consequence of property (a).

(⊇) (|I| < ∞). Let w ∈ (
⋃m
i=1Ki)

∞2[u]. Then there exist sequences

{xk}k∈N ⊆
⋃m
i=1Ki and sk, tk→+∞ with w = limk→∞

(
xk
sk
− tku

)
. Since I

is finite, there exists i0 and a subsequence {xkl}l∈N such that xkl ∈ Ki0 for
all l ∈ N. Hence, w ∈ K∞2

i0
[u] ⊆

⋃m
i=1K

∞2
i [u].

(i) is again a trivial consequence of property (b).

As we will see in the next section, the reverse inclusion does not hold in
general, but it does hold in some cases.

We now study canonic directions, which are of special importance. Given
u 6= 0, a second order asymptotic direction v ∈ K∞2[u] is called canonic
if 〈u, v〉 = 0. The set of canonic directions Kν [u] is thus K∞2[u] ∩ u⊥.
Note that for every u 6= 0 and α > 0, K∞2[αu] = K∞2[u] (see for instance
Proposition 2.2(vi) in [8]). Thus, K∞2[u] = K∞2[ u

‖u‖ ] and Kν [u] = Kν [ u
‖u‖ ],

so we can always restrict ourselves to the case ‖u‖ = 1.

In what follows Pu⊥ denotes the projection on u⊥.

Proposition 3.2 For every u ∈ K∞\{0}, K∞2[u] = Ru + Kν [u]. Thus,
Kν [u] = Pu⊥(K∞2[u])

Proof. We may assume that ‖u‖ = 1. To show inclusion ⊆, write any v ∈
K∞2[u] as v = 〈u, v〉u+(v − 〈v, u〉u). Then 〈u, v〉u ∈ Ru and v−〈v, u〉u ∈
u⊥. In addition, v−〈v, u〉u ∈ K∞2[u]+Ru = K∞2[u] by Proposition 3.1(b).
Thus inclusion ⊆ follows. The opposite inclusion follows from Ru+Kν [u] ⊆
Ru+K∞2[u] = K∞2[u].

The second assertion is a consequence of the first one.

We note that in [8] canonic directions were defined differently; we pre-
sented here another definition which is simpler. The equivalence of the two
definitions is a consequence of Proposition 2.8(ii)(iii) in [8].

It is interesting that the canonic directions in Kν [u] are first order di-
rections of the projection of K onto u⊥:

Proposition 3.3 Let u ∈ K∞\{0}. Then Kν [u] ⊆ (Pu⊥K)∞.
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Proof. Take any v ∈ Kν [u]. Then there exist sequences {xn} ⊆ K and
tn, sn → +∞ such that (6) holds. It follows that

v = Pu⊥v = lim

(
Pu⊥xn
tn

− snPu⊥u
)

= lim
Pu⊥xn
tn

∈ (Pu⊥K)∞.

Note that in general Kν [u] 6= (Pu⊥K)∞. For instance, if K ⊆ R2 is the
set {(x1, 0) : x1 ∈ R}∪{(0, x2) : x2 ∈ R} and u = (0, 1), then u⊥ = {(x1, 0) :
x1 ∈ R}, (Pu⊥K)∞ = u⊥ but Kν [u] = {0}.

3.2 The case of convex sets

In case K is a convex (not necessarily closed) subset of Rn, we have a
characterization of K∞2[u] which reminds the one for K∞ given by (1).
This will permit us to show some properties of the second order asymptotic
cone of convex sets.

Proposition 3.4 Let K ⊆ Rn be convex and x ∈ ri K. Then the following
assertions are equivalent.

(a) u ∈ K∞ and v ∈ K∞2[u].

(b) for all s > 0 there exists t̄ > 0 such that for every t > t, x+ tu+sv ∈
K.

(c) there exist sequences sn → +∞, tn → +∞ such that x+sntnu+snv ∈
K.

Proof. (a)⇒(b). Let x ∈ riK be arbitrary. Let P be the projection on
u⊥. Write x = t1u + Px and v = t2u + Pv. By Theorem 6.6 in [12],
riPK = P (riK), hence Px ∈ riPK. By Propositions 3.2 and 3.3, Pv ∈
Kν [u] ⊆ (PK)∞.

Since PK is convex, from (2) we deduce that for every s > 0, Px+sPv ∈
riPK. Hence there exists y ∈ riK such that Py = Px + sPv. Write
y = t3u+Py. Substituting Py, Px and Pv we deduce y = x+ t̄u+sv where
t̄ = t3 − t1 − st2. From y ∈ riK and u ∈ K∞ we infer that for every t > t̄,
x + tu + sv = y + (t − t̄)u ∈ riK. Since this is true for all t > t̄, it is clear
that we can choose some t̄1 > 0 such that for all t > t̄1, x+ tu+ sv ∈ riK.

(b) ⇒ (c). If (b) holds for some x ∈ riK, then set sk = k and choose
λk large enough, say λk > k2, such that x+λku+kv ∈ K. Define tk = λk/k.
Then (c) holds for the same x.

(c)⇒ (a). If (c) holds for some x, then for the sequence ak
.
= x+sktku+

skv we will have
ak
sktk

=
x

sktk
+
v

tk
+ u→ u,
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so u ∈ K∞. In addition,

ak
sk
− tku =

x

sk
+ v → v,

hence v ∈ K∞2[u].
Note that if (b) is true for some x ∈ riK, then this implies (a), which

in turn implies (b) and (c) for every x ∈ riK. Hence if (b) is true for some
x ∈ riK, then it is true for all.

We also note, as is clear from the proof, that (b) in Proposition 3.4 may
be replaced by

(b′) for all s > 0 there exists t̄ > 0 such that for every t > t, x+ tu+ sv ∈
riK.

We also have some equivalent characterizations, when we know that
u ∈ K∞.

Proposition 3.5 Let K ⊆ Rn be convex and u ∈ K∞. Given v ∈ Rn, the
following are equivalent.

(a) v ∈ K∞2[u].

(b) For every (equivalently, for some) x ∈ riK and every s > 0, there
exists t ∈ R such that x+ tu+ sv ∈ K.

(c) For every x ∈ riK, there exists t ∈ R such that x+ tu+ v ∈ K.

Proof. If (a) holds, then (b) holds in view of Proposition 3.4. Conversely, if
(b) holds for some x ∈ riK, given s > 0 choose t ∈ R so that x+2tu+2sv ∈
K. Then x+ tu+ sv = 1

2x+ 1
2 (x+ 2tu+ 2sv) ∈ riK. Thus for every t′ > t,

x+ t′u+ sv = x+ tu+ sv + (t′ − t)u ∈ K. Hence (a) holds by Proposition
3.4.

So we have only to prove that (c) implies (b). Assume that (c) holds and
let s > 0. Given x ∈ riK, there exists t1 ∈ R such that x + t1u + v ∈ K.
Then

x+
t1
2
u+

1

2
v ∈ ]x, x+ t1u+ v[ ,

so x + t1
2 u + 1

2v ∈ riK. By using again (c) on x + t1
2 u + 1

2v we can find
t2 ∈ R such that x + ( t1+t22 )u + 2v2 ∈ riK. Using induction, we conclude

that for every k ∈ N we can find t′k ∈ R such that x+ t′ku+ k
2v ∈ riK. Take

k large enough so that k
2 > s, and set λ = 2s

k ∈ ]0, 1[. Then x+ λt′ku+ sv ∈]
x, x+ t′ku+ k

2v
[
. This implies x+ λt′ku+ sv ∈ K and (b) holds.

As a first application of the characterization, we show:

Proposition 3.6 Let K ⊆ Rn be convex.
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(a) K∞2[u] is convex for all u ∈ K∞.

(b) K∞ ⊆ K∞2[u] for all u ∈ K∞.

(c) If u ∈ K∞ ∩ (−K∞), then K∞2[u] = K∞.

(d) If u ∈ K∞ then K∞ − R+u ⊆ K∞2[u], and so if additionaly K is a
cone, we get K∞2[u] = K − R+u.

Proof. (a) Fix x ∈ ri K. If v1, v2 ∈ K∞2[u], then for every s > 0 we can
find t1, t2 such that for all t ≥ ti, x+ tu+ svi ∈ K. Since K is convex, for
every t > max{t1, t2} and λ ∈ ]0, 1[ we have x+ tu+ s((1−λ)v1 +λv2) ∈ K.
Thus (1− λ)v1 + λv2 ∈ K∞2[u].

(b) Given x ∈ ri K, we note that for every u, v ∈ K∞, and for every
s, t > 0, x+ su ∈ riK so x+ tu+ sv ∈ K. Thus by the characterization of
Proposition 3.4, v ∈ K∞2[u].

(c) Let x ∈ ri K and v ∈ K∞2[u]. For every s > 0, we can find t such
that x + tu + sv ∈ K. Since −u ∈ K∞, (x+ tu+ sv) + t(−u) ∈ K. Thus
x+ sv ∈ K for all s > 0, so v ∈ K∞. This shows that K∞2[u] ⊆ K∞. Using
(b) we obtain the equality.

(d) Since K is convex, K∞ ⊆ K∞2[u] by part (b). Proposition 3.1(b)
implies that Ru ⊆ K∞2[u], and therefore K∞ − R+u ⊆ K∞2[u] due to the
convexity of the cone K∞2[u]. In case K is a cone, the equality follows from
Proposition 3.1(e).

Another application is that the inclusion in Proposition 3.3 is an equality
for convex sets:

Proposition 3.7 Let K ∈ Rn be nonempty and convex, u ∈ K∞\{0}
and P be the projection on u⊥. Then Kν [u] = (PK)∞ and, consequently,
K∞2[u] = Ru+ (PK)∞.

Proof. We already know by Proposition 3.3 that for any nonempty set K,
Kν [u] ⊆ (PK)∞. Take any v ∈ (PK)∞. If x ∈ riK then Px ∈ ri (PK). As
in the proof of implication (a) ⇒ (b) in Proposition 3.4, we infer that for
every s > 0 there exists t̄ > 0 such that for t > t̄, x + tu + sv ∈ K. Hence
v ∈ K∞2[u]. Since 〈v, u〉 = 0, v is canonic, so Kν [u] = (PK)∞.

In other words, the canonic directions of K at u are exactly the first
order directions of the projection of K on u⊥. The second order directions
are the vectors whose projection on u⊥, are first order directions of PK.

Remark 3.8 The assumption x ∈ ri K is used in the proof of (a)⇒ (b) of
Proposition 3.4, in order to ensure that Px ∈ riPK, so that Px + sPv ∈
riPK since Pv ∈ (PK)∞. Whenever K is a closed set such that PK is also
closed, this assumption is not needed and the same proof shows that one can
take simply x ∈ K. Such a case occurs for example when K is polyhedral.
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The following counterexample shows that x ∈ ri K cannot be replaced
by x ∈ K in the general case.

Example 3.9 Consider the cone

K = {(x1, x2, x3) ∈ R3 : x21 + x22 ≤ 2x2x3, x3 ≥ 0}.

This is the cone generated by the circle x21 +(x2 − 1)2 ≤ 1, x3 = 1. Then
K∞ = K, and u

.
= (0, 0, 1) ∈ K. If we set P = Pu⊥ , then

PK = {(x1, x2, 0) ∈ R3 : x2 > 0} ∪ {(0, 0, 0)}
(PK)∞ = {(x1, x2, 0) ∈ R3 : x2 ≥ 0}
K∞2[u] = Ru+ (PK)∞ = {(x1, x2, x3) ∈ R3 : x2 ≥ 0}.

By taking v = (1, 0, 0) we see that u ∈ K∞, v ∈ K∞2[u], 0 ∈ K but
0 + tu+ sv = (s, 0, t) /∈ K for any s > 0, t arbitrary. Hence condition (b) in
Proposition 3.4 does not hold.

Further, we show that the inclusion in Proposition 3.1(i) is an equality
in case of finitely many convex sets satisfying a regularity condition.

Proposition 3.10 Let {Ki}i∈I ⊆ Rn be a finite family of convex sets such
that

⋂
i∈I ri Ki 6= ∅. If u ∈ (

⋂
i∈I Ki)

∞, then

(
⋂
i∈I

Ki)
∞2[u] =

⋂
i∈I

K∞2
i [u]. (10)

Proof. We only need to prove (⊇).
Let v ∈

⋂
i∈I K

∞2
i [u]. Choose x0 ∈

⋂
i∈I ri Ki. Then, given i ∈ I and s > 0,

there exist ti ≥ 0 such that for all ti > ti, x0 + tiu + sv ∈ K∞2
i [u]. Let

t = maxi∈I{ti}, then x0 + tu + sv ∈
⋂
i∈I Ki, for all t > t. By Proposition

3.4, v ∈ (
⋂
i∈I Ki)

∞2[u].

Remark 3.11 a) The previous proposition is not true for an infinite fam-
ily, even of polyhedral sets. For example, take for every m ∈ N, Km

.
=

{(x1, x2) : x2 ≥ m |x1|} . Clearly
⋂
m∈N

Km = R+(0, 1), and (
⋂
m∈N

Km)∞2[u] =Ru,

while
⋂
m∈N

K∞2
m [u] = R2.

b) The proposition is also not true in general if
k⋂
i=1

riKi = ∅, even for

a finite family of closed convex sets. Consider for example the cones K1

and K2 generated, respectively, by the circles x21 + (x2 − 1)2 ≤ 1, x3 = 1
and x21 + (x2 + 1)2 ≤ 1, x3 = 1 (see example 3.9). The cones have the half
axis K = R+u, u = (0, 0, 1) as common generatrix. It is easy to see that
K1 ∩K2 = K. From Example 3.9 we see that K∞2

1 [u] = {(x1, x2, x3) : x2 ≥
0} and, likewise, K∞2

2 [u] = {(x1, x2, x3) : x2 ≤ 0}. Hence, R[u] = K∞2[u]  
K∞2

1 [u] ∩K∞2
2 [u].
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When the set is polyhedral, the second order asymptotic cone has a
simple expression. In what follows, set for i = 1, 2, . . . ,m,

Hi = {x : 〈ai, x〉 ≤ αi},

for some a1, a2, . . . , am ∈ Rn and α1, α2, · · · , αm ∈ R. ThenH∞i = {x : 〈ai, x〉 ≤
0}. Given u ∈ (

⋂m
i=1Hi)

∞, set I1 = {i ∈ {1, 2, . . . ,m} : u ∈ bd H∞i } (set
of active inequalities for u) and I2 = {i ∈ {1, 2, . . . ,m} : u ∈ int H∞i }. The
next proposition gives an expression for K∞2[u] when K is polyhedral. As
usual, the intersection of an empty family of subsets of Rn is considered to
be the whole space Rn.

Proposition 3.12 Assume for i = 1, 2, . . . ,m, that Hi is a halfspace as
above, and that

⋂m
i=1Hi 6= ∅. If u ∈ (

⋂m
i=1Hi)

∞, then

(

m⋂
i=1

Hi)
∞2[u] =

⋂
i∈I1

H∞i =

m⋂
i=1

H∞2
i [u],

where I1 = {i ∈ {1, 2, . . . ,m} : u ∈ bd H∞i }.

Proof. By Proposition 3.1(f), H∞2
i [u] = Rn for all i ∈ I2. For i ∈ I1,

u ∈ bd H∞i means that u ∈ H∞i ∩ (−H∞i ). By Proposition 3.6(c), H∞i =
H∞2
i [u] from which the second equality follows.

To show the first equality, we use Proposition 3.5(b): Fix any x ∈
ri(
⋂m
i=1Hi). Note that 〈ai, x〉 ≤ αi for all i ∈ I1 ∪ I2, 〈ai, u〉 = 0 for

all i ∈ I1 and 〈ai, u〉 < 0 for all i ∈ I2. Given v ∈ Rn, we have that
v ∈ (

⋂m
i=1Hi)

∞2[u] if and only if for all s > 0 there exists t > 0 such that
x + tu + sv ∈

⋂m
i=1Hi, i.e., 〈ai, x+ tu+ sv〉 ≤ αi for all i. For i ∈ I2 it

always holds that 〈ai, x+ tu+ sv〉 ≤ αi if t is sufficiently large. For i ∈ I1,
〈ai, x+ tu+ sv〉 = 〈ai, x+ sv〉 ≤ αi holds for large s > 0 if and only if
〈ai, v〉 ≤ 0, i.e., v ∈

⋂
i∈I1 H

∞
i . This shows the first equality.

It follows immediately that in case of polyhedral sets, equality (10) holds
without any assumption on the relative interiors:

Corollary 3.13 Let {Ki}i∈I be a finite family of polyhedral sets. If
⋂
i∈I Ki 6=

∅, then (
⋂
i∈I Ki)

∞2[u] =
⋂
i∈I K

∞2
i [u].

4 Second order asymptotic functions

We first give a formula for f∞2(u; ·) for any proper function f , followed
by some basic properties linking second and first order asymptotic notions.
Afterwards, the case of a convex function is considered, and we provide
various formulas for f∞2(u; ·).
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4.1 Some preliminaries

From (9) we derive the next formula.

Proposition 4.1 Let f : Rn → R ∪ {+∞} be proper and u ∈ Rn be such
that f∞(u) is finite. Then for every v ∈ Rn,

f∞2(u; v) = inf
{

lim inf
k→∞

(
f(xk)

sk
− tkf∞(u)

)
:

xk ∈ dom f, sk, tk → +∞, xk
sk
− tku→ v

}
(11)

Proof. Let g(v) be the expression at the right-hand side of (11). We will
show that f∞2(u; ·) and g have the same epigraph.

If (v, α) ∈ epi f∞2(u; ·), i.e., (v, α) ∈ (epi f)∞2 [(u, f∞(u))], then by
Definition 2.1 there exist sequences (xk, αk) ∈ epi f , sk, tk → +∞ such that
xk
sk
− tku→ v and αk

sk
− tkf∞(u)→ α.

Since f(xk) ≤ αk, it follows that

lim inf

(
f(xk)

sk
− tkf∞(u)

)
≤ lim

(
αk
sk
− tkf∞(u)

)
= α.

Hence g(v) ≤ α, i.e., (v, α) ∈ epi g.

Conversely, assume that (v, α) ∈ epi g. Then for every ε > 0, g(v) <
α + ε. It follows that there exist sequences xk ∈ dom f , sk, tk → +∞ such
that

xk
sk
− tku→ v, (12)

lim inf

(
f(xk)

sk
− tkf∞(u)

)
< α+ ε. (13)

By taking a subsequence if necessary, we may assume that the lim inf is
actually lim. Let γk ∈ R be such that

f(xk) + γk
sk

− tkf∞(u) = α+ ε, (14)

that is,

γk = sk

(
α+ ε−

(
f(xk)

sk
− tkf∞(u)

))
.

Relation (13) implies that γk > 0 for large k. Hence (xk, f(xk) + γk) ∈
epi f . From (12) and (14) we deduce that

(xk, f(xk) + γk)

sk
− tk(u, f∞(u))→ (v, α+ ε)
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hence (v, α+ ε) ∈ (epi f)∞2 [(u, f∞(u))] = epi f∞2(u; ·) for every ε > 0.
Since the second order cone is closed, we deduce that (v, α) ∈ epi f∞2(u; ·).

Note that in [8] the second order asymptotic function was defined directly
through formula (11), was called “lower second order asymptotic function”,
and was denoted by R′′−f(u; ·).

In the special case u = 0 formula (11) implies that f∞2(0; v) = f∞(v) for
all v ∈ R. This is also a consequence of the fact that the functions f∞2(0; ·)
and f∞ have the same epigraph, in view of the equality K∞2[0] = K∞ for
K = epi f .

We have a simple inequality between f∞(u) and f∞2(u;u):

Proposition 4.2 Let f : Rn → R ∪ {+∞} be a proper function. Then
f∞2(u;u) ≤ f∞(u), for every u ∈ Rn such that f∞(u) ∈ R.

Proof. By Proposition 3.1, u ∈ K∞2[u] whenever u ∈ K∞. Consequently,
(u, f∞(u)) ∈ (epi f)∞2[(u, f∞(u))] = epi f∞2(u; ·). This implies immedi-
ately that f∞2(u;u) ≤ f∞(u).

In the study of minimization problems, one must analyze the behaviour
of the objective function along unbounded minimizing sequences {xk}. Given

an objective function f , a control of the growth rate of the quotient
f(xk)

‖xk‖
is

provided by f∞(u) whenever
xk
‖xk‖

→ u. We will show that still the second

order asymptotic function f∞2 provides a finer description of the growth of
f at infinity. To see this, let {xk} be a sequence in dom f with ‖xk‖ → +∞
and xk

‖xk‖ → u, then

lim inf
f(xk)

‖xk‖
≥ f∞(u). (15)

In other words, if f∞(u) ∈ R, then the rate of growth of f(xk) is at
least the rate of growth of ‖xk‖ f∞(u). However, this does not mean that
f(xk)− ‖xk‖ f∞(u) is bounded from below, i.e., that

lim inf (f(xk)− ‖xk‖ f∞(u)) > −∞. (16)

It can be easily seen that (16) is a stronger statement than (15). In fact,
the second order asymptotic function gives a necessary condition for (16) to
hold.

Proposition 4.3 Let f be arbitrary and u ∈ Rn be such that ‖u‖ = 1
and f∞(u) ∈ R. If (16) holds for every sequence xk ∈ dom f such that
‖xk‖ → +∞, xk

‖xk‖ → u, then f∞2(u;u) = f∞(u).

Proof. By Proposition 4.2, f∞2(u;u) ≤ f∞(u). Assume that f∞2(u;u) <
f∞(u). Then there exist sequences xk ∈ dom f , sk, tk → +∞, such that
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xk
sk
− tku→ u and f(xk)

sk
− tkf∞(u)− f∞(u)→ −α with α ∈ ]0,+∞]. From

xk
sk
− (tk + 1)u→ 0 follows that ‖xk‖ → +∞, ‖xk‖sk − (tk + 1) ‖u‖ → 0 and

xk
‖xk‖

=
xk

sk(tk + 1)

sk(tk + 1)

‖xk‖
→ u.

In addition,

−α = lim

(
f(xk)

sk
− (tk + 1) f∞(u)

)
= lim

(
f(xk)

sk
− ‖xk‖
sk ‖u‖

f∞(u)

)
.

Using sk → +∞ and ‖u‖ = 1 we obtain lim (f(xk)− ‖xk‖ f∞(u)) =
−∞. This contradicts our assumption, so f∞2(u;u) = f∞(u).

The converse is not true, even for a convex function.

Example 4.4 Define f on R2 by

f(α, β) =

{
−
√
β, β ≥ 0

+∞, β < 0
.

Then f is convex and lsc. For every x ∈ ri dom f the function f (x+ t(1, 0))
does not depend on t, so one can easily see that f∞(1, 0) = 0 = f∞2((1, 0); (1, 0)).
However, if we take xk = (k,

√
k) then we can check that ‖xk‖ → +∞,

xk
‖xk‖ → (1, 0) but

lim (f(xk)− ‖xk‖ f∞(1, 0)) = −∞.

As we will see in the next section (cf. Remark 4.14), whenever f is a
convex function and f∞(u) = f∞2(u;u), then given a sequence {xk} such
that ‖xk‖ → +∞ and xk

‖xk‖ → u, we are sure that (16) holds for sequences
that belong to a line of the form x + tu, t > 0 for some x ∈ ri domf. For
more general sequences, (16) might not hold.

Given a proper function f : Rn → R ∪ {+∞} let Sλ
.
= {x ∈ Rn : f(x) ≤

λ} be its sublevel set. Next proposition shows the relation between the
zero-level set of f∞2(u; ·) and the second order cone of the level set of f .

Proposition 4.5 Let f : Rn → R ∪ {+∞} be a proper function and λ ≥
inf f . If u ∈ Rn with f∞(u) = 0, then

(Sλ)∞2[u] ⊆ {w : f∞2(u;w) ≤ 0}.

Proof. Let v ∈ (Sλ)∞2[u]. Then there exist xk ∈ Sλ, tk, sk → +∞ such that
xk
sk
− tku→ v. Thus

f(xk)

sk
− tkf∞(u) =

f(xk)

sk
≤ λ

sk
→ 0,

and f∞2(u; v) ≤ 0.
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4.2 The case of convex functions

Whenever f is convex, f∞2(u; ·) is convex too since (epi f)∞2 [(u, f∞(u))] is
convex by Proposition 3.6. In this case, f∞2(u; ·) has a simpler form, as we
will see. In preparation of what follows, we first show a formula for f∞ which
is analogous to (4), but does not assume that f is lower semicontinuous. We
will make use of the following result, see [12, Lemma 7.3].

Proposition 4.6 For any proper and convex function f : Rn → R∪{+∞},

ri epi f = {(x, µ) ∈ Rn × R : x ∈ ri dom f, µ > f(x)}. (17)

Proposition 4.7 Let f : Rn → R ∪ {+∞} be a proper convex function.
Then

(a) Given x0 ∈ ri dom f and (u, µ) ∈ Rn × R, one has

(u, µ) ∈ epi f∞ ⇐⇒ (x0, f(x0)) + t(u, µ) ∈ epi f, ∀t > 0.

(b) For every x0 ∈ ri dom f , u ∈ Rn,

f∞(u) = lim
t→+∞

f(x0 + tu)− f(x0)

t
= sup

t>0

f(x0 + tu)− f(x0)

t

Proof. (a) For every β > f(x0), one has (x0, β) ∈ ri epi f . Hence, if
(u, µ) ∈ epi f∞ = (epi f)∞ then (x0, β) + t(u, µ) ∈ epi f , ∀t > 0. The last
inclusion means that f(x0+tu) ≤ β+tµ. Since this is true for all β > f(x0),
we deduce that f(x0 + tu) ≤ f(x0) + tµ, i.e., (x0, f(x0)) + t(u, µ) ∈ epi f .
The converse is similar.
(b) is proved by using (a), exactly as the analogous equalities when f is lsc.

It follows from the above proposition that whenever f is a proper convex
function, f∞(0) = 0 so f∞ is also proper.

Corollary 4.8 Let fi : Rn → R ∪ {+∞}, i = 1, . . . , k, be convex functions

such that
k⋂
i=1

ri dom fi 6= ∅. Then(
k∑
i=1
fi

)∞
=

k∑
i=1
f∞i(

max
1≤i≤k

fi

)∞
= max

1≤i≤k
f∞i .

Proof. Since dom
k∑
i=1
fi =

k⋂
i=1

dom fi = dom maxi fi, from the assumption

we get that
k⋂
i=1

ri dom fi = ri dom
k∑
i=1
fi = ri dom maxi fi. We then apply

Proposition 4.7(b).
We now establish some useful monotonicity properties.
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Lemma 4.9 Let f : Rn → R ∪ {+∞} be proper and convex.

(a) For every x ∈ ri dom f and u such that f∞(u) is finite, the function
g(t) := f(x+ tu)− tf∞(u) is decreasing on ]0,+∞[.

(b) If (y, δ) ∈ epi f , then for every v ∈ Rn the function s → f(y+sv)−δ
s is

increasing on ]0,+∞[.

(c) Let x ∈ ri dom f , β ≥ f(x), f∞(u) be finite and v ∈ (dom f)∞2 [u]. If
we set

kβ(s, t) =
f(x+ tu+ sv)− tf∞(u)− β

s
, s > 0, t > 0 (18)

then the function s → limt→+∞ kβ(s, t) is increasing. Consequently
for all β ≥ f(x),

lim
s→+∞

lim
t→+∞

kf(x)(s, t) = lim
s→+∞

lim
t→+∞

kβ(s, t) = sup
s>0

inf
t>0

kβ(s, t)

= sup
s>0

inf
t>0

kf(x)(s, t). (19)

Proof. (a) Let t′ > t > 0. Since x ∈ ri dom f , we have x + tu ∈ ri dom f
and x + t′u ∈ ri dom f . Setting x1 = x + tv, we know by Proposition 4.7
that

f(x+ t′v)− f(x+ tv)

t′ − t
=
f(x1 + (t′ − t)v)− f(x1)

t′ − t
≤ f∞(u).

From this we obtain f(x+ t′v)− t′f∞(u) ≤ f(x+ tv)− tf∞(u).
(b) The function is the sum of two increasing functions:

f(y + sv)− δ
s

=
f(y + sv)− f(y)

s
+
f(y)− δ

s
.

(c) Using (a) we deduce that for every s > 0, limt→+∞ kβ(s, t) exists and
is equal to inft>0 kβ(s, t). Let s′ > s > 0. By using Proposition 3.4 on
(dom f)∞2 [u] we deduce that there exists t̄ > 0 such that for all t ≥ t̄,
x + tu + sv ∈ dom f and x + tu + s′v ∈ dom f . Then by Proposition
4.7, (x + tu, β + tf∞(u)) = (x, β) + t(u, f∞(u)) ∈ epi f since (u, f∞(u)) ∈
(epi f)∞. Using (b) for y = x+ tu, δ = β + tf∞(u) we obtain

f(x+ tu+ sv)− tf∞(u)− β
s

≤ f(x+ tu+ s′v)− tf∞(u)− β
s′

, ∀t ≥ t̄.

Taking the limit as t→ +∞ we find that limt→+∞ kβ(s, t) ≤ limt→+∞ kβ(s′, t),
i.e., the function s→ limt→+∞ kβ(s, t) is increasing. Thus,

lim
s→+∞

lim
t→+∞

kβ(s, t) = sup
s>0

inf
t>0

kβ(s, t), ∀β ≥ f(x). (20)
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On the other hand, it is clear that

lim
s→+∞

lim
t→+∞

f(x+ tu+ sv)− tf∞(u)− β
s

= lim
s→+∞

lim
t→+∞

f(x+ tu+ sv)− tf∞(u)

s

hence lims→+∞ limt→+∞ kβ(s, t) = lims→+∞ limt→+∞ kf(x)(s, t). From this
and (20) we deduce the equalities (19).

Proposition 4.10 Let f : Rn → R ∪ {+∞} be proper and convex and
x ∈ ri dom f . For every u such that f∞(u) is finite and v ∈ (dom f)∞2 [u],

f∞2(u; v) = sup
s>0

inf
t>0

f(x+ tu+ sv)− tf∞(u)− f(x)

s
(21)

= lim
s→+∞

lim
t→+∞

f(x+ tu+ sv)− tf∞(u)− f(x)

s
(22)

Proof. Take any β > f(x). Then (x, β) ∈ ri epi f . Define kβ(s, t) as in (18).
We show that sups>0 inft>0 kβ(s, t) ≤ f∞2(u; v) by showing that for every
α ∈ R, f∞2(u; v) ≤ α implies sups>0 inft>0 kβ(s, t) ≤ α.

Since epi f is convex, using Proposition 3.5 we have the following impli-
cations:

f∞2(u; v) ≤ α⇒ (v, α) ∈ (epi f)∞2 [(u, f∞(u))]

⇒ ∀s > 0,∃t > 0, (x, β) + t(u, f∞(u)) + s(v, α) ∈ epi f

⇒ ∀s > 0,∃t > 0, (x+ tu+ sv, β + tf∞(u) + sα) ∈ epi f

⇒ ∀s > 0,∃t > 0, f(x+ tu+ sv) ≤ β + tf∞(u) + sα

⇒ ∀s > 0,∃t > 0, kβ(s, t) ≤ α
⇒ sup

s>0
inf
t>0

kβ(s, t) ≤ α.

We now show that f∞2(u; v) ≤ sups>0 inft>0 kβ(s, t) by showing that for
every α ∈ R, sups>0 inft>0 kβ(s, t) < α implies f∞2(u; v) ≤ α. Following the
previous implications in reverse order, we obtain

sup
s>0

inf
t>0

kβ(s, t) < α⇒ ∀s > 0,∃t > 0, kβ(s, t) < α

⇒ ∀s > 0, ∃t > 0, (x+ tu+ sv, β + tf∞(u) + sα) ∈ epi f

⇒ ∀s > 0, ∃t > 0, (x, β) + t(u, f∞(u)) + s(v, α) ∈ epi f

⇒ (v, α) ∈ (epi f)∞2[(u, f∞(u))]⇒ f∞2(u; v) ≤ α.

It follows that f∞2(u; v) = sups>0 inft>0 kβ(s, t) for every β > f(x).
Using (19) we deduce equalities (22) and (21).

A formula analogous to (5) holding for f∞ also holds.
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Proposition 4.11 Let f : Rn → R ∪ {+∞} be proper and convex. For
every u such that f∞(u) is finite and v ∈ (dom f)∞2 [u],

f∞2(u; v) = sup
x∈ri dom f

inf
t>0

(f(x+ tu+ v)− tf∞(u)− f(x)) .

Proof. As in Proposition 4.10, we use a representation of (epi f)∞2[(u, f∞(u))].
Let us show first that

f∞2(u; v) = sup
(x,β)∈ri epi f

inf
t>0

(f(x+ tu+ v)− tf∞(u)− β) . (23)

Assume that α ≥ f∞2(u; v), i.e., (v, α) ∈ epi f∞2(u; ·) = (epi f)∞2[(u, f∞(u))].
By the equivalence (a)⇐⇒ (c) of Proposition 3.5, for every (x, β) ∈ ri epi f
there exists t > 0 such that (x, β) + t(u, f∞(u)) + (v, α) ∈ epi f . This
amounts to

∀ (x, β) ∈ ri epi f, ∃t > 0 : f(x+ tu+ v)− tf∞(u)− β ≤ α

or

sup
(x,β)∈ri epi f

inf
t>0

(f(x+ tu+ v)− tf∞(u)− β) ≤ α.

Since this is true for every α ≥ f∞2(u; v) we deduce inequality ≥ in (23).
The reverse inequality is deduced similarly, by taking any α such that

sup
(x,β)∈ri epi f

inf
t>0

(f(x+ tu+ v)− tf∞(u)− β) < α

and deducing, using again Proposition 3.5, that f∞2(u; v) ≤ α. Thus, equa-
tion (23) holds. Note that (x, β) ∈ ri epi f if and only if x ∈ ri dom f and
β > f(x). Hence,

f∞2(u; v) = sup
x∈ri dom f

sup
β>f(x)

inf
t>0

(f(x+ tu+ v)− tf∞(u)− β)

= sup
x∈ri dom f

sup
β>f(x)

(
inf
t>0

(f(x+ tu+ v)− tf∞(u))− β
)

= sup
x∈ri dom f

inf
t>0

(f(x+ tu+ v)− tf∞(u)− f(x))

which proves the proposition.

Formula (22) comes in handy for calculating f∞2 for convex functions.

Example 4.12 (a) Take f(x) = ‖x‖. Then f∞ = f . To calculate f∞2(u; v)
we may consider that u 6= 0 since as we remarked, f∞2(0; v) = f∞(v). We
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use (22) with x = 0. We first calculate:

lim
t→+∞

(f(tu+ sv)− tf∞(u)) = lim
t→+∞

(‖tu+ sv‖ − t ‖u‖)

= lim
t→+∞

2ts 〈u, v〉+ s2 ‖v‖2

‖tu+ sv‖+ t ‖u‖

= lim
t→+∞

2s 〈u, v〉+ 1
t s

2 ‖v‖2∥∥u+ s
t v
∥∥+ ‖u‖

=
s 〈u, v〉
‖u‖

.

Hence, f∞2(u; v) =
〈u, v〉
‖u‖

.

(b) Let f be the quadratic convex function f(x) = 1
2 〈Ax, x〉 + 〈c, x〉 + k

where A is a symmetric positive semidefinite matrix, c ∈ Rn and k ∈ R. It
is known that f∞(u) = 〈c, u〉 if u ∈ kerA, while f∞(u) = +∞ if u /∈ kerA.
An application of (22) yields immediately that f∞2(u; v) = f∞(v) for every
u ∈ kerA and v ∈ Rn.
(c) Consider f(x) = (1 + 〈Ax, x〉)

1
2 where A is a symmetric positive semidef-

inite matrix. Then f∞(u) = 〈Au, u〉
1
2 . Since 〈u,Au〉 = 0 if and only if

u ∈ ker A, one can easily compute from (22) and obtain

f∞2(u; v) = 〈Av, v〉
1
2 , if u ∈ ker A; f∞2(u; v) =

〈Au, v〉
〈Au, u〉

1
2

, if u 6∈ ker A.

(d) Let g : Rm → R ∪ {+∞} be proper and, and A : Rn → Rm be linear
and such that A(Rn) ∩ ri dom g 6= ∅. Let f : Rn → R ∪ {+∞} be defined by
f(x) = g(Ax).

It is known that f∞(u) ≥ g∞(Au), ∀u ∈ Rn [1, Prop. 2.6.3]. For every
u such that f∞(u) = g∞(Au) and are finite, and every v,

f∞2(u; v) = inf{lim inf

(
g(Axk)

sk
− tkf∞(u)

)
:
xk
sk
− tku→ v, tk, sk → +∞}

≥ inf{lim inf

(
g(yk)

sk
− tkg∞(Au)

)
:
yk
sk
− tkAu→ Av, tk, sk → +∞}

= g∞2(Au;Av).

If in addition g is convex, in which case also f is convex, then f∞(u) =
g∞(Au), ∀u ∈ Rn. Under our assumption, there exists x0 ∈ Rn such that
Ax0 ∈ ri dom g. In this case, x0 ∈ ri dom f . Then for every u such that
f∞(u) is finite and every v,

f∞2(u; v) = lim
s→+∞

lim
t→+∞

f(x0 + tu+ sv)− tf∞(u)− f(x0)

s

= lim
s→+∞

lim
t→+∞

g(A(x0 + tu+ sv))− tg∞(Au)− g(Ax0)

s

= g∞2(Au;Av).
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Note that in the examples (a), (b) and (c), f∞2(u, u) = f∞(u). This is
not a coincidence, as shown by the next proposition.

Proposition 4.13 Let f : Rn → R ∪ {+∞} be a proper convex function
and u ∈ Rn be such that f∞(u) ∈ R. The following hold:

(a) f∞2(u; v − ru) ≤ f∞(v) − rf∞(u) for every r ≥ 0 and v ∈ dom f∞.
In particular, f∞2(u; v) ≤ f∞(v).

(b) If f∞2(u; 0) = 0, then f∞2(u;u) = f∞(u) = −f∞2(u;−u).

(c) If f∞2(u; 0) = −∞, then f∞2(u;u) = −∞.

Proof. (a) We apply the inclusion K∞ − R+u ⊆ K∞2[u] (cf Proposition
3.6(d)) to the set K = epi f . It follows that

epi f∞ − R+(u, f∞(u)) ⊆ (epi f)∞2 [(u, f∞(u))] = epi f∞2(u; ·).

Thus,

(v − ru, t− rf∞(u)) ∈ epi f∞2(u; ·), ∀r ≥ 0,∀(v, t) ∈ epi f∞

which means

f∞2(u; v − ru) ≤ t− rf∞(u), ∀r ≥ 0, ∀(v, t) ∈ epi f∞

proving (a).
(b) From (a) we obtain f∞2(u;u) ≤ f∞(u) and f∞2(u;−u) ≤ f∞(0) −

f∞(u) = −f∞(u) (note that f∞, being convex, lsc, and such that f∞(u) is
finite, never takes the value −∞). The convexity of f∞2(u; ·) yields

0 = f∞2(u; 0) ≤ 1

2
f∞2(u;u) +

1

2
f∞2(u;−u) ≤ 0.

Hence
f∞2(u;u) = −f∞2(u;−u) = f∞(u),

the desired result.
(c) If f∞2(u; 0) = −∞, then f∞2(u;u) cannot be finite. As it is bounded
above by f∞(u), necessarily f∞2(u;u) = −∞.

Remark 4.14 By Lemma 4.9, for every x ∈ ri dom f and u ∈ (f∞)−1 (R),
the function t→ f(x+tu)−tf∞(u) is decreasing, hence limt→+∞ (f(x+ tu)− tf∞(u))
exists. By inspecting formula (22) we see that f∞2(u; 0) = 0 holds if and
only if limt→+∞ (f(x+ tu)− tf∞(u)) ∈ R, while f∞2(u; 0) = −∞ holds if
and only if limt→+∞ (f(x+ tu)− tf∞(u)) = −∞.

Consequently, if f∞2(u;u) ∈ R, then limt→+∞ (f(x+ tu)− tf∞(u)) ∈
R.
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We also provide some more calculus rules.

Proposition 4.15 Let fi : Rn → R ∪ {+∞}, i = 1, . . . , k, be convex func-

tions such that
k⋂
i=1

ri dom fi 6= ∅. For every u ∈ Rn such that f∞i (u) ∈ R for

all i, and every v ∈
k⋂
i=1

(dom fi)
∞2 [u] the following equality holds:

(
max
1≤i≤k

fi

)∞2

(u; v) = max
1≤i≤k

f∞2
i (u; v)

Also, the equality

(f1 + f2 + · · ·+ fk)
∞2 (u; v) =

k∑
i=1
f∞2
i (u; v)

holds, provided that the right-hand side is defined, i.e., if f∞2
i (u; v) = +∞

for some i, then f∞2
j (u; v) > −∞ for all j 6= i.

Proof. Set f = f1 + f2 + · · ·+ fk. Then dom f =
k⋂
i=1

dom fi and ri dom f =

k⋂
i=1

ri dom fi. By Proposition 3.10, (dom f)∞2 [u] =
k⋂
i=1

(dom fi)
∞2 [u]. Take

any x ∈
k⋂
i=1

ri dom fi. For every v ∈
k⋂
i=1

(dom fi)
∞2 [u], using Corollary 4.8

we find

k∑
i=1

f∞2
i (u; v) =

k∑
i=1

lim
s→+∞

lim
t→+∞

fi(x+ tu+ sv)− tf∞i (u)− fi(x)

s

= lim
s→+∞

lim
t→+∞

f(x+ tu+ sv)− tf∞(u)− f(x)

s

= f∞2(u; v).

The proof of the other equality is similar.

In case of convex functions and for λ > inf f , the inclusion of Proposition
4.5 becomes an equality, as we now show.

Proposition 4.16 Let f : Rn → R ∪ {+∞} be a proper convex function
and λ > inf f . If u ∈ Rn with f∞(u) = 0, then

(Sλ)∞2[u] = {w : f∞2(u;w) ≤ 0}.

Proof. Inclusion (⊆) follows from Proposition 4.5, so we have only to show
(⊇).
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Let v ∈ Rn with f∞2(u; v) ≤ 0. Since λ > inf f and f is convex, by
Corollary 7.3.2 in [12] there exists y ∈ ri dom f such that f(y) < λ. Then

sup
s>0

inf
t>0

f(y + tu+ sv)− tf∞(u)− f(y)

s
= f∞2(u; v) ≤ 0.

Thus for every s > 0,

inf
t>0

f(y + tu+ sv) ≤ f(y) < λ.

Since by Lemma 4.9 the function t→ f(y+ tu+sv) is nonincreasing, we
deduce that for every s > 0 there exists t ≥ 0 such that f(y + tu+ sv) < λ
for all t ≥ t, that is y + tu + sv ∈ Sλ for all t ≥ t. One can easily see that
we have also y ∈ riSλ. Hence, v ∈ (Sλ)∞2[u].

Conclusions. Having revisited the second order asymptotic cone and func-
tion, new formulae for those, in the convex case, are established. In a
subsequent work we shall present applications to the minimization problem
and, in particular, characterizations of the nonmeptiness and boundedness
of the solution set will be established, in the quasiconvex case.
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