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Abstract

In this paper we develop an a posteriori error analysis of a fully-mixed finite element method
for a fluid-solid interaction problem in 2D. The media are governed by the elastodynamic and
acoustic equations in time-harmonic regime, respectively, the transmission conditions are given by
the equilibrium of forces and the equality of the corresponding normal displacements, and the fluid
is supposed to occupy an annular region surrounding the solid, so that a Robin boundary condition
imitating the behavior of the Sommerfeld condition is imposed on its exterior boundary. Dual-mixed
approaches are applied in both domains, and the governing equations are employed to eliminate
the displacement u of the solid and the pressure p of the fluid. In addition, since both transmission
conditions become essential, they are enforced weakly by means of two suitable Lagrange multipliers.
The unknowns of the solid and the fluid are then approximated by a conforming Galerkin scheme
defined in terms of PEERS elements in the solid, Raviart-Thomas of lowest order in the fluid,
and continuous piecewise linear functions on the boundary. We derive a reliable and efficient
residual-based a posteriori error estimator for this coupled problem. The main tools for proving the
reliability of the estimator involve the continuous global inf-sup condition, continuous and discrete
Helmholtz decompositions on each domain, and the local approximation properties of the Clément
interpolant and Raviart-Thomas operator. Then, inverse inequalities, discrete trace inequalities,
and the localization technique based on triangle-bubble and edge-bubble functions, are employed
to show the efficiency. Finally, some numerical results confirming the reliability and efficiency of
the estimator are reported.

Key words: mixed finite elements, Helmholtz equation, elastodynamic equation, a posteriori error
analysis
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1 Introduction

In the recent paper [14] we introduced and analyzed a fully-mixed finite element method for the two-
dimensional fluid-solid interaction problem studied originally in [16] (see also [17]). The respective
model consists of an elastic body which is subject to a given incident wave that travels in the fluid
surrounding it. Actually, the fluid is supposed to occupy an annular region, and hence a Robin
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boundary condition imitating the behavior of the scattered field at infinity is imposed on its exterior
boundary, which is located far from the obstacle. The media are governed by the elastodynamic and
acoustic equations in time-harmonic regime, respectively, and the transmission conditions are given by
the equilibrium of forces and the equality of the corresponding normal displacements. Differently from
the analysis in [16] where dual and primal methods are utilized in the solid and fluid, respectively,
dual-mixed approaches are applied in both domains in [14], and the governing equations are employed
to eliminate the displacement u of the solid and the pressure p of the fluid. In addition, since both
transmission conditions become essential, they are enforced weakly by means of two suitable Lagrange
multipliers. In this way, the Cauchy stress tensor and the rotation of the solid, together with the
gradient of p and the traces of u and p on the boundary of the fluid, constitute the unknowns of
the coupled problem. The solvability of the resulting continuous formulation is analyzed in [14]
by incorporating first suitable decompositions of the spaces to which the stress and the gradient
of p belong, and then by applying the Babuška-Brezzi theory and the Fredholm alternative. The
unknowns of the solid and the fluid are approximated by a conforming Galerkin scheme defined in
terms of PEERS elements in the solid, Raviart-Thomas of lowest order in the fluid, and continuous
piecewise linear functions on the boundary. The analysis of the discrete method relies on a stable
decomposition of the corresponding finite element spaces and also on the classical result on projection
methods for Fredholm operators of index zero.

On the other hand, it is well known that in order to guarantee a good convergence behaviour of
the finite element solutions, specially under the presence of complex geometries leading eventually to
singularities, one needs to apply an adaptive strategy based on a posteriori error estimates. These are
usually represented by global quantities θ that are expressed in terms of local estimators θT defined
on each element T of a given triangulation of the domain. The estimator θ is said to be reliable (resp.
efficient) if there exists Crel > 0 (resp. Ceff > 0), independent of the meshsizes, such that

Ceff θ + h.o.t. ≤ ‖error‖ ≤ Crel θ + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order. Concerning the
Helmholtz and elasticity equations, several approaches have already been developed independently in
the literature. In particular, a posteriori error analyses for interior Helmholtz problems, which are
based on local computations or explicit residuals, can be found in [7] and [23], respectively. In addition,
a reliable residual-based a posteriori error estimator, which follows the nowadays standard approach
from [28], is proposed in [24]. In turn, a posteriori error estimators for the mixed finite element
formulation of the linear elasticity problem, which are based on residuals and on the solution of local
problems, are provided in [2]. The main novelty of the approach there has to do with the utilization
of a Helmholtz decomposition of the stress-type unknown to derive the corresponding reliability and
efficiency estimates. For related approaches employing the Helmholtz decomposition technique as well
we refer to [11] and [25].

Furtermore, to the best of our knowledge, [15] is the only work available in the literature deal-
ing with the a posteriori error analysis of fluid-solid interaction problems involving the acoustic and
elastodynamic equations in time-harmonic regime. In fact, a reliable and efficient residual-based a
posteriori error estimator for the dual-mixed/primal formulation of the model problem analyzed in
[16] was derived in [15]. More precisely, suitable auxiliary problems, the continuous inf-sup conditions
satisfied by the bilinear forms involved, a discrete Helmholtz decomposition, and the local approx-
imation properties of the Clément interpolant and Raviart-Thomas operator are the main tools for
proving the reliability of the estimator in [15]. Then, Helmholtz decomposition, inverse inequalities,
and the localization technique based on triangle-bubble and edge-bubble functions are employed to
show the efficiency. According to the preceding remarks, and in order to additionaly contribute in this
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direction, the main purpose of the present paper is to derive a reliable and efficient residual-based a
posteriori error estimator for the fully-mixed formulation introduced and analyzed in [14]. The rest of
this work is organized as follows. In Section 2 we recall from [14] the fluid-solid interaction problem
and its continuous and discrete fully-mixed variational formulations. The kernel of the present work is
given by Section 3, where we develop the a posteriori error analysis. Our tools for showing reliability
and efficiency are basically the same ones utilized in [15]. More precisely, in Section 3.1 we employ the
global inf-sup condition for the continuous variational formulation, discrete Helmholtz decompositions
in both domains, and the above mentioned properties of the Clément interpolant and Raviart-Thomas
operator, to derive a reliable residual-based a posteriori error estimator. Even, at some point of this
analysis we are able to identify independent terms related to the fluid and solid, respectively, which
allows us to apply, separately, some of the arguments employed for the a posteriori error analyses of
each equation. Next, in Section 3.2 we apply discrete trace and inverse inequalities, and the local-
ization technique based on triangle-bubble and edge-bubble functions to show the efficiency of the
estimator. In this part we take advantage of the fact that either the efficiency estimates for some
terms or the way to derive them, are already available in the literature (see, e.g. [11], [15], and [28]).
However, and for sake of completeness, we sketch at least most of the corresponding proofs. For the
remaining terms defining the a posteriori error estimator we certainly provide full proofs. Finally,
some numerical examples confirming the reliability and efficiency of the a posteriori error estimator,
and showing the good performance of the associated adaptive algorithm are provided in Section 4.

We end this section with further notations to be used below. Since in the sequel we deal with
complex valued functions, we let C be the set of complex numbers, use the symbol ı for

√
−1, denote

by z and |z| the conjugate and modulus, respectively, of each z ∈ C, and let I be the identity matrix of
C2×2. On the other hand, in what follows tr denotes the matrix trace and t stands for the transpose of a
matrix. Also, given τ s := (τij), ζs := (ζij) ∈ C2×2, we define the deviator tensor τ ds := τ s− 1

2 tr(τ s) I,

the tensor product τ s : ζs :=
∑2

i,j=1 τij ζij , and the conjugate tensor τ s := (τ ij). In turn, in what
follows we utilize standard simplified terminology for Sobolev spaces and norms. In particular, if O is
a domain, S is a closed Lipschitz curve, and r ∈ R, we define

Hr(O) := [Hr(O)]2 , Hr(O) := [Hr(O)]2×2 , and Hr(S) := [Hr(S)]2 .

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O), and H0(S),
respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O), and Hr(O)) and
‖ · ‖r,S (for Hr(S) and Hr(S)). In general, given any Hilbert space H, we use H and H to denote
H2 and H2×2, respectively. In addition, we use 〈·, ·〉S to denote the usual duality pairings between
H−1/2(S) and H1/2(S), and between H−1/2(S) and H1/2(S). Furthermore, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [8], [22]). The space of matrix valued functions whose
rows belong to H(div;O) will be denoted H(div;O). Note that if τ ∈ H(div;O), then div τ ∈ L2(O),
where div stands for the usual divergence operator div acting on each row of the tensor, The Hilbert
norms of H(div;O) and H(div;O) are denoted by ‖ · ‖div;O and ‖ · ‖div;O, respectively. Finally, we
employ 0 to denote a generic null vector (including the null functional and operator), and use C and
c, with or without subscripts, bars, tildes or hats, to denote generic constants independent of the
discretization parameters, which may take different values at different places.
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2 The fluid-solid interaction problem

2.1 The model problem

We consider the two-dimensional fluid-solid interaction problem whose a priori error analysis was
provided recently in [14] (see also [16] for a previous analysis of this problem). In other words, given
an incident acoustic wave upon a bounded elastic body (obstacle) fully surrounded by a fluid, we
are interested in determining both the response of the body and the scattered wave. The obstacle is
supposed to be a long cylinder parallel to the x3-axis whose cross-section is Ωs. The boundary of Ωs

is denoted by Σ. The incident wave and the volume force acting on the body are assumed to exhibit
a time-harmonic behaviour with e−ı ω t ansatz and phasors pi and f , respectively, so that pi satisfies
the Helmholtz equation in R2\Ωs. Hence, since the phenomenon is supposed to be invariant under
a translation in the x3-direction, we may consider a bidimensional interaction problem posed in the
frequency domain. In this way, and since we employ mixed formulations in both domains (solid and
fluid), the main unknowns of our interaction problem are given by σs : Ωs → C2×2, u : Ωs → C2,
p : R2\Ωs → C, and σf : R2\Ωs → C2, corresponding to the amplitudes of the Cauchy stress tensor,
the displacement field, the total (incident + scattered) pressure, and the gradient of p, respectively.

The fluid is assumed to be perfect, compressible, and homogeneous, with density ρf and wave

number κf :=
ω

v0
, where v0 is the speed of sound in the linearized fluid, whereas the solid is supposed

to be isotropic and linearly elastic with density ρs and Lamé constants µ and λ. The latter means, in
particular, that the corresponding constitutive equation is given by Hooke’s law, that is

σs = λ tr ε(u) I + 2µ ε(u) in Ωs ,

where ε(u) := 1
2 (∇u + (∇u)t) is the strain tensor of small deformations and ∇ is the gradient tensor.

Consequently, under the hypotheses of small oscillations, both in the solid and the fluid, the unknowns
σs, u, σf , and p satisfy the elastodynamic and acoustic equations in time-harmonic regime, that is:

divσs + κ2
s u = − f in Ωs ,

divσf + κ2
f p = 0 in R2\Ωs ,

where κs is defined by
√
ρs ω, together with the transmission conditions:

σs ν = − pν on Σ ,

σf · ν = ρf ω
2 u · ν on Σ .

(2.1)

and the Sommerfeld radiation condition

∂(p− pi)
∂r

− ı κf (p− pi) = o(r−1) , (2.2)

as r := ‖x‖ → +∞, uniformly for all directions
x

‖x‖
. Hereafter, ‖x‖ is the euclidean norm of a

vector x := (x1, x2)t ∈ R2, and ν denotes the unit outward normal on Σ, that is pointing toward
R2\Ωs.

Next, according to the condition at infinity given by (2.2), which basically says that the outgoing
waves are absorbed by the far field, and in order to obtain a convenient simplification of our model, we
now proceed as in [14] and [16] and introduce a sufficiently large polyhedral surface Γ approximating

4



a sphere centered at the origin, whose interior contains Ωs. Then, we define Ωf as the annular region
bounded by Σ and Γ, and consider the Robin boundary condition:

σf · ν − ı κf p = g := ∇pi · ν − ı κf pi on Γ , (2.3)

where ν denotes the unit outward normal on Γ as well. Therefore, given f ∈ L2(Ωs) and g ∈ H−1/2(Γ),
we are now interested in the following fluid-solid interaction problem: Find σs ∈ H(div; Ωs), u ∈
H1(Ωs), σf ∈ H(div; Ωf ), and p ∈ H1(Ωf ), such that there hold in the distributional sense:

σs = C ε(u) in Ωs ,

divσs + κ2
s u = − f in Ωs ,

σf = ∇p in Ωf ,

divσf + κ2
f p = 0 in Ωf ,

σs ν = − pν on Σ ,

σf · ν = ρf ω
2 u · ν on Σ ,

σf · ν − ı κf p = g on Γ .

(2.4)

2.2 The fully-mixed variational formulation

In order to recall from [14] the fully-mixed variational formulation of (2.4), we need to introduce the
auxiliary unknowns given by the trace of the displacement

ϕs := u|Σ ∈ H1/2(Σ) ,

the traces of the pressure

ϕf = (ϕΣ , ϕΓ) := (p|Σ, p|Γ) ∈ H1/2(Σ)×H1/2(Γ) ,

and the rotation

γ :=
1

2
(∇u− (∇u)t) ∈ L2

skew(Ωs)

where L2
skew(Ωs) denotes the space of skew-symmetric tensors with entries in L2(Ωs). In addition, we

let

H := H(div; Ωs)×H(div; Ωf ) and Q := L2
skew(Ωs)×H1/2(Σ)×H1/2(∂Ωf )

endowed with the usual product norms. Hereafter, given t ∈ R, we make the identification Ht(∂Ωf ) ≡
Ht(Σ)×Ht(Γ) with the norm ‖ψf‖t,∂Ωf

:= ‖ψΣ‖t,Σ + ‖ψΓ‖t,Γ for each ψf := (ψΣ , ψΓ) ∈ Ht(∂Ωf ).

Next, as explained in [14], we employ a dual-mixed approach in the solid Ωs as well as in the fluid
Ωf , and observe that both transmission conditions (cf. (2.1)) and the Robin boundary condition (2.3)
become now essential. In addition, we use the elastodynamic and the Helmholtz equations (cf. second
and fourth equation of (2.4)), respectively, to eliminate u and p according to the formulae

u = − 1

κ2
s

(f + divσs) , (2.5)

and

p = − 1

κ2
f

divσf in Ωf . (2.6)
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In this way, we arrive at the following fully-mixed variational formulation of (2.4): Find σ̂ :=
(σs,σf ) ∈ H and γ̂ := (γ,ϕs,ϕf ) ∈ Q such that

A(σ̂, τ̂ ) + B(τ̂ , γ̂) = F (τ̂ ) ∀ τ̂ := (τ s, τ f ) ∈ H ,

B(σ̂, η̂) + K(γ̂, η̂) = G(η̂) ∀ η̂ := (η,ψs,ψf ) ∈ Q ,
(2.7)

where F : H→ C and G : Q→ C are the linear functionals

F (τ̂ ) :=
1

κ2
s

∫
Ωs

f · div τ s ∀ τ̂ := (τ s, τ f ) ∈ H ,

G(η̂) := −〈 g , ψΓ 〉Γ ∀ η̂ := (η,ψs,ψf ) := (η,ψs, (ψΣ , ψΓ)) ∈ Q ,

(2.8)

and A : H×H→ C, B : H×Q→ C, and K : Q×Q→ C are the bilinear forms defined by

A(ζ̂, τ̂ ) :=

∫
Ωs

C−1ζs : τ s −
1

κ2
s

∫
Ωs

div ζs · div τ s +

∫
Ωf

ζf · τ f −
1

κ2
f

∫
Ωf

div ζf div τ f

∀ (ζ̂, τ̂ ) := ((ζs, ζf ), (τ s, τ f )) ∈ H×H ,

B(τ̂ , η̂) := Bs(τ s, (η,ψs)) + Bf (τ f ,ψf ) ∀ (τ̂ , η̂) := ((τ s, τ f ), (η,ψs,ψf )) ∈ H×Q ,

with

Bs(τ s, (η,ψs)) :=

∫
Ωs

τ s : η − 〈τ s ν,ψs〉Σ ,

Bf (τ f ,ψf ) := 〈τ f · ν, ψΣ〉Σ − 〈τ f · ν, ψΓ〉Γ ,

and
K(χ̂, η̂) := −〈ξΣ ν,ψs〉Σ − ρf ω

2 〈ξs · ν, ψΣ〉Σ + ı κf 〈ξΓ , ψΓ〉Γ

∀ χ̂ := (χ, ξs, ξf ) := (χ, ξs, (ξΣ , ξΓ)) ∈ Q ,

∀ η̂ := (η,ψs,ψf ) := (η,ψs, (ψΣ , ψΓ)) ∈ Q .

The main result concerning the solvability analysis of (2.7) is stated as follows. To this respect,
notice that irrespective of the particular functionals defined in (2.8), the following result is actually
valid for any pair (F,G) ∈ H′ ×Q′.

Theorem 2.1 Assume that the homogeneous problem associated to (2.7) has only the trivial solution.
Then, given F ∈ H′ and G ∈ Q′, there exists a unique (σ̂, γ̂) ∈ H×Q solution to (2.7). In addition,
there exists Ccd > 0 such that

‖(σ̂, γ̂)‖H×Q ≤ Ccd

{
‖F‖H′ + ‖G‖Q′

}
. (2.9)

Proof. The proof basically consists of showing that the left hand side of (2.7) constitutes a Fredholm
operator of index zero. We omit further details and refer to the whole analysis developed in [14,
Section 3]. 2

We end this section with the converse of the derivation of (2.7). Indeed, the following theorem
establishes that the unique solution of (2.7) together with u and p given by (2.5) and (2.6), respectively,
solves the original fluid-solid interaction problem (2.4). This result will be used later on in Section 3.2
to prove the efficiency of the a posteriori error estimator. Note that no extra regularity assumptions
on the data, but only f ∈ L2(Ωs) and g ∈ H−1/2(Γ), are needed here.
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Theorem 2.2 Let ((σs,σf ), (γ,ϕs,ϕf )) ∈ H × Q be the unique solution of (2.7), where ϕf :=

(ϕΣ , ϕΓ) ∈ H1/2(Σ) × H1/2(Γ), and let u ∈ L2(Ωs) and p ∈ L2(Ωf ) be defined according to (2.5)
and (2.6). Then ∇u = C−1σs + γ in Ωs (which yields u ∈ H1(Ωs)), u = ϕs on the interface Σ,
σs = σt

s in Ωs, and γ = 1
2 (∇u− (∇u)t) in Ωs (which yields σs = C ε(u)). In addition, there hold

σf = ∇p in Ωf (which yields p ∈ H1(Ωf )), divσf + κ2
f p = 0 in Ωf , ϕΣ = p|Σ on Σ, ϕΓ = p|Γ

on Γ, and hence σs ν = −ϕΣ ν = − pν on Σ, σf · ν = ρf ω
2ϕs · ν = ρf ω

2 u · ν on Σ, and
σf · ν − ı κf ϕΓ = σf · ν − ı κf p = g on Γ.

Proof. It basically follows by applying integration by parts backwardly in (2.7) and using suitable test
functions. We omit further details. 2

2.3 The Galerkin scheme

In this section we recall from [14] the definition of the Galerkin approximation of (2.7). To this end,

we first let
{
T sh
}
h>0

and
{
T fh
}
h>0

be regular families of triangulations of the polygonal regions Ω̄s

and Ω̄f , respectively, by triangles T of diameter hT , with global mesh sizes

hs := max
{
hT : T ∈ T sh

}
, hf := max

{
hT : T ∈ T fh

}
, and h := max

{
hs, hf

}
,

such that they are quasi-uniform around Σ and Γ, and so that their vertices coincide on Σ. In what
follows, given an integer ` ≥ 0 and a subset S of R2, P`(S) denotes the space of polynomials defined
in S of total degree ≤ `. According to the notation convention given in the introduction, we denote
P`(S) := [P`(S)]2. Furthermore, given T ∈ T sh ∪T

f
h and x := (x1, x2)t a generic vector of R2, we let

RT0(T ) := span
{

(1, 0), (0, 1), (x1, x2)
}

be the local Raviart-Thomas space of order 0 (cf. [8], [26]),

and let curlt bT :=
(
∂bT
∂x2

,− ∂bT
∂x1

)
, where bT is the usual cubic bubble function on T . Then we define

Hs
h :=

{
vs,h ∈ H(div; Ωs) : vs,h|T ∈ RT0(T )⊕ P0(T ) curlt bT ∀T ∈ T sh

}
,

Hs
h :=

{
τ s,h ∈ H(div; Ωs) : ct τ s,h ∈ Hs

h ∀ c ∈ R2
}
, (2.10)

Hf
h :=

{
τ f,h ∈ H(div; Ωf ) : τ f,h|T ∈ RT0(T ) ∀T ∈ T fh

}
, (2.11)

Qs
h :=

{
ηh :=

(
0 ηh
−ηh 0

)
: ηh ∈ C(Ω̄s) , ηh|T ∈ P1(T ) ∀T ∈ T sh

}
. (2.12)

Next, in order to set the finite dimensional subspaces on the boundaries of the domains, we let Σh and
Γh be the partitions of Σ and Γ, respectively, inherited from the triangulations, and suppose, without
loss generality, that the numbers of edges of Σh and Γh are both even. The case of an odd number of
edges is easily reduced to the even case (see [20]). Then, we let Σ2h (resp. Γ2h) be the partition of Σ
(resp. Γ) arising by joining pairs of adjacent edges of Σh (resp. Γh). Because of the assumptions on
the triangulations, Σh and Γh are automatically of bounded variation, and, therefore, so are Σ2h and
Γ2h. Hence, we now define

Λh(Σ) :=
{
ψh ∈ C(Σ) : ψh|e ∈ P1(e) ∀e edge of Σ2h

}
, (2.13)

Λh(Γ) :=
{
ψh ∈ C(Γ) : ψh|e ∈ P1(e) ∀e edge of Γ2h

}
, (2.14)

Qs
h := Λh(Σ) × Λh(Σ) , (2.15)
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Qf
h := Λh(Σ) × Λh(Γ) , (2.16)

and introduce the global finite element spaces

Hh := Hs
h × Hf

h and Qh := Qs
h × Qs

h × Qf
h . (2.17)

In addition, our analysis below will also require the subspaces

Us
h :=

{
vh ∈ L2(Ωs) : vh|T ∈ P0(T ) ∀T ∈ T sh

}
(2.18)

and

Ufh :=
{
vh ∈ L2(Ωf ) : vh|T ∈ P0(T ) ∀T ∈ T fh

}
. (2.19)

Notice here that Hs
h × Us

h × Qs
h constitutes the well known PEERS space introduced in [4] for a

mixed finite element aproximation of the linear elasticity problem in the plane. In turn, Hf
h × U

f
h is

the lowest order Raviart-Thomas mixed finite element approximation of the Poisson problem for the
Laplace equation (see [8], [26]).

According to the above, the Galerkin scheme associated with our continuous problem (2.7) reduces
to: Find σ̂h := (σs,h,σf,h) ∈ Hh and γ̂h := (γh,ϕs,h,ϕf,h) ∈ Qh such that

A(σ̂h, τ̂ h) + B(τ̂ h, γ̂h) = F (τ̂ h) ∀ τ̂ h := (τ s,h, τ f,h) ∈ Hh ,

B(σ̂h, η̂h) + K(γ̂h, η̂h) = G(η̂h) ∀ η̂h := (ηh,ψs,h,ψf,h) ∈ Qh .
(2.20)

The following theorem establishes the well-posedness and convergence of the discrete scheme (2.20).

Theorem 2.3 Assume that the homogeneous problem associated to (2.7) has only the trivial solution,
and let h0 > 0 be the constant provided by [14, Lemma 4.10]. Then there exists h1 ∈ (0, h0] such that
for each h ∈ (0, h1], the fully-mixed finite element scheme (2.20) has a unique solution (σ̂h, γ̂h) :=
((σs,h,σf,h), (γh,ϕs,h,ϕf,h)) ∈ Hh ×Qh, with ϕf,h := (ϕ

Σ,h
, ϕ

Γ,h
) ∈ Λh(Σ) × Λh(Γ). In addition,

there exist C1, C2 > 0, independent of h, such that for each h ∈ (0, h1] there hold

‖(σ̂h, γ̂h)‖H×Q ≤ C1

{
sup

τ̂ h ∈Hh\{0}

|F (τ̂ h)|
‖τ̂ h‖H

+ sup
η̂h ∈Qh\{0}

|G(η̂h)|
‖η̂h‖Q

}
≤ C1

{
‖f‖0,Ωs + ‖g‖−1/2,Γ

}
and

‖(σ̂, γ̂) − (σ̂h, γ̂h)‖H×Q ≤ C2 inf
(τ̂ h,η̂h)∈Hh×Qh

‖(σ̂, γ̂) − (τ̂ h, η̂h)‖H×Q ,

where (σ̂, γ̂) := ((σs,σf ), (γ,ϕs,ϕf )) ∈ H × Q is the unique solution of (2.7). Furthermore, if

there exists δ ∈ (0, 1] such that σs ∈ Hδ(Ωs), divσs ∈ Hδ(Ωs), σf ∈ Hδ(Ωf ), divσf ∈ Hδ(Ωf ),
γ ∈ Hδ(Ωs), ϕs ∈ H1/2+δ(Σ), and ϕf ∈ H1/2+δ(∂Ωf ), then there exists C3 > 0, independent of h,
such that for each h ∈ (0, h1] there holds

‖(σ̂, γ̂) − (σ̂h, γ̂h)‖H×Q ≤ C3 h
δ
{
‖σs‖δ,Ωs + ‖divσs‖δ,Ωs + ‖σf‖δ,Ωf

+ ‖divσf‖δ,Ωf
+ ‖γ‖δ,Ωs + ‖ϕs‖1/2+δ,Σ + ‖ϕf‖1/2+δ,∂Ωf

}
.

Proof. See [14, Theorem 4.1] and the whole analysis in [14, Section 4] for full details. 2
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3 A residual-based a posteriori error estimator

In this section we derive reliable and efficient residual based a posteriori error estimators for (2.20).

We begin by introducing further notations. Given T ∈ T sh ∪ T
f
h , we let E(T ) be the set of edges of T ,

and denote by Eh be the set of all edges of T sh ∪ T
f
h . Then we can write

Eh = Eh(Ωs) ∪ Eh(Σ) ∪ Eh(Ωf ) ∪ Eh(Γ), (3.1)

where Eh(Ωs) := {e ∈ Eh : e ⊆ Ωs}, Eh(Σ) := {e ∈ Eh : e ⊆ Σ}, and similarly for Eh(Ωf ) and Eh(Γ).
In what follows, he stands for the length of the edge e ∈ Eh. Also, for each edge e ∈ Eh we fix a unit
normal vector ν := (ν1, ν2)t, and let s := (−ν2, ν1)t be the corresponding fixed unit tangential vector
along e. Now, let ws ∈ L2(Ωs) such that ws|T ∈ C(T ) for each T ∈ T sh . Then, given T ∈ T sh and
e ∈ E(T )∩Eh(Ωs), we denote by [ws] the jump of ws across e, that is [ws] := (ws|T )|e−(ws|T ′)|e, where
T and T ′ are the triangles of T sh having e as a common edge. Also, given e ∈ Eh(Ωs) and τ s ∈ L(Ωs)
such that τ s|T ∈ C(T ) on each T ∈ T sh , we let [τ s s] := (τ s|T − τ s|T ′)|e s. Similar definitions hold for

vf ∈ L2(Ωf ) such that vf |T ∈ C(T ) for each T ∈ T fh . In fact, given e ∈ E(T ) ∩ Eh(Ωf ), we define
[vf · ν] :=

(
(vf |T )|e − (vf |T ′)|e

)
|e · ν. Finally, given a scalar function q, a vector χ := (χ1,χ2) and a

tensor τ := (τij), we let

curl(q) :=

 ∂q
∂x2

− ∂q
∂x1

 , curl(χ) :=

 ∂χ1
∂x2

−∂χ1
∂x1

∂χ2
∂x2

−∂χ2
∂x1

 ,

rotχ :=
∂χ2

∂x1
− ∂χ1

∂x2
and curl(τ ) :=

 ∂τ12
∂x1
− ∂τ11

∂x2

∂τ22
∂x1
− ∂τ21

∂x2

 .

Next, letting (σ̂h, γ̂h) := ((σs,h,σf,h), (γh,ϕs,h,ϕf,h)) ∈ Hh ×Qh be the unique solution of (2.20),
with ϕf,h := (ϕ

Σ,h
, ϕ

Γ,h
) ∈ Λh(Σ)×Λh(Γ), and denoting by Psh the L2(Ωs)-orthogonal projector onto

Us
h (cf. (2.18)), we define for each T ∈ T sh , and for each T ∈ T fh , respectively, the a posteriori error

indicators:

θ2
T,s := ‖σs,h − σt

s,h‖20,T + ‖(I− Psh) f ‖20,T + h2
T ‖C−1 σs,h + γh‖20,T

+ h2
T ‖curl(C−1 σs,h + γh)‖20,T +

∑
e∈E(T )∩Eh(Ωs)

he ‖[(C−1 σs,h + γh) s]‖20,e , (3.2)

θ2
T,f := h2

T ‖σf,h‖20,T + h2
T ‖rot(σf,h)‖20,T +

∑
e∈E(T )∩Eh(Ωf )

he ‖[σf,h · s]‖20,e . (3.3)

Similarly, for each e ∈ Eh(Σ) we define

θ2
e,Σ :=he ‖ϕs,h − uh‖20,e + he ‖σf,h · ν − ρfω2ϕs,h · ν‖20,e + he ‖σs,h ν + ϕ

Σ,h
ν‖20,e

+ he

∥∥∥(C−1 σs,h + γh) s−
dϕs,h
ds

∥∥∥2

0,e
+ he

∥∥∥σf,h · s − dϕ
Σ,h

ds

∥∥∥2

0,e
+ he ‖ϕΣ,h

− ph‖20,e , (3.4)

where, resembling (2.5) and (2.6) (see also [14]), we set

uh :=− 1

κ2
s

(
Psh(f) + divσs,h

)
in Ωs (3.5)
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and

ph :=− 1

κ2
f

divσf,h in Ωf . (3.6)

In addition, assuming that the Robin datum g ∈ L2(Γ), we set for each e ∈ Eh(Γ)

θ2
e,Γ := he

∥∥∥σf,h · s − dϕ
Γ,h

ds

∥∥∥2

0,e
+ he ‖ϕΓ,h

− ph‖20,e + he ‖σf,h · ν − ı κf ϕΓ,h
− g‖20,e . (3.7)

Therefore, we introduce the global a posteriori error estimator

θ :=

{ ∑
T∈T s

h

θ2
T,s +

∑
T∈T f

h

θ2
T,f +

∑
e∈Eh(Σ)

θ2
e,Σ +

∑
e∈Eh(Γ)

θ2
e,Γ

}1/2

, (3.8)

and state the main result of this section as follows.

Theorem 3.1 Assume that the homogeneous problem associated to (2.7) has only the trivial solution,
and let (σ̂, γ̂) :=

(
(σs,σf ), (γ,ϕs,ϕf )

)
∈ H × Q and (σ̂h, γ̂h) :=

(
(σs,h,σf,h), (γh,ϕs,h,ϕf,h)

)
∈

Hh ×Qh be the unique solutions of (2.7) and (2.20), respectively. In addition, let u ∈ L2(Ωs) and
p ∈ L2(Ωf ) be defined according to (2.5) and (2.6), respectively, that is u := − 1

κ2
s

(
f + divσs

)
and

p = − 1
κ2
f
divσf , and assume that the Robin datum g belongs to L2(Γ). Then, there exist Ceff , Crel > 0

independent of h, such that

Ceff θ ≤ ‖u− uh‖0,Ωs + ‖p− ph‖0,Ωf
+ ‖σ̂ − σ̂h‖H + ‖γ̂ − γ̂h‖Q ≤ Crel θ . (3.9)

The lower and upper estimates given by (3.9) constitute what we call the efficiency and reliability
of θ, respectively.

3.1 Reliability of the a posteriori error estimator

We begin with the upper bounds for ‖u−uh‖0,Ωs and ‖p−ph‖0,Ωf
. In fact, according to the definitions

of u (cf. (2.5)), p (cf. (2.6)), uh (cf. (3.5)), and ph (cf. (3.6)), we easily find that

‖u− uh‖0,Ωs ≤
1

κ2
s

{
‖(I−Psh)f‖0,Ωs + ‖σs − σs,h‖div;Ωs

}
(3.10)

and

‖p− ph‖0,Ωf
≤ 1

κ2
f

‖σf − σf,h‖div;Ωf
. (3.11)

We continue our analysis by recalling that the continuous dependence result given by (2.9) (cf.
Theorem 2.1) is equivalent to the global inf-sup condition for the continuous formulation (2.7) with
the constant α = 1

Ccd
> 0. Then, by applying this estimate to the error (σ̂, γ̂) − (σ̂h, γ̂h) ∈ H ×Q,

we obtain

α ‖(σ̂, γ̂)− (σ̂h, γ̂h)‖H×Q ≤ sup
(τ̂ ,η̂)∈H×Q\{0}

|E(τ̂ , η̂)|
‖(τ̂ , η̂)‖H×Q

,

where
E(τ̂ , η̂) := A(σ̂ − σ̂h, τ̂ ) + B(τ̂ , γ̂ − γ̂h) + B(σ̂ − σ̂h, η̂) + K(γ̂ − γ̂h, η̂) ,
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for all (τ̂ , η̂) := ((τ s, τ f ), (η,ψs,ψf )) ∈ H ×Q, with ψf = (ψΣ , ψΓ) ∈ H1/2(Σ) ×H1/2(Γ). More
precisely, thanks to the equations of the continuous variational formulation (2.7), we deduce that

E(τ̂ , η̂) = E1(τ s) + E2(τ f ) + E3(η) + E4(ψs) + E5(ψΣ) + E6(ψΓ) , (3.12)

where E1 up to E6 are the linear functionals defined by

E1(τ s) :=
1

κ2
s

∫
Ωs

{
f + divσs,h

}
· div τ s −

∫
Ωs

{
C−1 σs,h + γh

}
: τ s + 〈τ s ν,ϕs,h〉Σ , (3.13)

E2(τ f ) :=
1

κ2
f

∫
Ωf

divσf,h div τ f −
∫

Ωf

σf,h · τ f − 〈τ f · ν, ϕΣ,h
〉Σ + 〈τ f · ν, ϕΓ,h

〉Γ , (3.14)

E3(η) := −
∫

Ωs

σs,h : η ,

E4(ψs) := 〈σs,h ν + ϕ
Σ,h
ν,ψs〉Σ ,

E5(ψΣ) := −〈σf,h · ν − ρf ω
2ϕs,h · ν, ψΣ〉Σ ,

and

E6(ψΓ) := 〈σf,h · ν − i κf ϕΓ,h
− g, ψΓ〉Γ .

In addition, it is not difficult to see that

sup
(τ̂ ,η̂)∈H×Q\{0}

|E(τ̂ , η̂)|
‖(τ̂ , η̂)‖H×Q

≤ sup
τ s∈H(div;Ωs)\{0}

|E1(τ s)|
‖τ s‖div;Ωs

+ sup
τ f∈H(div;Ωf )\{0}

|E2(τ f )|
‖τ f‖div;Ωf

+ sup
η∈L2

skew(Ωs)\{0}

|E3(η)|
‖η‖0,Ωs

+ sup
ψs∈H1/2(Σ)\{0}

|E4(ψs)|
‖ψs‖1/2,Σ

+ sup
ψ

Σ
∈H1/2(Σ)\{0}

|E5(ψΣ)|
‖ψΣ‖1/2,Σ

+ sup
ψ

Γ
∈H1/2(Γ)\{0}

|E6(ψΓ)|
‖ψΓ‖1/2,Γ

.

(3.15)

Furthermore, the “Galerkin orthogonality condition” arising from (2.7) and (2.20) establishes that

E(τ̂ h, η̂h) = 0 ∀ (τ̂ h, η̂h) ∈ Hh ×Qh ,

and hence, in order to estimate the above norms of the six functionals defining E(τ̂ , η̂), we could
replace (τ s, τ f ,η,ψs, ψΣ , ψΓ) by (τ s − τ s,h, τ f − τ f,h,η − ηh,ψs − ψs,h, ψΣ − ψΣ,h

, ψΓ − ψΓ,h
) with

any suitable choice of τ̂ h := (τ s,h, τ f,h) ∈ Hh and η̂h := (ηh,ψs,h, (ψΣ,h
, ψ

Γ,h
)) ∈ Qh, whenever it

is necessary. However, this procedure is applied in what follows only to estimate the first two suprema
on the right hand side of (3.15).

We begin the estimates of all these suprema with the last four of them.

Lemma 3.1 There holds

‖E3‖ := sup
η∈L2

skew(Ωs)\{0}

|E3(η)|
‖η‖0,Ωs

≤ 1

2
‖σs,h − σt

s,h‖20,Ωs
. (3.16)
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Proof. It suffices to see that σs,h = 1
2(σs,h + σt

s,h) + 1
2(σs,h − σt

s,h), which yields∫
Ωs

σs,h : η =
1

2

∫
Ωs

(
σs,h − σt

s,h

)
: η ∀η ∈ L2

skew(Ωs) ,

and hence the Cauchy-Schwarz inequality completes the proof. 2

The upper bounds for the norms of E4, E5, and E6, being all consequence of the same arguments,
are collected in the following lemma.

Lemma 3.2 There exist C4, C5, C6 ≥ 0, independent of h, such that

‖E4‖ := sup
ψs∈H1/2(Σ)\{0}

|E4(ψs)|
‖ψs‖1/2,Σ

≤C4

 ∑
e∈Eh(Σ)

he ‖σs,h ν + ϕ
Σ,h
ν‖20,e


1/2

, (3.17)

‖E5‖ := sup
ψ

Σ
∈H1/2(Σ)\{0}

|E5(ψΣ)|
‖ψΣ‖1/2,Σ

≤C5

 ∑
e∈Eh(Σ)

he ‖σf,h · ν − ρf ω2ϕs,h · ν‖20,e


1/2

, (3.18)

and

‖E6‖ := sup
ψ

Γ
∈H1/2(Γ)\{0}

|E6(ψΓ)|
‖ψΓ‖1/2,Γ

≤C6

 ∑
e∈Eh(Γ)

he ‖σf,h · ν − i κf ϕΓ,h
− g‖20,e


1/2

. (3.19)

Proof. It follows easily from the definitions of the functionals involved that

‖E4‖ = ‖σs,h ν + ϕ
Σ,h
ν‖−1/2,Σ ,

‖E5‖ = ‖σf,h · ν − ρf ω
2ϕs,h · ν‖−1/2,Σ ,

and
‖E6‖ = ‖σf,h · ν − i κf ϕΓ,h

− g‖−1/2,Γ .

Next, we observe from the equations forming the Galerkin scheme (2.20), that the discrete versions of
the transmission and Robin boundary conditions become, respectively,

〈σs,h ν + ϕ
Σ,h
ν,ψs,h〉Σ = 0 ∀ψs,h ∈ Λh(Σ)× Λh(Σ) ,

〈σf,h · ν − ρf ω
2ϕs,h · ν, ψΣ,h

〉Σ ∀ψ
Σ,h
∈ Λh(Σ) ,

and
〈σf,h · ν − i κf ϕΓ,h

− g, ψ
Γ,h
〉Γ ∀ψ

Γ,h
∈ Λh(Γ) ,

which say, equivalently, that each expression on the left hand side of the above dualities is orthogonal
to the corresponding finite element subspace indicated at the end of each equation. In particular,
σs,h ν + ϕ

Σ,h
ν is L2(Σ)-orthogonal to Λh(Σ) × Λh(Σ), and therefore, a straightforward application

of [9, Theorem 2] and the fact that Σh and Σ2h are of bounded variation, yield the existence of a
constant C4 > 0, independent of h, such that, denoting by E2h(Σ) the set of edges of Σ2h, there holds

‖σs,h ν + ϕ
Σ,h
ν‖−1/2,Σ ≤ C

∑
e∈E2h(Σ)

he‖σs,h ν + ϕ
Σ,h
ν‖20,e ≤ C4

∑
e∈Eh(Σ)

he‖σs,h ν + ϕ
Σ,h
ν‖20,e ,
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which shows (3.17). The proofs of (3.18) and (3.19), being also based on [9, Theorem 2] and the above
mentioned properties of Σh and Σ2h, are derived similarly. We omit further details. 2

We now aim to establish the upper bounds of ‖E1‖ and ‖E2‖, for which, as announced before, we
plan to use that

E1(τ s) = E1(τ s − τ s,h) and E2(τ f ) = E2(τ f − τ f,h) ∀ τ̂ h := (τ s,h, τ f,h) ∈ Hh . (3.20)

To this end, we also need to consider the space of pure Raviart-Thomas tensors of order 0, that is

RTsh :=
{
τ s,h ∈ H(div; Ωs) : ct τ s,h|T ∈ RT0(T ) ∀T ∈ T sh , ∀ c ∈ R2

}
,

which is clearly contained in Hs
h (cf. (2.10)). Then, we let Πs

h : H1(Ωs)→ RTsh and Πf
h : H1(Ωf )→ Hf

h

be the usual Raviart–Thomas interpolation operators, which are characterized by the identities∫
e

Πs
h(ζs)ν =

∫
e
ζs ν ∀ e ∈ T sh , ∀ ζs ∈ H1(Ωs) , (3.21)

and ∫
e

Πf
h(ζf ) · ν =

∫
e
ζf · ν ∀ e ∈ T fh , ∀ ζf ∈ H1(Ωf ) . (3.22)

It is easy to show, using (3.21) and (3.22), that

div(Πs
h(ζs)) = Psh(div ζs) and div(Πf

h(ζf )) = Pfh (div ζf ) , (3.23)

where, as said before, Psh is the L2(Ωs)-orthogonal projector onto Us
h (cf. (2.18)), and Pfh is the

L2(Ωf )-orthogonal projector onto Ufh (cf. (2.19)). In addition, it is well known (see, e.g. [8], [26], and

[19, Theorem 4.5]) that Πs
h and Πf

h satisfy the following approximation properties:

‖ζs −Πs
h(ζs)‖0,T ≤ C hT ‖ζs‖1,T ∀T ∈ T sh , ∀ ζs ∈ H1(Ωs) , (3.24)

‖(ζs −Πs
h(ζs))ν‖0,e ≤ C h1/2

e ‖ζs‖1,Te ∀ e ∈ T sh , ∀ ζs ∈ H1(Ωs) , (3.25)

‖ζf −Πf
h(ζf )‖0,T ≤ C hT ‖ζf‖1,T ∀T ∈ T fh , ∀ ζf ∈ H1(Ωf ) , (3.26)

‖(ζf −Πf
h(ζf )) · ν‖0,e ≤ C h1/2

e ‖ζf‖1,Te ∀ e ∈ T fh , ∀ ζf ∈ H1(Ωf ) , (3.27)

where Te in (3.25) (resp. in (3.27)) is a triangle of T sh (resp. T fh ) containing e on its boundary.

We now let Is,h : H1(Ωs) → Xs,h and If,h : H1(Ωf ) → Xf,h be the usual Clément interpolation
operators (cf. [12]), where

Xs,h :=
{
v ∈ C(Ω̄s) : v|T ∈ P1(T ), ∀T ∈ T sh

}
,

Xf,h :=
{
v ∈ C(Ω̄f ) : v|T ∈ P1(T ), ∀T ∈ T fh

}
.

A vectorial version of Is,h, say Is,h : H1(Ωs)→ Xs,h := Xs,h ×Xs,h, which is defined componentwise
by Is,h, is also required. The following lemma provides the local approximation properties of Is,h.
Analogue estimates hold for the operator If,h.
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Lemma 3.3 There exist constants c1, c2 > 0, independent of hs, such that for all v ∈ H1(Ωs) there
holds

‖v − Is,h(v)‖0,T ≤ c1 hT ‖v‖1,∆(T ) ∀T ∈ T sh

and

‖v − Is,h(v)‖0,e ≤ c2 h
1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh(Ωs) ∪ Eh(Σ) ,

where ∆(T ) := ∪{T ′ ∈ T sh : T ′ ∩ T 6= ∅} and ∆(e) := ∪{T ′ ∈ T sh : T ′ ∩ e 6= ∅}.

Proof. See [12]. 2

Next, in order to define a suitable τ̂ h := (τ s,h, τ f,h) ∈ Hh to be employed in (3.20), we first
demonstrate the existence of continuous Helmholtz decompositions of the spaces H(div; Ωs) and
H(div; Ωf ). More precisely, we adapt the analysis from [15, Section 3.2.2] to establish the follow-
ing result.

Lemma 3.4 For each τ s ∈ H(div; Ωs) there exist ζs ∈ H1(Ωs) and χs := (χ1, χ2)t ∈ H1(Ωs), with∫
Ωs
χ1 =

∫
Ωs
χ2 = 0, such that τ s = ζs + curlχs in Ωs and

‖ζs‖1,Ωs + ‖χs‖1,Ωs ≤ Cs ‖τ s‖div;Ωs , (3.28)

where Cs is a positive constant independent of τ s. In turn, for each τ f ∈ H(div; Ωf ) there exist
wf ∈ H1(Ωf ) and φf ∈ H1(Ωf ), such that τ f = wf + curlφf in Ωf and

‖wf‖1,Ωf
+ ‖φf‖1,Ωf

≤ Cf ‖τ f‖div;Ωf
, (3.29)

where Cf is a positive constant independent of τ f .

Proof. We proceed as in [15, Section 3.2.2] by considering first a convex domain Ω̃ containing Ωs.
Then, given τ s ∈ H(div; Ωs), we define the auxiliary function q ∈ L2(Ω̃) by

q :=

{
div τ s in Ωs

0 in Ω̃\Ω̄s
.

and let z ∈ H1
0(Ω̃) be the unique weak solution of the boundary value problem:

∆z = q in Ω̃ , z = 0 on ∂Ω̃ .

The elliptic regularity result for the above problem guarantees that z ∈ H2(Ω̃) and

‖z‖
2,Ω̃
≤ C ‖q‖

0,Ω̃
= ‖div τ s‖0,Ωs .

It follows that ζs := ∇z|Ωs belongs to H1(Ωs),

div ζs = div τ s in Ωs , (3.30)

and

‖ζs‖1,Ωs ≤ C ‖z‖2,Ωs ≤ C ‖div τ s‖0,Ωs . (3.31)
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In this way, since div(τ s − ζs) = 0 in Ωs, and Ωs is connected, there exist χs := (χ1, χ2)t ∈ H1(Ωs),
with

∫
Ωs
χ1 =

∫
Ωs
χ2 = 0, such that τ s − ζs = curlχs. Note that this identity, the generalized

Poincaré inequality, and (3.31) imply that

‖χs‖1,Ωs ≤ C |χs|1,Ωs = C ‖τ s − ζs‖0,Ωs ≤ C
{
‖τ s‖0,Ωs + ‖ζs‖0,Ωs

}
≤ C ‖τ s‖div;Ωs ,

which, together with (3.31) again, yields (3.28).

In turn, given τ f ∈ H(div; Ωf ), and since Ωf is not connected, we first need to perform a suitable
extension of τ f to the domain Ω := Ωs ∪ Σ ∩ Ωf . To this end, we now let v ∈ H1(Ωs) be the unique
solution of the Neumann problem:

∆ v = −
〈τ f · ν, 1〉Σ
|Ωs|

in Ωs ,
∂v

∂ν
= τ f · ν on Σ ,

∫
Ωs

v = 0 .

The unique solvability of the above problem is guaranteed by the Lax-Milgram Lemma, whose corre-
sponding continuous dependence result establishes that

‖v‖1,Ωs ≤ c ‖τ f · ν‖−1/2,Σ . (3.32)

Then we define

τ̃ :=

 τ f in Ωf ,

∇v in Ωs ,

which clearly belongs to H(div; Ω), and observe, using (3.32), that

‖τ̃‖div;Ω ≤ ‖τ f‖div;Ωf
+ ‖∇v‖div;Ωs ≤ ‖τ f‖div;Ωf

+ c̃ ‖τ f · ν‖−1/2,Σ ≤ C ‖τ f‖div;Ωf
.

In this way, proceeding as in the first part of the present proof, but now applied to τ̃ ∈ H(div; Ω),
we deduce the existence of w̃ ∈ H1(Ω) and φ̃ ∈ H1(Ω), with

∫
Ω φ̃ = 0, such that τ̃ = w̃ + curl(φ̃)

in Ω and

‖w̃‖1,Ω + ‖φ̃‖1,Ω ≤ C ‖τ̃‖div;Ω ≤ C ‖τ f‖div;Ωf
.

Finally, the proof is completed by defining wf := w̃|Ωf
and φf := φ̃|Ωf

. 2

3.1.1 Estimating ‖E1‖

Given τ s ∈ H(div; Ωs), we use (3.20) to estimate E1(τ s) = E1

(
τ s − τ s,h

)
with a suitable chosen

τ s,h ∈ Hs
h. More precisely, as suggested by the Helmholtz decomposition for τ s provided by Lemma

3.4, that is τ s = ζs + curl(χs), with ζs ∈ H1(Ωs) and χs ∈ H1(Ωs), we consider in what follows

χs,h := Is,h(χs) ∈ Xs,h and τ s,h := Πs
h(ζs) + curl(χs,h) ∈ RTsh ⊆ Hs

h ,

which yields
τ s − τ s,h = ζs − Πs

h(ζs) + curl
(
χs − χs,h

)
.

In particular, using (3.23) and (3.30) we find from the above identity that

div
(
τ s − τ s,h

)
=
(
I− Psh

)
(div ζs) =

(
I− Psh

)
(div τ s) ,

and hence, according to the definition of E1 (cf. (3.13)), we find that

E1(τ s − τ s,h) = E11(τ s) + E12(ζs) + E13(χs) ,
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where

E11(τ s) =
1

κ2
s

∫
Ωs

{
f + divσs,h

}
(I− Psh)(div τ s) =

1

κ2
s

∫
Ωs

(I− Psh)(f) · (div τ s) ,

E12(ζs) = −
∫

Ωs

{
C−1 σs,h + γh

}
: (ζs −Πs

h(ζs)) + 〈(ζs −Πs
h(ζs))ν,ϕs,h〉Σ ,

and

E13(χs) = −
∫

Ωs

{
C−1 σs,h + γh

}
: curl(χs − χs,h) + 〈curl(χs − χs,h)ν,ϕs,h〉Σ .

Note that the second expression defining E11(τ s) follows from the fact that Psh is self-adjoint and
that, according to the definitions of Hs

h (cf. (2.10)) and Us
h (cf. (2.18)), there holds div

(
Hs
h

)
⊆ Us

h,
whence

(
I− Psh

)
(divσs,h) = 0.

The following three lemmata provide the upper bounds for E11(τ s), E12(ζs), and E13(χs).

Lemma 3.5 There holds

|E11(τ s)| ≤
1

κ2
s

∑
T∈T s

h

‖(I− Psh) f ‖20,T


1/2

‖div τ s‖0,Ωs .

Proof. It follows from a straightforward application of the Cauchy-Schwarz inequality. 2

Lemma 3.6 There exists C > 0, independent of µ, λ, and κs, such that

|E12(ζs)| ≤ C

∑
T∈T s

h

h2
T ‖C−1 σs,h + γh‖20,T +

∑
e∈Eh(Σ)

he ‖ϕs,h − uh‖20,e


1/2

‖div τ s‖0,Ωs .

Proof. The present estimate was actually proved in [15, Lemma 5]. For sake of completeness we
provide here the main aspects of the corresponding proof. We first observe, thanks to the fact that ζs
belongs to H1(Ωs), that (ζs −Πs

h(ζs))ν|Σ ∈ L2(Σ), and hence

〈(ζs −Πs
h(ζs))ν,ϕs,h〉Σ =

∑
e∈Eh(Σ)

∫
e
ϕs,h · (ζs −Πs

h(ζs))ν . (3.33)

Next, it is clear from (3.5) that uh ∈ Us
h, which means, in particular, that for each e ∈ Eh(Σ) there

holds uh|e ∈ P0(e), and therefore the identity (3.21) yields∑
e∈Eh(Σ)

∫
e
uh · (ζs −Πs

h(ζs))ν = 0 .

Thus, by introducing the above null expression in the right hand side of (3.33), and then re-incorpo-
rating the resulting equation in the definition of E12, we find that

E12(ζs) = −
∑
T∈T s

h

∫
T

{
C−1 σs,h + γh

}
: (ζs −Πs

h(ζs)) +
∑

e∈Eh(Σ)

∫
e

(
ϕs,h − uh

)
· (ζs −Πs

h(ζs))ν ,

where we have replaced the original integration

∫
Ωs

by
∑
T∈T s

h

∫
T

. In this way, the rest of the proof

reduces to apply the Cauchy-Schwarz inequality, the approximation properties (3.24) and (3.25), and
finally the upper bound given by (3.31). We omit further details. 2
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Lemma 3.7 There exists C > 0, independent of µ, λ and κs, such that

|E13(χs)| ≤ C

∑
T∈T s

h

h2
T ‖curl(C−1 σs,h + γh)‖20,T +

∑
e∈Eh(Ωs)

he ‖[(C−1 σs,h + γh) s]‖20,e

+
∑

e∈Eh(Σ)

he

∥∥∥(C−1 σs,h + γh) s−
dϕs,h
ds

∥∥∥2

0,e


1/2

‖τ s‖div;Ωs .

Proof. While this result is also available in several places (see, e.g. [15, Lemma 6]), here we proceed
similarly as for the previous lemma and provide an sketch of its proof. Indeed, since

curl(χs − χs,h)ν = − d

ds
(χs − χs,h) and

dϕs,h
ds

∈ L2(Σ) ,

we deduce, using integration by parts on Σ, that

〈curl(χs − χs,h)ν,ϕs,h〉Σ = −
〈
d

ds
(χs − χs,h),ϕs,h

〉
Σ

=

∫
Σ

dϕs,h
ds
· (χs − χs,h) . (3.34)

In turn, integrating by parts on each T ∈ T sh , we obtain that

−
∫

Ωs

{
C−1 σs,h + γh

}
: curl(χs − χs,h) = −

∑
T∈T s

h

∫
T

{
C−1 σs,h + γh

}
: curl(χs − χs,h)

=
∑
T∈T s

h

{∫
T

curl
(
C−1 σs,h + γh

)
· (χs − χs,h) −

∫
∂T

(
C−1 σs,h + γh

)
s · (χs − χs,h)

}
=
∑
T∈T s

h

∫
T

curl
(
C−1 σs,h + γh

)
· (χs − χs,h) −

∑
e∈Eh(Ωs)

∫
e

[(
C−1 σs,h + γh

)
s
]
· (χs − χs,h)

−
∑

e∈Eh(Σ)

∫
e

(
C−1 σs,h + γh

)
s · (χs − χs,h) ,

which, together with (3.34), yields

E13(χs) =
∑
T∈T s

h

∫
T

curl
(
C−1 σs,h + γh

)
· (χs − χs,h) −

∑
e∈Eh(Ωs)

∫
e

[(
C−1 σs,h + γh

)
s
]
· (χs − χs,h)

−
∑

e∈Eh(Σ)

∫
e

{(
C−1 σs,h + γh

)
s−

dϕs,h
ds

}
· (χs − χs,h) .

In this way, and recalling that χs,h = Is,h(χs), the rest of the proof follows from obvious applications
of the Cauchy-Schwarz inequality and the approximation properties of the Clément interpolation
operator Is,h (cf. Lemma 3.3), taking into account as well that the number of elements in ∆(T ) and
∆(e) are bounded and that ‖χs‖1,Ωs ≤ Cs ‖τ s‖div;Ωs (cf. (3.28)). Further details are omitted. 2

As a direct consequence of Lemmata 3.5, 3.6, and 3.7, the norm of the functional E1 (cf. (3.13))
is estimated as follows.
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Lemma 3.8 There exists C > 0, independent of µ, λ and κs, such that

‖E1‖ ≤ C

 1

κ4
s

∑
T∈T s

h

‖(I− Psh) f ‖20,T +
∑
T∈T s

h

h2
T ‖C−1 σs,h + γh‖20,T

+
∑

e∈Eh(Σ)

he ‖ϕs,h − uh‖20,e +
∑
T∈T s

h

h2
T ‖curl(C−1 σs,h + γh)‖20,T

+
∑

e∈Eh(Ωs)

he ‖[(C−1 σs,h + γh) s]‖20,e +
∑

e∈Eh(Σ)

he

∥∥∥(C−1 σs,h + γh) s−
dϕs,h
ds

∥∥∥2

0,e


1/2

.

3.1.2 Estimating ‖E2‖

We proceed analogously to the case of ‖E1‖. This means that, given τ f ∈ H(div; Ωf ), we consider
from Lemma 3.4 its Helmholtz decomposition τ f = wf + curlφf in Ωf , with wf ∈ H1(Ωf ) and
φf ∈ H1(Ωf ), and define

φf,h := If,h(φf ) and τ f,h := Πf
h(wf ) + curl(φf,h) ,

so that, using the second equality in (3.20), we can write E2(τ f ) = E2

(
τ f − τ f,h

)
. It follows that

τ f − τ f,h = wf −Πf
h(wf ) + curl(φf − φf,h) ,

from which, employing the second identity in (3.23), and noting from the definitions (2.11) and (2.19)

that divσf,h ∈ Ufh , we find that∫
Ωf

divσf,h div
(
τ f − τ f,h

)
=

∫
Ωf

divσf,h
(
I− Pfh )(div wf ) = 0 .

Hence, according to (3.14) and the above computation, we get

E2(τ f − τ f,h) = E21(wf ) + E22(φf ) ,

where

E21(wf ) := −
∫

Ωf

σf,h ·
(
wf −Πf

h(wf )
)
− 〈
(
wf −Πf

h(wf )
)
· ν, ϕ

Σ,h
〉Σ + 〈

(
wf −Πf

h(wf )
)
· ν, ϕ

Γ,h
〉Γ

and

E22(φf ) := −
∫

Ωf

σf,h · curl(φf − φf,h)− 〈curl(φf − φf,h) · ν, ϕ
Σ,h
〉Σ

+ 〈curl(φf − φf,h) · ν, ϕ
Γ,h
〉Γ .

The following two lemmata establish the upper bounds for |E21(wf )| and |E22(φf )|.

Lemma 3.9 There exists C > 0, independent of κf and h, such that

|E21(wf )| ≤ C


∑
T∈T f

h

h2
T ‖σf,h‖20,T +

∑
e∈Eh(Σ)

he ‖ϕΣ,h
− ph‖20,e

+
∑

e∈Eh(Γ)

he ‖ϕΓ,h
− ph‖20,e

 ‖τ f‖div;Ωf
.
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Proof. We proceed as in the proof of Lemma 3.6. Indeed, since wf ∈ H1(Ωf ) it is clear that(
wf −Πf

h(wf )
)
· ν|Σ ∈ L2(Σ) and

(
wf −Πf

h(wf )
)
· ν|Γ ∈ L2(Γ) ,

which, together with the fact that ph|e ∈ P0(e) ∀ e ∈ Eh(Σ) ∪ Eh(Γ) (cf. (3.6) and (2.11)), and thanks
to the characterization property (3.22), allow to show that

〈
(
wf −Πf

h(wf )
)
· ν, ϕ

Σ,h
〉Σ =

∑
e∈Eh(Σ)

∫
e
(ϕ

Σ,h
− ph)

(
wf −Πf

h(wf )
)
· ν

and

〈
(
wf −Πf

h(wf )
)
· ν, ϕ

Γ,h
〉Γ =

∑
e∈Eh(Γ)

∫
e
(ϕ

Γ,h
− ph)

(
wf −Πf

h(wf )
)
· ν .

In this way, we find that

E21(wf ) := −
∑
T∈T f

h

∫
T
σf,h ·

(
wf −Πf

h(wf )
)
−

∑
e∈Eh(Σ)

∫
e
(ϕ

Σ,h
− ph)

(
wf −Πf

h(wf )
)
· ν

+
∑

e∈Eh(Γ)

∫
e
(ϕ

Γ,h
− ph)

(
wf −Πf

h(wf )
)
· ν ,

and hence, the proof is completed by applying the Cauchy-Schwarz inequality, the approximation
properties (3.26) and (3.27), and the fact that ‖wf‖1,Ωf

≤ Cf ‖τ f‖div;Ωf
(cf. (3.29)). We omit

further details. 2

Lemma 3.10 There exists C > 0, independent of κf and h, such that

|E22(φf )| ≤ C


∑
T∈T f

h

h2
T ‖rot(σf,h)‖20,T +

∑
e∈Eh(Ωf )

he ‖[σf,h · s]‖20,e

+
∑

e∈Eh(Σ)

he

∥∥∥σf,h · s− dϕ
Σ,h

ds

∥∥∥2

0,e
+

∑
e∈Eh(Γ)

he

∥∥∥σf,h · s− dϕ
Γ,h

ds

∥∥∥2

0,e


1/2

‖τ f‖div;Ωf
.

Proof. The analysis here is analogous to the proof of Lemma 3.7. In fact, we begin by noticing that

curl(φf − φf,h) · ν = − d

ds
(φf − φf,h) ,

dϕ
Σ,h

ds
∈ L2(Σ) , and

dϕ
Γ,h

ds
∈ L2(Γ) ,

which, together with integration by parts procedures on Σ, Γ, and on each T ∈ T fh , yield

E22(φf ) = −
∑
T∈T f

h

∫
T

rot(σf,h) (φf − φf,h) +
∑

e∈Eh(Ωf )

∫
e
[σf,h · s](φf − φf,h)

−
∑

e∈Eh(Σ)

∫
e

(
σf,h · s−

dϕ
Σ,h

ds

)
(φf − φf,h) +

∑
e∈Eh(Γ)

∫
e

(
σf,h · s−

dϕ
Γ,h

ds

)
(φf − φf,h) .

Consequently, and similarly as for Lemma 3.7, the rest of the proof follows from straightforward ap-
plications of the Cauchy-Schwarz inequality, the approximation properties of the Clément interpolator
φf,h := If,h(φf ) (cf. Lemma 3.3), the fact that the cardinalities of ∆(T ) and ∆(e) are bounded, and
the upper bound ‖φf‖1,Ωf

≤ Cf ‖τ f‖div;Ωf
(cf. (3.29)). We omit further details. 2

The norm of E2 (cf. (3.14) is bounded now as a consequence of Lemmata 3.9 and 3.10.
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Lemma 3.11 There exists C > 0, independent of κf and h, such that

‖E2‖ ≤ C


∑
T∈T f

h

h2
T ‖σf,h‖20,T +

∑
e∈Eh(Σ)

he ‖ϕΣ,h
− ph‖20,e

+
∑

e∈Eh(Γ)

he ‖ϕΓ,h
− ph‖20,e +

∑
T∈T f

h

h2
T ‖rot(σf,h)‖20,T +

∑
e∈Eh(Ωf )

he ‖[σf,h · s]‖20,e

+
∑

e∈Eh(Σ)

he

∥∥∥σf,h · s− dϕ
Σ,h

ds

∥∥∥2

0,e
+

∑
e∈Eh(Γ)

he

∥∥∥σf,h · s− dϕ
Γ,h

ds


1/2

.

We end this section by observing that the reliability estimate (cf. Theorem 3.1) is a direct conse-
quence of (3.10) and (3.11), together with Lemmata 3.1, 3.2, 3.8, and 3.11.

3.2 Efficiency of the a posteriori error estimator

In this section we prove the efficiency of our a posteriori error estimator θ (lower bound in (3.9)). We
begin with the first two terms defining θ2

T,s (cf. (3.2)). In fact, since σs is symmetric in Ωs, we easily
notice, adding and substracting σs, that there holds

‖σs,h − σt
s,h‖20,T ≤ 4 ‖σs − σs,h‖20,T . (3.35)

Next, according to the definitions of u (cf. (2.5)) and uh (cf. (3.5)), we find that

‖
(
I− Psh)f‖20,T ≤ 2κ4

s ‖u− uh‖20,T + 2 ‖div(σs − σs,h)‖20,T . (3.36)

Throughout the rest of the section we provide the corresponding upper bounds for the terms in
(3.2), (3.3), (3.4), and (3.7) that involve the mesh parameters hT and he. Actually, most of these
estimates are already available in the literature (see, e.g. [10], [11], [15], and [18]), but for sake
of completeness we sketch here some of their proofs, which employ the localization technique based
on triangle-bubble and edge-bubble functions, together with extension operators, discrete trace and
inverse inequalities, and certainly the original identities recovered by Theorem 2.2. To this end, we
now introduce further notations and preliminary results. Given T ∈ T sh ∪ T

f
h and e ∈ E(T ), we let ψT

and ψe be the usual triangle-bubble and edge-bubble functions, respectively (see [28, eqs. (1.5) and
(1.6)]), which satisfy:

ii) ψT ∈ P3(T ), ψT = 0 on ∂T , supp(ψT ) ⊆ T , and 0 ≤ ψT ≤ 1 in T .

ii) ψe|T ∈ P2(T ), ψe = 0 on ∂T \ e, supp(ψe) ⊆ we := ∪{T ′ ∈ T sh ∪ T
f
h : e ∈ E(T ′)}, and

0 ≤ ψe ≤ 1 in we.

We also recall from [27] that, given k ∈ N∪{0}, there exists an extension operator L : C(e)→ C(T )
that satisfies L(p) ∈ Pk(T ) and L(p)|e = p for all p ∈ Pk(e). Additional properties of ψT , ψe and L
are collected in the following lemma.

Lemma 3.12 Given k ∈ N∪{0}, there exist positive constants c1, c2 and c3, depending only on k and

the shape regularity of the triangulations (minimun angle condition), such that for each T ∈ T sh ∪ T
f
h

and e ∈ E(T ), there hold

‖q‖20,T ≤ c1‖ψ1/2
T q‖20,T ∀q ∈ Pk(T ) (3.37)

‖p‖20,e ≤ c2‖ψ1/2
e p‖20,e ∀p ∈ Pk(e) (3.38)
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and

‖ψ1/2
e L(p)‖20,T ≤ c3 he‖p‖20,e ∀p ∈ Pk(e) (3.39)

Proof. See [27, Lemma 1.3]. 2

The following inverse and discrete trace inequalities will also be used.

Lemma 3.13 Let k, l, m ∈ N ∪ {0} such that l ≤ m. Then there exists c > 0, depending only on k,

l, m and the shape regularity of the triangulations, such that for each T ∈ T sh ∪ T
f
h there holds

|q|m,T ≤ c hl−mT |q|l,T ∀ q ∈ Pk(T ) . (3.40)

Proof. See [13, Theorem 3.2.6]. 2

Lemma 3.14 There exists C > 0, depending only on the shape regularity of the triangulations, such
that for each T ∈ T sh ∪ T

f
h and e ∈ E(T ), there holds

‖v‖20,e ≤ C
{
h−1
e ‖v‖20,T + he |v|21,T

}
∀ v ∈ H1(T ) . (3.41)

Proof. See [1, Theorem 3.10] or [3, eq. (2.4)]. 2

The following three lemmas, whose proofs make use of the techniques and results described above,
provide the upper bounds for the remaining terms defining θ2

T,s (cf. (3.2)).

Lemma 3.15 There exists C > 0, independent of h and λ, such that for each T ∈ T sh there holds

h2
T ‖C−1σs,h + γh‖20,T ≤ C

{
‖u− uh‖20,T + h2

T ‖σs − σs,h‖20,T + h2
T ‖γ − γh‖20,T

}
.

Proof. See [11, Lemma 6.6]. 2

Lemma 3.16 There exists C > 0, independent of h and λ, such that for each T ∈ T sh there holds

h2
T ‖curl (C−1σs,h + γh)‖20,T ≤ C

{
‖σs − σs,h‖20,T + ‖γ − γh‖20,T

}
.

Proof. See [11, Lemma 6.3] or [6, Lemma 4.7]. 2

Lemma 3.17 There exists C > 0, independent of h and λ, such that for each e ∈ Eh(Ωs) there holds

he ‖[(C−1σs,h + γh)s]‖20,e ≤ C
∑
T ⊆ωe

{
‖σs − σs,h‖20,T + ‖γ − γh‖20,T

}
,

where ωe := ∪
{
T ′ ∈ T sh : e ∈ E(T ′)

}
.

Proof. See [11, Lemma 6.4]. 2

The analogue of the above three lemmas for the terms defining θ2
T,f (cf. (3.3)) are stated next.

Lemma 3.18 There exists C > 0, independent of h, such that for each T ∈ T fh there holds

h2
T ‖σf,h‖20,T ≤ C

{
h2
T ‖σf − σf,h‖20,T + ‖p− ph‖20,T

}
.
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Proof. It is a slight modification of [10, Lemma 6.3] (see also [18, Lemma 4.13]). In fact, given T ∈ T fh ,
we apply (3.37), use that σf = ∇p in Ωf and ∇ph = 0 in T (which follows from the fact that ph is
piecewise constant in virtue of (2.11) and (3.6)), and then integrate by parts. In this way, we find
that

‖σf,h‖20,T ≤ C ‖ψ1/2
T σf,h‖20,T = C

∫
T
ψT σf,h ·

{
(σf,h − σf )−∇(ph − p)

}
= C

{∫
T
ψT σf,h · (σf,h − σf ) +

∫
T

div(ψT σf,h) (p− ph)
}
.

Then, employing the Cauchy- Schwarz inequality, the inverse estimate (3.40) (cf. Lemma 3.13), and
the fact that 0 ≤ ψT ≤ 1, we get

‖σf,h‖0,T ≤ C
{
‖σf − σf,h‖20,T + h−1

T ‖p− ph‖
2
0,T

}
,

which implies the required bound and completes the proof. 2

Lemma 3.19 There exists C > 0, independent of h, such that for each T ∈ T fh there holds

h2
T ‖rotσf,h‖20,T ≤ C ‖σf − σf,h‖20,T .

Proof. It basically follows from the general estimate provided by [6, Lemma 4.3]. Indeed, a row-wise
interpretation of this result allows to show that, given a piecewise polynomial ρh ∈ L2(Ωf ) of degree

k ≥ 0 on each T ∈ T fh , and ρ ∈ L2(Ωf ) such that rot ρ = 0 in Ωf , there exists c > 0, independent of
h, such that

hT ‖rot ρh‖0,T ≤ c ‖ρ− ρh‖0,T ∀T ∈ T fh . (3.42)

Hence, since rotσf = rot(∇p) = 0, it suffices to apply (3.42) to ρh = σf,h and ρ = σf . 2

Lemma 3.20 There exists C > 0, independent of h, such that for each e ∈ Eh(Ωf ) there holds

he ‖[σf,h · s]‖20,e ≤ C ‖σf − σf,h‖20,ωe
,

where ωe := ∪
{
T ′ ∈ T fh : e ∈ E(T ′)

}
.

Proof. We first observe that a slight modification of the proof of [6, Lemma 4.4] allows to show
that, under the same hypotheses leading to (3.42), that is given a piecewise polynomial ρh ∈ L2(Ωf )

of degree k ≥ 0 on each T ∈ T fh , and ρ ∈ L2(Ωf ) such that rot ρ = 0 in Ωf , there exists c > 0,
independent of h, such that for each e ∈ Eh(Ωf ) there holds

he ‖[ρh · s]‖20,e ≤ c ‖ρ− ρh‖20,ωe
. (3.43)

Hence, the present proof is a straightforward application of (3.43) to ρh = σf,h and ρ = σf = ∇p. 2

We now aim to bound the first three terms defining θ2
e,Σ (cf. (3.4)).

Lemma 3.21 There exists C > 0, independent of h and λ, such that for each e ∈ Eh(Σ) there holds

he ‖ϕs,h − uh‖20,e ≤ C
{
‖u− uh‖20,T + h2

T ‖σs − σs,h‖20,T + h2
T ‖γ − γh‖20,T + he ‖ϕs −ϕs,h‖20,e

}
,

where T is the triangle of T sh having e as an edge.

Proof. It is based mainly on the discrete trace inequality (3.41), the fact that ∇u = C−1σs + γ in Ωs,
and the upper bound for h2

T ‖C−1σs,h +γh‖20,T provided by Lemma 3.15. We omit further details and
refer to [15, Lemma 22]. 2
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Lemma 3.22 There exists C > 0, independent of h and λ, such that for each e ∈ Eh(Σ) there holds

he ‖σf,h · ν − ρf ω2ϕs,h · ν‖20,e ≤ C
{
‖σf −σf,h‖20,T + h2

T ‖div(σf −σf,h)‖20,T + he ‖ϕs −ϕs,h‖20,e
}
,

where T is the triangle of T fh having e as an edge.

Proof. We proceed similarly as in [5, Lemma 4.7] (see also [21, Lemma 3.15]). Indeed, given e ∈ Eh(Σ),

we let T be the triangle of T fh having e as an edge, define ve := σf,h · ν − ρf ω2ϕs,h · ν on e, and
consider the extension operator L : C(e) → C(T ). Then, applying (3.38), recalling that ψe = 0 on
∂T\e, extending ψe L(ve) by zero in Ωf\T so that the resulting function belongs to H1(Ωf ), and
adding and substracting σf · ν = ρf ω

2ϕs · ν on Σ, we get

‖ve‖20,e ≤ c2 ‖ψ1/2
e ve‖20,e = c2

∫
e
ψe ve (σf,h · ν − ρf ω2ϕs,h · ν)

= c2 〈σf,h · ν − ρf ω2ϕs,h · ν, ψe L(ve)〉Σ

= c2

{
− 〈(σf − σf,h) · ν, ψe L(ve)〉Σ + ρf ω

2 〈(ϕs −ϕs,h) · ν, ψe L(ve)〉Σ
}
,

(3.44)

where, as indicated in Section 1, 〈·, ·〉Σ stands here for the duality pairing between H−1/2(Σ) and
H1/2(Σ). Next, integrating by parts in Ωf , and then employing the Cauchy-Schwarz inequality, the
inverse estimate (3.40) (cf. Lemma 3.13), and (3.39), we find that

〈(σf − σf,h) · ν, ψeL(ve)〉Σ =

∫
T
∇(ψe L(ve)) · (σf − σf,h) +

∫
T
ψe L(ve) div(σf − σf,h)

≤ |ψe L(ve))|1,T ‖σf − σf,h‖0,T + ‖ψe L(ve)‖0,T ‖div(σf − σf,h)‖0,T

≤ C
{
h−1
T h1/2

e ‖σf − σf,h‖0,T + h1/2
e ‖div(σf − σf,h)‖0,T

}
‖ve‖0,e . (3.45)

In turn, noting that (ϕs − ϕs,h) · ν ∈ L2(Σ), recalling that 0 ≤ ψe ≤ 1 in we, and applying again the
Cauchy-Schwarz inequality, we obtain

〈(ϕs −ϕs,h) · ν, ψe L(ve)〉Σ =

∫
e
(ϕs −ϕs,h) · ν ψe ve

≤ ‖(ϕs −ϕs,h) · ν‖0,e ‖ψe ve‖0,e ≤ ‖ϕs −ϕs,h‖0,e ‖ve‖0,e .
(3.46)

Finally, inserting the estimates (3.45) and (3.46) into (3.44), and using that he ≤ hT , we get after
minor simplifications the required upper bound for he ‖σf,h · ν − ρf ω2ϕs,h · ν‖20,e. 2

Lemma 3.23 There exists C > 0, independent of h and λ, such that for each e ∈ Eh(Σ) there holds

he ‖σs,h · ν + ϕ
Σ,h
ν‖20,e ≤ C

{
‖σs − σs,h‖20,T + h2

T ‖div(σs − σs,h)‖20,T + he ‖ϕΣ − ϕΣ,h
‖20,e
}
,

where T is the triangle of T sh having e as an edge.

Proof. It proceeds similarly as for Lemma 3.22. This means that given e ∈ Eh(Σ), we now let T
be the triangle of T sh having e as an edge, consider the extension operator L : C(e) → C(T ), define
ve := σs,h ·ν + ϕ

Σ,h
ν on e, and extend ψe L(ve) by zero in Ωs\T so that the resulting function belongs

to H1(Ωs). The rest of the proof follows basically by applying (3.38), using that σs · ν = ϕΣ ν on Σ,
integrating by parts and applying Cauchy-Schwarz and inverse inequalities. We omit further details.

2

The upper bounds for the terms of θ2
e,Σ and θ2

e,Γ involving tangential derivatives are given now.
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Lemma 3.24 There exists C > 0, independent of h and λ, such that

∑
e∈Eh(Σ)

he

∥∥∥∥(C−1 σs,h + γh) s −
dϕs,h
ds

∥∥∥∥2

0,e

≤ C

 ∑
e∈Eh(Σ)

{
‖σs − σs,h‖20,Te + ‖γ − γh‖20,Te

}
+ ‖ϕs −ϕs,h‖21/2,Σ

 ,

where, given e ∈ Eh(Σ), Te is the triangle of T sh having e as an edge.

Proof. It makes use of the extension operator L : C(e) → C(T ) (vector version of L : C(e) →
C(T )), the fact that ∇u = C−1 σs + γ in Ωs, the boundedness of the tangential derivative d

ds :

H1/2(Σ) → H−1/2(Σ), the inverse and the Cauchy-Schwarz inequalities, and the upper bound for
h2
Te
‖curl (C−1σs,h + γh)‖20,Te (cf. Lemma 3.16). We omit further details and refer to [15, Lemma 20]

where this result was established and proved. 2

We remark that the upper bound provided by Lemma 3.24 is one of the three non-local estimates of
the present efficiency analysis (see Lemma 3.26 below for the other two). However, the following lemma
establishes that, under an additional regularity assumption on ϕs, a corresponding local estimate can
also be obtained.

Lemma 3.25 Assume that ϕs|e ∈ H1(e) for each e ∈ Eh(Σ). Then there exists C > 0, independent
of h and λ, such that

he

∥∥∥∥(C−1 σs,h + γh) s−
dϕs,h
ds

∥∥∥∥2

0,e

≤ C

{
‖σs − σs,h‖20,Te + ‖γ − γh‖20,Te + he

∥∥∥∥ dds(ϕs −ϕs,h)

∥∥∥∥2

0,e

}
,

where, given e ∈ Eh(Σ), Te is the triangle of T sh having e as an edge.

Proof. See [15, Lemma 21]. 2

Lemma 3.26 There exist C1, C2 > 0, independent of h, such that

∑
e∈Eh(Σ)

he

∥∥∥∥σf,h · s− dϕ
Σ,h

ds

∥∥∥∥2

0,e

≤ C1

 ∑
e∈Eh(Σ)

‖σf − σf,h‖20,Te + ‖ϕΣ − ϕΣ,h
‖21/2,Σ


and

∑
e∈Eh(Γ)

he

∥∥∥∥σf,h · s− dϕ
Γ,h

ds

∥∥∥∥2

0,e

≤ C2

 ∑
e∈Eh(Γ)

‖σf − σf,h‖20,Te + ‖ϕΓ − ϕΓ,h
‖21/2,Γ

 ,

where, given e ∈ Eh(Σ) ∪ Eh(Γ), Te is the triangle of T fh having e as an edge.

Proof. Having the same structure of the estimate provided by Lemma 3.24, the present bounds follow
from slight modifications of the proof of [15, Lemma 20]. 2

Similarly as for Lemma 3.25, the following result establishes that, under additional regularity
assumptions on ϕΣ and ϕΓ , corresponding local estimates can also be obtained.
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Lemma 3.27 Assume that ϕΣ |e ∈ H1(e) for each e ∈ Eh(Σ) and ϕΓ |e ∈ H1(e) for each e ∈ Eh(Γ).
Then there exist C1, C2 > 0, independent of h, such that

he

∥∥∥∥σf,h · s− dϕ
Σ,h

ds

∥∥∥∥2

0,e

≤ C1

{
‖σf − σf,h‖20,Te + he

∥∥∥∥ dds (ϕΣ − ϕΣ,h
)

∥∥∥∥2

0,e

}

and

he

∥∥∥∥σf,h · s− dϕ
Γ,h

ds

∥∥∥∥2

0,e

≤ C2

{
‖σf − σf,h‖20,Te + he

∥∥∥∥ dds (ϕΓ − ϕΓ,h
)

∥∥∥∥2

0,e

}
,

where, given e ∈ Eh(Σ) ∪ Eh(Γ), Te is the triangle of T fh having e as an edge.

Proof. These bounds follow from slight modifications of the proof of [15, Lemma 21]. 2

The remaining three terms defining θ2
e,Σ and θ2

e,Γ are bounded in what follows.

Lemma 3.28 There exists C > 0, independent of h, such that for each e ∈ Eh(Σ) there holds

he ‖ϕΣ,h
− ph‖20,e ≤ C

{
h2
T ‖σf − σf,h‖20,T + ‖p− ph‖20,T + he ‖ϕΣ − ϕΣ,h

‖20,e
}
,

where T is the triangle of T fh having e as an edge.

Proof. Adding and substracting ϕΣ = p on Σ, and then employing the discrete trace inequality (3.41)
(cf. Lemma 3.14), we obtain for each e ∈ Eh(Σ)

he ‖ϕΣ,h
− ph‖20,e ≤ 2he

{
‖ϕ

Σ,h
− ϕΣ‖

2
0,e + ‖p− ph‖20,e

}
≤ C

{
he ‖ϕΣ,h

− ϕΣ‖
2
0,e + ‖p− ph‖20,T + h2

T |p− ph|21,T
}
,

(3.47)

where the last term uses that he ≤ hT . Then, recalling that ph is piecewise constant (cf. (3.6)), using
that σf = ∇p in Ωf , adding and substracting σf,h, and employing the upper bound from Lemma
3.18, we find that

h2
T |p− ph|21,T = h2

T ‖∇p‖20,T = h2
T ‖σf‖20,T ≤ 2h2

T

{
‖σf − σf,h‖20,T + ‖σf,h‖20,T

}
≤ C

{
h2
T ‖σf − σf,h‖20,T + ‖p− ph‖20,T

}
.

(3.48)

Finally, (3.47) and (3.48) yield the required estimate and finish the proof. 2

Lemma 3.29 There exists C > 0, independent of h, such that for each e ∈ Eh(Γ) there holds

he ‖ϕΓ,h
− ph‖20,e ≤ C

{
h2
T ‖σf − σf,h‖20,T + ‖p− ph‖20,T + he ‖ϕΓ − ϕΓ,h

‖20,e
}
,

where T is the triangle of T fh having e as an edge.

Proof. It follows exactly as in the proof of Lemma 3.28 replacing Σ by Γ everywhere. 2

We complete the efficiency analysis of the a posteriori error estimator θ with the upper bound for
the term concerning the Robin boundary condition on Γ. To this end, and for simplicity, we assume
that g is piecewise polynomial on Γ. Otherwise, one would proceed as in the proof of [15, Lemma 23]
by adding and substracting a suitable projection of g onto a polynomial space.
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Lemma 3.30 There exists C > 0, independent of h, such that for each e ∈ Eh(Γ) there holds

he ‖σf,h · ν − ı κf ϕΓ,h
− g‖20,e ≤ C

{
‖σf −σf,h‖20,T + h2

T ‖div(σf −σf,h)‖20,T + he ‖ϕΓ − ϕΓ,h
‖20,e
}
,

where T is the triangle of T fh having e as an edge.

Proof. We proceed analogously to the proofs of Lemmas 3.22 and 3.23. In fact, given e ∈ Eh(Γ), we let

T be the triangle of T fh having e as an edge, define ve := σf,h ·ν − ı κf ϕΓ,h
− g on e, and consider the

extension operator L : C(e)→ C(T ). Then, applying (3.38), recalling that ψe = 0 on ∂T\e, extending
ψe L(ve) by zero in Ωf\T so that the resulting function belongs to H1(Ωf ), and replacing the datum
g by σf · ν − ı κf ϕΓ on Γ, we get

‖ve‖20,e ≤ c2

∫
e
ψe ve

(
σf,h · ν − ı κf ϕΓ,h

− g
)

= c2〈σf,h · ν − ı κf ϕΓ,h
− g, ψe L(ve)〉Γ

= c2

{
− 〈(σf − σf,h) · ν, ψe L(ve)〉Γ + ı κf 〈ϕΓ − ϕΓ,h

, ψe L(ve)〉Γ
}
.

The rest of the proof proceeds exactly as in Lemma 3.22, that is integrating by parts in Ωf , and then
employing the Cauchy-Schwarz and inverse inequalities, the estimate (3.39), and the obvious fact that
ϕΓ − ϕΓ,h

∈ L2(Γ). We omit further details here and refer to that lemma. 2

We end this section by remarking that the efficiency of θ follows straightforwardly from estimates
(3.35) and (3.36), together with Lemmas 3.15 - 3.24, 3.26, 3.28 - 3.30, after summing up over triangles
T ∈ T sh ∪T sh and edges e ∈ Eh (cf. (3.1)), and using that the number of triangles on each domain ωe is
bounded by two. In particular, note that the global efficiency estimates induced by the terms of the
form he ‖ϕs − ϕs,h‖20,e, he ‖ϕΣ − ϕΣ,h

‖20,e, and he ‖ϕΓ − ϕΓ,h
‖20,e (cf. Lemmas 3.21, 3.22, 3.23, 3.28,

and 3.29), follow easily from the fact that∑
e∈Eh(Σ)

he ‖ϕs −ϕs,h‖20,e ≤ h ‖ϕs −ϕs,h‖20,Σ ≤ C h ‖ϕs −ϕs,h‖21/2,Σ ,

∑
e∈Eh(Σ)

he ‖ϕΣ − ϕΣ,h
‖20,e ≤ h ‖ϕΣ − ϕΣ,h

‖20,Σ ≤ C h ‖ϕΣ − ϕΣ,h
‖21/2,Σ ,

and ∑
e∈Eh(Γ)

he ‖ϕΓ − ϕΓ,h
‖20,e ≤ h ‖ϕΓ − ϕΓ,h

‖20,Γ ≤ C h ‖ϕΓ − ϕΓ,h
‖21/2,Σ .

4 Numerical results

In this section we present some numerical results confirming the reliability and efficiency of the a
posteriori error estimator θ analyzed in Section 3. We begin by introducing additional notations. The
variable N stands for the number of degrees of freedom defining the finite element subspaces Hh and
Qh (equivalently, the number of unknowns of (2.20)), and the individual and global errors are denoted
by:

e(σs) := ‖σs − σs,h‖div;Ωs , e(σf ) := ‖σf − σf,h‖div;Ωf
, e(γ) := ‖γ − γh‖0,Ωs ,

e(ϕs) := ‖ϕs −ϕs,h‖1/2,Σ , e(ϕΣ) := ‖ϕΣ − ϕΣ,h
‖1/2,Σ , e(ϕΓ) := ‖ϕΓ − ϕΓ,h

‖1/2,Γ ,
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e(σ̂) :=
{

[e(σs)]
2 + [e(σf )]2

}1/2
, e(γ̂) :=

{
[e(γ)]2 + [e(ϕs)]

2 + [e(ϕΣ)]2 + [e(ϕΓ)]2
}1/2

,

e(u) := ‖u− uh‖0,Ωs , e(p) := ‖p− ph‖0,Ωf
, and

e :=
{

[e(σ̂)]2 + [e(γ̂)]2 + [e(u)]2 + [e(p)]2
}1/2

,

where ϕf := (ϕΣ , ϕΓ) ∈ H1/2(Σ)×H1/2(Γ) and ϕf,h := (ϕ
Σ,h
, ϕ

Γ,h
) ∈ Qf

h := Λh(Σ)×Λh(Γ). Bear
in mind here that uh and ph are the postprocessed variables computed according to (3.5) and (3.6).
Also, we define the effectivity index

eff(θ) := e/θ .

In turn, we let r(σs), r(σf ), r(γ), r(ϕs), r(ϕΣ), r(ϕΓ), r(u), r(p), and r be the experimental rates of
convergence given by

r(%) :=
log
(
e(%)/e′(%)

)
log(h/h′)

∀% ∈ {σs, σf , γ, ϕs, ϕΣ , ϕΓ , u, p} , and r :=
log
(
e/e′

)
log(h/h′)

,

where h and h′ denote two consecutive meshsizes with corresponding individual errors e(%) and
e′(%), and global errors e and e′, respectively. However, when the adaptive algorithm is applied (see
details below), the expression log(h/h′) is replaced by − 1

2 log(N/N ′), where N and N ′ denote the
corresponding degrees of freedom of each triangulation.

In what follows we describe the examples to be considered. We first consider Ωs := (−0.2, 0.2) ×
(−0.4, 0.4) and let the artificial boundary Γ be the ellipse centered at the origin with minor and major

semiaxis given by 0.4 and 0.6, respectively, that is Ωf :=
{

(x1, x2)t ∈ R2 :
x2

1
0.42 +

x2
2

0.62 < 1
}
\Ωs.

We take ρs = ρf = λ = µ = 1, and the rest of parameters are given by the sets{
v0 = 1; ω = 5; κs = 5; κf = 5

}
and

{
v0 = 0.7; ω = 7; κs = 7; κf = 10

}
,

which define Examples 1 and 2, respectively. Furthermore, let K0, K1 and K2 be the modified Bessel

functions of the second kind and order 0, 1, and 2, respectively, and let H
(1)
0 be the Hankel function

of the first kind and order zero. Then, we choose the data in such a way that the exact solution of
(2.4) (or (2.7)) is determined by

u(x) =


1

2π
ψ(x) − (x1 − 1)2

r2
1

χ(x)

− (x1 − 1)x2

r2
1

χ(x)

 ∀x := (x1, x2)t ∈ Ωs , and p(x) = H
(1)
0 (κf |x|) ∀x ∈ Ωf ,

where r1 :=
√

(x1 − 1)2 + x2
2 , ψ(x) := K0(ı ω r1) + 1

ı ω r1

{
K1(ı ω r1) − 1√

3
K1

(
ı ω r1√

3

)}
, and

χ(x) := K2(ı ω r1) − 1
3 K2

(
ı ω r1√

3

)
. Actually, u is the fundamental solution, centered at (1, 0)t, of the

elastodynamic equation, which yields f = 0 in Ωs, and p is the fundamental solution, centered at the
origin, of the Helmholtz equation in Ωf .

Then, for Example 3 we let Ωs be the L-shaped domain (−0.3, 0.3)2 \ (0, 0.3)2 and consider Γ as
the boundary of the unit circle B(0, 1). In addition, we take ρs = ρf = λ = µ = 1, v0 = 10, and
ω = 10, so that κs = 10 and κf = 1. Then, we choose the data in such a way that the exact solution
of (2.4) (or (2.7)) is given by

u(r, θ) := r5/3 sin
(
(2 θ − π)/3

) ( 1 + ı

1 + ı

)
∀ (r, θ) ∈ Ωs ,
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in polar coordinates, and

p(x) = H
(1)
0 (κf |x + (0.15, 0)|) ∀x ∈ Ωf ,

Note that u becomes singular at the origin, the corner of the L. More precisely, it is not difficult
to see that around this singularity divσs behaves of order r−1/3. It follows that divσs belongs
to H2/3−ε(Ωs) for each ε > 0, and hence, according to Theorem 2.3, we expect experimental rates
of convergence, particularly r(σs), close to 2/3. According to the preceding remarks, this example
is utilized to illustrate the behavior of the adaptive algorithm associated with θ, which applies the
following procedure from [28]:

1) Start with coarse meshes T sh and T fh .

2) Solve the discrete problem (2.20) for the actual meshes T sh and T fh .

3) Compute the error indicators θT on each triangle T ∈ T sh ∪ T
f
h as follows:

θ2
T :=


θ2
T,s +

1

2

∑
e∈E(T )∩Eh(Σ)

θ2
e,Σ if T ∈ T sh ,

θ2
T,f +

1

2

∑
e∈E(T )∩Eh(Σ)

θ2
e,Σ +

∑
e∈E(T )∩Eh(Γ)

θ2
e,Γ if T ∈ T fh .

4) Evaluate stopping criterion and decide to finish or go to next step.

5) Use blue-green procedure to refine each T ′ ∈ T sh ∪ T
f
h whose local error indicator θT ′ satisfies

θT ′ ≥
1

2
max

{
θT : T ∈ T sh ∪ T

f
h

}
.

6) Define resulting meshes as actual meshes T sh and T fh , and go to step 2.

The numerical results shown below were obtained using a MATLAB code. In Tables 4.1 up to 4.6
we summarize the convergence history of our fully-mixed finite element scheme (2.20) as applied to
Examples 1 and 2, for finite sequences of quasi-uniform triangulations of the computational domain
Ωs ∪ Ωf . While these examples coincide with the ones presented in [14, Section 5], the novelty now
is certainly the computation of the effectivity indexes. We observe in those tables, looking at the
corresponding experimental rates of convergence, that the O(h) predicted by Theorem 2.3 when δ = 1
(see [14, Theorem 4.1]) is attained in all the unknowns for both examples. In addition, we notice
from the last columns of Tables 4.3 and 4.6 that the effectivity indexes eff(θ) remain always in
neighborhoods of 0.74 and 1.75 for Examples 1 and 2, respectively, which illustrates the reliability and
efficiency of θ in the case of regular solutions.

Then, in Tables 4.7 up to 4.12 we provide the convergence history of the quasi-uniform and adaptive
refinements, as applied to Example 3. As already announced, we notice in the quasi-uniform case that
r(σs) oscillates in fact around 2/3, whereas the rates of convergence of the other unknowns are not
affected by the lack of regularity of σs. However, since e(σs) is the dominant component of the
total error e, the above feature is also reflected in the global rate of convergence r (see Table 4.9).
Furthermore, it is clear from these tables that the total errors of the adaptive scheme decrease faster
than those obtained by the quasi-uniform one, which is confirmed by the global experimental rates
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of convergence provided in Table 4.12. This fact is also illustrated by Figure 4.1 where we display
the total errors e vs. the number of degrees of freedom N for both refinements. Moreover, as shown
by these values of r, the adaptive method is able to recover the quasi-optimal rate of convergence
O(h) for e. On the other hand, the effectivity indexes remain bounded from above and below for
both the quasi-uniform and adaptive schemes, which confirms the reliability and efficiency of θ in the
present case of a non-smooth solution. Intermediate meshes obtained with the adaptive refinement
are displayed in Figure 4.2. We remark from there that the method is able to recognize the origin
as a singularity of the solution of this example. Finally, some components of the approximate (left)
and exact (right) solutions for Example 3 are displayed in Figures 4.3 up to 4.8. Note in the case of
the unknowns on the boundaries, that they are depicted along straight lines beginning at the points
(0.3, 0) and (0, 1), and then continuing clockwise and counterclockwise, for Σ and Γ, respectively. The
fact that the approximate and exact solutions do not distinguish from each other in all the components
shown illustrates the accurateness of the proposed fully-mixed method and the corresponding adaptive
scheme.

Acknowledgements. The authors are thankful to Antonio Márquez for performing the computa-
tional code and running the numerical examples.

h N e(σs) r(σs) e(σf ) r(σf ) e(γ) r(γ)

2π/64 1117 6.150E−02 − 8.865E−01 − 6.642E−03 −
2π/96 2090 4.264E−02 0.903 5.996E−01 0.964 3.975E−03 1.266
2π/128 3686 3.112E−02 1.095 4.414E−01 1.065 2.570E−03 1.516
2π/192 7869 2.107E−02 0.962 3.044E−01 0.917 1.530E−03 1.279
2π/256 13666 1.586E−02 0.987 2.249E−01 1.053 1.018E−03 1.415
2π/384 31282 1.038E−02 1.046 1.489E−01 1.017 6.623E−04 1.061
2π/512 55438 7.784E−03 1.000 1.106E−01 1.035 4.324E−04 1.482
2π/768 125069 5.152E−03 1.017 7.397E−02 0.991 2.745E−04 1.121
2π/1024 221848 3.871E−03 0.994 5.540E−02 1.005 2.034E−04 1.041
2π/1536 498545 2.579E−03 1.001 3.670E−02 1.016 1.298E−04 1.109
2π/2048 887629 1.927E−03 1.014 2.770E−02 0.978 9.678E−05 1.019

Table 4.1: Convergence history for σs, σf , and γ (Example 1)
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N e(ϕs) r(ϕs) e(ϕΣ) r(ϕΣ) e(ϕΓ) r(ϕΓ)

1117 9.684E−03 − 1.689E−01 − 4.819E−02 −
2090 4.899E−03 1.681 7.439E−02 2.022 2.030E−02 2.133
3686 2.727E−03 2.037 4.415E−02 1.813 1.226E−02 1.752
7869 1.427E−03 1.598 2.362E−02 1.542 5.610E−03 1.928
13666 8.446E−04 1.822 1.348E−02 1.951 3.850E−03 1.308
31282 4.023E−04 1.829 6.741E−03 1.708 1.834E−03 1.830
55438 2.521E−04 1.625 3.849E−03 1.948 1.187E−03 1.511
125069 1.266E−04 1.699 1.896E−03 1.746 6.280E−04 1.571
221848 8.236E−05 1.494 1.290E−03 1.339 4.437E−04 1.208
498545 4.112E−05 1.713 6.765E−04 1.592 2.231E−04 1.695
887629 2.633E−05 1.550 4.455E−04 1.452 1.533E−04 1.305

Table 4.2: Convergence history for ϕs, ϕΣ , and ϕΓ (Example 1)

N e(u) r(u) e(p) r(p) e r eff(θ)

1117 2.207E−03 − 3.419E−02 − 9.065E−01 − 0.7495
2090 1.547E−03 0.877 2.317E−02 0.960 6.065E−01 0.991 0.7315
3686 1.131E−03 1.087 1.706E−02 1.064 4.452E−01 1.075 0.7424
7869 7.671E−04 0.958 1.177E−02 0.916 3.063E−01 0.922 0.7328
13666 5.781E−04 0.983 8.700E−03 1.050 2.260E−01 1.057 0.7437
31282 3.781E−04 1.044 5.760E−03 1.017 1.495E−01 1.019 0.7417
55438 2.840E−04 0.999 4.277E−03 1.035 1.110E−01 1.036 0.7377
125069 1.881E−04 1.018 2.863E−03 0.991 7.423E−02 0.992 0.7445
221848 1.413E−04 0.993 2.144E−03 1.005 5.559E−02 1.005 0.7413
498545 9.417E−05 1.001 1.420E−03 1.016 3.682E−02 1.016 0.7366
887629 7.036E−05 1.013 1.072E−03 0.978 2.779E−02 0.978 0.7360

Table 4.3: Convergence history for u, p, e, and effectivity index (Example 1)

h N e(σs) r(σs) e(σf ) r(σf ) e(γ) r(γ)

2π/64 1117 1.592E−01 − 4.981E−00 − 1.422E−02 −
2π/96 2090 8.706E−02 1.489 3.252E−00 1.052 6.901E−03 1.783
2π/128 3686 6.061E−02 1.259 2.371E−00 1.098 4.045E−03 1.857
2π/192 7869 3.967E−02 1.045 1.626E−00 0.931 2.231E−03 1.468
2π/256 13666 2.927E−02 1.057 1.199E−00 1.057 1.458E−03 1.480
2π/384 31282 1.893E−02 1.074 7.931E−01 1.020 9.090E−04 1.164
2π/512 55438 1.416E−02 1.010 5.886E−01 1.036 5.821E−04 1.549
2π/768 125069 9.337E−03 1.027 3.937E−01 0.992 3.642E−04 1.157
2π/1024 221848 7.007E−03 0.998 2.949E−01 1.004 2.673E−04 1.076
2π/1536 498545 4.664E−03 1.004 1.954E−01 1.016 1.685E−04 1.138
2π/2048 887629 3.486E−03 1.012 1.474E−01 0.979 1.248E−04 1.043

Table 4.4: Convergence history for σs, σf , and γ (Example 2)
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N e(ϕs) r(ϕs) e(ϕΣ) r(ϕΣ) e(ϕΓ) r(ϕΓ)

1117 2.843E−02 − 4.104E−01 − 1.388E−01 −
2090 1.217E−02 2.092 1.898E−01 1.901 5.923E−02 2.100
3686 6.413E−03 2.228 1.085E−01 1.945 3.262E−02 2.073
7869 3.053E−03 1.831 5.654E−02 1.607 1.517E−02 1.888
13666 1.722E−03 1.990 3.159E−02 2.023 9.679E−03 1.562
31282 8.131E−04 1.851 1.560E−02 1.740 4.454E−03 1.914
55438 5.253E−04 1.518 8.850E−03 1.970 2.832E−03 1.575
125069 2.394E−04 1.938 4.339E−03 1.758 1.512E−03 1.547
221848 1.605E−04 1.391 2.868E−03 1.440 9.982E−04 1.444
498545 8.008E−05 1.714 1.438E−03 1.703 5.174E−04 1.621
887629 5.005E−05 1.633 9.361E−04 1.492 3.530E−04 1.329

Table 4.5: Convergence history for ϕs, ϕΣ , and ϕΓ (Example 2)

N e(u) r(u) e(p) r(p) e r eff(θ)

1117 3.080E−03 − 4.950E−02 − 5.003E−00 − 1.8347
2090 1.686E−03 1.486 3.232E−02 1.051 3.259E−00 1.057 1.7396
3686 1.178E−03 1.247 2.356E−02 1.098 2.374E−00 1.101 1.7641
7869 7.713E−04 1.044 1.616E−02 0.930 1.627E−00 0.932 1.7431
13666 5.694E−04 1.055 1.192E−02 1.056 1.200E−00 1.058 1.7676
31282 3.686E−04 1.072 7.885E−03 1.020 7.935E−01 1.021 1.7623
55438 2.758E−04 1.009 5.852E−03 1.036 5.889E−01 1.037 1.7586
125069 1.819E−04 1.027 3.915E−03 0.992 3.939E−01 0.992 1.7698
221848 1.365E−04 0.997 2.932E−03 1.004 2.951E−01 1.005 1.7655
498545 9.086E−05 1.004 1.943E−03 1.016 1.955E−01 1.016 1.7601
887629 6.790E−05 1.012 1.466E−03 0.978 1.475E−01 0.979 1.7611

Table 4.6: Convergence history for u, p, e, and effectivity index (Example 2)

h N e(σs) r(σs) e(σf ) r(σf ) e(γ) r(γ)

2π/64 2215 9.127E−01 − 4.267E−01 − 3.210E−02 −
2π/96 4767 6.802E−01 0.725 1.896E−01 2.000 1.371E−02 2.098
2π/128 8495 5.408E−01 0.797 1.185E−01 1.634 9.156E−03 1.403
2π/192 19067 4.465E−01 0.472 6.492E−02 1.484 4.033E−03 2.022
2π/256 33331 3.898E−01 0.472 4.851E−02 1.013 2.828E−03 1.234
2π/384 75077 2.800E−01 0.816 3.053E−02 1.142 1.630E−03 1.359
2π/512 133497 2.351E−01 0.607 2.317E−02 0.960 1.049E−03 1.532
2π/768 299000 1.883E−01 0.547 1.528E−02 1.026 6.357E−04 1.235
2π/1024 534105 1.493E−01 0.807 1.139E−02 1.023 4.391E−04 1.286
2π/1536 1199275 1.109E−01 0.735 7.601E−03 0.997 2.663E−04 1.233

Table 4.7: Convergence history for σs, σf , and γ (quasi-uniform scheme, Example 3)
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N e(ϕs) r(ϕs) e(ϕΣ) r(ϕΣ) e(ϕΓ) r(ϕΓ)

2215 6.895E−02 − 5.538E−01 − 5.233E−02 −
4767 2.300E−02 2.708 2.027E−01 2.479 1.786E−02 2.652
8495 1.417E−02 1.683 1.066E−01 2.232 8.300E−03 2.663
19067 4.631E−03 2.759 3.555E−02 2.710 2.920E−03 2.576
33331 3.500E−03 0.974 2.082E−02 1.859 1.396E−03 2.565
75077 1.520E−03 2.056 1.028E−02 1.741 6.814E−04 1.769
133497 1.019E−03 1.390 6.675E−03 1.501 3.776E−04 2.052
299000 4.515E−04 2.008 3.018E−03 1.958 2.102E−04 1.444
534105 3.266E−04 1.126 1.975E−03 1.473 1.564E−04 1.029
1199275 1.523E−04 1.882 9.444E−04 1.820 6.877E−05 2.026

Table 4.8: Convergence history for ϕs, ϕΣ , and ϕΓ (quasi-uniform scheme, Example 3)

N e(u) r(u) e(p) r(p) e r eff(θ)

2215 9.444E−03 − 5.476E−02 − 1.155E−00 − 0.6179
4767 5.899E−03 1.161 2.980E−02 1.501 7.360E−01 1.111 0.6313
8495 4.430E−03 0.996 2.024E−02 1.345 5.645E−01 0.922 0.6546
19067 2.942E−03 1.010 1.292E−02 1.107 4.529E−01 0.543 0.7241
33331 2.189E−03 1.028 9.722E−03 0.988 3.935E−01 0.488 0.7679
75077 1.459E−03 1.000 6.359E−03 1.047 2.819E−01 0.823 0.7943
133497 1.091E−03 1.009 4.801E−03 0.977 2.364E−01 0.612 0.8232
299000 7.360E−04 0.971 3.191E−03 1.008 1.890E−01 0.552 0.8679
534105 5.567E−04 0.971 2.388E−03 1.008 1.498E−01 0.809 0.8806
1199275 3.685E−04 1.018 1.594E−03 0.996 1.111E−01 0.736 0.9004

Table 4.9: Convergence history for u, p, e, and effectivity index (quasi-uniform scheme, Example 3)
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Figure 4.1: Example 3, total error e vs. N for the quasi-uniform and adaptive schemes
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h N e(σs) r(σs) e(σf ) r(σf ) e(γ) r(γ)

0.1169 2215 9.127E−01 − 4.267E−01 − 3.210E−02 −
0.1169 2503 7.145E−01 4.006 2.996E−01 5.786 2.589E−02 3.520
0.1169 3471 5.377E−01 1.739 2.607E−01 0.851 2.394E−02 0.478
0.1169 4459 4.417E−01 1.570 1.713E−01 3.354 1.472E−02 3.883
0.1169 6355 3.477E−01 1.351 1.401E−01 1.134 1.299E−02 0.707
0.1169 9410 2.753E−01 1.189 1.088E−01 1.287 9.272E−03 1.717
0.1169 11985 2.411E−01 1.097 9.418E−02 1.196 8.363E−03 0.853
0.1169 19655 1.882E−01 1.002 7.556E−02 0.890 5.892E−03 1.416
0.0934 38391 1.406E−01 0.870 5.126E−02 1.159 4.545E−03 0.775
0.0832 65934 1.058E−01 1.051 4.117E−02 0.810 3.321E−03 1.161
0.0832 98472 9.131E−02 0.736 3.519E−02 0.783 3.022E−03 0.470
0.0622 125924 8.021E−02 1.055 3.056E−02 1.146 2.723E−03 0.847
0.0511 151119 7.225E−02 1.146 2.681E−02 1.436 2.257E−03 2.060
0.0493 196274 6.617E−02 0.673 2.456E−02 0.670 2.161E−03 0.331
0.0471 241916 6.067E−02 0.830 2.287E−02 0.684 2.065E−03 0.436
0.0467 282385 5.684E−02 0.843 2.144E−02 0.830 1.904E−03 1.051
0.0400 343470 4.852E−02 1.617 1.836E−02 1.586 1.581E−03 1.900
0.0298 570415 3.694E−02 1.075 1.382E−02 1.120 1.177E−03 1.162
0.0244 894088 3.037E−02 0.872 1.139E−02 0.861 9.605E−04 0.905
0.0240 1269053 2.654E−02 0.769 9.882E−03 0.811 8.686E−04 0.574
0.0234 1635325 2.360E−02 0.926 8.777E−03 0.935 7.831E−04 0.817

Table 4.10: Convergence history for σs, σf , and γ (adaptive scheme, Example 3)
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N e(ϕs) r(ϕs) e(ϕΣ) r(ϕΣ) e(ϕΓ) r(ϕΓ)

2215 6.895E−02 − 5.538E−01 − 5.233E−02 −
2503 5.104E−02 4.921 3.576E−01 7.157 4.086E−02 4.037
3471 3.138E−02 2.975 2.942E−01 1.195 3.051E−02 1.787
4459 1.530E−02 5.738 1.346E−01 6.243 2.099E−02 2.986
6355 1.124E−02 1.741 8.971E−02 2.290 1.954E−02 0.405
9410 5.915E−03 3.270 4.522E−02 3.491 7.613E−03 4.803
11985 4.596E−03 2.085 3.356E−02 2.465 7.385E−03 0.251
19655 3.352E−03 1.277 2.590E−02 1.048 7.867E−03 -0.255
38391 1.735E−03 1.967 1.118E−02 2.510 3.919E−03 2.082
65934 1.229E−03 1.276 8.728E−03 0.915 3.104E−03 0.863
98472 9.169E−04 1.459 6.057E−03 1.821 2.989E−03 0.188
125924 7.763E−04 1.355 4.871E−03 1.772 2.240E−03 2.344
151119 5.946E−04 2.923 3.680E−03 3.074 1.914E−03 1.726
196274 5.925E−04 0.028 3.390E−03 0.628 1.738E−03 0.738
241916 5.497E−04 0.717 3.330E−03 0.171 1.583E−03 0.896
282385 4.916E−04 1.443 3.101E−03 0.921 1.455E−03 1.088
343470 4.137E−04 1.763 2.400E−03 2.617 1.007E−03 3.763
570415 2.366E−04 2.204 1.307E−03 2.395 6.893E−04 1.493
894088 1.835E−04 1.130 9.845E−04 1.262 4.778E−04 1.630
1269053 1.606E−04 0.763 9.044E−04 0.485 4.672E−04 0.129
1635325 1.343E−04 1.411 7.551E−04 1.423 3.758E−04 1.716

Table 4.11: Convergence history for ϕs, ϕΣ , and ϕΓ (adaptive scheme, Example 3)
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N e(u) r(u) e(p) r(p) e r eff(θ)

2215 9.444E−03 − 5.476E−02 − 1.155E−00 − 0.6179
2503 8.923E−03 0.928 4.779E−02 2.229 8.576E−01 4.868 0.5530
3471 6.348E−03 2.083 4.289E−02 0.661 6.693E−01 1.516 0.5277
4459 5.179E−03 1.625 3.797E−02 0.974 4.949E−01 2.411 0.4727
6355 4.091E−03 1.332 3.583E−02 0.328 3.880E−01 1.374 0.4537
9410 3.008E−03 1.566 3.101E−02 0.735 3.014E−01 1.287 0.4249
11985 2.772E−03 0.678 2.814E−02 0.803 2.628E−01 1.133 0.4205
19655 2.196E−03 0.942 2.250E−02 0.904 2.059E−01 0.986 0.4089
38391 1.549E−03 1.042 1.499E−02 1.214 1.510E−01 0.927 0.4300
65934 1.215E−03 0.899 1.223E−02 0.752 1.146E−01 1.018 0.3973
98472 1.013E−03 0.908 1.045E−02 0.786 9.870E−02 0.747 0.4051
125924 9.152E−04 0.822 9.149E−03 1.077 8.653E−02 1.070 0.4050
151119 8.144E−04 1.280 7.918E−03 1.585 7.762E−02 1.192 0.4108
196274 7.452E−04 0.679 7.221E−03 0.704 7.109E−02 0.672 0.4082
241916 6.858E−04 0.795 6.727E−03 0.678 6.532E−02 0.809 0.3933
282385 6.388E−04 0.917 6.308E−03 0.832 6.121E−02 0.842 0.4030
343470 5.594E−04 1.356 5.398E−03 1.591 5.225E−02 1.616 0.4038
570415 4.196E−04 1.134 4.004E−03 1.178 3.969E−02 1.084 0.4075
894088 3.470E−04 0.846 3.315E−03 0.840 3.264E−02 0.871 0.4025
1269053 3.032E−04 0.770 2.886E−03 0.792 2.850E−02 0.773 0.3792
1635325 2.680E−04 0.972 2.565E−03 0.931 2.534E−02 0.928 0.4013

Table 4.12: Convergence history for u, p, e, and effectivity index (adaptive scheme, Example 3)
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Figure 4.2: Example 3: adapted meshes for N ∈ {3471, 9410, 19655, 65934}
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Figure 4.3: Approximate and exact real part of σs,21 (Example 3)
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Figure 4.4: Approximate and exact imaginary part of σs,22 (Example 3)
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Figure 4.5: Approximate and exact imaginary part of σf,1 (Example 3)
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Figure 4.6: Approximate and exact imaginary part of σf,2 (Example 3)
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Figure 4.7: Approximate (red) and exact (blue) real and imaginary parts of ϕΣ (Example 3)
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Figure 4.8: Approximate (red) and exact (blue) real and imaginary parts of ϕs,2 (Example 3)
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