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Abstract. Multi-species kinematic flow models with strongly degenerate diffusive corrections
give rise to systems of nonlinear convection-diffusion equations of arbitrary size. Applications of
these systems include models of polydisperse sedimentation and multi-class traffic flow. Implicit-
explicit (IMEX) Runge-Kutta (RK) methods are suitable for the solution of these convection-diffusion
problems since the stability restrictions, coming from the explicitly treated convective part, are
much less severe than those that would be deduced from an explicit treatment of the diffusive term.
These schemes usually combine an explicit Runge-Kutta scheme for the time integration of the
convective part with a diagonally implicit one for the diffusive part. In [R. Bürger, P. Mulet and
L.M. Villada, SIAM J. Sci. Comput., 35 (2013), pp. B751–B777] a scheme of this type is proposed,
where the nonlinear and non-smooth systems of algebraic equations arising in the implicit treatment
of the degenerate diffusive part are solved by smoothing of the diffusion coefficients combined with a
Newton-Raphson method with line search. This nonlinearly implicit method is robust but associated
with considerable effort of implementation and possibly CPU time. To overcome these shortcomings
while keeping the advantageous stability properties of IMEX-RK methods, a second variant of these
methods is proposed, in which the diffusion terms are discretized in a way that more carefully
distinguishes between stiff and nonstiff dependence, such that in each time step only a linear system
needs to be solved still maintaining high order accuracy in time, which makes these methods much
simpler to implement. In a series of examples of polydisperse sedimentation and multi-class traffic
flow it is demonstrated that these new linearly implicit IMEX-RK schemes approximate the same
solutions as the nonlinearly implicit versions, and in many cases these schemes are more efficient.

Key words. Implicit-explicit Runge-Kutta schemes, degenerate convection-diffusion equations,
linearly implicit methods, polydisperse sedimentation, multiclass traffic flow.

1. Introduction.

1.1. Scope. This paper is concerned with numerical methods for systems of
nonlinear convection-diffusion equations of the type

∂tΦ + ∂xf(Φ) = ∂x
(
B(Φ)∂xΦ

)
, (1.1)

where Φ = (φ1, . . . , φN )T is the sought solution as a function of spatial position x
and time t, f(Φ) = (f1(Φ), . . . , fN (Φ))T is a vector of flux density functions, and
B(Φ) is a given N × N matrix function expressing a diffusive correction, where we
allow that B(Φ) = 0 on a set of nonzero N -dimensional measure, so that (1.1) is
possibly strongly degenerate. The system (1.1) is supplied with an initial condition
and zero-flux or periodic boundary conditions. We focus on two applications, namely
a model of polydisperse sedimentation where the diffusive correction accounts for sed-
iment compressibility [4], and a version of the multiclass Lighthill-Whitham-Richards
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(MCLWR) traffic model [3, 29, 35, 42] where the diffusive correction describes the
effects of reaction times and anticipation lengths. Both applications are examples of
so-called multi-species kinematic flow models that involve N distinguishable species,
which usually segregate with respect to a specific spatial direction (e.g., that of grav-
ity).

Although there is no closed well-posedness theory for such strongly degenerate
hyperbolic-parabolic systems, it is still plausible to perform simulations with appro-
priate numerical methods. Explicit schemes for hyperbolic systems of first-order con-
servation laws (i.e., B ≡ 0) are widely used in many applications. When diffusion
terms are present (i.e., B 6≡ 0), then an implicit treatment of these terms can over-
come the drastic time step size restrictions imposed by the stability condition for
explicit schemes applied to parabolic equations. This idea was used in [14] to intro-
duce semi-implicit, so-called implicit-explicit (IMEX) Runge-Kutta (RK) schemes for
(1.1), which involve the solution of highly nonlinear and nonsmooth systems of alge-
braic equations. This is achieved in [14] by a regularization of the nonsmooth diffusion
coefficients combined with a suitable solver for the resulting nonlinear systems in an
efficient way. While these techniques turned out to be robust and provide approxi-
mate solutions even when simpler methods (e.g., the Newton-Raphson (NR) method
without line search) do not converge, their effort of implementation is considerable.

It is the purpose of this work to propose a new class of semi-implicit methods
for the solution of (1.1), see [6], which are strongly inspired by partitioned Runge-
Kutta (RK) methods [23]. To describe the main idea, assume that the semi-discrete
formulation of (1.1) can be written in vector form as

dΦ

dt
= − 1

∆x
(∆−f)(Φ) +

1

∆x2
B(Φ)Φ, (1.2)

where Φ = (Φ1(t), . . . ,ΦM (t))T is the sought solution vector, where Φj(t) is the so-
lution at spatial position xj , ∆x := xj+1 − xj for j = 1, . . . ,M is the uniform grid
spacing, (∆−f)(Φ) ∈ RNM denotes the vector of numerical flux vector differences
associated with the discretization of ∂xf(Φ), and B(Φ) ∈ R(NM)×(NM) is a block
tridiagonal matrix arising from the discretization of ∂x(B(Φ)∂xΦ). The precise alge-
braic forms of (∆−f)(Φ) and B(Φ) are provided in [14]. Here we emphasize that the
matrix B inherits its discontinuous dependence on Φ from that of B on Φ.

The new approach is based on carefully distinguishing in (1.2) between stiff and
non-stiff dependence on the solution vector Φ, and in choosing the time discretization
by an implicit and an explicit RK scheme, respectively, of an IMEX pair of schemes
accordingly. Roughly speaking, in the product B(Φ)Φ the occurrence of the solu-
tion Φ within of B(Φ) is considered nonstiff, while that of the factor Φ is considered
stiff. Thus, the implicit treatment is applied only to that second factor, in contrast
to [14] where the whole expression B(Φ)Φ is treated implicitly. This new approach
does not require solutions for nonlinear systems (in contrast to the approach of [14]),
since the new methods require only solving a discretized convection-diffusion equation
with a linear diffusion term in which the matrix B is given. We therefore address the
new methods introduced herein as linearly implicit IMEX-RK methods, in contrast
to the methods of [14] to which we refer as nonlinearly implicit IMEX-RK methods.
Numerical examples demonstrate that the new linearly implicit methods, which are
much easier to implement, approximate the same solutions as the nonlinearly implicit
ones, and in many cases are more efficient.
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1.2. Related work. First-order models of the type

∂tΦ + ∂xf(Φ) = 0, f(Φ) =
(
φ1v1(Φ), . . . , φNvN (Φ)

)T
, (1.3)

where Φ is the vector of partial densities or volume fractions and v1, . . . , vN are given
velocity functions, arise in models of polydisperse sedimentation [4, 10, 11, 21], mul-
ticlass vehicular traffic [3, 19, 42, 43], and the settling and creaming of emulsions
and dispersions [1, 37]. A widely used velocity model for polydisperse sedimenta-
tion is the Masliyah-Lockett-Bassoon (MLB) model [30, 31]. On the other hand, the
MCLWR model was introduced by Benzoni-Gavage and Colombo [3] and Wong and
Wong [42]. For all these models, the eigenvectors and eigenvalues of the Jacobian
Jf (Φ) = (∂fi(Φ)/∂φj)1≤i,j≤N are usually not available in closed form. However, for
some of these models, Jf (Φ) is a low-rank perturbation of a diagonal matrix. In
this case, and under determined circumstances, the eigenvalues of Jf (Φ) are real
and interlace with the velocities vi [10, 20]. This information is the key ingredient
for the construction of efficient characteristic-wise weighted essentially non-oscillatory
(WENO) schemes (see [39, 40]) for (1.3) [11, 19], which are employed herein to dis-
cretize the convective part of (1.1).

For models of polydisperse sedimentation, the diffusive terms leading to the form
(1.1) describe the formation of compressible sediments (see [4]). In that paper, the
system (1.1) was solved by the Kurganov-Tadmor (KT) explicit high-resolution central
difference scheme [28]. On the other hand, the diffusively corrected version of the
MCLWR traffic model is derived in [14].

Concerning the KT scheme, we remark that when a right-hand side is added to
system (1.3), as in (1.1), one could discretize it in space, obtaining a method of lines
that can be treated by some ODE solver. In the original approach of KT method,
both convection and diffusion are treated explicitly [28, Sect. 4.2], and the time step
is then restricted by stability rather than accuracy constrains. It is natural to treat
the diffusion term implicitly, while maintaining the (possibly nonlinear) convection
term explicit. This has been realised by adopting IMEX-RK schemes.

An IMEX-RK scheme consists in combining a RK scheme with an implicit dis-
cretization of the diffusive term and an explicit one for the convective term. To
introduce the main idea, we consider the problem

dΦ

dt
= C(Φ) +D(Φ), (1.4)

where C(Φ) and D(Φ) are discretizations of the convective and diffusive terms, re-
spectively. The stability restriction on the time step ∆t that explicit schemes impose
when applied to (1.4) is very severe (∆t must be proportional to the square ∆x2 of
the grid spacing), due to the presence of D(Φ). The implicit treatment of both C(Φ)
and D(Φ) would remove any stability restriction on ∆t, but the upwind nonlinear dis-
cretization of C(Φ) that is needed for stability makes its implicit treatment extremely
involved. In fact, numerical integrators that deal implicitly with D(Φ) and explicitly
with C(Φ) can be used with a time step restriction dictated by the convective term
alone [15]. These schemes have been profusely used for time-dependent problems in-
volving stiff terms including hyperbolic systems with relaxation (see [5, 6, 8, 9, 34]).
Moreover, several authors have proposed IMEX-RK schemes for the solution of semi-
discretized partial differential equations (PDEs) [2, 24, 27, 34, 44].

1.3. Outline of the paper. The remainder of the paper is organized as follows.
In Section 2 we describe the models that motivate our interest in the degenerate
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convection-diffusion equation (1.1). To this aim, we first offer in Section 2.1 some
general remarks on multispecies kinematic flow models. Then, in Section 2.2 we
summarize Model 1, a model of polydisperse sedimentation of equal-density particles
that form compressible sediments, and in Section 2.3 we outline Model 2, namely a
multi-class version of the diffusively corrected kinematic traffic flow model introduced
in [32] (see also [12]) for N = 1. In Section 3, which is at the core of the paper,
both variants of semi-implicit IMEX-RK schemes are introduced. After providing
some notation common to both versions (Section 3.2), we summarize in Section 3.3
the nonlinearly implicit IMEX-RK methods for solving the system (1.1) introduced in
[14]. Section 3.4 is devoted to the new linearly implicit IMEX-RK methods. Numerical
examples are presented in Section 4. We first state some preliminaries in Section 4.1,
and compare in Examples 1 to 4 (Sections 4.2 and 4.3) the performance of the new
linearly implicit IMEX-RK scheme with that of the nonlinearly implicit one of [14]
for a test case of Model 1 with N = 3. The same model, but with a smooth initial
datum, is used in Example 5 (Section 4.4) to assess the numerical order of accuracy
of the linearly implicit IMEX-RK scheme. In Section 4.5 we present one test case for
Model 2 (also with N = 3), for which the linearly implicit IMEX-RK scheme turns out
to be more efficient than the nonlinearly implicit version. Finally, some concluding
remarks are collected in Section 5.

2. Models.

2.1. Diffusively corrected multi-species kinematic flow models. The term
“kinematic” means that the velocity vi of species i is an explicit function of the vec-
tor Φ of the concentrations (volume fractions) φi of each species. Thus, standard
multi-species kinematic flow models are given by systems of N scalar, in general non-
linear, first-order conservation laws (1.3). In this work we focus on multi-species flow
models in which the velocities also depend on the spatial variation of Φ to account
for additional effects such as sediment compressibility or drivers’ reaction time and
anticipation length in traffic flow. These corrections can be usually posed in such a
way that the resulting system of PDEs has an extra, possibly strongly degenerate,
diffusive term expressed by the right-hand side of (1.1).

2.2. Model 1: polydisperse sedimentation. The sedimentation of a suspen-
sion of equal-density particles belonging to N species with sizes d1 > d2 > · · · > dN
is a problem of interest in engineering applications, volcanology, and medicine. We
let φi denote the local volume fraction of species i having size di, and define φ :=
φ1 + · · · + φN . The evolution of Φ = Φ(x, t) as a function of depth x and time t in
a column of height L is then governed by the effects of hindered settling and sedi-
ment compressibility, which determine the convective and diffusive parts, respectively,
of (1.1). This equation is now posed on the x-interval (0,L) for t > 0, along with
the initial condition Φ(x, 0) = Φ0(x) for 0 ≤ x ≤ L, where Φ0 is the given initial
concentration distribution, and zero-flux boundary conditions, i.e.,

f(Φ)−B(Φ)∂xΦ = 0 for x = 0 and x = L, t > 0. (2.1)

The flux density functions f1, . . . , fN are those of the MLB model [30, 31] given by

fi(Φ) = µ%̄sφiV (φ)(1− φ)(δi − δTΦ), i = 1, . . . , N, (2.2)

where µ > 0 is a viscosity constant, %̄s > 0 is the solid mass density minus the fluid
density, δi := d2

i /d
2
1, δ := (δ1 = 1, δ2, . . . , δN )T, and V (φ) is a hindered settling
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function that is assumed to satisfy

V (φ) ≥ 0 for all φ, V (0) = 1, and V ′(φ) < 0 for 0 ≤ φ < φmax, (2.3)

where 0 < φmax ≤ 1 is a maximal total solids volume fraction. A typical expression
is given by

V (φ) =

{
(1− φ)nRZ−2 for 0 ≤ φ ≤ φmax,

0 otherwise,
(2.4)

where nRZ > 2 is the material-dependent Richardson-Zaki exponent [36]. For the flux
(2.2), Jf (Φ) is a rank-two perturbation of a diagonal matrix. This property allows
one to analyze hyperbolicity, to localize eigenvalues, and to eventually calculate the
corresponding eigenvectors of Jf (Φ), see [10, 20]. The essential results are summarized
in the following theorem, were D0

φmax
is the interior of

Dφmax
:= {Φ ∈ RN : φ1 ≥ 0, . . . , φN ≥ 0, φ ≤ φmax}.

Theorem 2.1 ([20]). If δ1 > δ2 > · · · > δN and Φ ∈ D0
φmax

, then (1.1) with
B(Φ) = 0 and f(Φ) defined by (2.2), where the function V is assumed to satisfy
(2.3), is strictly hyperbolic, i.e., Jf (Φ) has N distinct real eigenvalues λ1, . . . , λN .
Moreover, the following so-called interlacing property holds:

vN + γ1 + · · ·+ γN < λN < vN < λN−1 < vN−1 < · · · < λ1 < v1.

The diffusion matrix is given by

B(Φ) := (αij)1≤i,j≤N , (2.5)

where for N = 1, we have for φ = φ1 and δ = δ1 = 1 the expression

α = α11 =
µV (φ)

g
(1− φ)2σ′e(φ),

Here σe denotes the effective solid stress function, and σ′e is its derivative. This
function is assumed to satisfy

σe(φ), σ′e(φ)

{
= 0 for φ ≤ φc,

> 0 for φ > φc,
(2.6)

where φc is a critical concentration at which the particles touch each other. A typical
function σe having these properties is given by

σe(φ) =

{
0 for φ ≤ φc,

σ0

(
(φ/φc)k − 1

)
for φ > φc,

σ0, k > 0. (2.7)

For N = 2 the elements of the diffusion matrix B(Φ) are given by

α11 =
µV (φ)

gφ

{
(1− φ)φ1(1− φ1 − δ2φ2)σ′e(φ)

−
[
1− φ1 −

φ1

φ
(1− φ1 − δ2φ2)

]
σe(φ)

}
,
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α12 =
µV (φ)φ1

gφ

{
(1− φ)(1− φ1 − δ2φ2)σ′e(φ) +

[
δ2 +

1− φ1 − δ2φ2

φ

]
σe(φ)

}
,

α21 =
µV (φ)φ2

gφ

{
(1− φ)(δ2 − φ1 − δ2φ2)σ′e(φ) +

[
1− δ2 − φ1 − δ2φ2

φ

]
σe(φ)

}
,

α22 =
µV (φ)

gφ

{
(1− φ)φ2(δ2 − φ1 − δ2φ2)σ′e(φ)

−
[
δ2 − δ2φ2 −

φ2

φ
(δ2 − φ1 − δ2φ2)

]
σe(φ)

}
,

and for general N we have

αij =
µV (φ)

gφ

{
(1− φ)φi(δi − δTΦ)σ′e(φ)

−
[
δiδij − δjφi −

φi
φ

(δi − δTΦ)

]
σe(φ)

}
, i, j = 1, . . . , N,

(2.8)

where δij is the standard Kronecker symbol. Clearly, (2.6) and (2.8) imply that

B(Φ) = 0 for Φ ∈ Dφc , (2.9)

so (1.1) is usually strongly degenerate under the assumptions of Model 1, while on
D0
φmax
\Dφc

the eigenvalues of B(Φ) are positive, pairwise distinct, and satisfy an
interlacing property with respect to certain known functions of φ [4, Th. 4.3].

2.3. Model 2: a diffusively corrected MCLWR model. We assume that
vmax
i is the preferred velocity of vehicle class i, where vmax

1 > vmax
2 > · · · > vmax

N > 0.
This preferential velocity is multiplied by a hindrance function V = V (φ), which
describes drivers’ attitude to reduce velocity in presence of other cars. If φi is the
local density of class i, then the local velocity vi of vehicles of class i is given by
vi = vmax

i V (φ), where φ = φ1 + · · ·+φN and V is a non-increasing function satisfying
V (0) = 1, V (φmax) = 0, and V ′(φ) ≤ 0 for 0 ≤ φ ≤ φmax. Thus, the standard
MCLWR model (without diffusive correction) is given by (1.3), where

fi(Φ) = φiv
max
i V (φ), i = 1, . . . , N. (2.10)

We now assume that drivers of class i exhibit an anticipation distance Li and a
reaction time τi, i = 1, . . . , N , and follow Nelson [32] to show that these ingredients
give rise to a diffusive correction. If Li > 0, but τi = 0, then the drivers’ reaction does
not depend on the value of φ seen at the same point (x, t), but rather on the density
seen at position x + Li at time t. If τi > 0, then the reaction at time t corresponds
to information seen at time t− τi, and we must subtract from the position x+Li the
distance vmax

i V τi traveled during a time interval of length τi. (For the moment we
are not specific about the argument of V .) Thus, the reaction of the driver does not
depend on φ(x, t), but on pi(x, t) := φ(x+ Li − vmax

i V τi, t− τi).
Next, we expand V (pi(x, t)) around φ = φ(x, t). Denoting τ := max{τ1, . . . , τN},

L := max{L1, . . . , LN} and vmax := (vmax
1 , . . . , vmax

N )T, we obtain (cf. [13, 14])

V (pi(x, t)) = V (φ) + V ′(φ)
[(
Li − τivmax

i V (φ)
)
∂xφ+ τi∂x

(
V (φ)(vmax)TΦ

)]
+O(τ2 + L2).
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Neglecting theO(τ2+L2) term and inserting the result into the conservation equations

∂tφi(x, t) + ∂x
(
φi(x, t)vi(x, t)

)
= 0, vi(x, t) = vmax

i V
(
pi(x, t)

)
, i = 1, . . . , N,

we obtain a system of the form (1.1), where the components of the flux vector f(Φ)
are given by (2.10), and the diffusion matrix B(Φ) is now given by (2.5) with

αij(Φ) = −V ′(φ)
[
Li + τi

(
V ′(φ)(vmax)TΦ +

(
vmax
j − vmax

i

)
V (φ)

)]
φiv

max
i ,

1 ≤ i, j ≤ N.
(2.11)

For the case N = 1, we get α(φ) = α11(Φ) = −V ′(φ)[L1 + τ1V
′(φ)vmax

1 φ]φvmax
1 .

For traffic flow models we will use periodic boundary conditions corresponding to
a circular road of length L, namely

Φ(0, t) = Φ(L, t), t > 0. (2.12)

The MCLWR model (1.1) with B ≡ 0 is strictly hyperbolic and Jf (Φ) is a rank-
one perturbation of a diagonal matrix [20]. Here the following theorem holds.

Theorem 2.2 ([20]). Consider the MCLWR model (1.3), (2.10) (i.e., without
diffusive terms). If Φ ∈ D0

1, then the Jacobian Jf (Φ) has N distinct real eigenvalues
λ1, . . . , λN , and the following interlacing property holds:

vmax
N + V ′(φ)(vmax)TΦ < λN < vmax

N < λN−1 < vmax
N−1 < · · · < vmax

2 < λ1 < vmax
1 .

In contrast to Model 1, here the conditions under which B(Φ) has eigenvalues
with positive real part for all Φ ∈ Dφmax depend in a delicate way on the choices of
the non-negative parameters vmax

i , τi and Li, see [13, 14] for details. We will consider
only test cases for which these properties are clearly established.

In the case N = 1, Nelson [32] (cf. [12]) suggests to employ

L = L(φ) = max
{

(vmaxV (φ))2/(2a), Lmin

}
, (2.13)

where the first argument is the distance required to decelerate to full stop from speed
vmaxV (φ) at deceleration a, and Lmin > 0 is a minimal anticipation distance. In the
multi-class case we could define Li, for instance, by (2.13) with vmax replaced by vmax

i .
However, in our numerical experiments, we select Li and τi constant, to ensure that
(1.1) is hyperbolic-parabolic (see [14, section 2.4] for a discussion of this point).

A common choice of V = V (φ) in traffic modelling is the model

V (φ) = VDG(φ) = min{1,−C lnφ} (2.14)

due to Dick and Greenberg [18, 22], where C is a positive constant. Since{
V (φ) = 1, V ′(φ) = 0 for 0 ≤ φ ≤ φc = exp(−1/C),

V (φ) = −C lnφ, V ′(φ) = −C/φ for φc < φ < 1,
(2.15)

using the model (2.14) in (2.11) means that (2.9) also holds for Model 2, i.e., (1.1)
again becomes strongly degenerate. We mention that besides this consequence of the
particular choice (2.14), there is also an alternative, independent justification of (2.9)
in traffic modelling based on interpreting φc as a perception threshold [38].
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Finally, we remark that for both Model 1 with σe(φ) defined by (2.7) and Model 2
with V (φ) defined by (2.14), the diffusion matrix B(Φ) is discontinuous at φ = φc.
This property is explicitly included in the well-posedness analysis available for (1.1)
in the scalar case (cf., e.g., [25, 26]). It is required that if the right-hand side of the
PDE is written as A(φ)xx, where A = A(φ) is a primitive of the diffusion function
B(φ) (to which B(Φ) reduces in the scalar case), then A should be (locally) Lipschitz
continuous and nondecreasing, which is satisfied if B(φ) is bounded and, for instance,
piecewise continuous.

3. Numerical schemes.

3.1. Spatial discretization. The discretization 1
∆x (∆−f)(Φ) of the convective

term ∂xf(Φ) is computed using the WENO-SPEC scheme (see [11] for full details).
The numerical fluxes are obtained by fifth-order WENO reconstructions of character-
istic fluxes, following Shu and Osher’s technique [41]. The computation of the char-
acteristic information is based on the interlacing property, see Theorems 2.1 and 2.2.
(The acronym “WENO-SPEC” introduced in [11] emphasizes the use of spectral in-
formation for this class of WENO schemes, in contrast to easier-to-implement, but
less efficient, component-wise schemes, which are not considered herein.)

For the discretization of the diffusive term ∂x(B(Φ)∂xΦ) we limit ourselves to
second-order schemes, since solutions are not smooth, and use the following discretiza-
tion (see [14] for full details):

∂x
(
B(Φ)∂xΦ

)
(xi, t) ≈

1

∆x2

(
Bi−1/2Φi−1 − (Bi−1/2 +Bi+1/2)Φi +Bi+1/2Φi+1

)
(t),

Bi+1/2 = Bi+1/2(Φi,Φi+1) :=
1

2

(
B(Φi) +B(Φi+1)

)
,

where Φi(t) ≈ Φ(xi, t) ∈ RN . The terms Bi±1/2Φi±1 for i = 1 and i = M are
modified according to the boundary conditions.

With the notation Φ = (ΦT
1 , . . .Φ

T
M )T ∈ RMN , we can define the M ×M block

tridiagonal matrix B = B(Φ), with blocks of size N ×N , as

Bi,i = −(Bi−1/2 +Bi+1/2), Bi,i−1 = Bi−1/2, Bi,i+1 = Bi+1/2,

for which we have(
B(Φ)Φ

)
i
(t) =

(
Bi−1/2Φi−1 − (Bi−1/2 +Bi+1/2)Φi +Bi+1/2Φi+1

)
(t).

3.2. Notation. A good time integrator for the system (1.2) is represented by
semi-implicit IMEX-RK schemes, where the convective term is treated explicitly and
the diffusive term is treated implicitly. The corresponding pair of Butcher arrays of
IMEX-RK methods is given by

c̃ Ã

b̃
T

c A

bT
,

where the s×s lower triangular matrices Ã = (ãij) (with ãij = 0 for all j ≥ i) andA =
(aij) are the matrices of the explicit and implicit parts of the method, respectively,
while b̃ = (b̃1, . . . , b̃s)

T, c̃ = (c̃1, . . . , c̃s)
T, b = (b1, . . . , bs)

T and c = (c1, . . . , cs)
T are

s-dimensional vectors of real coefficients, and c̃ and c are given by the usual relations

c̃i =

i−1∑
j=1

ãij , ci =

i∑
j=1

aij , i = 1, . . . , s.
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3.3. Nonlinearly implicit IMEX-RK methods. To describe the nonlinearly
implicit IMEX-RK method for solving (1.1) introduced in [14], we rewrite the semidis-
crete formulation (1.2) in the form (1.4), where we define

C(Φ) := − 1

∆x
(∆−f)(Φ), D(Φ) :=

1

∆x2
B(Φ)Φ.

The simplest IMEX scheme for the approximation of (1.2) is

Φn+1 = Φn − ∆t

∆x
(∆−f)(Φn) +

∆t

∆x2
B(Φn+1)Φn+1, (3.1)

where Φn denotes the approximate value of Φ(t) at t = tn. For general pairs of RK
schemes, the computations of a nonlinearly implicit IMEX-RK scheme necessary to
advance an Φn from time tn to tn+1 = tn + ∆t are given in Algorithm 3.1 [2, 34]:

Algorithm 3.1 (Nonlinearly implicit IMEX-RK scheme [14]).
Input: approximate solution vector Φn for t = tn
do i = 1, . . . , s

solve for Φ(i) the nonlinear equation

Φ(i) = Φn + ∆t

(
i−1∑
j=1

aijKj + aiiD
(
Φ(i)

)
+

i−1∑
j=1

ãijK̃j

)
Ki ← D(Φ(i))

K̃i ← C(Φ(i))
enddo

Φn+1 ← Φn + ∆t

s∑
j=1

bjKj + ∆t

s∑
j=1

b̃jK̃j

Output: approximate solution vector Φn+1 for t = tn+1 = tn + ∆t.
Algorithm 3.1 requires solving for the vector u = Φ(i) ∈ RMN a nonlinear system

of NM scalar equations of the following form

Ψi(u) := u− aii∆tD
(
u
)
− ri = 0, i = 1, . . . , s, (3.2)

where ri ∈ RMN is given by

ri = Φn + ∆t

(
i−1∑
j=1

aijKj +

i−1∑
j=1

ãijK̃j

)
.

For the sake of simplicity, we denote Ψ = Ψi for i = 1, . . . , s in the rest of the paper.
To approximately solve (3.2) by the NR iterative method we must require the

coefficients of the matrix function B, and therefore those of B, to be at least continu-
ously differentiable [33, p. 311]. However, Models 1 and 2 do not naturally satisfy this
assumption. Therefore, according to the description of nonlinearly implicit IMEX-
RK schemes in [14], B is replaced by a smooth approximation Bε, and we denote
the corresponding version of B by Bε, where Bε → B and Bε → B as ε → 0. Note
that the purpose of this approximation is to create smoothness, but not to convert
the problem into a uniformly parabolic one. Then, we denote by Ψε(u) the function
(3.2), where B(u) has been replaced by Bε(u). The function Ψε is highly nonlinear
for small ε, in the sense that the second derivative of Ψε is much larger than its first
derivative. Therefore, as is discussed in [14], by Kantorovich’s theorem (see [17]), the
region of guaranteed convergence shrinks when ε→ 0. On the other hand, the linear-
ity of Ψε behaves in the opposite way when increasing ε, so the region of guaranteed
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convergence of the NR method increases. In light of these observations, we propose
in [14] a strategy similar to that of [16] to efficiently solve Ψε(u) = 0 for a prescribed
ε = εmin. This strategy proceeds as follows: If uε is a solution of Ψε(uε) = 0, then
uε is used as an initial datum for approximating the solution of Ψε′(u) = 0 for ε′ < ε
by the NR method with a line search strategy [17]. This process is started with a suf-
ficiently large value ε0 and it is performed until a solution Ψεmin

(u) = 0 is obtained.
This process is summarized in Algorithm 4.1 of [14].

3.4. Linearly implicit IMEX-RK methods. The nonlinearly implicit IMEX-
RK schemes proposed in [14], and whose simplest variant is (3.1), require solving
a nonlinear system of NM scalar equations, as is detailed in Algorithm 3.1. To
overcome this excessive numerical work for the solution of the nonlinear system (3.2),
an essential gain is obtained by the following approach. We rewrite the semidiscrete
formulation (1.2) in the form

dΦ

dt
= C(Φ) +D(Φ,Φ) (3.3)

with

C(Φ) := − 1

∆x
(∆−f)(Φ), D(Φ∗,Φ) :=

1

∆x2
B(Φ∗)Φ.

Here the idea is to distinguish in the system (3.3) between stiff and nonstiff dependence
on the variable Φ. More precisely, by (3.3) we consider

dΦ

dt
= C(Φ∗) +D(Φ∗,Φ) =: K(Φ∗,Φ),

where Φ∗ is treated explicitly as argument of f and B, while Φ is implicit in the term
to which B is applied.

Then the step from tn to tn+1 = tn + ∆t of the new linearly implicit IMEX-RK
scheme is given by the following algorithm.

Algorithm 3.2 (Linearly implicit IMEX-RK scheme).

Input: approximate solution vector Φn for t = tn

do i = 1, . . . , s
compute the stage values:

Φ∗(i) ← Φn + ∆t

i−1∑
j=1

ãijKj

Φ̂
(i)
← Φn + ∆t

i−1∑
j=1

aijKj

solve for Ki the linear equation

Ki = C
(
Φ∗(i)

)
+D

(
Φ∗(i), Φ̂

(i)
+ ∆taiiKi

)
, (∗)

where

D
(
Φ∗(i), Φ̂

(i)
+ ∆taiiKi

)
=

1

∆x2
B
(
Φ∗(i)

)(
Φ̂

(i)
+ ∆taiiKi

)
enddo

Φn+1 ← Φn + ∆t

s∑
j=1

bjKj (∗∗)

Output: approximate solution vector Φn+1 for t = tn+1 = tn + ∆t.
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Thus, the simplest first-order linearly implicit IMEX scheme for the approxima-
tion of (3.3) is

Φn+1 = Φn − ∆t

∆x
(∆−f)(Φn) +

∆t

∆x2
B(Φn)Φn+1.

Concerning (∗∗) we observe that for the final numerical solution, we require, in
particular,

Φ∗,n+1 = Φn+1,

which is guaranteed by imposing the condition

bi = b̃i for i = 1, . . . , s, (3.4)

and no duplication of variables is needed in the computation of the numerical solution
(for more details see [6, 7]).

Furthermore, we note that this new approach includes Zhong’s method [44]. In
fact, the theory developed in [44] for additive semi-implicit RK methods can be ex-
tended in a straightforward manner to these methods. In [44] the system of first-order
ordinary differential equations is of the form

dΦ

dt
= F(Φ) + G(Φ).

Then, by setting K(Φ∗,Φ) = F(Φ∗) + G(Φ) we obtain for the numerical method

ki = K

Φn + ∆t

i−1∑
j=1

ãijkj ,Φ
n + ∆t

i−1∑
j=1

aijkj + ∆taiiki


= F

Φn + ∆t

i−1∑
j=1

ãijkj

+ G

Φn + ∆t

i−1∑
j=1

aijkj + ∆taiiki


for i = 1, . . . , s and for the numerical solution

Φn+1 = Φn + ∆t

s∑
i=1

bi ki,

which are exactly the formulas proposed by Zhong [44].
The decisive advantage of the new linearly implicit approach for computing the

numerical solution of system (3.3) is obvious: we do not require solutions for any
nonlinear system, as for example in [14] for the nonlinear system (3.7) (of that paper).
In this new approach, the system (∗) is linear in Ki and the numerical solution can
be obtained by solving a convection-diffusion equation with a linear diffusion term in
which the matrix function B, and therefore B, is computed explicitly.

As an example, we propose a classical second-order IMEX-RK scheme that satis-
fies (3.4), namely the following scheme IMEX-SSP2(3,3,2) introduced in [34]:

c̃ Ã

b̃
T =

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

,
c A

bT
=

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

.(3.5)
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4. Numerical results.

4.1. Preliminaries. In the following examples, we solve (1.1) numerically for
0 ≤ t ≤ T and 0 ≤ x ≤ L for Models 1 and 2. We compare numerical results obtained
by the nonlinearly implicit IMEX-RK scheme for the coefficients (3.5), described in
Section 3.3 and [14], which is denoted here by NI-IMEX-SSP2 (where we skip “(3,3,2)”
for brevity and since we do not vary herein the RK coefficients) with those obtained by
the new linearly implicit IMEX-RK scheme of Section 3.4, denoted by LI-IMEX-SSP2,
and by the explicit Kurganov-Tadmor (KT) method [28].

For each model, the x-interval [0,L] is subdivided into M subintervals of length
∆x = L/M . We denote by ∆t the time step used to advance the numerical solution
from time t = tn to tn+1 = tn + ∆t and by Φnj the vector of numerical solutions
associated with cell [j∆x, (j+1)∆x], j = 0, . . . ,M −1, at time tn. For each iteration,
the time step ∆t is determined by the following formula (derived from a linearized
CFL condition):

∆t

∆x
max

1≤j≤M
%
(
Jf
(
Φnj
))

+
∆t

2∆x2
max

1≤j≤M
%
(
B
(
Φnj
))

= Ccfl1

for the KT scheme and

∆t

∆x
max

1≤j≤M
%
(
Jf
(
Φnj
))

= Ccfl2

for the semi-implicit schemes, where %(·) is the spectral radius. In the numerical
examples we choose Ccfl∗ as the largest multiple of 0.05 that yields oscillation-free
numerical solutions.

For comparison purposes, we compute reference solution for numerical tests by
the KT scheme with Mref = 25600 cells. To be consistent with our previous work [14],
we compute approximate L1 errors at different times for each scheme as follows. We
denote by (φMj,i(t))

M
j=1 and (φref

l,i (t))Mref

l=1 the numerical solution for the i-th component
at time t calculated with M and Mref cells, respectively. We use cubic interpolation
from the reference grid to the M -cell grid to compute φ̃ref

j,i (t) for j = 1, . . . ,M . We
calculate the total approximate L1 error at time t assciated with the numerical solution
on the M -cell grid by

etot
M (t) :=

1

M

N∑
i=1

M∑
j=1

∣∣φ̃ref
j,i (t)− φMj,i(t)

∣∣. (4.1)

Based on the errors defined by (4.1), we may calculate a numerical order of conver-
gence from pairs of total approximate L1 errors etot

M (t) and etot
2M (t) by

θM (t) := log2

(
etot
M (t)/etot

2M (t)
)
. (4.2)

To demonstrate that our way of calculating approximate errors and estimating
convergence rates leads to conclusions that are independent of the particular refer-
ence solution, we employ in one case (Example 5) an alternative way of calculating
approximate errors and convergence rates; namely, we use cubic interpolation from
the grid of 2M cells that of M cells grid to compute the quantities

φ̃Mj,i(t) =
9

16

(
φ2M

2j,i + φ2M
2j−1,i

)
− 1

16

(
φ2M

2j+1,i + φ2M
2j−2,i

)
, j = 1, . . . ,M. (4.3)
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Fig. 4.1. Example 1 (Model 1): (a) numerical solution obtained by LI-IMEX-SSP2 scheme at
simulated time T = 4000 s and ∆x = 1/1600, (b) efficiency plot obtained for discretization levels
∆x = 1/M with M = 100, 200, 400, 800 and 1600.

We then calculate an alternative (to (4.1)) total approximate L1 error by

êtot
M (t) :=

1

M

N∑
i=1

M∑
j=1

∣∣φ̃Mj,i(t)− φMj,i(t)∣∣. (4.4)

An alternative numerical order of convergence can then be computed by

θ̂M (t) := log2

(
êtot
M (t)/êtot

2M (t)
)
. (4.5)

(Note carefully that θ̂M (t) is calculated from the three numerical solutions calculated
on grids with M , 2M , and 4M cells.) Since the scheme is second-order accurate for
smooth solutions, an estimate of the (unknown) total exact L1 error

etot,∗
M (t) :=

1

M

N∑
i=1

M∑
j=1

∣∣φi(xj , t)− φMj,i(t)∣∣ (4.6)

is given by

etot,∗
M (t) ≈ ẽtot

M (t) :=
4

3
êtot
M (t). (4.7)

The motivation of (4.3)–(4.7) is briefly recalled in the Appendix.

4.2. Example 1: Model 1 with N = 3, comparison of LI- and NI-IMEX-
SSP2 schemes. We employ Model 1 to simulate the settling of a tridisperse (N = 3)
suspension forming a compressible sediment [4]. The mixture is described by the
model functions (2.2), (2.4), (2.7) and (2.8) with φmax = 0.66, nRZ = 4.7, σ0 =
180 Pa, φc = 0.2, k = 2, µf = 10−3 Pa s, d = 1.19 × 10−5 m, ρs = 1800 kg/m3, and
g = 9.81 m/s2. The initial concentration is Φ0 = (0.04, 0.04, 0.04)T in a vessel of
height L = 1 m with normalized squared particle sizes δ = (1, 0.5, 0.25)T. Here and
in Examples 2 to 5 we employ the zero-flux boundary conditions (2.1).

We compare numerical results obtained by schemes LI-IMEX-SSP2, NI-IMEX-
SSP2 and KT at simulated time T = 4000 s. For the scheme NI-IMEX-SSP2, we
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Fig. 4.2. Example 1 (Model 1): enlarged views of the numerical solution of Figure 4.1 (a) near
the parabolic-hyperbolic interface (φ = φc).

solve the nonlinear system by Algorithm 4.1 of [14], where the regularization Bε of
the original diffusion matrix B is achieved by replacing the function σe in (2.8) by

σe(φ; ε) = σe(φ) exp
(
−ε/(φ− φc)2

)
, ε > 0,

where ε decreases gradually from ε0 = 10−4 to εmin = 10−6, tol = 10−8, while the
LI-IMEX-SSP2 and KT schemes are applied without regularization of the diffusive
term (this also includes the reference solution). For the schemes NI-IMEX-SSP2 and
LI-IMEX-SSP2 we use Ccfl2 = 0.7, and for the KT scheme, Ccfl1 = 0.25.

The scheme LI-IMEX-SSP2 executes faster than NI-IMEX-SSP2 since the former
needs to solve only one linear system per RK stage, whereas the latter has to solve
many during the nonlinear solves in Algorithm 4.1 of [14]. Figure 4.1 (a) show that, in
general, the sedimentation process is approximated adequately by the LI-IMEX-SSP2
scheme, but some overshoots appear close to the parabolic-hyperbolic interface φ =
φc. These glitches do not disappear upon refinement. Therefore, the approximation
errors with respect to the reference solution (computed without ε regularization) are
larger than for NI-IMEX-SSP2, see Figure 4.1 (b). Enlarged views of the box area in
Figure 4.1 (a) are displayed in Figure 4.2 for each component.

Another strategy, denoted by LI-IMEX-SSP2-reg, is to use the LI-IMEX-SSP2
directly applied to the regularized diffusion term with εmin = 10−6. Numerical results
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Fig. 4.3. Example 2 (Model 1, N = 3, diffusive term regularized with σe(φ; 10−3)): (a)–
(c): enlarged views of the numerical solution near the parabolic-hyperbolic interface (φ = φc), (d):
efficiency plot for discretization levels ∆x = 1/M with M = 100, 200, 400, 800 and 1600.

with Ccfl2 = 0.6 are shown in Figure 4.2, we observe that some glitches near the
parabolic-hyperbolic interface are still present in the results. In Figure 4.1 (b) we
observe that LI-IMEX-SSP2-reg can reduce the approximation error compared with
LI-IMEX-SSP2 scheme.

4.3. Examples 2–4: Model 1 with N = 3, variation of εmin. For the tests in
Examples 2 to 5, we consider the same data as in Example 1 but apply both schemes
LI-IMEX-SSP2 and NI-IMEX-SSP2 to the ε-regularized problems with decreasing
values of ε. The linearly implicit scheme keeps solving one linear system per RK
stage, whereas the nonlinearly implicit scheme needs several of them and may need
the gradual decrease of ε towards εmin. The reference solution is computed in each
example to ε-regularized diffusive term.

In Example 2, we choose a regularized diffusive term with εmin = 10−3. In the
results displayed in Figures 4.3 (a) to (c), which are enlarged views of the results
for each component as in Figure 4.1 of Example 1, we observe that the numerical
solutions obtained with scheme LI-IMEX-SSP2 do not present overshoots. Moreover,
Fig 4.3 (d) shows that it is more efficient than NI-IMEX-SSP2.

Next, in Example 3, we choose the same parameters as in Examples 1 and 2 but
regularize the diffusive term by setting εmin = 5 × 10−5. This regularization yields



16 BOSCARINO, BÜRGER, MULET, RUSSO, AND VILLADA

0.04 0.05 0.06 0.07 0.08 0.09

0.82

0.81

φ
1

x
 [
m

]

 

 

ref
KT
NI−IMEX−SSP2    
LI−IMEX−SSP2 

(a)

0.04 0.045 0.05 0.055 0.06 0.065

0.82

0.81

φ
2

x
 [
m

]

 

 

ref
KT
NI−IMEX−SSP2   
LI−IMEX−SSP2 

(b)

0.04 0.042 0.044 0.046 0.048 0.05 0.052

0.83

0.82

0.81

φ
3

x
 [
m

]

 

 

ref
KT
NI−IMEX−SSP2   
LI−IMEX−SSP2 

(c)

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

CPU time [s]

L
1
 e

rr
o

r

 

 

KT
LI−IMEX−SSP2   
NI−IMEX−SSP2 

(d)

Fig. 4.4. Example 3 (Model 1, N = 3, diffusive term regularized with σe(φ; 5 × 10−5)): (a)–
(c): enlarged views of the numerical solution near the parabolic-hyperbolic interface (φ = φc), (d):
efficiency plot for discretization levels ∆x = 1/M with M = 100, 200, 400, 800 and 1600.

diffusion coefficients that are less smooth than the previous example. Figure 4.4 shows
the solutions that are analogous to Figure 4.3 for Example 2. In fact, the solutions
displayed in Figs 4.4 (a) to (c) are qualitatively similar and the efficiency curve in
Figure 4.4 (d) of scheme LI-IMEX-SSP2 is closer to that of scheme NI-IMEX-SSP2.

Finally, in Example 4 we set εmin = 5 × 10−6. We observe in the results dis-
played in Figure 4.5 (a) to (c) that the numerical solutions obtained with scheme
LI-IMEX-SSP2 present some glitches near the parabolic-hyperbolic interface and in
Figure 4.5 (d) that the scheme NI-IMEX-SSP2 is slightly more efficient.

4.4. Example 5: Model 1 with N = 3, numerical order of accuracy. In
this test we check the order of accuracy of the numerical scheme LI-IMEX-SSP2-reg
with εmin = 0.1. We consider the normalized diameters d1 = 1.0, d2 = 0.8, d3 = 0.9
and a smooth initial concentration profile given by φi(x) = 0.12 exp(−200(x− 0.5)2)
for i = 1, . . . , 3. We compute approximations with M = 50 · 2l, l = 0, . . . , 6, and a
fixed time step ∆t = 500∆x, which yields a Courant number of 0.1. Figure 4.6 shows
the numerical result for M = 1600 for T = 20 s (before shock formation, when the
solution is still smooth) and for T = 500 s (after shock formation).

The approximate L1-errors etot
M (T ) defined by (4.1) and their corresponding nu-

merical orders θM (T ) given by (4.2) are displayed in Table 4.1 for both T = 20 s and
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Fig. 4.5. Example 4 (Model 1, N = 3, diffusive term regularized with σe(φ; 5 × 10−6)): (a)–
(c): enlarged views of the numerical solution near the parabolic-hyperbolic interface (φ = φc), (d):
efficiency plot for discretization levels ∆x = 1/M with M = 100, 200, 400, 800 and 1600.

T = 500 s. The reference solution is computed with Mref = 25600 cells. We select the
results for T = 20 s to conduct an alternative error analysis (according to Section 4.1).
To this end we compute values of ẽtot

M (T ) according to (4.3), (4.4) (results not shown
in Table 4.1) and the corresponding numerical orders of convergence θ̂M (T ) given by
(4.5). The behaviour of both θM (T ) and θ̂M (T ) for increasing values of M confirms
that the scheme is second-order accurate for smooth solutions, while the results for
T = 500 s indicate that accuracy is reduced to first order when shocks are present.
Finally, for T = 20 s we also calculate the estimate of the total error ẽtot

M (T ) given by
(4.7) for a second-order accurate scheme. Note that for large M , the values of ẽtot

M (T )
are very close to those of the approximate L1-errors etot

M (T ).

4.5. Example 6 (Model 2 with N = 3). We consider a circular road of length
K = 5 mi (periodic boundary conditions (2.12) are used) with N = 3 driver classes
associated with vmax

1 = 70 mi/h, vmax
2 = 50 mi/h and vmax

3 = 30 mi/h. We employ
the Dick-Greenberg model (2.14) and choose (as in [12, 32]) C = e/7 ≈ 0.38833
so that by (2.15), φc = exp(−7/e) ≈ 0.076142. We choose Li = L = 0.05 mi and
τi = τ = 2 s = 0.0005̄ h for i = 1, . . . , N , such that a particular sufficient condition
obtained in [13] for parabolicity on D0

φmax
\Dφc

is satisfied.

The initial density distribution is given by an isolated platoon of maximum global
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Fig. 4.6. Example 5 (Model 1, N = 3): numerical results obtained by scheme LI-IMEX-SSP2
with M = 1600 at simulated time (a) T = 20 s, (b) T = 500 s.

density ρ0, Φ0(x, 0) = p(x− 0.3)ρ0(0.25, 0.4, 0.35)T, where ρ0 = 0.45 and

p(x) =

{
10x for 0 < x ≤ 0.1,

1 for 0.1 < x ≤ 0.9,

−10(x− 1) for 0.9 < x ≤ 1,

0 otherwise.

The nonlinear systems arising in scheme NI-IMEX-SSP2 are solved by Algo-
rithm 4.1 in [14], where the regularization of the function V (φ) is given by

V (φ; ε) = 1 + (V (φ)− 1) exp
(
−ε/(φ− φc)2

)
, ε > 0,
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T = 20 s T = 500 s

M etot
M (T ) θM (T ) θ̂M (T ) ẽtot

M (T ) etot
M (T ) θM (T )

50 1.38e-04 0.14 -0.33 8.41e-05 2.27e-03 1.59
100 1.25e-04 1.45 1.48 1.06e-04 7.49e-04 0.95
200 4.58e-05 1.80 1.68 3.80e-05 3.86e-04 1.11
400 1.30e-05 1.88 1.76 1.19e-05 1.78e-04 0.91
800 3.54e-06 1.87 1.87 3.52e-06 9.49e-05 1.05
1600 9.66e-07 2.00 1.98 9.63e-07 4.56e-05 1.01
3200 2.40e-07 2.06 — 2.44e-07 2.26e-05 1.01
6400 5.73e-08 — — — 1.12e-05 —

Table 4.1
Example 5 (Model 1, N = 3): errors and numerical order for scheme NI-IMEX-SSP2 applied

to smooth initial conditions for T = 20 s (before shock formation) and T = 500 s (after shock
formation).

where ε varies from ε0 = 10−4 to εmin = 10−6 and tol = 10−7.

The reference solution is computed by the KT scheme (without regularization)
with ∆x = 1/6400 and CCFL2

= 0.25.

In Figure 4.7 (a) we display the numerical solution obtained by scheme LI-IMEX-
SSP2 (without regularization) with ∆x = 1/400 and CCFL2 = 0.7 at simulated time
T = 0.05 h. Enlarged views are shown in Figures 4.7 (b), (c) and (d), where we
compare the numerical solution at the same resolution with that produced by scheme
NI-IMEX-SSP2 with CCFL2

= 0.7, the KT scheme with CCFL1
= 0.25 and the refer-

ence solution. We observe that the approximation obtained by scheme LI-IMEX-SSP2
approximates adequately the reference solution. In Figure 4.8 we display an efficiency
plot for a sequence of discretization levels and observe that scheme LI-IMEX-SSP2 is
more efficient than NI-IMEX-SSP2.

5. Concluding remarks. The numerical examples presented herein indicate,
first of all, that the new linearly implicit IMEX-RK schemes approximate the same
solutions as their nonlinearly implicit counterparts (introduced in [14]), and in many
cases are more efficient. In the case of the regularized problem with εmin = 10−3 of
Example 2, shown in Figure 4.3, the new linearly implicit schemes provide essentially
the same results as the classical implicit IMEX at a much lower cost. The decisive
advantage of the linearly implicit variant is the ease of implementation. While the
numerical examples presented herein have been limited to N = 3 for the ease of
presentation, this advantage is likely to become more stringent for larger values of N ,
for example when in the context of the polydisperse sedimentation model (and related
applications), a continuous particle size distribution is approximated by N size classes.

Both linearly and nonlinearly implicit IMEX-RK schemes converge to the same
solutions as does the KT scheme [28], which provides justfication of their application
although a well-posedness theory for (1.1), at least in the strongly degenerate case, is
still lacking. However, it turns out that at the same spatial resolution, discontinuities
in the solution, especially those associated with the type-change interface, are more
accurately resolved by the nonlinearly implicit IMEX-RK schemes. It therefore seems
highly desirable to combine the respective advantages of linearly and nonlinearly im-
plicit IMEX-RK schemes by a hybrid scheme that would concentrate the use of the
nolinearly implicit variant on regions of presumed irregularities of the solution (such
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Fig. 4.7. Example 6 (Model 2, N = 3): numerical results at simulated time T = 0.05 h (a)
obtained by scheme LI-IMEX-SSP2 with ∆x = 1/800, (b)–(d) compared with results by schemes KT
and NI-IMEX-SSP2 with ∆x = 1/800 and the reference solution.

as discontinuities and kinks), which usually form only a small fraction of the compu-
tational domain, while in the remaining “smooth” regions the faster linearly implicit
variant would be used. In other words, such a scheme would attain an accuracy sim-
ilar to the nonlinear IMEX-RK one, at a computational cost almost the same as for
the linearly implicit version.

The application to diffusively corrected kinematic flow models has been chosen
as a test case for IMEX-RK schemes in [14] herein since this class of problems inl-
cudes systems (1.1) of arbitrary size N , and provides meaningful justification for the
assumption of strong degeneracy (2.9). While the linearly and nonlinearly implicit
IMEX-RK schemes do not involve the particular algebraic structure of these models,
and could therefore also be applied to other models that can be cast in the form (1.1),
Theorems 2.1 and 2.2, which do rely on the algebraic structure, are well relevant for
the implementation of the WENO-SPEC scheme employed for the discretization of
∂xf(Φ) (see [11]). In that context we recall that the WENO reconstruction is based on
the computation of smoothness indicators that monitor the presence of irregularities
in the solution. We are currently investigating the option to use the same smoothness
indicators to design a hybrid scheme of the above-mentioned kind.
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Fig. 4.8. Example 6 (Model 2, N = 3): efficiency plot based on numerical solutions for
∆x = 1/M with M = 50, 100, 200, 400 and 800.
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Appendix. Assume that the computed approximations φMj,i(t) satisfy

φMj,i(t) = φi(xj , t) + ai(xj , t)∆x
r +O(∆xr+1), (A.1)

where ∆x = L/M and xj = (j− 1/2)∆x, for r ≤ 2 and sufficiently smooth coefficient
functions aj . Then, it can be seen that the quantities defined by (4.3) satisfy

φ̃Mj,i(t) = φi(xj , t) + ai(xi, t)(∆x/2)r +O(∆xr+1). (A.2)

We recall that we calculate an alternative (with respect to (4.1)) total approximate
L1 error from the quantities (4.3) by (4.4), and that the (unknown) exact total error
etot,∗
M (t) is given by (4.6). From (A.1), (A.2), and standard quadrature rules we get

êtot
M (t) = a(t)(1− 2−r)∆xr +O(∆xr+1), a(t) =

N∑
i=1

∫ ∣∣ai(x, t)∣∣dx,
and etot,∗

M (t) = a(t)∆xr +O(∆xr+1). We therefore deduce that

lim
M→∞

(
êtot
M (t)/êtot

2M (t)
)

= 2r and lim
M→∞

(
êtot
M (t)/etot,∗

M (t)
)

= 1− 2−r,
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i.e., for the quantity θ̂M (t) given by (4.5) we have θ̂M (t) → r as M → ∞, and for
large M the exact total error etot,∗

M (t) can be estimated from êtot
M (t) by

etot,∗
M (t) ≈ ẽtot

M (t) := (1− 2−r)−1êtot
M (t), (A.3)

which yields (4.7) for r = 2.
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